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SUMMARY

This article presents a novel cost analysis framework for concurrent objects. Concurrent objects form
a well established model for distributed concurrent systems. In this model, objects are the concurrency
units which communicate among them via asynchronous method calls. Cost analysis aims at automatically
approximating the resource consumption of executing a program in terms of its input parameters. While
cost analysis for sequential programming languages has received considerable attention, concurrency and
distribution have been notably less studied. The main challenges of cost analysis in a concurrent setting
are: (1) Inferring precise size abstractions for data in the program in the presence of shared memory. This
information is essential for bounding the number of iterations of loops. (2) Distribution suggests that analysis
must infer the cost of the diverse distributed components separately. We handle this by means of a novel form
of object-sensitive recurrence equations which use cost centers in order to keep the resource usage assigned
to the different components separate. We have implemented our analysis and evaluated it on several small
applications which are classical examples of concurrent and distributed programming.
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1. INTRODUCTION

Distribution and concurrency are currently mainstream. The Internet and the broad availability
of multi-processors radically influence software. Many standard desktop programs have to deal
with distribution aspects like network transmission delay and failure. Furthermore, many chip
manufacturers are turning to multicore processor designs as a way to increase performance in
desktop, enterprise, and mobile processors. This brings renewed interest in developing both new
concurrency models and associated programming languages techniques that help in understanding,
analyzing, and verifying the behaviour of concurrent and distributed programs.

One of the most important features of a program is its resource consumption. By resource,
we mean not only traditional cost measures (e.g., number of executed instructions, or memory
consumption) but also concurrency-related measures (e.g., number of tasks spawned, number of
requests to remote servers). Example 1 will illustrate these types of resources on a fragment of
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2 E. ALBERT, ET AL.

our running example. Cost analysis (a.k.a. resource usage analysis) aims at statically inferring
approximations of the resource consumption of executing the program. Automatically inferring
the resource usage of concurrent programs is challenging because of the inherent complexity of
concurrent behaviours.

In addition to traditional applications, like optimization [45], verification and certification of
resource consumption [18], cost analysis opens up interesting applications in the context of
concurrent programming. In general, having anticipated knowledge on the resource consumption
of the different components which constitute a system, is useful for distributing the load of work.
Upper bounds can be used to predict that one component may receive a large amount of remote
requests, while other siblings are idle most of the time. Also, our framework allows instantiating the
upper bounds obtained for different components with the particular features of the infrastructure
on which they are deployed. For instance, we might know that the processing capacity of one
component doubles the processing capacity of another component. Then, the upper bounds that
we obtain for the different components can be compared by taking into account such particular
features of the infrastructure. E.g., the number of steps obtained for the former component should
be divided by two if we want to compare the processing load of this component w.r.t. the load of the
latter component. Then, analysis can be used to detect the components that consume more resources
and may introduce bottlenecks. Lower bounds on the resource usage can be used to decide if it is
worth executing locally a task or requesting remote execution.

In order to develop our analysis, we consider a concurrency model based on the notion of
concurrently running (groups of) objects, similar to the actor-based and active-objects approaches
[38, 42, 1, 44, 31, 37, 15]. These models take advantage of the concurrency implicit in the notion
of object in order to provide programmers with high-level concurrency constructs that help in
producing concurrent applications more modularly and in a less error-prone way. Concurrent objects
communicate via asynchronous method calls. Intuitively, each concurrent object is a monitor and
allows at most one active process to execute within the object. Scheduling among the processes of
an object is cooperative, i.e., a process has to release the monitor lock explicitly, except when it
terminates. Each object has an unbounded set of pending processes. In case the lock of a concurrent
object is free any process in the set of pending processes can grab the lock and start to execute
(hence process scheduling is non-deterministic). The notation f = o ! m(ē) is used to denote that
an asynchronous call m(ē) has been posted on object o and f is a future variable which allows us to
know if the execution of the asynchronous call has finished. In such case the result can be retrieved
by means of a get operation f.get. Also, we can synchronize the execution with the asynchronous
call by means of an await instruction, namely await f? is used to check if the asynchronous call has
finished, otherwise the processor can be released such that a task which was pending to execute can
take it.

Example 1 (notion of resource). Let us consider the concurrent method (which is part of our
running example that will be showed later) below.

Int process(Int pos) {
Fut〈Int〉 f;
Int i = 0;
Int res = 0;
while (i < elems) {

f = this ! hdRead(pos + i);
await f?;
res = this.update(res,f.get);
i = i + 1;

}
return res;

}
In the above method, elems is a class field. Our objective is to measure the resource consumption

of executing the above method. One crucial aspect will be to find out if field elems can be
modified at the await f? instruction. Observe that if the processor is released at the await and
another process that increases the value of elems takes the processor, the loop above might
not terminate. Our method relies on class invariants which contain information on the shared
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OBJECT-SENSITIVE COST ANALYSIS FOR CONCURRENT OBJECTS 3

memory at processor release points. By assuming that elems is not modified, we can now consider
different types of resources of interest. For instance, we can measure traditional cost measures like
number of executed instructions or memory consumption. In the former case, we will infer that
3 + elems ∗ (7 + hdReadinst + updateinst) instructions will be executed. In the expression, elems
corresponds to the maximum number of iterations of the loop, at each iteration 7 instructions are
executed (the loop condition, the two increments, two method invocations, the get and the await)
and the number of instructions of executing methods hdRead and update, denoted hdReadinst

and updateinst respectively, are added as well. For simplicity, we ignore here the values of the
parameters. Besides, 3 instructions are executed outside the loop. The analysis will need to infer
also the cost of the methods hdRead and update and plug them in the expression above. As regards
memory consumption, new memory is not created in the loop, hence we would output an expression
of the form elems ∗ (hdReadheap + updateheap) which relies on the memory created by the invoked
methods (denoted hdReadheap and updateheap). Interestingly, we can also consider concurrency-
related measures like the number of tasks spawned. In the above method, we spawn one task
directly (but the method invocations might also spawn new tasks transitively). Therefore, we will
compute an expression of the form elems ∗ (1 + hdReadtasks + updatetasks) which relies on the
number of tasks spawned by the calls to hdRead and update. Observe that the types of resources we
have considered are platform independent (unlike WCET or energy consumption), i.e., they can be
inferred by inspecting the program, and the hardware on which the program will be executed can be
ignored. Platform dependent resources are beyond the scope of this work. �

1.1. Contributions

We propose a static cost analysis for concurrent objects, which is parametric w.r.t. the notion of
resource that can be instantiated to measure both traditional and concurrency-related resources. The
main contributions of this work are:

1. We present a flow-sensitive object-sensitive points-to analysis for concurrent programs which
adapts Milanova’s analysis framework [35] for Java to the concurrent object setting;

2. We introduce a sound size analysis for concurrent execution. The analysis is field-sensitive,
i.e., it tracks data stored in the heap whenever it is sound to do so; the accuracy of the field-
sensitive size analysis can be increased by means of class invariants [34] which contain
information on the shared memory;

3. We leverage the definition of cost used in sequential programming to the distributed setting
by relying on the notion of cost centers [36], which represent the (distributed) components
and allow separating their costs;

4. We present a novel form of object-sensitive recurrence relations which relies on information
gathered by the previous object-sensitive points-to analysis in order to generate the cost
equations. Interestingly, the resulting recurrence relations can still be solved to closed-form
upper/lower bounds using standard solvers for cost analysis of sequential programs;

5. We report on the SACO system, a prototype implementation of a cost analyzer for programs
written in ABS [30] (an Abstract Behavioural Specification language based on concurrent
objects).

It is recognized that performing the analysis on a high-level concurrency model, like the concurrent
objects model, makes verification more feasible. This is because analysis in concurrent systems
often needs to consider too many interleavings and thus ends up being limited to very small
programs in practice. We argue that our approach is of both practical and theoretical relevance.

This work is an extended and revised version of APLAS’11 [3]. Points 2 and 3 in the contribution
list can be considered as original contributions of the conference, while this journal paper has points
1 and 4 as original contributions, and also with an implementation of them (last point). However,
the treatment of fields in the size analysis (included in point 2 in the contribution list) has been
improved in this article.
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4 E. ALBERT, ET AL.

1.2. Organization of the Article

The remainder of the article is organized as follows. Section 2 presents the syntax and semantics
of the language on which we develop our analysis. Section 3 defines the notion of cost for the
concurrent distributed programs that we aim at approximating by means of the resource analysis.

The next three sections present the resource-analysis framework in several steps. Our starting
point is a powerful cost analysis framework for sequential OO programs [7]. When lifting such
framework to the concurrent and distributed setting, there are two main difficulties and novelties.
First, it is widely recognized that, due to the possible interleaving between tasks, tracking values
of data stored in the heap is challenging [14, 33]. In Section 5, we present the basic, novel, field-
sensitive size analysis for the concurrent setting.

The second difficulty is related to the fact that standard recurrence relations (in the sequential
setting) assume a single cost center which accumulates the cost of the whole execution. We
propose a novel form of recurrence relations which use cost centers to split the cost of the diverse
distributed components. This requires first the inference of object-sensitive points-to information
which approximates the set of objects which each reference variable may point. Section 4 adapts
the object-sensitive points-to analysis of Milanova [35, 40] to our setting. Then, the points-to
information gathered by the analysis allows us to define in Section 6 object-sensitive recurrence
relations which, together with the size abstractions, constitute the core of our analysis.

Section 7 presents SACO, a prototype implementation of our analysis, and evaluates it on a series
of typical applications of concurrent and distributed programming. Finally, Section 8 reviews the
related work and Section 9 recaps the main conclusions.

2. A LANGUAGE WITH CONCURRENT OBJECTS

The concurrency model of Java and C# is based on threads that share memory and are scheduled
preemptively, i.e., they can be suspended or activated at any time. To avoid undesired interleavings,
low-level synchronization mechanisms such as locks have to be used. Thread-based programs are
error-prone, difficult to debug, verify and maintain. In order to overcome these problems, several
higher-level concurrency models that take advantage of the inherent concurrency implicit in the
notion of object have been developed [38, 42, 29, 19, 34]. They provide simple language extensions
that allow programming concurrent applications with relatively little effort. Concurrent objects
[29, 19] form today a well established high-level model for distributed concurrent systems.

2.1. The Concurrency Model

For the sake of concreteness, we develop our analysis on a simple imperative language with
concurrent objects, which is the imperative subset of the ABS language [30]. However, our
techniques work for other languages that use actors (e.g., there are implementations of actor libraries
for Scala, Java, Erlang, among others). The central concept of this concurrency model is that of
concurrent object. Conceptually, each object has a dedicated processor and encapsulates a local
heap which is not accessible from outside this object, i.e., fields are always accessed using the this
object, and any other object can only access such fields through method calls. Concurrent objects
live in a distributed environment with asynchronous and unordered communication by means of
asynchronous method calls. Thus, an object has a set of tasks (i.e., calls) to execute and, among
them, at most one task is active and the others are suspended on a task queue.

Asynchronous method calls may be seen as triggers of concurrent activity, spawning new tasks
(so-called processes) in the called object. After asynchronously calling method m of object o with
arguments e, denoted by f = o ! m(e), the caller may proceed with its execution without blocking
on the call. Here f is a future variable which refers to a return value which has yet to be computed.
There are two operations on future variables, which control external synchronization. First, await f?
suspends the active task (allowing other tasks in the object to be scheduled) until the future variable
f has been assigned a value. Second, the value stored in f can be retrieved using f.get, which blocks
all execution in the object until f gets a value (in case it has not been assigned a value yet).
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class FileIS(String fp, Int lth, Int blockS) {
Int readBlock () {

Int res = 0; Int i = this.lth;
Int incr = 0; Int pos = 0;
while (i > 0) {

if (this.blockS > i) incr = i;
else incr = this.blockS;
Fut〈Int〉 f;
f = this ! readContent(pos,incr);
await f?;
res = res + f.get;
i = i - incr;
pos = pos + incr;

}
return res;

}
Int readOnce() {

Fut〈Int〉 f = this ! readContent(0,this.lth);
await f?;
return f.get;

}
Int readContent(Int pos, Int elems) {

Reader rd = new Reader (this.fp,elems);
Fut〈Int〉 f = rd ! process(pos);
await f?;
return f.get;

}
}// end class FileIS

class Reader(String fp, Int elems) {
Int hdRead(Int i){ · · · }
Int update(Int a, Int b){ · · · }
Int process(Int pos) {

Fut〈Int〉 f;
Int i = 0;
Int res = 0;
while (i < this.elems) {

f = this ! hdRead(pos + i);
await f?;
res = this.update(res,f.get);
i = i + 1;

}
return res;

}
}// end class Reader

main {
FileIS ob1 = new FileIS("A.txt",20,2);
FileIS ob2 = new FileIS("A.txt",20,3);
Fut〈Int〉 f1; Fut〈Int〉 f2;

∗©f1 = ob1 ! readOnce();
f2 = ob2 ! readBlock();
await f1?;
Int r1 = f1.get;
await f2?;
Int r2 = f2.get;

}

Figure 1. Running example

Example 2 (syntax of ABS). Figure 1 shows the source code of our running example which
implements a simple file input stream (defined in class FileIS) that provides two different ways
of processing a file. The class contains three fields (defined as class parameters) which represent,
respectively, the name of the file fp, the length of the file lth, and the size of the block to be read from
the field blockS. Method readBlock reads file fp block by block (of sizes blockS) and sums the values
retrieved using get. Method readOnce reads the whole file in just one invocation to readContent. The
latter method invokes method process of class Reader which reads and processes elems elements of
the file starting at position pos. Method hdRead represents the low-level access to the hard-disk and
method update performs some arithmetic operation on its arguments and returns an integer value.
We do not show the code of these methods as they are not relevant for the purpose of this article. �

2.2. A Rule-based Intermediate Language

To contextualize the formalization of the analysis in a simpler model, we develop our analysis on
an intermediate representation (IR) similar to those for Java bytecode and .NET [43, 7, 41, 20]. In
the IR, recursion is the only iterative mechanism and guards are the only form of conditional. In
the following, given any entity z, we use z̄ to denote the tuple 〈z1, . . . , zn〉. The compilation of a
program into the IR is done by building the CFG for the original program and representing each
block in the CFG by means of a rule. The following definition establishes the formal syntax of the
IR.

Definition 1 (syntax of IR programs). A program in the IR consists of a set of classes C̄. Each
class C contains a set of fields f̄C and a set of procedures. A procedure m of class C is defined
by a set of guarded rules. A guarded rule for m has the form “r ≡ C.m(this, x̄, ȳ)← g , b̄.”, where
C.m(this, x̄, ȳ) is the head of the rule, this is the identifier of the object on which the method is
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6 E. ALBERT, ET AL.

executing, g specifies the conditions for the rule to be applicable, and, b̄ is the rule’s body. Guards
g and instructions b ∈ b̄ are defined according to the following grammar:

b ::= x := rhs | this.f :=y | await x? | call(ct ,m(rec, x̄, ȳ))
g ::= true | x opR y
rhs ::= e | new C | x.get
e ::= null | this.f | x | n | x opA y
opR ::= <|>|=|6=|≥|≤ opA ::= + | − | / | ∗ ct ::= m | b

where x and y denote variable names, f a field name, call(ct ,m(rec, x̄, ȳ)) a call to a method or a
block and n ∈ Z.

The first argument ct of a call call(ct ,m(rec, x̄ , ȳ)) can be either m or b. The identifier m is
used for asynchronous method calls whereas b is used for synchronous method calls or calls to
intermediate blocks. For instance, intermediate blocks can correspond to if-then-else statements or
loops; rec is a variable that refers to the receiver object. For synchronous method calls or calls to
blocks, rec is always this; the variables x̄ (respectively ȳ) are the formal parameters (respectively
return values). For methods, ȳ is either empty 〈〉 or contains a single output variable 〈y〉.

An instruction x = new C(̄t) in the target language, is represented in the IR by x := new C
followed by a call to the class constructor with the corresponding parameters t̄. For example,
assuming that the class C contains a field f of type integer, the instruction x = new C(2) will be
translated into x := new C, y := 2;C_init(this, 〈y〉, 〈〉), where C_init(this, 〈y〉, 〈〉)← this.f := y.

The translation from the high-level programs to the IR is (almost) identical to the translation of
Java (bytecode) to the IR in [7], where classes and fields in the IR are the same as in the original
program and each method m of a class C is represented in the IR by a single procedure named
C.m (the method entry). The other rules in the IR are intermediate procedures used only within the
method, with ct = b. The main method does not belong to any class. Without lack of generality, we
assume that method names are unique, and we omit C when referring to m. Furthermore, we will
omit those guards which are true. This happens in the rules corresponding to method entries.

Example 3 (CFG of an IR for the running example). Figure 2 depicts the IR (left) and the CFG
(right) of method readBlock. Loops are extracted in separate CFGs to enable compositional cost
analysis (e.g., the CFG at the bottom is the one for the while loop). The method is represented
by four procedures, readBlock, while, if and if_c, which have a correspondence with blocks in the
CFG and the entry to the loop. Each procedure is defined by means of guarded rules. As notation
inp stands for 〈res, i , incr , pos〉 and out for 〈res, i , incr , pos〉. Guards in rules state the conditions
under which the corresponding blocks in the CFG can be executed. When there is more than one
successor in the CFG, we create a continuation procedure and the corresponding call in the rule.
Blocks in the continuation will in turn be defined by means of (mutually exclusive) guarded rules.
As a result of the translation, observe that all forms of iteration in the program are represented by
means of recursive calls. The unique parameter of the procedure readBlock is the reference to the
this object. When calling a block, we pass as arguments all local variables that are needed in the
block. The heap remains implicit. �

As we have seen in the example, in the IR there may be multiple rules with the same name, thus,
to distinguish each different rule we use a unique identifier t. Similarly, when needed, in order to
uniquely identify the different program points, we use a pair 〈t, j〉, where t is the identifier of the
rule and j is the position of the instruction in the body of the rule.

2.3. Operational Semantics

An object is of the form ob(o, C, h, 〈tv , b̄〉,Q), where o is the object identifier, C is its class name,
h is its local heap, 〈tv , b̄〉 is the execution context of the current task, being tv the table of local
variables and b̄ the sequence of instructions to be executed by the current task, and Q is the set of
pending tasks, being each of them an execution context. In the following we use ε to denote either
an empty sequence of instructions or an empty execution context. A heap h maps field names f̄C
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OBJECT-SENSITIVE COST ANALYSIS FOR CONCURRENT OBJECTS 7

readBlock(this, 〈〉, 〈r〉)←
res := 0 , i := this.lth,
incr := 0 , pos := 0 ,
call(b,while(this, inp, out)),
r := res.

while(this, inp, out)← i ≤ 0.
while(this, inp, out)← i > 0,

call(b, if (this, inp, out)).
if (this, inp, out)← this.blockS > i ,
incr := i,
call(b, if_c(this, inp, out)).

if (this, inp, out)← this.blockS ≤ i ,
incr := this.blockS,
call(b, if_c(this, inp, out)).

if_c(this, inp, out)←
call(m, readContent(this, 〈pos, incr〉, 〈f 〉)),
await f ?, v := f .get,
res := res + v , i := i − incr ,
pos := pos + incr ,
call(b,while(this, inp, out)).

Fut〈Int〉 f;

await f?;

res = res + f.get ;

pos = pos + incr;

Int incr = 0;

Int pos = 0;

Int res = 0;

return res;
while(this, res, i, incr, pos);

f = this ! readContent(pos, incr);

i = i− incr;

yes

yes

no

incr = i

i>0

Int i = this.lth;

incr = this.blockS

this.blockS>i
no

Figure 2. The IR and CFG for method readBlock

declared in C to V = Z ∪ {null} ∪Objects , where Objects denotes the set of object identifiers. A
table of variables tv maps local variables to V. It contains the special entry ret to associate the return
variable of a method to the corresponding future variable. Future events have the form fut(fn, v)
where v ∈ V ∪ {⊥} and fn stands for a future variable identifier. The symbol ⊥ indicates that fn
does not have a value yet. For simplicity, we assume that all methods return a single value, while
intermediate blocks will often have several return values. An execution state (or configuration) S
has the form {a1, . . . , an}, where ai can be either an object or a future event. Execution states are
in fact represented as sets of objects and future events. In the following, we use the notation {a|S}
to denote the set {a} ∪ S.

The operational semantics is given in a rewriting-based style, where, at each step, a subset of
the state is rewritten according to the rules in Figure 3. Let us intuitively explain the semantics.
Function evale in rule 1 evaluates an expression e with respect to a heap h and a table of variables
tv in the standard way. Note that the heap is required to evaluate expressions of the form this.f ,
that returns h(f) as result. For the case of null, evale returns null. Function evalgd(g , tv) in rule 4
returns true iff g ≡ true or g ≡ x1 opR x2 and tv(x1) opR tv(x2) holds. Finally, the evaluation
of the conditions in await instructions is done by function evalaw . In particular, in rules 9 and
10, this function behaves as follows: evalaw (x?, tv ,S) = true iff tv(x) = fn, fut(fn, v) ∈ S and
v 6= ⊥. The notation tv [x 7→ v] (respectively h[f 7→ v]) is used for storing v in the local variable x
(respectively field f ). In general, given any entity z, we use vars(z) to denote the set of variables
occurring in z.

Rules 1 and 2 operate in the expected way. In rule 3, it can be observed that the table of
variables tv maps x to o1. Function newRef () is in charge of generating fresh object identifiers
and procedure newHeap(D,h1) creates a new mapping for fields in D, where each field is
initialized to either 0 or null. In rule 4, the notation r ≡ p(this ′, x̄′, ȳ)← g ′, b′1 , . . . , b

′
n �

〈ȳ〉
p P

stands for a renaming of a rule for p in P such that the output variables are mapped to ȳ, and
the remaining variables in r are fresh. Formally the process first selects non-deterministically one
rule r′′ ≡ p(this ′′, x̄′′, ȳ′′)← g ′′, b′′1 , . . . , b

′′
n in P . Afterwards, it defines a renaming ρ such that

ρ(ȳ′′) = ȳ and ρ(z) is a fresh variable, for all z ∈ vars(r′′)− {ȳ′′}, and finally it applies ρ to r′′

resulting in r. Thus, a call to a block, in rule 4, is resolved by finding a matching rule, completely
renamed except for the output variables, and adding its body to the sequence of instructions to be
executed. The function newEnv(vars(r)− {ȳ}) creates a new mapping for variables in r except
for ȳ which remain the same, where each variable is initialized to either 0 or null. Furthermore,
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(1)
v = evale(e, h, tv)

{ob(o, C, h, 〈tv , x := e · b̄〉,Q)|S}; {ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q)|S}

(2)
v = tv(y)

{ob(o, C, h, 〈tv , this.f := y · b̄〉,Q)|S}; {ob(o, C, h[f 7→ v], 〈tv , b̄〉,Q)|S}

(3)
o1 = newRef (), newHeap(D,h1)

{ob(o, C, h, 〈tv , x := new D · b̄〉,Q)|S};
{ob(o, C, h, 〈tv [x 7→ o1], b̄〉,Q), ob(o1, D, h1, ε, ∅)|S}

(4)
r ≡ p(this ′, x̄′, ȳ)← g ′, b′1 , . . . , b

′
n �

〈ȳ〉
p P , o ≡ tv(this),

tv1 = newEnv(vars(r)− {ȳ}), tv2 = tv1[this ′ 7→ o, x̄′ 7→ tv(x̄)], evalgd (g ′, tv2 ) = true

{ob(o, C, h, 〈tv , call(b, p(this, x̄, ȳ)) · b̄〉,Q)|S}; {ob(o, C, h, 〈tv ∪ tv2, b
′
1 · · · b′n · b̄〉,Q)|S}

(5)

r ≡ p(this ′, x̄′, y′)← b′1, . . . , b
′
n �p P, o1 ≡ tv(rec), fn = newFut(),

tv2 = newEnv(vars(r)), tv3 = tv2[this ′ 7→ o1, x̄
′ 7→ tv(x̄), ret 7→ (y′, fn)]

{ob(o, C, h, 〈tv , call(m, p(rec, x̄, y)) · b̄〉,Q), ob(o1, D, h1, 〈tv1, b̄1〉,Q′)|S};
{ob(o, C, h, 〈tv [y 7→ fn], b̄〉,Q), ob(o1, D, h1, 〈tv1, b̄1〉, {〈tv3, b

′
1 · · · b′n〉} ∪ Q′), fut(fn,⊥)|S}

(6)
ret 6∈ dom(tv)

{ob(o, C, h, 〈tv , ε〉,Q)|S}; {ob(o, C, h, ε,Q)|S}

(7)
ret ∈ dom(tv), (y, fn) = tv(ret), v = tv(y)

{ob(o, C, h, 〈tv , ε〉,Q), fut(fn,⊥)|S}; {ob(o, C, h, ε,Q), fut(fn, v)|S}

(8)
fn = tv(y), v 6= ⊥

{ob(o, C, h, 〈tv , x := y.get · b̄〉,Q), fut(fn, v)|S};{ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q), fut(fn, v)|S}

(9)
evalaw (x?, tv ,S) = true

{ob(o, C, h, 〈tv , await x? · b̄〉,Q)|S}; {ob(o, C, h, 〈tv , b̄〉,Q)|S}

(10)
evalaw (x?, tv ,S) = false

{ob(o, C, h, 〈tv , await x? · b̄〉,Q)|S}; {ob(o, C, h, ε, {〈tv , await x? · b̄〉} ∪ Q)|S}

(11)
b ∈ Q

{ob(o, C, h, ε,Q)|S}; {ob(o, C, h, b,Q− {b})|S}

Figure 3. Operational semantics

tv2 = tv1[this ′ 7→ o, x̄′ 7→ tv(x̄)] defines a new mapping tv2 as tv2(this ′) = o, tv2(x̄′) = tv(x̄) and
tv2(z) = tv1(z) otherwise. Similarly, tv ∪ tv2 defines the following mapping: if x ∈ dom(tv) then
(tv ∪ tv2)(x) = tv(x), and (tv ∪ tv2)(x) = tv2(x) otherwise. It is used to extend a local variable
table with the new variables introduced by the block. As notation dom(tv) stands for the set of
variables on which tv is defined. When the execution of a block finishes (rule 6) the state is prepared
to later apply rule 11 to select a new task from the queue. Note that since asynchronous calls
introduce ret in the table of variables (rule 5) then the condition ret 6∈ dom(tv) in rule 6 ensures
that the execution does not correspond to an asynchronous call but rather to a block or synchronous
call.

Rule 5 deals with asynchronous method invocations. In this case r ≡ p(this ′, x̄′, y′)←
b′1, . . . , b

′
n �p P stands for a fresh renaming of a rule for p in P , i.e., “�p” stands for “�〈〉p ”. When

an object o1 calls a method p(x̄), the information required to execute the call is stored in the queue
of the object identified by o1. Note that parameter passing is done in the construction of tv3, where
the entries for this ′ and x̄′ are assigned a local copy of the value of the actual parameters rec and x̄,
respectively. Objects are not directly passed as parameters. Instead we pass the corresponding object
identifier, which is unique. Function newFut() generates a fresh future variable identifier. Observe
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OBJECT-SENSITIVE COST ANALYSIS FOR CONCURRENT OBJECTS 9

that tv3 has the special entry ret to store the relation between the future variable fn where the result
is stored and the output parameter y′. This future variable is initially undefined, thus fut(fn,⊥) is
added to the state. When the method returns a value (rule 7), the entry ret is used to look for the
corresponding future variable and ⊥ is updated with the returned value.

Rule 9 checks if a future variable is ready. In such case the computation proceeds. Otherwise,
in rule 10, the await task is introduced in the corresponding queue, and the processor is released.
The instruction get blocks the execution until the future variable has a value in rule 8. In rule
11 another task is dequeued (because the current one has terminated or released the processor).
Note that this rule is applicable after applying rules 6 and 7 which correspond, respectively, to the
complete execution of a block and a method, and rule 10 in which the processor is released.

We assume that executions start from a main method. Thus, the initial configuration is of the
form {ob(main,⊥,⊥, 〈tv , call(b, main(this, 〈〉, 〈〉))〉, ∅)} where tv is an empty mapping. Abusing
notation, we use⊥ to denote an empty heap and an undefined class. The execution then proceeds by
applying non-deterministically the execution steps in Figure 3. It is non-deterministic both in task
and object selection. The execution finishes in a final configuration in which all events are either
future events or objects of the form ob(o, C, h, ε, ∅). Executions can be regarded as traces T of the
form S0 ; S1 ; · · ·; Sn.

Example 4 (a trace in the running example). Consider the main method of the running example
(Figure 1). After executing the constructors we reach a configuration with three objects:
{ob(main,⊥,⊥, 〈tvmain, b̄〉, ∅), ob(ob1,FileIS , hob1 , ε, ∅), ob(ob2 ,FileIS , hob2 , ε, ∅)}

where b̄ corresponds to the sequence of instructions from the mark ∗© on in Figure 1. After
processing both asynchronous calls (rule 5) consecutively, the new state takes the form:
{ ob(main,⊥,⊥, 〈tvmain[f1 7→ fn1, f2 7→ fn2], b̄′〉, ∅),

ob(ob1,FileIS, hob1 , ε, {〈tvob1, bodyob1 〉}), fut(fn1,⊥),
ob(ob2,FileIS, hob2 , ε, {〈tvob2, bodyob2 〉}), fut(fn2,⊥) }

where bodyob1 (respectively bodyob2 ) is the renamed body of method readOnce (respectively
readBlock). Furthermore, tvob1 (respectively tvob2 ) stores the assignment tvob1(ret) = (f1, fn1)
(respectively tvob2(ret) = (f2, fn2)). When the event 〈tvob1, bodyob1 〉 is extracted from the queue
of ob1 (rule 11), its complete processing will replace fut(fn1,⊥) by fut(fn1, v) (rule 7), where v
is the value returned by the method readOnce. Then, rule 9 can be used to process the instruction
await f1? of the object main. At this point the new state will take this form:
{ ob(main,⊥,⊥, 〈tvmain[f1 7→ fn1, f2 7→ fn2], b̄′′〉, ∅),

ob(ob1,FileIS, hob1 , ε, ∅), fut(fn1, v),
ob(ob2,FileIS, hob2 , ε, {〈tvob2, bodyob2 〉}), fut(fn2,⊥) }

�

3. COST AND COST MODELS FOR CONCURRENT PROGRAMS

In this section we define the notion of cost we want to approximate by using static analysis. An
execution step is annotated as S ;b

o S ′, which denotes that we move from a state S to a state S ′
by executing instruction b in object o. Note that from a given state there may be several possible
execution steps that can be taken since we make no assumptions on task scheduling and object
selection. In order to quantify the cost of an execution step, we use a generic cost model. The
following definition formalizes the notion of cost model, where Ins stands for the set of instructions
b built using the grammar in Definition 1.

Definition 2 (cost model and cost of execution steps). A cost model M is a function defined as
M : Ins 7→ R. The cost of an execution step is defined asM(S ;b

o S ′) =M(b).

In the execution of sequential programs, the cumulative cost of a trace T is obtained by applying
the cost model to each step of the trace. In our setting, this has to be extended because, rather than
considering a single machine in which all steps are performed, we have a potentially distributed
setting, with multiple objects possibly running concurrently on different CPUs. Thus, rather than
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10 E. ALBERT, ET AL.

aggregating the cost of all executing steps, it is more useful to treat execution steps which occur
on different computing infrastructures separately. With this aim, we adopt the notion of cost
centers [36], proposed for profiling functional programs. Since the concurrency unit of our language
is the object, cost centers are used to charge the cost of each step to the cost center associated to the
object where the step is performed. For a given set of object identifiers O and a trace T , we define a
restricted trace, T |O = {Si ;b

o Si+1 | Si ;b
o Si+1 ∈ T , o ∈ O} to denote the set of execution steps

that are attributed to the objects in O. Then, we can define the cost executed by a particular object
for a given trace:

Definition 3 (cost attributed to an object). Given a trace T , a cost modelM and an object identifier
o, we define the cost of T w.r.t.M attributed to o as:

C(T , o,M) =
∑

t∈T |{o}

M(t)

3.1. Examples of Cost Models

We consider platform independent cost models (e.g., worst-case execution time or energy
consumption are excluded). A cost model for approximating the number of executed instructions
can be defined asMi(b) = 1, for all b ∈ Ins . Note that also calls of the form call(b, _) count 1. This
is because the call either corresponds to a synchronous call or to a call block requiring the execution
of a guard. By ’_’, we mean any (valid) expression.

Other interesting cost models can be defined. For instance, a cost model that counts the total
number of objects created along the execution can be defined as Mo(b) = 1 if b ≡ x := new C
and Mo(b) = 0 otherwise. Since objects are the concurrency units, this cost model provides an
indication on the amount of parallelism that might be achieved. A cost model that counts call(m, _),
can be used to infer the number of tasks that are spawned along an execution. We can also count the
number of calls to specific methods or objects, e.g., by counting call(m, _(o, _, _)) we obtain bounds
on the number of requests to a component o. This is useful for approximating the components’
load and finding optimal deployment configurations (e.g., group objects according to the amount
of tasks they receive to execute, by also taking into account the infrastructure on which they are
deployed). The above cost models can also be used to prove termination of the program by setting
the underlying solver [4] to only bound the number of iterations in loops. It is customary to have
a cost model for memory consumption. The ABS language has a functional sub-language used to
create data types. Hence in our actual implementation, the memory consumption cost model counts
the sizes of constructed terms, and the sizes of the objects which are not intended to be concurrency
units.

4. POINTS-TO ANALYSIS FOR CONCURRENT PROGRAMS

The aim of points-to analysis is to approximate the set of objects which each reference variable
may point to during program execution. An analysis is object-sensitive [35, 40] if methods may be
analyzed separately for different (sets of) objects on which they are invoked. More precisely, the
analysis uses a finite set of object names to partition the (possibly infinite) set of objects allocated
at runtime into contexts which are analyzed separately.

This section presents a flow-sensitive object-sensitive points-to analysis for concurrent programs.
It is based on Milanova’s analysis framework [35] for Java. As Milanova’s analysis is flow-
insensitive, it is sound for concurrent programs because it implicitly considers all possible
interactions and interleavings between tasks that may happen in a concurrent program. However,
our proposed analysis is flow-sensitive since for the inference of the object-sensitive recurrence
relations in Section 6, it is fundamental to track flow-sensitive relations among objects.

It is known that flow-sensitive analysis of concurrent programs is challenging due to the
complexity of their flow. All possible task interleavings must be considered in order to develop
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OBJECT-SENSITIVE COST ANALYSIS FOR CONCURRENT OBJECTS 11

a sound analysis. As our contribution in this regard, we extend the analysis of [35] to make it flow-
sensitive in the presence of concurrent behaviours. The concurrency model guarantees that both
fields and local variables can only be modified locally in the active task (i.e., in a flow-sensitive
way) until the processor is released. At such release points, the values of local variables cannot
be changed, whereas the state of the fields might be modified by other tasks. The main idea of
our approach is to keep the flow-sensitive and the flow-insensitive information separate. We first
describe a transfer function which handles those instructions that are guaranteed to be executed
sequentially (flow-sensitive). Then, as in [13], we define our points-to analysis as the solution of a
constraint equation system. Such equation system not only handles the flow-sensitive information
by means of the transfer function, but it also treats in a flow-insensitive way method invocations
and those instructions where the processor can be released (e.g., await). Finally, the solution of the
equation system obtains the desired points-to information. As we will see in the analysis, not all
information about fields has to be lost at the release points. By keeping track of the values of the
reference this, we can notably reduce information loss.

Section 4.1 presents the basic abstract domain that we use to represent the points-to information;
Section 4.2 describes how the different (sequential) instructions change from one abstract state to
another; and Section 4.3 introduces the analysis as a solution of a constraint equation system that is
built from the program.

4.1. The Abstract Domain

The term allocation site refers to program points in which objects are created by executing a new
instruction. Let S={1, . . . , n} be the set of all allocation sites in a program, we use i (possibly
subscripted) to refer to the elements in S. Given S={1, . . . , n} and q ∈ N, where 1 ≤ q ≤ n, we
define the set Sq as:

Sq = {s ≡ 〈i1, . . . , iq〉 | ∀j ∈ {1, . . . , q} · ij ∈ {1, ..., n}}
Finally, for a set S={1, . . . , n} of allocation sites, and a constant k ∈ N, the analysis considers a
finite set of object names, denoted N k, which is defined as:
N k = {os | (s ≡ ε) ∨ (∃q ∈ {1, . . . , k} · s ∈ Sq)}

For example, if S={1, 2}, then S1={〈1〉, 〈2〉}, S2={〈1, 1〉, 〈2, 2〉, 〈1, 2〉, 〈2, 1〉} and N 2 =
{oε, o〈1〉, o〈2〉, o〈1,1〉, o〈2,2〉, o〈1,2〉, o〈2,1〉}. Note that k defines the maximum size of sequences of
allocation sites, and it allows controlling the precision of the analysis. Allocation sequences have
in principle unbounded length and, thus, to ensure termination it is sometimes necessary to lose
precision during analysis. This is done by just keeping the k rightmost positions in sequences whose
length is greater than k. We define the operation ⊕k as:

〈i1, . . . , ip〉 ⊕k i =

 〈i〉 k = 1
〈i1, . . . , ip, i〉 k > 1 ∧ p < k
〈i(p+2)−k, . . . , ip, i〉 k > 1 ∧ p ≥ k

Note that a variable in a program can be assigned objects with different object names. In order
to represent all possible objects pointed to by a variable, sets of object names are used. Given a
program, the set S of all allocation sites for it and k ≥ 0, the abstraction of an object created in
the program is an element of N k. Furthermore, o〈i1,...,ip〉 represents all run-time objects that were
created at allocation site ip when the enclosing instance method was invoked on an object which
was in turn created at allocation site ip−1, and the same applies until i1.

As notation, we use V to represent the set of all possible reference local variables that may occur
in a program and F∗ to represent all possible pairs (os, f) which denote all possible accesses to the
reference field f through the objects os ∈ N k. In what follows, such pairs are represented as os.f .

Following Milanova’s approach, context sensitivity is achieved by maintaining multiple replicas
of each reference variable x for each possible context in which x may be used for calling a method.
Let x be a local variable and o an object name to which this may point to, we use the fresh variable
name xo to store the analysis information for x and context o. We drop the superscript o when it is
not relevant. The set of replicas is defined byR : V ×N k 7→ V∗, where V∗ = {xo | o ∈ N k, x ∈ V}.
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b τ(b, π)

(1) i© x := new C π[xl 7→ {l ⊕k i}] ∀l ∈ π(this)

(2) x := y π[xl 7→ π(yl)] ∀l ∈ π(this)

(3) x := null π[xl 7→ ∅] ∀l ∈ π(this)

(4) x := y.get π[xl 7→ π(yl)] ∀l ∈ π(this)

(5) x := this.f π[xl 7→ π(l.f)] ∀l ∈ π(this)

(6) this.f := y π[l.f 7→ π(yl)] ∀l ∈ π(this)
(7) otherwise π

Figure 4. Transfer function (where l ≡ o〈i1,...,ip〉, l ⊕k i ≡ o〈i1,...,ip〉⊕ki)

Definition 4 (points-to abstract state). A points-to abstract state is a mapping π from V∗ ∪ F∗ to
℘(N k), i.e., π : V∗ ∪ F∗ 7→ ℘(N k).

The application of π to an element of the form xo, that is, π(xo), corresponds to the the flow-
sensitive information regarding all possible objects that may be assigned to the local variable
x when this points to the object name o, and similarly for π(o.f). The abstract domain is the
lattice 〈AS , π> , π⊥ ,t,v〉, where AS is the set of abstract states and π> is the top of the lattice
defined as ∀xo ∈ V∗, π>(xo) = N k, and ∀o.f ∈ F∗, π>(o.f) = N k. The bottom element of the
lattice is π⊥ , i.e., ∀xo ∈ V∗, π⊥(xo) = ∅, ∀o.f ∈ F∗, π⊥(o.f) = ∅. Given two abstract states π1 and
π2, we use π = π1 t π2 to denote that π is the least upper bound, defined as ∀xo ∈ V∗, π(xo) =
π1(xo) ∪ π2(xo) and ∀o.f ∈ F∗, π(o.f) = π1(o.f) ∪ π2(o.f). Similarly, π1 v π2 holds iff ∀xo ∈
V∗, π1(xo) ⊆ π2(xo) and ∀o.f ∈ F∗, π1(o.f) ⊆ π2(o.f).

4.2. The Transfer Function

One of the ingredients of our analysis is a transfer function that describes the effect of each
sequential instruction on the local state of the corresponding program point. The treatment of
those instructions that can modify the flow of the program, that is, synchronization instructions
and method calls, will be detailed in the next section.

Definition 5 (points-to transfer function). Given the set of abstract states AS and the set of
instructions in the program Ins , the points-to transfer function τ is defined as a mapping τ :
Ins ×AS 7→ AS computed according to the table in Figure 4.

In Figure 4, we use i© in row 1 to denote that the considered allocation site is identified with i,
we use x, y to denote reference variables and f to denote a reference field. It is important to note
that the operations performed by τ affect π in a flow-sensitive way, i.e., the updates performed on
variables or fields overwrite their previous abstract values. As the analysis is object-sensitive, all
rows of the transfer function modify the state of local variables (or fields) for all objects in π(this).
Rows 1-3 correspond to local reference variables. Row 4, which corresponds to get instructions,
is also treated as an assignment between local variables. According to the concurrency model, the
execution of a sequence of instructions is guaranteed to be sequential until release points, i.e, await
instructions and method entries. For this reason, the transfer function treats field accesses (rows
5 and 6 of Figure 4) in a local (flow-sensitive) way, i.e., as local variables. However, the points-
to information for reference fields at release points must consider all possible task interleavings
(flow-insensitive). This is the reason why the release points are not treated by the transfer function.
Therefore, in release points, propagation of field updates to the global state and method calls, are
handled by the constraint equation system defined in next section. Other instructions (row 7) do not
modify the abstract state.

4.3. The Constraint Equation System

This section presents a method to build a system of constraints whose solution describes the desired
points-to information (similar to the one described at [13]). Such equation system is generated
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from the IR of the program. From now on, given a rule r ≡ p(this, x̄, ȳ)← g, b1, . . . , bn in the IR,
we assume that the rule r is annotated by a unique identifier t ∈ N, and we write rt instead of r.
Now given a rule rt ≡ p(this, x̄, ȳ)← g, b1, . . . , bn, we use 〈t, j〉 to denote the program point of the
instruction bj , 1 ≤ i ≤ n. The tuple 〈t, 0〉 (resp. 〈t, n〉) corresponds to the entry (resp. exit) of the
rule. Given a program P , pp(P ) = {〈t, j〉 | rt ≡ p(this, x̄, ȳ)← g, b1, . . . , bn ∈ P, 0 ≤ j ≤ n}. We
write b〈t,j〉 to refer to the instruction b at program point 〈t, j〉 and b〈t,0〉 to refer to the head of the
rule rt.

Definition 6 (points-to constraint equation system). The points-to constraint equation system is a
set of the form LP =

⋃
{C〈t,j〉 | 〈t, j〉 ∈ pp(P )}, where C〈t,j〉 is defined as:

b〈t,j〉 C〈t,j〉

(1)
b〈t,0〉︷ ︸︸ ︷

p(this, x̄, ȳ)← g, b1, . . . , bn ∈ P

X〈t,0〉 w X call
p if p is a block

X〈t,0〉 w include_global(XG ,X call
p ) if p is a method

X exit
p w X〈t,n〉

(2) this.f := y
X〈t,j〉 w τ(b〈t,j〉,X〈t,j−1〉)
XG w update_global(XG , f,X〈t,j−1〉)

(3) await x? X〈t,j〉 w include_global(XG ,X〈t,j−1〉)

(4) call(b, q(this, z̄, w̄)) X call
q w restrict_block(X〈t,j−1〉, z̄, ū)

where r′ ≡ q(this, ū, v̄)← . . . ∈ P X〈t,j〉 w extend_block(X〈t,j−1〉,X exit
q , v̄, w̄)

(5) call(m,m(rec, z̄, w)) X call
m w restrict_method(X〈t,j−1〉, rec, z̄ , ū)

where r′ ≡ m(rec, ū, v)← . . . ∈ P X〈t,j〉 w extend_method(X〈t,j−1〉,X exit
m , rec, v ,w)

(6) otherwise X〈t,j〉 w τ(b〈t,j〉,X〈t,j−1〉)

where:

include_global(XG ,X ) ≡ X [o.f 7→ XG(o.f)],∀o.f ∈ dom(X ) | o ∈ X (this)
update_global(XG , f,X ) ≡ XG [o.f 7→ XG(o.f) ∪ X (o.f)],∀o.f ∈ dom(X ) | o ∈ X (this)
restrict_block(X , z̄, ū) ≡ π⊥ [this 7→ X (this), ūl 7→ X (z̄l), l.f 7→ X (l.f)],∀l ∈ X (this)
extend_block(X1,X2, v̄, w̄) ≡ X1[w̄l 7→ X2(v̄l), l.f 7→ X2(l.f)],∀l ∈ X (this)

restrict_method(X , rec, z̄, ū) ≡ π⊥ [this 7→ This ′, ū l′ 7→ X (z̄ l)],∀l ∈ X (this), l ′ ∈ X (recl)

extend_method(X1,X2, rec, v, w) ≡ X1[wl 7→
⋃
l′∈X1(recl ) X2(vl

′
)],∀l ∈ X1(this)

This ′ ≡
⋃
l∈X (this) X (xl)

Intuitively, each program point in the IR contributes some constraints to LP . The elements
in LP contain variables named X , possibly sub- or super-scripted, which are points-to abstract
states (see Definition 4). In LP we have variables of the form X〈t,j〉, which stand for the points-
to information after program point 〈t, j〉. In addition, LP includes a global variable XG , which
gathers the global information related to all reference fields in the program. Moreover, LP contains
constraint variables of the form X call

p (resp. X exit
p ), which store the points-to information used for

calling (resp. returning from) rule p. As notation, X〈t,j〉(x) refers to the mapping of the reference
variable x in the abstract state stored in the constraint variable X〈t,j〉. The analysis includes a
constraint X call

main w π⊥ [this 7→ oε] which corresponds to the initial execution of main.
Let us explain in detail the equations generated by Definition 6. For the head of a rule p (row

1), we have one constraint variable X call
p that represents the points-to information on how p can

be called. As blocks start their execution immediately and methods might be postponed, they are
treated separately. The equation corresponding to blocks (row 1) directly includes X call

p , which
stands for the flow-sensitive information from the calling program point. However, as methods
start the execution asynchronously and other tasks might interleave, the equation for methods uses
include_global to incorporate the global information for fields. This global information is stored at
XG , as the analysis cannot rely on the flow-sensitive information. In addition, row 1 includes the
constraint X exit

p w X〈t,n〉 to capture the points-to information in the last instruction of the rule.
Assignments to fields in row 2 apply the transfer function τ to the points-to information of the

previous instruction in order to update the local state. In addition, the global state XG is updated by
means of update_global, which includes the new information for the field f for all abstract objects
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that are pointed by this . Note that update_global updates XG with XG(o.f) ∪ X〈t,j〉(o.f), joining the
local information regarding fields into XG , so that XG gathers the points-to information for fields in
a flow-insensitive way. The equation in (3) corresponds to await instructions, and it considers that at
this program point the processor can be released so that other tasks might modify the contents of the
fields. We use include_global to propagate the global information about fields to the flow-sensitive
state.

A call to a block, row 4, adds two equations to the system. In the first one, restrict_block
projects the points-to information of fields l.f and actual parameters z̄ from X p〈t,j−1〉 into the
fields and formal parameters ū of the called rule X call

q . The second equation for calling a block
uses extend_block to project the returned values v̄ and the fields l.f , taken from X exit

q , into the
corresponding local variables w̄ and fields of the current state X〈t,j〉. Calls to methods in row 5 are
treated similarly to block calls, but, since the analysis is object-sensitive, we also handle the calling
context creation. When a method is called we first use restrict_method to project the arguments
of a method call to the parameters of the called method. Observe that, whereas in called blocks
there are copies of the variables for each element l in X (this), called methods require copies of the
variables for each element l′ in This ′. Moreover, we use the function extend_method to update the
abstract state of the calling program point with the results of analyzing the called method. Finally, in
contrast to extend_block, as methods are called asynchronously, fields are not updated upon method
exit. Other instructions directly apply the transfer function of Definition 5 to the previous state to
get the flow-sensitive points-to information.

Example 5 (points-to constraint equation system). Figure 5 illustrates, in the third column, the
constraint equation system which encapsulates the desired points-to information for the IR program
in the second column. We mark allocation sites with a©, b© and c© instead of using numbers. This
allow to distinguish clearly program points in the first column from allocation sites. Column pp(P )
shows the program point of each instruction. Note that the identifiers for rules main, m1, m2 and
m3 are 0, 1, 2 and 3, respectively. The rule for main first creates an object of class A (program point
〈0, 1〉) and afterwards, methods m1 and m2 are called on the newly created object. The field f of
class A is modified at program points 〈1, 2〉 and 〈2, 2〉.
The initial constraint of the analysis is shown at row 1, X call

main w π⊥ [this 7→ oε]. Flow-insensitive
information is constrained at program points where f is written, i.e., the new information about
f is added to XG at rows 13 (program point 〈1, 2〉) and 22 (program point 〈2, 2〉). The global
information stored in XG is used in row 17, where there is an await instruction, to include in X〈1,5〉
the global information about fields. As methods are invoked asynchronously, global information in
XG is also used at the beginning of method rules at rows 2, 9, 18 and 23. Besides, rows 3, 10, 19, 24
contain the equations that capture the method exit information, gathering the points-to information
in the last program-point of the corresponding rule. Additionally, for each method call there are two
constraints, one which restricts the current information to the calling context of the corresponding
method (rows 5, 7 and 14), and another constraint to project the information from the exit of the
methods to the state of the calling instruction (rows 6, 8, 15). The remaining rows directly apply τ
with the instruction and the state of the previous program point. �

When the constraint equation system is solved, constraint variables over-approximate the points-
to information for the program. In particular, variables of the form X〈t,j〉 store the points-to
information after the execution of b〈t,j〉, XG contains the points-to information that might have been
stored in fields along the program execution, and, X call

m (X exit
m ) gathers the points-to information

used to call (returning from) m. Solving such system can be done iteratively. A naïve algorithm
consists in first initializing each constraint variable to π⊥ , and then iteratively refining the values of
these variables as follows:

1. substitute the current values of the constraint variables in the right hand side of each constraint,
and then evaluate the right-hand side if needed;

2. if each constraint X w E holds, where E is the value of the evaluation of the right-hand side
of the previous step, then the process finishes; otherwise
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pp(P ) IR Constraint Equation System

(1) X call
main w π⊥[this 7→ oε]

(2) 〈0, 0〉 main(this, 〈〉, 〈〉)← X〈0,0〉 w include_global(XG ,X call
main)

(3) X exit
main w X〈0,3〉

(4) 〈0, 1〉 a©w := new A, X〈0,1〉 w τ(w := new A,X〈0,0〉)
(5) 〈0, 2〉 call(m,m1(w,〈〉,〈〉)), X call

m1 w restrict_method(X〈0,1〉, w, 〈〉, 〈〉)
(6) X〈0,2〉 w extend_method(X〈0,1〉,X exit

m1 ,w,〈〉,〈〉)
(7) 〈0, 3〉 call(m,m2(w,〈〉,〈y〉)). X call

m2 w restrict_method(X〈0,2〉, w, 〈〉, 〈〉)
(8) X〈0,3〉 w extend_method(X〈0,2〉,X exit

m2 ,w,〈u〉,〈y〉)
(9) 〈1, 0〉 m1(this, 〈〉, 〈〉)← X〈1,0〉 w include_global(XG ,X call

m1 )

(10) X exit
m1 w X〈1,5〉

(11) 〈1, 1〉 b©y := new B, X〈1,1〉 w τ(w := new B,X〈1,0〉)
(12) 〈1, 2〉 this.f := y, X〈1,2〉 w τ(this.f := y,X〈1,1〉)
(13) XG w update_global(XG , f,X〈1,2〉)
(14) 〈1, 3〉 call(m,m3(this, 〈〉,〈r〉)), X call

m3 w restrict_method(X〈1,2〉, t, 〈〉, 〈〉)
(15) X〈1,3〉 w extend_method(X〈1,2〉,X exit

m3 , t,〈〉,〈〉)
(16) 〈1, 4〉 x := this.f, X〈1,4〉 w τ(x := this.f,X〈1,3〉)
(17) 〈1, 5〉 await r?. X〈1,5〉 w include_global(XG ,X〈1,4〉)
(18) 〈2, 0〉 m2(this, 〈〉, 〈u〉)← X〈2,0〉 w include_global(XG ,X call

m2 )

(19) X exit
m2 w X〈2,2〉

(20) 〈2, 1〉 c©u := new B, X〈2,1〉 w τ(w := new B,X〈2,0〉)
(21) 〈2, 2〉 this.f := u. X〈2,2〉 w τ(this.f := u,X〈2,1〉)
(22) XG w update_global(XG , f,X〈2,2〉)
(23) 〈3, 0〉 m3(this, 〈〉, 〈v〉)← X〈3,0〉 w include_global(XG ,Xcall )

(24) X exit
m3 w X〈3,1〉

(25) 〈3, 1〉 z := this.f. X〈3,1〉 w τ(z := this.f,X〈3,0〉)

Figure 5. Points-to system of constraints for a program with fields

3. for each X w E which does not hold, letE′ be the current value of X . Then update the current
value of X to E t E′. Once all these updates are (iteratively) applied we repeat the process at
step 1.

Termination is guaranteed since the abstract domain does not have infinitely ascending chains. In the
implementation, we apply several optimizations to improve the performance of the above process.
We omit the details as they are not important for explaining the analysis.

Example 6 (points-to results for Example 5). Figure 6 presents the solutions computed for the
constraint system in Figure 5. We have used k = 2, but, for this particular example, any value
of k achieves the maximum precision. For simplicity, in the examples we omit tuples when it is
clear from the context, i.e., for example we use oab to denote o〈a,b〉. Also we keep the calling
context as a superscript to the variable such that x oa denotes the abstract value for x when this
points to oa. When solving the constraint system, we assume that there exists a function allocSite
which, given a program P and a program point in pp(P ) corresponding to a new instruction, it
returns the corresponding allocation site. Thus allocSite(P, 〈0, 1〉) = a©, allocSite(P, 〈1, 1〉) = b©,
and allocSite(P, 〈2, 1〉) = c©. When we write oa we refer to an object created at the allocation site
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pp(P ) IR Points-to Results

(0) XG = {oa.f 7→{oab, oac}}
(1) X call

main = {this 7→{oε}}
(2) 〈0, 0〉 main(this, 〈〉, 〈〉)← X〈0,0〉 = {this 7→{oε}}
(3) X exit

main = {this 7→{oε}, woε 7→{oa}, yoε 7→{oac}}
(4) 〈0, 1〉 a©w := new A, X〈0,1〉 = {this 7→{oε}, woε 7→{oa}}
(5) 〈0, 2〉 call(m,m1(w,〈〉,〈〉)), X call

m1 = {this 7→{oa}}
(6) X〈0,2〉 = {this 7→{oε}, woε 7→{oa}}
(7) 〈0, 3〉 call(m,m2(w,〈〉,〈y〉)). X call

m2 = {this 7→{oa}}
(8) X〈0,3〉 = {this 7→{oε}, woε 7→{oa}, yoε 7→{oac}}
(9) 〈1, 0〉 m1(this, 〈〉, 〈〉)← X〈1,0〉 = {this 7→{oa}, oa.f 7→{oab, oac}}

(10) X exit
m1 = {this 7→{oa}, oa.f 7→{oab, oac}, yoa 7→{oab}, xoa 7→{oab}}

(11) 〈1, 1〉 b©y := new B, X〈1,1〉 = {this 7→{oa}, oa.f 7→{oab, oac}, yoa 7→{oab}}
(12) 〈1, 2〉 this.f := y, X〈1,2〉 = {this 7→{oa}, oa.f 7→{oab}, yoa 7→{oab}}
(13) 〈1, 3〉 call(m,m3(this, 〈〉,〈r〉)), X call

m3 = {this 7→{oa}}
(14) X〈1,3〉 = {this 7→{oa}, oa.f 7→{oab}, yoa 7→{oab}}
(15) 〈1, 4〉 x := this.f, X〈1,4〉 = {this 7→{oa}, oa.f 7→{oab}, yoa 7→{oab}, xoa 7→{oab}}
(16) 〈1, 5〉 await r?. X〈1,5〉 = {this 7→{oa}, oa.f 7→{oab, oac}, yoa 7→{oab}, xoa 7→{oab}}
(17) 〈2, 0〉 m2(this, 〈〉, 〈u〉)← X〈2,0〉 = {this 7→{oa}, oa.f 7→{oab, oac}}
(18) X exit

m2 = {this 7→{oa}, oa.f 7→{oac}, uoa 7→{oac}}
(19) 〈2, 1〉 c©u := new B, X〈2,1〉 = {this 7→{oa}, oa.f 7→{oab, oac}, uoa 7→{oac}}
(20) 〈2, 2〉 this.f := u. X〈2,2〉 = {this 7→{oa}, oa.f 7→{oac}, uoa 7→{oac}}
(21) 〈3, 0〉 m3(this, 〈〉, 〈v〉)← X〈3,0〉 = {this 7→{oa}, oa.f 7→{oab, oac}}
(22) X exit

m3 = {this 7→{oa}, oa.f 7→{oab, oac}, zoa 7→{oab, oac}}
(23) 〈3, 1〉 z := this.f. X〈3,1〉 = {this 7→{oa}, oa.f 7→{oab, oac}, zoa 7→{oab, oac}}

Figure 6. Solution of the system of constraints for Example 5

a©. Similarly oab stands for an object that was created at allocation site b©, when the method was
called from an object created at allocation site a©.

When the constraint system is solved, XG , shown at row 0, captures that oa.f might point to either
oab or oac. Program points 〈1, 1〉 and 〈1, 2〉 (rows 11, 12) show how the analysis handles the local
information for fields. At X〈1,1〉 we have that f might point to either oab or oac. As f is set to oab at
〈1, 2〉, and the execution is guaranteed to be sequential until 〈1, 4〉, field f only points to oab from
X〈1,2〉 to X〈1,4〉. At row 16, as the processor might be released in the await, the information for f is
updated with the information fromXG . Then, atX〈1,5〉, we have oa.f 7→ {oab, oac}. At the beginning
of methods m2 and m3, the points-to information for f is initialized with the information from XG .
In m2 the information for f is constrained locally when f is assigned (row 20). As method calls do
not have input arguments, rows 5, 7 and 13 show that only object this is restricted, in all cases, to
oa. Outgoing states X exitmain, X exitm1 , X exitm2 , X exitm3 (rows 3, 10, 18 and 22) are equal to the state of the
last instruction of the corresponding rule. At row 8, as m2 is called with this 7→ {oa}, the variable
y takes its value from X exit

m2 (uoa) = {oac}, adding yoε 7→{oac} to X〈0,3〉. �

Once we have seen the details of the points-to analysis, let us see the results of the points-to
analysis for our running example.
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pp(P ) IR of the Running Example Points-to Results
XG = {}

〈0, 0〉 main(this, 〈〉, 〈〉)← X〈0,0〉 = X callmain = {this 7→ {oε}}
〈0, 1〉 1©FileIS_init(ob1, 〈”A.txt”, 20, 2〉, 〈〉), X〈0,1〉 = {this 7→ {oε}, ob1 7→ {o1}}
〈0, 2〉 2©FileIS_init(ob2, 〈”A.txt”, 20, 3〉, 〈〉), X〈0,2〉 = {this 7→ {oε}, ob1 7→ {o1}, ob2 7→ {o2}}
〈0, 3〉 call(m, readOnce(ob1 , 〈〉, 〈f1 〉)), X〈0,3〉 = {this 7→ {oε}, ob1 7→ {o1}, ob2 7→ {o2}}
〈0, 4〉 call(m, readBlock(ob2 , 〈〉, 〈f2 〉)). X〈0,4〉 = {this 7→ {oε}, ob1 7→ {o1}, ob2 7→ {o2}}

〈1, 0〉 readBlock(this, 〈〉, 〈r〉)← X〈1,0〉 = X callreadBlock = {this 7→ {o2}}
〈1, 1〉 . . . , X〈1,1〉 = {this 7→ {o2}}
〈1, 2〉 call(b,while(this, inp, out)), X〈1,2〉 = {this 7→ {o2}}
〈1, 3〉 r := res. X〈1,3〉 = {this 7→ {o2}}

〈2, 0〉 while(this, inp, out)← i ≤ 0. X〈2,0〉 = X callwhile = {this 7→ {o2}}

〈3, 0〉 while(this, inp, out)← i > 0, X〈3,0〉 = X callwhile = {this 7→ {o2}}
〈3, 1〉 call(b, if (inp, out)). X〈3,1〉 = {this 7→ {o2}}

〈4, 0〉 if (this, inp, out)← . . . X〈4,0〉 = X callif = {this 7→ {o2}}

〈5, 0〉 if (this, inp, out)← . . . , X〈5,0〉 = X callif = {this 7→ {o2}}
〈5, 1〉 call(b, if_c(this, inp, out)). X〈5,1〉 = {this 7→ {o2}}

〈6, 0〉 if_c(this, inp, out)← X〈6,0〉 = X callif_c = {this 7→ {o2}}
〈6, 1〉 call(m,readContent(this,〈pos, incr〉,〈f 〉)), X〈6,1〉 = {this 7→ {o2}}
〈6, 2〉 . . . . X〈6,2〉 = {this 7→ {o2}}

〈7, 0〉 readOnce(this, 〈〉, 〈r〉)← X〈7,0〉 = X callreadOnce = {this 7→ {o1}}
〈7, 1〉 call(m, readContent(this, 〈0 , lth〉, 〈f 〉)), X〈7,1〉 = {this 7→ {o1}}
〈7, 2〉 await f?, X〈7,2〉 = {this 7→ {o1}}
〈7, 3〉 r := f .get. X〈7,3〉 = {this 7→ {o1}}

〈8, 0〉 readContent(this, 〈pos, elems〉, 〈r〉)← X〈8,0〉 = X callreadContent = {this 7→ {o1, o2}}
〈8, 1〉 3©Reader_init(〈fp, elems〉, 〈rd〉), X〈8,1〉 = {this 7→{o1, o2}, rdo1 7→{o13}, rdo2 7→{o23}}
〈8, 2〉 call(m, process(rd , 〈pos〉, 〈f 〉)), X〈8,2〉 = {this 7→{o1, o2}, rdo1 7→{o13}, rdo2 7→{o23}}
〈8, 3〉 await f?, X〈8,3〉 = {this 7→{o1, o2}, rdo1 7→{o13}, rdo2 7→{o23}}
〈8, 4〉 r := f .get. X〈8,4〉 = {this 7→{o1, o2}, rdo1 7→{o13}, rdo2 7→{o23}}

〈9.0〉 process(this, 〈pos〉, 〈res〉)← . . . X〈9,0〉 = X call
process = {this 7→ {o13, o23}}

Figure 7. Points-to analysis results for the running example

Example 7 (points-to analysis on the running example). Figure 7 shows (part of) the result of
applying the points-to analysis to the running example with k = 2. This is the smallest k for which
no information is lost when handling object names. We label each program point with a tuple that
identifies it. Each set in the right column is the value of the constraint variable for the corresponding
program point in the left column. As before, the allocation sites of the example are identified by
means of function allocSite. In Figure 7 we have allocSite(P, 〈0, 1〉) = 1©, allocSite(P, 〈0, 2〉) = 1©
and allocSite(P, 〈8, 1〉) = 3©. As the running example does not have reference fields, XG is empty.
Keeping track of the value of the this reference is crucial for the precision of the points-to analysis
of the running example. All object creations use the object name(s) pointed to by this to generate
new object names by adding the current allocation site. E.g., at allocation site 3©, this may be either
o1 or o2; the new object names created are o13 and o23, respectively. Observe that we keep the calling
context as a superscript to the variable such that rdo1 denotes the abstract value for rd when this is
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o1. The value of this within a method comes from the object name(s) for the variable used to call
the method. �

The next theorem states the soundness of the analysis. To that end, let us assume that object
identifiers in the semantics are of the form 〈Oid , s〉, where Oid is a unique identifier and s is
the (unbounded) allocation sequence for the object. The semantics can be easily adapted to these
identifiers by setting the function newRef for generating fresh object identifiers to newRef (i , othis),
where i is the program point where the object was created and othis is the object identifier for this ,
i.e., othis = 〈Oid , l〉. This function returns a unique reference as a pair 〈Oid ′, l ⊕∞ i〉 (⊕∞ stands
for unbounded allocation site concatenation). In order to relate the concrete semantics to the results
inferred by the points-to analysis, we use name(o) to refer to the object name in N k that represents
the concrete object identifier o. Concretely, name(o) is the longest suffix of length at most k of the
unbounded allocation sequence of o encoded in the object identifier.

Theorem 1. Let P be an IR program, T ≡ S0 ; · · ·; Sn a trace, and b an instruction at
program point 〈t, j〉 in P . For every trace step Sk ;b

_ Sk+1, 0 ≤ k < n, and for every object
ob(o, C, h, 〈tv , _〉, _) ∈ Sk+1, the following holds:

a) name(o) ∈ X〈t,j〉(this);
b) If x ∈ dom(tv) is a local reference variable, tv(x) 6= null and s = name(tv(x)), then s ∈
X〈t,j〉(xname(o));

c) If f ∈ dom(h) is a reference field of class C, h(f) 6= null and q = name(h(f)), then q ∈
X〈t,j〉(name(o).f).

5. FIELD-SENSITIVE SIZE ANALYSIS FOR CONCURRENT OO PROGRAMS

The objective of size analysis is to infer size abstractions which allow reasoning on how the sizes
of data change along a program’s execution, which is fundamental for bounding the number of
iterations that loops perform. Intuitively, the cost of executing a loop can be then obtained by
multiplying the cost of each iteration by the number of iterations that it performs. This process
is formalized by means of the recurrence equations presented in Section 6 which integrate the size
relations computed in the section.

5.1. The Basic Size Analysis

We present the size analysis in two steps: we first recall the notion of size measure that maps
variables and values to their sizes; and we then present an abstraction which compiles instructions
into size constraints, keeping as much information on global data (i.e., fields) as possible, while still
being sound in concurrent executions.

Recall that the language on which we develop our analysis is deliberately simplified so that it only
considers numerical and reference types, and thus the size analysis that we present in this section
will also be restricted to such types. However, our implementation supports other data-types, in
particular String and user-defined algebraic data-types, that we omit for the sake of simplifying the
formal presentation. In Section 5.2, we comment on the additional bits required to handle these
types in the size analysis.

Size Measures. For numerical data, the size is the actual numerical value. On the contrary,
references require a more sophisticated treatment. A commonly used size measure is path-
length [41], which counts the number of elements of the longest chain of references that can be
traversed through the initial object (e.g., length of a list, depth of a tree, etc.). However, in our
context, objects are intended to simulate concurrent computing entities and not data structures.
Thus, it is not common that they affect the number of iterations that loops perform. Therefore,
ignoring their sizes is sound and precise enough in most cases. A slightly more precise abstraction
distinguishes between the case in which a reference variable points to an object (size 1) or to null
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(size 0). The size of a future variable is the same as the size of the value it holds. This is sound since
such variables can be used only through get, and the instruction get blocks the execution until the
variable has a value.

Next we define formally our notion of size measure. In the definition below, tv(x) ∈ Z (resp.
h(f) ∈ Z) means that the static type of x (resp. f ) is integer. Similarly, tv(x) ∈ Objects (resp.
h(f) ∈ Objects) means that the static type of x (resp. f ) is a reference type different from null. And
finally tv(x) = null (resp. h(f) = null) means that the reference variable x (resp. field) holds null.

Definition 7 (size measure). Given a configuration S and an object ob(o, C, h, 〈tv , _〉,Q) ∈ S, the
size of a ∈ dom(l), where l ∈ {tv , h}, is defined as follows:

α(a,S) =



l(a) if l(a) ∈ Z
1 if l(a) ∈ Objects
0 if l(a) = null
v if l(a) = fn, fut(fn, v) ∈ S, v ∈ Z
1 if l(a) = fn, fut(fn, v) ∈ S, v ∈ Objects
0 if l(a) = fn, fut(fn, null) ∈ S

Abstract Compilation. This section describes how to transform a program P into an abstract
program Pα, which can be seen as an abstraction of P with respect to the chosen size measure
α. The translation is based on replacing each instruction by (linear) constraints which describe its
behaviour with respect to the size measure. For example, the instruction x := new C can be replaced
by the constraint x = 1 which indicates that the reference variable is different from null. The fact that
the formula takes this form is due to the previous choice of size measure for references in Definition
7. In order to simplify the presentation, when it is clear from the context, the same name is used for
the original variables (possibly primed or subscripted) and their symbolic sizes. That is, given an
integer variable x, the name x is also used in the abstract compilation to denote its value.

An important issue in the presented setting is to be able to obtain relations between the size of a
variable at different program points. For example, in the size analysis of x := x+ 1, the interest is in
the relation ”the value of x after the instruction is equal to the value of x before the instruction plus
1”. This important piece of information can be obtained by using a Static Single Assignment (SSA)
transformation, which, together with the abstract compilation, produces the constraint x′ = x+ 1,
where x and x′ refer to, respectively, the value of x before and after executing the instruction.
To implement the SSA transformation, a mapping ρ of variable names to new variable names
(constraint variables) is maintained. Such mapping is referred to as a renaming. The expression
ρ[x̄ 7→ ȳ] denotes the update performed by ρ, such that it maps variables x̄ to the new variables ȳ.

Modeling shared memory is a main challenge in static analysis of OO programs. Our starting
point is [5], which models fields as local variables when the field to be tracked satisfies two
soundness conditions: (1) its memory location does not change; and (2) it is always accessed
through the same reference (i.e., not through aliases). Both conditions can often be proven statically
and the transformation of fields into local variables can then be applied for many fragments of
the program. If we ignore concurrency, this approach could be directly adopted for our language.
However, concurrency introduces new challenges.

Example 8 (treatment of fields at release points). Consider the loop in the readBlock method in
Figure 1. Ignoring the await instruction, the above soundness conditions (1) and (2) hold for the
field blockS, and hence, we can track it as if it was a local variable. In a concurrent setting,
however, while readBlock is executing, another task in the same object might modify the field
blockS. Therefore, when analyzing readBlock, we cannot assume that the value of blockS is
locally trackable. For instance, readBlock might introduce non-termination if we add a method
void p() {blockS = blockS− 2; } to class FileIS. When the await is executed inside the loop, method
p might change the value of blockS to a non-positive value, and thus the loop counter i would not
decrement. �
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B αρ(B) ρ′

(1) x op y ρ(x) op ρ(y) ρ′=ρ
(2) x op′ y _ ρ′=ρ
(3) null | x | this.f | n 0 | ρ(x) | ρ(f) | n ρ′=ρ
(4) await x? ⊥ ρ′=ρ[f̄C 7→ fresh(f̄C)]
(5) x := y.get | x := e ρ′(x)=ρ(y) | ρ′(x)=αρ(e) ρ′=ρ[x 7→ fresh(x)]
(6) this.f := y ρ′(f)=ρ(y) ρ′=ρ[f 7→ fresh(f)]
(7) x := new C ρ′(x)=1 ρ′=ρ[x 7→ fresh(x)]
(8) call(b, q(rec, x̄, ȳ)) call(b, q(ρ(rec), ρ(x̄ · f̄C), ρ′(ȳ · f̄C))) ρ′=ρ[ȳ·f̄C 7→fresh(ȳ·f̄C)]
(9) call(m, q(rec, x̄, y)) call(m, q(ρ(rec), ρ(x̄), ρ′(y))) ρ′=ρ[y 7→ fresh(y)]

(10) otherwise true ρ′=ρ

where in case (1) op ∈ {<,>,=,≥,≤,+,−} and in (2) op′ ∈ {6=, ∗, /}

Figure 8. Abstract compilation. ABST(Bk:i, ρ)=〈αρ(Bk:i), ρ
′〉

In order to handle fields, we need to identify the program points at which the shared memory
might be modified by other tasks. This can happen when: (1) an await is explicitly executed, and
thus allows other tasks (of the same object) to run; and (2) an asynchronous invocation is made, and
until the called method starts its execution, the fields of the called object might be modified by other
tasks. We refer to such program points as release points. The above observation suggests that in a
sequence of instructions not including await, the shared memory can be tracked locally. However,
the values in the shared memory when a method starts to execute may not be identical to those when
it was called. We first present a safe abstraction which loses all information at release points, and,
in a second step, in Section 5.3, we discuss accuracy improvements at such release points.

In the size analysis, an abstract state is a set of linear constraints whose solutions define possible
concrete states. This representation allows describing relations that are essential for inferring cost
and proving termination, e.g., the size of x decreases by 1 in two consecutive states. The building
blocks for this representation are constraints that describe the effect of each instruction b on a given
state.

Definition 8 (abstract compilation). Let B be an instruction or a guard. We define its abstract
compilation ABST(B, ρ) w.r.t. a mapping ρ and a symbolic size measure αρ as 〈αρ(B), ρ′〉, where
〈αρ(B), ρ′〉 is computed according to the abstraction in Figure 8.

Let us describe the abstraction of some selected instructions. First, note that, except for
method/block calls and await instructions, αρ(B) returns a constraint and ρ′ is a new mapping
that refers to the sizes in the state after executing B. In Figure 8, given the variables x1, . . . , xn
(respectively the fields f1, . . . , fn), function fresh(x1, . . . , xn) (respectively fresh(f1, . . . , fn))
returns n fresh variable names (respectively field names). Recall that ρ′(x) (respectively ρ(x)) refers
to the size of x after (respectively before) executing the instruction. For the assignments, row 5 of
Figure 8, the instruction x := e is abstracted into the equality ρ′(x) = αρ(e), where αρ(e) is the
size of e w.r.t. ρ. The abstraction of await at row 4 “forgets” sizes of those fields f̄C of class C. This
is because fields might be updated by other methods that take the control when the current task is
suspended. When abstracting a call to a block in row 8, the class fields f̄C are added as arguments
in order to track their values within the block called. On the contrary, when abstracting calls to
methods (row 9) the fields are not added because their values at call time might not be equal to their
values when the method actually starts its execution. Since we use linear constraints, non-linear
arithmetic expressions (row 2) are abstracted to a fresh constraint variable “_” that represents any
value. A program P is transformed into an abstract program Pα, that approximates its behaviour
w.r.t. a size measure, by abstracting its rules as follows.

Definition 9 (abstract compilation of a rule). Let r ≡ m(this, x̄, ȳ)← g , b1 , . . . , bn be a renaming
of a rule in P and let ρ0 be a renaming over vars(r) ∪ f̄C . The abstract compilation of r w.r.t. a size
measure α is rα ≡ m(ρ0(this), Ī, Ō)← gα, bα1 , . . . , b

α
n where:
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1. ABST(g , ρ0 )=〈gα, ρ1 〉, ABST(bi, ρi)=〈bαi , ρi+1〉, 1 ≤ i ≤ n;

2. If m is a block then Ī=ρ0(x̄·f̄C) and Ō=ρn+1(ȳ·f̄C); and

3. If m is a method then Ī=ρ0(x̄) and O=ρn+1(y).

The size abstraction ABST(r) for the rule r is gα ∧ bα1 ∧ . . . ∧ bαn and C(ABST(r)) = gα ∧∧n
i=1{bαi | bαi is a linear constraint.}

Note that, according to row 8 in Figure 8, when abstracting a rule corresponding to a block (item
2 in Definition 9), we add the fields f̄C to the input parameters. In what follows, we sometimes
represent conjunctions of linear constraints ϕ1 ∧ . . . ∧ ϕn as sets of the form {ϕ1, . . . , ϕn}.

Once the abstract compilation of the rule has finished, the renaming ρn+1 coming from
ABST(bn, ρn) = 〈αρn(bn), ρn+1〉 is applied to the output variables and fields. However, when
abstracting a method rule (item 3 in Definition 9) fields are not considered in the head of the method.
This matches row 9 in Figure 8.

Example 9 (abstract compilation for the running example). Let us show the abstract compilation of
the rule if _c of Figure 2. We use inp, out and F to denote, respectively, the input parameters
res, i , incr , pos , the output parameters res′′, i′′, incr′, pos′′ and the fields fp, lth, blockS . The
substitution ρ0 stands for the identity mapping on this, inp, out and F . The number to the right
of each instruction indicates the row in Figure 8 used to compute the abstract compilation.

if_c(this, 〈inp,F 〉, 〈out ,F
′′〉)← ρ0

a© call(m, readContent(this, 〈pos, incr〉, 〈f ′〉)), fresh(f ) = f ′, ρ1 = ρ0 [f 7→ f ′] (9)
b© ⊥, fresh(F ) = F

′
, ρ2 = ρ1[F 7→ F

′
] (4)

v ′ = f ′, fresh(v) = v′, ρ3 = ρ2[v 7→ v′] (5)
res ′ = res+ v′ fresh(res) = res ′, ρ4 = ρ3 [res 7→ res ′] (5)
i′ = i− incr fresh(i) = i′, ρ5 = ρ4[i 7→ i′] (5)
pos′ = pos+ incr fresh(pos) = pos ′, ρ6 = ρ5 [pos 7→ pos ′] (5)

c© call(b,while(this, 〈res ′, i ′, incr , pos ′,F
′〉, ρ7 = ρ6[res 7→res ′′, i 7→i ′′, incr 7→incr ′,

〈res ′′, i ′′, incr ′, pos ′′,F
′′〉)). pos 7→ pos′′, F̄ 7→ F̄ ′′] (8)

In c©, function fresh(res, i , inc, pos, F̄ ) returns res ′′, i ′′, incr ′, pos ′′, F̄ ′′. Furthermore, the output
parameters of if _c are the result of applying ρ7 to res, i , incr , pos, fp, lth, blockS . According to the
abstraction in Figure 8, at b© await is abstracted to ⊥ and the information on fields is lost. At c© the
fields are added to the call in order to keep track of their values, however, when calling a method at
a©, the abstraction “forgets” this information.

Let us consider now method readBlock, whose abstract compilation is:

readBlock(this, 〈〉, 〈r ′〉)← ρ0

res ′ = 0, fresh(res) = res ′, ρ1 = ρ0 [res 7→ res ′] (5)
i ′ = lth, fresh(i) = i′, ρ2 = ρ1[i 7→ i′] (5)
incr ′ = 0, fresh(incr) = incr ′, ρ3 = ρ2 [incr 7→ incr ′] (5)
pos ′ = 0 fresh(pos) = pos ′, ρ4 = ρ3 [pos 7→ pos ′] (5)
call(b,while(this, 〈res ′, i ′, incr ′, pos ′,F 〉, ρ5 = ρ4[res 7→ res ′′, i 7→ i ′′,

〈res ′′, i ′′, incr ′′, pos ′′,F
′〉)), incr 7→ incr′′, pos 7→ pos′′, F̄ 7→ F̄ ′] (8)

r′ = res ′′. fresh(r) = r′, ρ6 = ρ5[r 7→ r′] (5)

In ρ5, function fresh(res, i , incr , pos, F̄ ) returns res ′′, i ′′, incr ′′, pos ′′, F̄ ′. According to Defini-
tion 9, the head of the rule does not contain fields while the call to while does. �

An abstract program Pα basically abstracts the behaviour of the original program with respect
to a size measure α. An abstract state has the form A ◦ φ, where A ≡ {aα1 , . . . , aαn}, aαi is an
abstract object of the form 〈b̄α, ρ̄〉 and φ is a linear constraint. In order to formalize the operational
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(1)α

p(this ′, x̄′, ȳ′)← gα, b′
α
1 , . . . , b

′α
n ◦ ρ0 · · · ρn+1 �α

p Pα, gα ∧ φ 6|= false

{〈call(b, p(this, x̄, ȳ)) · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b′
α
1 · · · b′

α
n · b̄α, ρ1 · · · ρn+1 · ρ̄〉|A}◦

φ ∧ gα ∧ this = this ′ ∧ x̄′ = x̄ ∧ ȳ′ = ȳ

(2)α

p(rec′, x̄ ′, y ′)← b′
α
1 , . . . , b

′α
n ◦ ρ1 · · · ρn+1 �α

p Pα

{〈call(m, p(rec, x̄, y)) · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b̄α, ρ̄〉, 〈b′
α
1 · · · b′

α
n, ρ1 · · · ρn+1〉|A}◦

φ ∧ rec′ = rec ∧ x̄ ′ = x̄ ∧ y ′ = y

(3)α
ϕ ∧ φ 6|= false

{〈ϕ · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b̄α, ρ̄〉|A} ◦ φ ∧ ϕ

(4)α {〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b̄α, ρ̄〉|A} ◦ φ

(5)α {〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ

(6)α {〈ε, ρ〉|A} ◦ φ;α {ε|A} ◦ φ

(7)α A ◦ φ;α A ◦ φ

Figure 9. Semantics of abstract programs

semantics for an abstract program, we modify the presentation of the abstract rules, by storing
also the renamings computed in Definition 8. Therefore, abstract rules are now of the form
p(rec, x̄ , ȳ)← gα, bα1 , . . . , b

α
n ◦ ρ0 · · · ρn+1 , where ρ0, . . . , ρn+1 is the tuple of all renamings that

were used during the abstract compilation of that possibly renamed specific rule.
The operational semantics for an abstract program is given in a rewriting-based style in Figure 9.

Such semantics simply accumulates the constraints (when possible) and proceeds to execute the
calls in the body of the rules. Now, let us relate the abstract semantics of Figure 9 with the
operational semantics of the IR shown in Figure 3. Rules (1)α and (2)α correspond to calls to
blocks and methods respectively. The notation p(this ′, x̄ ′, ȳ ′)← gα, b′

α
1 , . . . , b

′α
n ◦ ρ0 · · · ρn+1 �α

p

Pα in rule (1)α stands for the abstract compilation of a possibly renamed rule from P starting
from a fresh renaming ρ0, i.e., the initial renaming ρ0 in Definition 9 must apply variables to
fresh variables. Hence all variables in p(this ′, x̄ ′, ȳ ′)← gα, b′

α
1 , . . . , b

′α
n are completely fresh. The

intended meaning of�α
p in rule (2)α is similar to that in rule (1)α.

Rules (4)α and (5)α correspond to the abstraction of an await instruction since await is abstracted
to⊥ (see Figure 8). In particular, when an await instruction is evaluated to true (rule (9) of Figure 3)
the execution proceeds. This is simulated by rule (4)α. Similarly, if the evaluation of the await
instruction fails (rule (10) of Figure 3), then the context of the suspended task is introduced in
the queue of pending tasks for the current object. Hence, in rule (5)α the abstraction ⊥ of the
corresponding await is kept until the associated await succeeds and rule (4)α can be applied.

Rules (6) and (7) of Figure 3 handle, respectively, those cases in which the execution of a method
or a block call has finished. This fact is captured by rule (6)α by simply removing the abstract
execution context, as it is done in rules (6) and (7). Note also that, after applying rules (6) and
(7), since the execution context is ε, rule (11) can then be applied to select a new task from the
queue of the corresponding object for its execution. In the abstract semantics, such task exists inside
the abstract configuration and thus it can be selected at any time of the computation. Thus, rule
(11) corresponds to rule (7)α in the abstract semantics. Finally, rule (3)α basically accumulates
constraints when it is possible. The notation ϕ ∧ φ 6|= false means that ϕ ∧ φ is satisfiable.
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main main1

main(this, 〈〉, 〈〉)← main(this1 , 〈〉, 〈〉)←
a := new A(), a1 := new A(),
z := 4, z1 := 4,
call(m, p(a, 〈z〉, 〈f〉)), call(m, p(a1, 〈z1〉, 〈f1〉))
await f?. await f1?.

p p3

p(this, 〈w〉, 〈r〉)← p(this3, 〈w3〉, 〈r3〉)←
r := w + 1. r3 := w3 + 1.

Figure 10. An IR program P (left) together with a possibly renaming (right)

main1 mainα1 ρ
main(this1 , 〈〉, 〈〉)← main(this2 , 〈〉, 〈〉)← ρ0(this1) = this2

a1 := new A(), a2 = 1, ρ1 = ρ0[a1 7→ a2]
z1 := 4, z2 = 4 ρ2 = ρ1[z1 7→ z2]
call(m, p(a1, 〈z1〉, 〈f1〉)), call(m, p(a2, 〈z2〉, 〈f2〉)), ρ3 = ρ2[f1 7→ f2]
await f1?. ⊥. ρ4 = ρ3

p3 pα3 ρ
p(this3, 〈w3〉, 〈r3〉)← p(this4, 〈w4〉, 〈r4〉)← ρ5(this3)=this4, ρ5(w3)=w4

r3 := w3 + 1. r4 = w4 + 1. ρ6 = ρ5[r3 7→ r4]

Figure 11. A renamed program (left) together with its abstract compilation (right)

The following example briefly shows the correspondence between concrete and abstract traces.
For simplicity, we ignore renamings in the abstract states and focus on the abstract rules that are
applied.

Example 10 (correspondence between concrete and abstract traces). Consider the IR program to
the left of Figure 10, which is composed of two methods, main and p. Let us start by showing
some steps of the concrete execution of the program in Figure 10. Let S0 be the initial concrete
configuration:

S0 ≡ {ob(main,⊥,⊥, 〈tvm , call(b,main(this, 〈〉, 〈〉))〉, ∅)}

From S0, by applying rule (4) in Figure 3 with main1 �〈〉main P , where main1 is defined in Figure 10
(right-top), we get:
S1≡{ob(main,⊥,⊥, 〈tv1

m , a1 := new A() · z1 := 4 · call(m, p(a1, 〈z1〉, 〈f1〉)) · await f1?〉, ∅)}
where tv ′m = newEnv(vars(main1)) and tv1

m = tvm ∪ tv ′m[this1 7→ this]. From S1, by applying
consecutively rules (3) and (1) in Figure 3, we generate the new concrete state:

S2≡{ob(main,⊥,⊥, 〈tv2
m , call(m, p(a1, 〈z1〉, 〈f1〉)) · await f1?〉, ∅), ob(oa, A, ha, ε, ∅)}

where tv2
m = tv1

m [a1 7→ oa, z1 7→ 4]. From S2, selecting p3 �p P , where p3 is defined in Figure 10
(right-bottom), we can apply rule (5) to obtain:

S3≡{ob(main,⊥,⊥, 〈tv3
m , await f1?〉, ∅), ob(oa, A, ha, ε, {〈tva, r3 := w3 + 1〉}), fut(fn,⊥)}

where tv3
m = tv2

m[f1 7→ fn], tv ′a = newEnv(vars(p3)), fn = newFut() and tva = tv ′a[this3 7→
oa, w3 7→ 4, ret 7→ (fn, r3)]. Now we apply rule (10) to S3 on object main. Then, since the future
variable is not ready, the task execution context is introduced in the queue of object main:

S4≡{ob(main,⊥,⊥, ε, {〈tv3
m , await f1?〉}), ob(oa, A, h, ε, {〈tva, r3 := w3 + 1〉}), fut(fn,⊥)}
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Let us apply rule (11) on object oa in S4 in order to extract the unique task from its queue, followed
by rule (1). The resulting concrete state is:

S5≡{ob(main,⊥,⊥, ε, {〈tv3
m, await f1?〉}), ob(oa, A, h, 〈ε, tv1

a〉, ∅), fut(fn,⊥)}

where tv1
a = tva[r3 7→ 5]. On the concrete state S5 it holds that ret ∈ dom(tv1

a), tv1
a(ret) =

(fn, r3), tv1
a(r3) = 5, thus rule (7) can be used to fix the value of the future variable as follows:

S6≡{ob(main,⊥,⊥, ε, {〈tv3
m , await f1?〉}), ob(oa, A, h, ε, ∅), fut(fn, 5)}

and afterwards apply rules (11), (9) and (6) and obtain:

S7≡{ob(main,⊥,⊥, ε, ∅), ob(oa, A, h, ε, ∅), fut(fn, 5)}

Now, in order to show the correspondence between the concrete and the abstract semantics, we start
from the initial abstract state:

A0 ≡ {〈call(b,main(this, 〈〉, 〈〉)), _〉} ◦ true

By applying rule (1)α, with mainα1 �α
main P

α, to A0, where mainα1 is defined in Figure 11 (middle-
top), we reach the abstract state:

A1≡{〈a2 = 1 · z2 = 4 · call(m, p(a2, 〈z2〉, 〈f2〉)) · ⊥, ρ0 · · · ρ4〉} ◦ this2 = this

From A1, by applying twice rule (3)α we can compute:

A2≡{〈call(m, p(a2, 〈z2〉, 〈f2〉)) · ⊥, ρ2 · · · ρ4〉} ◦ this2 = this ∧ a2 = 1 ∧ z2 = 4︸ ︷︷ ︸
ϕ

Similarly, by applying rule (2)α to A2 with p3
α �α

p P
α, where pα3 is defined in Figure 11 (middle-

bottom) we have:

A3≡{〈⊥, ρ3 · ρ4〉, 〈r4 = w4 + 1, ρ5 · ρ6〉} ◦ ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2

The point now is that we can apply rule (5)α on the abstract state A3 and obtain exactly the same
abstract stateA4 ≡ A3, i.e., we delay the abstract trace until the await succeeds. On the abstract state
A4 we can apply rule (7)α followed by rule (3)α, to compute:

A5≡{〈⊥, ρ3 · ρ4〉, 〈ε, ρ6〉} ◦ ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2 ∧ r4 = w4 + 1

Note that rules (7)α and (3)α correspond to the application of rules (11) and (1) respectively. For the
case of the abstract state A5, it is enough to apply, first rule (6)α (corresponding to the application
of rule (7)) to compute

A6≡{〈⊥, ρ3 · ρ4〉, ε} ◦ ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2 ∧ r4 = w4 + 1

Afterwards the application of rule (7)α, which corresponds to the application of rule (11) in the
concrete semantics, followed by rule (4)α, which corresponds to the application of rule (9), results
in {〈ε, ρ4〉, ε} ◦ ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2 ∧ r4 = w4 + 1. Finally with the application of
rule (6)α, which corresponds rule (6) in the concrete semantics, we have:

A7 ≡ {ε, ε} ◦ ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2 ∧ r4 = w4 + 1

�

We now establish the soundness of the abstract compilation with respect to the chosen size
measure α. Intuitively, we prove that the size of the variables in a given concrete trace is computed
in its corresponding abstract trace. As notation, given an object a ≡ ob(o, C, h, 〈tv , b̄〉,Q), we say
that 〈tv , b̄〉 is its active task (denoted by active(a)) and we define pending(a) = {tk | tk ∈ Q} as
the set of pending tasks of a. Thus, we define the set of tasks for an object a, denoted as tasks(a),
as {active(a)} ∪ pending(a). Finally, given an state S = {a1, . . . , an}, we define the set of tasks in
S, denoted as tasks(S), as ∪ni=1tasks(ai).
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Definition 10 (relation between abstract and concrete states). Let S be a concrete state and α a size
measure. We say that an abstract state A ◦ φ approximates S, denoted as A ◦ φ ≈ S if an only if:

1. φ is satisfiable;

2. for all 〈tv , b1 · · · bn〉 ∈ tasks(S), from an object ob(o, C, h, _, _) ∈ S, there exists
〈bα1 · · · bαn, ρ1 · · · ρn+1〉 ∈ A and an assignment σ : vars(tv) ∪ f̄C 7→ Z such that
ABST(bi, ρi) = 〈bαi , ρi+1〉, 1 ≤ i ≤ n, σ |= φ and:

• For all x ∈ dom(tv) it holds that σ(ρ1(x)) = α(x,S);
• For all f ∈ dom(h) it holds that σ(ρ1(f)) = α(f,S);
• For all y ∈ dom(tv), if tv(y) = fn, fut(fn, v) ∈ S and v 6= ⊥, then σ(ρ1(y)) = α(y,S).

Example 11 (equivalence between concrete and abstract traces). Consider the concrete and abstract
states S2 and A2 of Example 10:

S2≡{ob(main,⊥,⊥, 〈tv2
m , call(m, p(a1, 〈z1〉, 〈f1〉)) · await f1?〉, ∅), ob(oa, A, ha, ε, ∅)}

A2≡{〈call(m, p(a2, 〈z2〉, 〈f2〉)) · ⊥, ρ2 · · · ρ4〉} ◦ this2 = this ∧ a2 = 1 ∧ z2 = 4︸ ︷︷ ︸
ϕ

Then, we have that ABST(call(m, p(a1, 〈z1〉, 〈f1〉), ρ2) = 〈call(m, p(a2, 〈z2〉, 〈f2〉)), ρ3〉 and
ABST(await f1?, ρ3) = 〈⊥, ρ4〉, where ρ2 and ρ3 are defined in Figure 11. Furthermore, let σ be
an assignment such that σ |= ϕ, then σ(z2) = 4. Finally note that z1 ∈ dom(tv2

m) and σ(ρ2(z1)) =
σ(z2) = 4 = tv2

m(z1) = α(z1,S2). Hence A2 ◦ ϕ ≈ S2.
Now, let us focus on S5 and A5 of Example 10.

S5≡{ob(main,⊥,⊥, ε, {〈tv3
m, await f1?〉}), ob(oa, A, h, 〈ε, tv1

a〉, ∅), fut(fn,⊥)}

A5≡{〈⊥, ρ3 · ρ4〉, 〈ε, ρ6〉} ◦ ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2 ∧ r4 = w4 + 1

Let σ′ be a valuation that satisfies ϕ ∧ this4 = a2 ∧ w4 = z2 ∧ r4 = f2 ∧ r4 = w4 + 1. Then
σ′(w4) = 4. Now in order to prove that A5 approximates S5, we need to ensure also that
σ′(ρ6(w3)) = α(w3,S5) and σ′(ρ6(r3)) = α(r3,S5). But this follows from σ′(ρ6(w3)) = σ′(w4) =
4 = tv1

a(w3) = α(w3,S5) and σ′(ρ6(r3)) = σ′(r4) = 5 = tv1
a(r3) = α(r3,S5). Finally, observe that

A6 approximates S6. In this case, tv3
m(f1) = fn, fut(fn, 5) ∈ S6 and σ′(ρ3(f1)) = σ′(f2) = 5 =

α(f1,S6). �

The following theorem establishes that given a concrete trace, we can generate an abstract trace
of the same length and instantiate it (i.e., give the integer values to all constraints variables using a
consistent assignment σ) in such a way that the size of a variable in the i-th concrete state coincides
with the value of the corresponding constraint variable in the i-th abstract state.

Theorem 2 (soundness of abstract compilation). Let P be an IR program, Pα the abstract
compilation of P and S0 = {ob(main,⊥,⊥, 〈tv0, call(b, main(this, 〈〉, 〈〉))〉, ∅)} an initial state.
If S0 ;n Sn then there exists an abstract trace A0 ◦ true ;n

α An ◦ φn , such that A0 ≡
{〈call(b,main(this, 〈〉, 〈〉)), ρ · ρ′〉} and for all Si, it holds that φn |= φi and Si ≈ Ai ◦ φi, 0 ≤ i ≤ n.

5.2. Handling Strings and Algebraic Data-Types

As already mentioned, our implementation handles String and user-defined algebraic data-types
(e.g., lists, trees, etc). Below we describe how such types are handled in the size analysis. For
each case (1) we describe corresponding size measures that allow abstracting data of such types
to numerical values; and (2) we describe corresponding abstract compilation for instructions that
manipulate such types.
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String data-type. Strings are abstracted to their length. This is a classical size measure that
allows bounding the number of iterations of loops that traverse strings. In the abstract compilation
phase, instructions that manipulate strings are abstracted to linear constraints that describe
relations between the lengths of the strings on which they operate. For example, the instruction
c = strapp(a, b), which concatenates strings a and b into a new one c, is compiled into the constraint
c = a+ b to indicate that the length of c is as the sum of the lengths of a and b. In addition, we add
the constraint a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 to indicate that the length is a non-negative measure. Other
string manipulating instructions are treated similarly.

Algebraic data-types. A classic size measure used for algebraic data-types, mainly in the context
of termination analysis, is the term-size norm [16] which abstracts data-structures to the number of
occurrences of type constructs in the data-structure. For example, the size of the list Cons(F(a, b),
Cons(F(a, c),Nil)) is 9, where each occurrence of a type construct from {Cons, Nil,F, a, b, c}
contributes 1. In the abstract compilation phase, instructions that manipulate data-structures are
abstracted to linear constraints that describe relations between the term-size of the data-structures
on which they operate. For example, the instruction ys = Cons(x, xs), which constructs a list whose
head is x and whose tail is xs, is abstracted to ys = 1 + x + xs ∧ ys ≥ 0 ∧ x ≥ 0 ∧ xs ≥ 0 . Our
implementation allows choosing between the term-size and the term-depth measure (which abstracts
data-structures to their depth in a similar way). Besides, a recent extension includes state-of-the-art
size measures that are automatically extracted from the user-defined types [12]. Such type-based
norms do not count all type constructs of a given data-structures, but rather only those that are
potentially traversed by loops. For example, the size of the list above would be 3 because it will
only count Cons and Nil, which would lead to a more precise bound for a loop that traverses this
list but not its internal elements. Moreover, our implementation allows using several type-based
size measures simultaneously, which in turn allows abstracting one data-structure using several size
measures. This is particularly useful when the different parts of a data-structure are traversed by
different parts of the program.

5.3. Class Invariants in Cost Analysis

The accuracy of the size analysis can be improved by using a generalization of class invariants
(see, e.g., [34]). As discussed in Section 5.1, release points are problematic since at these points
other task(s) may modify the values of shared fields. However, it is often possible to gather useful
information about the shared variables, in the form of class invariants, which must hold at those
points. In sequential programs, class invariants have to be established by constructors and must hold
on termination of all (public) methods of the class. They can be assumed at (public) method entry
but may not hold temporarily at intermediate states not visible outside the object. In our context, we
need that such invariants hold on method termination and also at all release points of all methods.
This way, we can use them to improve the abstraction at the release points. In the following, given
a class C, ΨC denotes the class invariant for class C, which is a set of linear constraints over the
fields of C and possibly some constant symbols.

Definition 11 (abstract compilation with class invariants). Let B be an instruction or a guard
and ΨC a class invariant for C. We define the abstract compilation ABSTI(B, ρ,ΨC) of B w.r.t.
a mapping ρ, a symbolic size measure αρ and a class invariant ΨC as ABSTI(B, ρ,ΨC) =
ABST(B, ρ), ifB 6= await x? and ABSTI(B, ρ,ΨC) = 〈⊥ ∧ΨC [f̄C 7→ ρ′(f̄C)], ρ′〉 otherwise, where
ABST(B, ρ) = 〈⊥, ρ′〉.

The definition above allows us to define the abstract compilation of a possibly renamed rule
r ≡ m(this, x̄, ȳ)← g , b1 , . . . , bn ∈ P of class C w.r.t. a class invariant ΨC defined in terms of f̄C
as rα ≡ m(ρ0(this), Ī, Ō)← ΨC ∧ gα, bα1 , . . . , bαn, where rα is computed as in Definition 9, using
ABSTI instead of ABST.

Example 12 (class invariants for the running example). The following invariants will be required
in order to obtain the cost of all methods of our running example: (1) In class Reader, we need
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to know that field elems is bounded, i.e., 0 ≤ elems ≤ elemsmax where elemsmax is a constant
symbol that bounds the value of elems; and (2) in class FileIS, we also need to know that field
lth is bounded, i.e., 0 ≤ lth ≤ lthmax . Furthermore, we need the invariant blockS = blockSinit

for the loop in method readBlock. Thus, ΨReader = {0 ≤ elems ≤ elemsmax} and ΨFileIS = {0 ≤
lth ≤ lthmax ∧ blockS = blockSinit}. Now, if we consider the abstract compilation of block if _c
in Example 9, and we use as invariant ΨFileIS , b© would be replaced ⊥ ∧ ρ2(ΨFileIS ), where
ρ2(ΨFileIS ) = 0 ≤ lth′ ≤ lthmax ∧ blockS′ = blockSinit . �

The invariants above can be inferred automatically, for instance, by means of a syntactic analysis
that simply checks that the corresponding fields are initialized and never updated again. Note that
even if several processes modify lth we can still obtain the upper bounds that we have computed
before. This is because there is no loop whose termination relies on the value of lth. Observe that
the loop in readBlock first copies the value of lth into variable i and then the termination depends on
variable i. Thus, if we have several instances of method readBlock interleaving their computations,
we can still prove their termination and infer their resource consumption.

Furthermore, even if a field is modified at a release point, we can use the points-to analysis
of Section 4 to determine if the field is read by means of references different from those used
to write the field. If this is the case, then such a field can be preserved in rule 4 of Figure 8. In
the following, given a rule p(this, x̄, ȳ)← g, b1, . . . , bn, we use body(p) to refer to the multiset
of instructions {b1, . . . , bn}. Now, we define the set Read(C, f) = {o | x := this.f ∈ body(p), o ∈
X call
p (this), p is a rule in C, p 6≡ C_init} of references used to read a field f in class C. Similarly,

we can define the set Write(C, f) but considering instructions of the form this.f := x in rules of
class C. Then we define the set trackable(C ) as the set {f ∈ f̄C |Read(C, f) ∩Write(C, f) = ∅}.

Example 13 (automatic inference of class invariants). Let us consider the field blockS in
Figure 1. Then, since X callreadBlock (this) = {o2} (see Example 7), and the field is only read, then
Read(FileIS, blockS) = {o2} but Write(FileIS, blockS) = ∅. Hence blockS ∈ trackable(FileIS) i.e.,
this field is not lost when processing the instruction await f? inside the while loop in readBlock . For
fields lth and fp, it holds that Read(FileIS, lth) = {o2}, Write(FileIS, lth) = ∅, Read(FileIS, fp) =
{o1, o2} and Write(FileIS, fp) = ∅. Hence both fields belong to trackable(FileIS). Thus
trackable(FileIS) = {blockS, lth, fp}. �

Differently to the sequential setting in [5], a field satisfying that Read(C, f) = Write(C, f) =
{o}, i.e., the field is read and written using the same reference, cannot be considered trackable. The
following example illustrates this.

Example 14 (comparison with the sequential setting). Consider the following two methods:

void m1(A o){
Fut<Int> x;

while (this.f > 0) {
x = o ! p();
await x?;
this.f = this.f - 1;

}
}

void m2(A o){
Fut<Int> x;

while (this.f < 0) {
x = o ! p();
await x?;
this.f = this.f + 1;

}
}

that belong to the same class C, where f is a field in C. Assume that the points-to analysis computes
X call
m1 (this) = X call

m2 (this) = {o1}. Then Read(C, f) = Write(C, f) = {o1}. However, in a setting in
which the execution of m1 and m2 are continuously interleaved because the corresponding await
instructions do not hold, termination is not guaranteed, since m1 decreases f what endangers the
termination of m2. Similarly, as m2 increases f, the termination of m1 cannot be guaranteed. �

The same idea can be also applied to points-to analysis where class invariants can be used to state
which fields remain unchanged at release points. In this case, the class invariant Ψpt

C is a set of field
names that are guaranteed to remain unchanged after their initialization. To take this information
into account, the equations in Definition 6 for await instructions (row 3) are changed to update only
for those fields that are not in the class invariant, that is:
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include_global_await(XG ,X ) ≡ X [o.f 7→ XG(o.f)],∀o.f ∈ dom(X ) | o ∈ X (this) ∧ f 6∈ Ψpt
C

Example 15 (class invariants for points-to analysis). If Ψpt
FileIS = {f} was inferred for the program

of Example 5, local information for the field f would be valid even after the release point at row 17
of Figure 5. Thus, using Ψpt

FileIS we have X〈1,5〉 = {this 7→oa, oa.f 7→oab, yoa 7→oab, xoa 7→oab}.

6. OBJECT-SENSITIVE RESOURCE ANALYSIS

In this section, we present the process of obtaining upper bounds on the resource consumption.
Our analysis follows the classical two-fold approach to cost analysis [45] in which: (1) a program
is first transformed into a set of cost relations [7] which (2) can then be solved into closed-form
upper/lower bounds [4], i.e., cost expressions that are not in recursive form. The cost relations we
generate can be solved using [4] without requiring any modification; thus we do not describe this
second phase and, in what follows, we focus exclusively on the first phase of the resource analysis.

After showing an intuitive example in Section 6.1, the presentation of the analysis is performed
in two steps. First, we illustrate in Section 6.2 how an object-insensitive analysis can be defined as
in sequential programming, by using the size abstraction computed in Section 5, and point out its
limitations. Then, Section 6.3 defines the object-sensitive analysis which, by relying on the object-
sensitive points-to information of Section 4, overcomes the limitations of the object-insensitive
analysis.

6.1. An Intuitive Example

Let us consider the following simple code (left) and its IR (right):

void m(A a,int n) {
a.p(n);
n++;
A b=new A();
b.p(n);

}
void p(int n){

n++;
}

m(this, 〈a, n〉, 〈〉)←
call(m, p(a, 〈n〉, 〈〉)),
n := n+ 1,
b := new A,
call(m, p(b, 〈n〉, 〈〉).

p(this, 〈n〉, 〈〉)←
n := n+ 1.

We want to infer automatically the number of instructions executed by m. The most relevant point
is that method p is invoked from two different objects and with two different arguments. Intuitively,
the transformation of an IR program into cost relations can be formalized by transforming each
rule in the program into a cost equation, which accumulates the cost of the instructions in the rule
and contains the applicability conditions for the equations resulting from the abstract program. Our
analysis is based on the three components introduced in the previous sections as follows. First,
(1) the cost models introduced in Section 3 are used by the analysis to determine the cost of each
instruction. For instance, we now use the cost model that counts the number of executed instructions
and apply it to each rule. We have that the rule for m, denoted m, accumulates 4 instructions and
the one for p accumulates 1. Second, (2) the size relations in Section 5 are necessary to generate the
applicability conditions (guards) for cost relations and to determine how the size of data changes
when the equations are applied. In particular, we infer the equations:

m(n) = 4 + p(n) + p(n′) {n′ = n+ 1}
p(n) = 1

In the equation for m, we can observe that the size relation {n′ = n+ 1} tells us that the size of n
is increased by one in the second call to p. In this case, the equations have no guards as they apply
unconditionally.
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Up to this point, we have obtained object-insensitive equations, because we do not distinguish the
object which is executing the instructions. In the third step, (3) the points-to analysis in Section 4
is necessary to define the cost centers, which are the artifacts used by the analysis to separate the
cost of the distributed components so that we can then distinguish the resource consumption of each
component. In the example, three cost centers are obtained: c(this) for the object executing m, c(a)
for the object that is passed as parameter to m, and c(b) for the object created in m. Now, when we
account for the cost of executing an instruction, we take into account the object that executes it. In
particular, we obtain the following equations:

m(n) = 4∗c(this) + pa(n) + pb(n
′) {n′ = n+ 1}

pa(n) = c(a)∗1
pb(n) = c(b)∗1

We can observe that attached to the cost we add the cost center for the object executing the
instruction. The 4 instructions for method m are attributed to this . When a method is executed
from different objects, we create object-sensitive equations which distinguish all possible calling
contexts. In the example, we generate two equations for method p, one in which the cost is attributed
to a and one to b. Solving the equations results in the upper bound:

m(n) = 4 ∗ c(this) + 1∗c(a) + 1∗c(b)
While the cost in this example is constant, in general the cost is a function of the data input sizes,
what makes the problem more interesting and challenging.

6.2. Object-Insensitive Analysis

The generation of cost relations from our concurrent and distributed programs, for a generic cost
model M, can be done exactly as for sequential programs [7], by using the size abstractions in
Section 5 which already take the concurrent behaviour into account, and then simply applying the
generic cost model in Section 3 to each instruction of each rule.

Definition 12 (object-insensitive resource analysis). Let M be a cost model, P an IR program,
r ≡ p(this, x̄, ȳ)← g , b1 , . . . , bn a rule in P and rα ≡ p(this, x̄, y′)← gα, bα1 , . . . , b

α
n its abstract

compilation. Let calls(rα) = {q(w̄) | bαi ≡ call(ct ,q(rec, w̄, _)), 1 ≤ i ≤ n} be the multiset of calls
to methods or blocks in rα. The cost equation associated to the rule r is defined as:

p(x̄) = 〈cexpr , ϕ〉

where cexpr =

n∑
i=1

M(bi) +
∑

q(w̄)∈calls(rα)

q(w̄) and ϕ ≡ C(gα ∧ bα1 ∧ . . . ∧ bαn).

Given a program P , its cost relation system (CRS for short) is obtained by applying the above
definition to all rules. The CRS is like a standard CRS for sequential programs with the following
features: (i) equations do not have output arguments, as we aim at obtaining the cost as a function
of the input argument sizes x̄; (ii) given a rule being analyzed, its cost expression cexpr is obtained
by applying the cost modelM to each of the basic instructions in the body (first summation in the
cexpr ); (iii) a call in the program is substituted by a call to its corresponding cost equation (second
summation in the cexpr ); (iv) the linear constraints ϕ, obtained from the size abstraction of the
rule, are attached to the rule to define its applicability conditions and the size relations among the
variables in the equation. When we have class invariants available, they are added to the constraints
ϕ in the equations. Finally, the CRS is called object-insensitive because it does not separate the cost
per object, but rather it accumulates the cost carried out by all objects in the program.

Example 16 (object-insensitive cost equations). Let us see the application of Definition 12 to the
rule readBlock (shown in Figure 2) w.r.t. the cost model Mi (see Section 3), which counts the
number of executed instructions. First we applyMi to all instructions in the body of readBlock (see
Example 9), what results in the constant 6. In addition, we have to include the cost of the while loop,
i.e., we add the call to while with its corresponding arguments:
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readBlock() = 〈6 + while(i ′, blockS )︸ ︷︷ ︸
cexpr

, {i ′=lth, 0 ≤ lth ≤ lthmax , blockS = blockSinit}︸ ︷︷ ︸
ϕ

〉

where ϕ comes from the abstract compilation in Example 9 and the class invariant ΨFileIS in
Example 12. In what follows we only include the constraints of the class invariants that are relevant
to compute the upper bounds. Thus, for rule readBlock we only include in ΨFileIS the constraint
0 ≤ lth ≤ lthmax . Moreover, note that, according to the abstract compilation of readBlock in
Example 9, the call to while should have as input arguments 〈res ′, i ′, incr ′, pos ′, fp, lth, blockS 〉.
For the sake of clarity, we only include those arguments that are relevant for the cost, i.e., those
involved in guards (see [6] for more details). In the case of while, we only include i′ and blockS .
Now, by applying Definition 12 to all rules in the IR of the running example, we obtain the
following CRS:

main() = 〈14 + readOnce() + readBlock(), {}〉
readBlock() = 〈6 + while(i ′, blockS), {i ′ = lth, 0 ≤ lth ≤ lthmax}〉
while(i , blockS) = 〈0, {i ≤ 0}〉
while(i , blockS) = 〈1 + if (i , blockS), {i > 0, blockS = blockSinit}〉
if (i , blockS) = 〈2 + if_c(i , blockS , incr), {blockS > i , incr = i}〉
if (i , blockS) = 〈2 + if_c(i , blockS , incr), {blockS ≤ i , incr = blockS}〉
if_c(i , blockS , incr) = 〈7 + readContent() + while(i′, blockS) {i′ = i− incr}〉
readOnce() = 〈4 + readContent(), {}〉
readContent() = 〈7 + process(), {}〉
process() = 〈4 + while_1 (i, elems), {i = 0 , 0 ≤ elems ≤ elemsmax}〉
while_1 (i, elems) = 〈0, {i ≥ elems}〉
while_1 (i, elems) = 〈15 + while_1 (i′, elems ′), {i < elems, i′ = i+ 1}〉

We assume that the execution of methods hdRead and update have constant costs, which are
accounted in the constant 15 of the second equation for while1 . Likewise, the constant 7 in the
equation for readContent includes the cost of executing the constructor of class Reader which is
assumed to be 2 (two fields are initialized). Note that the constraints of the equation process include
the class invariant of the class Reader, i.e., ΨReader = {0 ≤ elems ≤ elemsmax}. For brevity, we
do not include ΨFileIS in the equations readContent and readOnce as it is not relevant for solving
the equations. The constraint blockS = blockSinit from ΨFileIS is only relevant in the equation
while. Observe that the constraints capture (1) the conditions required to apply the rule, as well as
(2) the constraints that state how their values are modified along the program execution, e.g., in the
first equation for if we see that, (1) when blockS > i, (2) the value of i is updated, i′ = i− incr.
This CRS is solved using [4] (without requiring any modification to the solving process) into the
following closed-form upper bounds:

UBprocess() = 4 + 15 ∗ nat(elemsmax )
UBreadContent() = 11 + 15 ∗ nat(elemsmax )
UBreadOnce() = 15 + 15 ∗ nat(elemsmax )
UBreadBlock() = 6 + nat(lthmax ) ∗ (21 + 15 ∗ nat(elemsmax ))

Before explaining the above bounds, let us first explain the role of the nat function that we use above.
Suppose we are given a loop while(x > 0) {x=x−1}, and suppose that each iteration costs 1. Then
x is an upper bound on the cost that is valid for non-negative values of x, and 0 is an upper bound
that is valid for negative values of x. This bound can be expressed using a piecewise function that
considers these two cases, or, for compactness, we can use max(0, x) instead, which we abbreviate
as nat(x). Let us now explain the different parts of the upper bound computed for readBlock. The
constant 6 comes from the constant in the equation for readBlock . The cost of the loop is the
following quadratic expression:

nat(lthmax )∗(21+15∗nat(elemsmax ))

where nat(lthmax ) is an upper bound on the number of iterations of the loop and
21+15∗nat(elemsmax ) is the worst-case cost of each iteration. At each iteration, method
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readContent is invoked. This method contains a loop whose cost is linear on elemsmax . Thus,
the component nat(elemsmax ) in the upper bound above is due to such method invocation. As the
cost equation for main includes the cost of readOnce and readBlock , its upper bound is:

UBmain() = 14 + 15+15 ∗ nat(elemsmax )︸ ︷︷ ︸
readOnce

+

6+nat(lthmax )∗(21+15∗nat(elemsmax ))︸ ︷︷ ︸
readBlock

�

The above analysis has a main drawback: it is not capable of distinguishing the different
distributed components. Instead, the resource usage contributed by all objects is accumulated in
a single cost center which corresponds to the whole execution of the distributed system.

6.3. Adding Cost Centers to the Equations

As its main novelty, a CRS in our object-sensitive resource analysis uses cost centers in order
to keep the resource usage corresponding to the different components. The main idea is to
take advantage of the object-sensitive points-to information to generate cost equations for all
possible contexts (and thus objects). In particular, the object-sensitive equations will allow us to
count separately the cost that corresponds to different instances of objects that are created at the
same allocation site but correspond to different object names and potentially different distributed
components. Given a program rule rt ≡ p(this, x̄, ȳ) ← g , b1 , . . . , bn , we annotate the rule as
follows: rt ≡ [p(this, x̄, ȳ)]X

call
p (this) ← g , [b1 ]O1 , . . . , [bn ]On , where 1 ≤ j ≤ n andOj is defined

as:

(a) Oj = {〈ol,X〈t,j〉(recol )〉 | ol ∈ X call
p (this)} if bj is of the form call(m, q(rec, w̄ , z ));

(b) Oj = ∅, otherwise.

Observe that we are annotating the head of the rule with the set of object names that the object
this might take for this rule, that is, X call

p (this). In addition we annotate the calls to methods with a
set of tuples of the form 〈ol,X〈t,j〉(recol )〉, where, for each element ol in X call

p (this), we obtain the
set of possible object names that might be pointed by recol .

Example 17 (annotated rules). The annotated rules using the information provided by the points-to
analysis with k = 2 are the following:

[main(this, 〈〉, 〈〉)]{oε}← . . . ,
[call(m, readOnce(ob1 , 〈〉, 〈f1 〉))]{〈oε,{o1}〉},
[call(m, readBlock(ob2 , 〈〉, 〈f2 〉))]{〈oε,{o2}〉}, . . .

[readBlock(this, 〈〉, 〈r〉)]{o2}← . . . ,
[call(b, while(inp, out))]{〈o2,{o2}〉}, . . .

[if_c(inp, out)]{o2}← . . . ,
[call(m, readContent(this, 〈pos, incr〉, 〈f 〉))]{〈o2 ,{o2}〉}, . . .

[readOnce(this, 〈〉, 〈r〉)]{o1} ← . . . ,
[call(m, readContent(this, 〈0 , lth〉, 〈f 〉))]{〈o1 ,{o1}〉}, . . .

[readContent(this, 〈pos, incr〉, 〈f 〉)]{o1 ,o2} ← . . . ,
[call(m, process(rd , 〈pos〉, 〈f 〉))]{〈o1 ,{o13}〉,〈o2 ,{o23}〉}, . . .

[process(this, 〈pos〉, 〈r〉)]{o13 ,o23} ← . . .

Some blocks of method readBlock are omitted since all of them are annotated with {o2}. Also we
omit those calls not affecting further explanations. As it is shown in Figure 7, at program point
〈8, 0〉 we have that X call

readContent(this) = {o1, o2}, then we annotate the rule readContent with the
set {o1, o2}. Similarly, since at program point 〈9, 0〉 it holds X call

process(this) = {o13, o23}, then the
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corresponding annotated rule for process is annotated with {o13, o23}. On the contrary, at program
point 〈8, 2〉 in Figure 7, depending on the value of this , we have different object names which
might be pointed by rd, X〈8,2〉(rdo1) = {o13} and X〈8,2〉(rdo2) = {o23}. Then we annotate the call
to process from readContent with {〈o1, {o13}〉, 〈o2, {o23}〉}. �

Now, given an annotated rule r ≡ [p(this, x̄, ȳ)]This ← g , [b1 ]O1 , . . . , [bn ]On , we also annotate its
abstract compilation as rα ≡ [p(this, x̄, _)]This ← g , [bα1 ]O1 , . . . , [bαn ]On , and we use the following
functions:

• methods(rα) to obtain the multiset of annotated elements [q(rec, w̄ , z )]O which correspond
to calls to methods of the form [call(m, q(rec, w̄ , z ))]O in the body of rα;

• blocks(rα) to refer to the multiset of elements q(this, w̄ , z̄ ) which are calls to intermediate
rules of the form call(b, q(this, w̄ , z̄ )) in the body of rα.

Definition 13 (object-sensitive resource analysis). Let M be a cost model, P an IR program,
r ≡ p(this, x̄, ȳ)← g , b1 , . . . , bn a rule in P and rα ≡ p(this, x̄, y′)← gα, bα1 , . . . , b

α
n its abstract

compilation. Let us consider the annotated abstract rule [p(this, x̄, ȳ)]This ← _ for r, where
methods(rα) = {[q1 (y1 , w̄1 , z1 )]O1 , . . . , [qk(yk, w̄k, zk)]Ok}. Then the following set of equations
defines the cost of r: for each o ∈ This , and for each 〈o1, . . . , ok〉 ∈ O′1 × · · · ×O′k such that
〈o,O′i〉 ∈ Oi, 1 ≤ i ≤ k, we generate the equation:

m_o(x̄) = 〈cexpr , ϕ〉

where cexpr =

n∑
i=1

c(o) ∗M(bi) +
∑

p(this,w̄ ,z̄)∈blocks(rα)

p_o(w̄) + q1_o1(w̄1) + · · ·+ qk_ok(w̄k),

ϕ ≡ C(gα ∧ bα1 ∧ . . . ∧ bαn), and qi_oi is the name of the equation that represents a call to method qi
from object oi, and c(o) denotes the cost center associated to o.

Intuitively, the above definition generates, from one rule, as many equations as needed for defining
its cost such that all possible contexts (i.e., object names of callees) are considered. The new names
are obtained by concatenating the corresponding object name to the rule name. Each generated
equation corresponds to one object name o on which the call is performed, and such object
name is used to block invocations, p_o(w̄). The cost expressions we accumulate, i.e. M(bi), are
multiplied by a symbolic expression c(o) which denotes the cost center of the corresponding object
name. Besides, as regards method invocations, all combinations have to be generated. This is done
in the definition by means of the Cartesian product O′1 × · · · ×O′k which gives us all possible
combinations for the elements in the sets. As an example, if we have a rule, where m2 and m3

are calls to methods:
[m1(this, 〈x〉, 〈y〉)]{o1,o2} ← [m2(_, 〈x, u〉, 〈〉)]{〈o1,{o3}〉,〈o2,{o4,o5}〉}+

[m3(_, 〈u, y〉, 〈〉)]{〈o1,{o6,o7}〉,〈o2,{o8}〉}

Intuitively, when this points to o1, then x (inm2) may point to o3 and u to o6 or o7 (inm3). Similarly,
when this points to o2, then x (in m2) may point to o4 or o5 and u (in m3) may point to o8. From
the above rule, the following four equations are generated to cover all cases:

m1_o1(x) = m2_o3(x, u) +m3_o6(u, y)
m1_o1(x) = m2_o3(x, u) +m3_o7(u, y)
m1_o2(x) = m2_o4(x, u) +m3_o8(u, y)
m1_o2(x) = m2_o5(x, u) +m3_o8(u, y)

Multiple rules for the same procedure are interpreted as non-deterministic choices and the upper
bound solver computes the maximum over them. Therefore, the fact that multiple non-deterministic
rules are introduced (e.g., two rules for m1_o1(x)) does not degrade the quality of the upper bound
obtained.

Example 18 (object sensitive cost equations for the running example). In the running example,
method readContent is executed by two different objects. This is captured in the points-to analysis
by means of two object names, o1 and o2 for the this reference of readContent (see Example 7).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



OBJECT-SENSITIVE COST ANALYSIS FOR CONCURRENT OBJECTS 33

Nevertheless, the upper bound for main shown in Example 16, accumulates the cost executed by all
objects together. By applying Definition 13 to the annotated rules in Example 17, the equations in the
CRS (Example 16) are replicated for all possible object names that could execute the equations. For
example, as the rule readContent is annotated with {o1, o2} and the call to process is annotated with
{〈o1, {o13}〉, 〈o2, {o23}〉}, the replicated equations obtained by the object sensitive cost analysis are
as follows:

readContent_o1() = 〈c(o1) ∗ 7 + process_o13(), {}〉
readContent_o2() = 〈c(o2) ∗ 7 + process_o23(), {}〉
process_o13() = 〈c(o13) ∗ 4 + while1_o13(i, elems), {i=0 , 0 ≤ elems≤elemsmax}〉
process_o23() = 〈c(o23) ∗ 4 + while1_o23(i, elems), {i=0 , 0 ≤ elems≤elemsmax}〉

Note that the replication of the rule process is analogous, but for the set {o13, o23}. The equations
include the cost center corresponding to the equation responsible of accumulating such cost, i.e., the
cost accumulated by the equation readContent_o1 is multiplied by c(o1). Using such cost centers,
the closed-form upper bounds now keep separate the resource consumption associated to each cost
center oi by means of a symbolic constant c(oi). From the above equations for readContent the
solver obtains the following upper bounds:

UBreadContent_o1 () = c(o1) ∗ 7 + c(o13) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸
process_o13

UBreadContent_o2
() = c(o2) ∗ 7 + c(o23) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸

process_o23

Similarly for readOnce and readBlock , which are annotated with o1 and o2 (respectively), we obtain
the upper bounds:

UBreadOnce_o1 () = c(o1) ∗ 4 + c(o1) ∗ 7 + c(o13) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸
readContent_o1

UBreadBlock_o2 () = c(o2) ∗ 6 + c(o2) ∗ nat(lthmax ) ∗ 10 +

nat(lthmax ) ∗ (c(o2) ∗ 7 + c(o23) ∗ (4 + 15 ∗ nat(elemsmax )))︸ ︷︷ ︸
readContent_o2

With the object sensitive cost analysis, in contrast to the upper bound obtained in Example 16, the
cost centers added in the cost expressions the closed-form upper bound for main keeps the number
of instructions executed on each object multiplied by its corresponding cost center:

UBmain() = c(oε) ∗ 14 + c(o1) ∗ 4 + c(o1) ∗ 7 + c(o13) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸
readOnce_o1

c(o2) ∗ 6 + c(o2) ∗ nat(lthmax ) ∗ 10 +︸ ︷︷ ︸
readBlock_o2

nat(lthmax ) ∗ (c(o2) ∗ 7 + c(o23) ∗ (4 + 15 ∗ nat(elemsmax )))︸ ︷︷ ︸
readBlock_o2

�

The upper bound for a set of objects O, UBp|O, is obtained by setting c(o) to 1 for all object
names o ∈ O and to 0 for the remaining ones. Note that, if we replace c(o) by 1 (for all object
names o), the accuracy of object-insensitive CRS in Def. 12 coincides with that of object-sensitive
CRS.

Example 19 (object sensitive upper bound accuracy). If we are interested in the number of
instructions performed by the cost centers {o13} and by {o23}, we replace the symbolic expression
c(o13), c(o23), respectively, by 1 and the rest of cost centers by 0. Then,

UBmain()|{o13} = 4 + 15 ∗ nat(elemsmax )

UBmain()|{o23} = nat(lthmax ) ∗ (4 + 15 ∗ nat(elemsmax ))

Such upper bound captures the instructions executed by process when we call it from readOnce. The
main observation is that the accuracy of the upper bound for main is significantly better when the
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analysis is performed with k = 2 than with k = 1. If the points-to analysis is performed for k = 1,
the object names o13 and o23 are merged in a single object name o3, resulting in the upper bound:

UBk=1
main() = c(oε) ∗ 14 + c(o1) ∗ 4 + c(o1) ∗ 7 + c(o3) ∗ (4 + 15 ∗ nat(elemsmax ))

c(o2) ∗ 6 + c(o2) ∗ nat(lthmax ) ∗ 10 +

nat(lthmax ) ∗ (c(o2) ∗ 7 + c(o3) ∗ (4 + 15 ∗ nat(elemsmax )))

Therefore, it would not be possible to distinguish between the objects created at allocation site 3©
and the costs are aggregated together resulting in a less precise upper bound that accumulates the
expressions for c(o13) and for c(o23):

UBk=1
main()|{o3} = (4 + 15 ∗ nat(elemsmax )) + nat(lthmax ) ∗ (4 + 15∗nat(elemsmax )) �

The following theorem relates the concrete cost C(T , o,M) defined in Definition 3 with the upper
bound inferred by the analysis.

Theorem 3 (soundness). Let P be a program and S0 an initial state. If T ≡ S0 ;n

Sn, then for all object identifier o such that ob(o, _, _, _, _) ∈ Si, 0 ≤ i ≤ n, it holds that
C(T , o,M)≤UBmain()|{name(o)}.

Given the soundness of the size and points-to analyses used to generate the equations, soundness of
the object-sensitive cost analysis is proved by simply showing that the above CRS can be obtained
by cloning the program as many times as determined by the number of object names computed
by the points-to analysis and applying the standard object-insensitive cost analysis to each of the
versions.

Finally, the use of cost centers easily allows us to instantiate our analysis with different
deployment strategies. Such strategies determine the groups of objects that share the processor (see,
e.g., JCobox [38]). The resource consumption of each group can be obtained by our approach by
setting c(o) to 1 for all object names o that belong to the group, and to 0 for the remaining ones.

7. EXPERIMENTAL EVALUATION

We have implemented our analysis in SACO [2], an analyzer of ABS programs which can be
tried out online at: http://costa.ls.fi.upm.es/saco/web/. This section presents our
experimental evaluation using the SACO system with a set of typical concurrent programs as
benchmarks. The overall goal of the evaluation is to measure the accuracy and performance of
our cost analysis. First, in Section 7.1 we evaluate the accuracy of the object insensitive analysis, by
evaluating the obtained upper bounds against the actual cost obtained in real runs using a profiler.
Then, Section 7.2 evaluates the accuracy and performance of the object sensitive analysis and the
impact of using more precise points-to analysis. Finally, we evaluate and discuss the potential
applications of our cost analysis using a larger and real application, namely, the TradingSystem,
a case study based on the Common Component Modelling Example [27] (CoCoME) and developed
within the FP7 HATS project http://www.hats-project.eu.

7.1. Object-Insensitive Experiments

In this section we evaluate the accuracy of the object insensitive analysis. This is done by comparing,
using a set of benchmarks, the actual number of executed instructions in real runs with a random
series of inputs using the aPET system [9] as profiler, against the estimated cost obtained by
evaluating the generated upper bounds with theMi cost model for the corresponding abstractions
of the inputs. E.g., if a concrete list in algebraic form is used as input for one run, the corresponding
evaluation of the upper bound is done with its term-size abstraction (see Section 5.2). The following
typical concurrent applications have been used as benchmarks: BBuffer, a classical bounded-
buffer for communicating several producers; DistHT, a distributed implementation of a hash table;
MailServer, a simple model of a mail server; BookShop, a web shop client-server application; and,
PeerToPeer, a pure peer-to-peer file sharing application. The source code of all benchmarks is
available at the SACO web page.
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Figure 12. Evaluating precision of object-insensitive analysis

Figure 12, which aims at showing the accuracy of the analysis (y-axis) and how it varies
with the cost (x-axis), shows a chart for each studied benchmark, Concretely, each point in the
charts corresponds to the loss-of-accuracy ratio (y-component) of one run and its real cost (x-
component). The loss-of-accuracy ratio for one run is obtained by dividing the estimated cost (with
the corresponding abstraction of the inputs) by the real cost. Thus, the higher the ratio the less
accurate the upper bound is, and the closer the ratio to one, the more precise it is.

The loss-of-accuracy ratio seems reasonable, namely from 1.1 to 7.7. For most runs it is less than
3, except for some runs of the MailServer and PeerToPeer benchmarks. It is unavoidable that the
loss-of-accuracy-ratio fluctuates with different inputs. This fluctuation can be more or less severe
depending on the concrete program, even for the most precise upper bounds. That is because we
infer upper bounds on the worst-case cost, and thus it is clear that their quality varies when applying
them to different inputs (because they must over-approximate the cost of a program for all possible
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Benchmark #ev k=1 k=2
#c #e T #c #e T %c %m %M %A

BBuffer 1280 15 96 602 21 143 1078 40.0 0.2 36.2 12.9
DistHT 1458 10 78 1036 17 131 1808 70.0 20.4 44.0 30.8
MailServer 1250 7 93 644 13 159 1012 71.4 3.3 42.9 19.1
Chat 1250 12 81 231 15 104 275 25.0 13.3 20.6 16.4
BookShop 3072 7 116 1485 10 162 1969 42.9 1.8 17.4 10.5
PeerToPeer 864 11 306 14648 19 581 28019 72.7 39.4 48.5 45.0

Benchmark
k=3 k=4

#c #e T %c %m %M %A #c #e T %c %m %M %A
BBuffer 35 253 1620 66.7 3.9 48.8 21.8 47 301 1645 68.6 2.5 47.0 24.4
DistHT 27 229 3324 58.8 13.4 44.0 32.9 39 385 4165 44.4 7.7 39.9 29.1
MailServer 13 159 1023 0.0 0.0 0.0 0.0 13 159 1027 0.0 0.0 0.0 0.0
Chat 17 118 288 76.0 3.8 19.2 10.0 19 118 305 2.4 0.4 0.5 0.4
BookShop 11 195 2047 40.0 5.6 24.3 18.2 11 195 2042 0.0 0.0 0.0 0.0
PeerToPeer 19 581 28312 0.0 0.0 0.0 0.0 19 581 28371 0.0 0.0 0.0 0.0

Table I. Statistics about the object-sensitive resource analysis (times in ms.)

inputs). The important aspect is that those fluctuations remain stable and that they do not increase
for executions of higher cost; in fact they tend to decrease in most benchmarks.

Apart from this, there are several reasons why our analysis can lose precision, namely, the
size measures for algebraic data structures (see Section 5.2), field maximizations, the precision
of the underlying analyses, etc. All these factors directly affect the precision of the inferred
loop bounds, which are the basic ingredients used to build upper bounds. The MailServer and
PeerToPeer benchmarks are especially affected by those factors mainly because they manipulate
more complex, nested data-structures. Also, their costs depend on more input parameters (and
fields), what increases the loss of precision of the obtained UBs.

7.2. Object-Sensitive Experiments

In this section we evaluate the accuracy and performance of object-sensitive cost analysis. We use
the benchmarks of Section 7.1, plus an additional one, named Chat, a chat application, which could
not be used in the previous section since it cannot be handled by the aPET profiler. In general, the
more precise the points-to analysis is, the results of the cost analysis can be more precise as well. In
this experimental evaluation, our objectives are: (1) to measure experimentally how an improvement
in the precision of points-to analysis affects the precision of cost analysis; (2) to evaluate the impact
of using more precise (and thus more costly) points-to analysis on the efficiency of the overall cost-
analysis; and, (3) to find out which value, or values, of k achieve the best balance between precision
and performance. In order to tackle such questions, we have applied object-sensitive cost analysis
with four different values of k (see Section 4), k = 1, k = 2, k = 3 and k = 4.

Table I summarizes the results obtained on an Intel Core 2 Duo at 2.53GHz with 4GB of RAM,
running Linux 3.2.0. Columns #c, #e show, for each value of k, the number of cost centers identified
by points-to analysis and the number of equations of the CRS, respectively. Column T shows the
time taken to apply the overall cost analysis, including the generation of the CRS and the time
to solve the CRS into a closed-form upper bound. In order to measure the accuracy gained when
incrementing the value of k, we evaluate the upper bound for different combinations of the input
arguments and compute the average of such evaluations. Column #ev shows the number of different
combinations evaluated for the benchmark. The result of each evaluation is a positive integer value
for each cost center identified by the points-to analysis.

The evaluation of the accuracy gained by improving the precision of the points-to analysis can be
done by comparing the upper bounds obtained for the cost centers identified with a value of k = i
with the upper bound of its corresponding object with k = i−1. Let us illustrate such issue by using
the upper bounds obtained in Example 19. If we evaluate the upper bounds with elemsmax = 10 and
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lthmax = 10, we have that UBk=1
main()|{o3} = 1694, UBk=2

main()|{o13} = 154 and UBk=2
main()|{o23} =

1540. It can be seen that the object o3 identified with k = 1 has been split in objects o13 and o23 for
k = 2, and the accuracy of the upper bounds has been improved because of that splitting. To evaluate
the improvement we compute the ratio between both upper bounds and obtain the gain. Thus, to get
the precision gained with o13, we apply the formula 1− (UBk=1

main()|{o13}/UBk=1
main()|{o3}) ∗ 100,

whose evaluation returns a 90.90% of improvement. Analogously, the application to obtain the
improvement of o23 returns 9.10%.

So as to evaluate the benchmarks we systematically compute the gain for all cost centers for
different values of k, 1 ≤ k ≤ 4. Thus, for each cost center identified with k = i, we compare its
upper bound, with the upper bound of its corresponding cost center identified with the previous
value of k, i.e., k′ = i− 1. The corresponding cost center can be identified when the last i elements
of the allocation sequence obtained by using k coincide with the allocation sequence of one cost
center obtained using k′. In general, the gain for a given cost center c for k = i, for which c′ is
its corresponding cost center for k′, is obtained with the formula (1−UBk|c / UBk′ |c′) ∗ 100. As
we have seen, UBk|c is the upper bound obtained with k = i for the cost center c, and UBk′ |c′
is the upper bound obtained with k′ = i− 1 for c′. Columns %m and %M show, respectively, the
minimum and the maximum gains, and column %A shows the average of the gains obtained for all
cost centers that improve their results.

Let us start by discussing benchmarks BBuffer and DistHT. In their main methods, a structure of
objects is created from which the different methods are invoked. The same method is often called
from different objects and thus replication of the equations is required. In BBuffer, it can be seen that
the number of equations increases from 96, with k = 1 up to 301 with k = 4. As a consequence,
analysis time increases from 602ms to 1645ms. We have a similar behaviour in DistHT, it goes
from 78 to 385 equations, and the time goes from 1036 ms to 4165ms. In both benchmarks, the
accuracy is improved when k grows. In particular, the number of cost centers in which we improve
the precision ranges between 40% and 70%, and the actual gain ranges from 13.4% to 33%. In
summary, as expected, an increment on the number of cost centers found by the points-to analysis
multiplies the number of equations, leading to more precise bounds and requiring larger analysis
time.

As regards MailServer and PeerToPeer, the best precision is achieved with k = 2, i.e.,
incrementing the value of k does not lead to further improvements in the cost analysis. In particular,
for both benchmarks, around 72% of the cost centers improve their precision when k is increased
from 1 to 2. However, the gain for the MailServer is on an average 19.1%, while for PeerToPeer it
is 45.0%. For both benchmarks, the time taken by the analysis increases with the number of new
equations created. In MailServer, we need from 644ms for 93 equations to 1027ms for 159 equations
and in the PeerToPeer, from 306 equations in 14.6s to 581 equations in 28s. For BookShop, we
obtain the best precision with k = 3, achieving an improvement in 40% of the cost centers, and a
gain of 18.2% in the upper bounds, which is higher than the improvement obtained from k = 1 to
k = 2, on average 10.5% for 42.9% of the cost centers. Note that, while the efficiency of the analysis
significantly degrades when going from k = 1 to k = 2, the performance is not significantly affected
by the increment in the precision from k = 2 to k = 3. Regarding Chat, we can see that the analysis
obtains its best precision with k = 4. Despite that, the improvement from k = 3 to k = 4 is not
significant, as only 2.4% of the cost centers improve their precision, and the improvement is not
relevant, 0.5%.

All in all, we argue that our experimental evaluation shows that object-sensitive cost analysis is
feasible and accurate. As expected, the more precise the points-to analysis is, the more precise the
upper-bounds obtained are. According to the experiments, the best value for k is between 2 and 3, but
we point out that this is quite dependent on the benchmarks. In our benchmarks, the application of
the points-to analysis with k = 2 is precise enough to obtain a good balance between precision and
performance. Another interesting conclusion is that incrementing the value of k does not degrade the
performance when there is no accuracy to be gained. This can be observed in MailServer, BookShop
and PeerToPeer as, when the increment in the value of k does not produce new cost centers, the
analysis is almost the same as for the previous value of k.
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7.3. Case Study: Trading System

In this section, we aim at evaluating object sensitive cost analysis on a larger application, namely
on the TradingSystem case study. The TradingSystem is an ABS implementation of the system
described in [27], the Common Component Modelling Example (CoCoME). Our objective is to
use our analysis results to identify potential bottlenecks related to the high resource consumption
in some components (objects) of the distributed system and be able to give some hints on the
deployment of the application (i.e., how to allocate objects to machines for the actual deployment).
The TradingSystem models a supermarket cash desk line: it includes the processes at a single cash
desk (e.g., scanning products using a bar code scanner, paying by cash or by credit card); it also
handles bill printing, as well as other administrative tasks. A store consists of an arbitrary number
of cash desks. Each of them is connected to the store server, holding store-local product data such
as inventory stock, prices, etc. The system is divided into two main parts, the CashDeskInstallation
and the CashDeskEnvironment. The CashDeskInstallation contains those classes that are in charge
of modeling the hardware behaviour and the CashDeskEnvironment, which models at higher level
the behaviour of the system. Furthermore, the TradingSystem includes a class for modeling a bank
implementation and another one that models an inventory system. The program has 1350 lines of
code. Some minor modifications have been done on the source code of the program in order to
handle some loops whose number of iterations could not be bounded, such as loops whose number
of iterations depends on one particular keystroke, or loops that terminate when the credit card is
read properly. Besides, we have added some class invariants to specify that fields are unchanged at
release points (these invariants could be automatically obtained by using [10]).

One interesting aspect of the TradingSystem is that the program points where the objects that
compose the system are created are always placed in object initializations and our points-to analysis
identifies all of them with k = 1. Thus, no gain is obtained for greater values of k. Points-to analysis
identifies 23 cost centers and all of them correspond to a different class which models a different
element that composes the system, e.g., a printer, a light display, a bar code scanners or a card reader.
The application of the object-insensitive cost analysis takes 689 seconds and the time taken by the
object-sensitive analysis with k = 1 is 875 seconds. This is an expected time due to the complexity
and the size of the application. The number of equations goes from 343 for the object insensitive
CRS to 413 equations in the object-sensitive approach. This slight increment is due to the fact that
each object created in the program is responsible of modeling a concrete part of the system, and
we only have one instance of each object and, in most cases, its methods are invoked only once. In
order to see which objects can be overloaded and which objects do not have much computation (and
thus can be grouped together and share the processor), we have applied the object-sensitive cost
analysis and evaluated the upper bound for concrete values of the input arguments. In this case, we
have obtained the percentage of instructions attributed to each cost center with respect to the total
number of instructions. According to the results obtained we see three main groups of objects: (1)
the objects responsible of creating the system structure, the bank and the inventory, accumulate a low
number of instructions, namely 9 different objects that accumulate less than 0.7% of the instructions
per object; (2) the objects that belong to the CashDeskEnvironment which accumulate, on average,
around 9% of the total number of instructions per object; and, (3) those objects that correspond to the
CashDeskInstallation which accumulate a quite significant part of the total number of instructions,
because they include the most complex parts of the system. Such information can be useful for
determining the number of processors that would lead to a better performance. As the objects that
belong to (1) execute a very low number of instructions, their tasks can be executed in only one
processor. For the set of objects (2), the objects that model the CashDeskEnvironment can run in a
single server. Such server should have more capacity than the one used for the first type of objects.
For the objects in (3) that interact with the hardware in CashDeskInstallation, they would better have
their own processor to avoid contention in this part of the system.
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8. RELATED WORK

Our work is closely related to other resource usage analysis frameworks [26, 28]. Most of such
frameworks assume a sequential execution model and thus do not deal with the main challenges
addressed in this paper. Notable exceptions are [32, 22]. In particular, a live heap space analysis for
a concurrent language is proposed in [32]. This analysis is proposed for a simple model of shared
memory and besides only considers a particular type of resource (memory) while we use a generic
notion of cost. The approach in [22] is completely different to ours, and thus not directly comparable.
It is based on the use of dynamic matrices for modeling cost analysis of concurrent programs. The
use of cost centers has been proposed in the context of profiling, but to our knowledge, its use in the
context of static analysis is new.

The termination of multi-threaded programs presented in [17] is based on inferring conditions on
the global state which are sufficient to guarantee termination and are similar to our class invariants.
Observe that such conditions are only one of the components within our cost analysis framework,
which additionally requires the generation of a new form of recurrence relations and the definition of
cost models for the concurrent setting. The particular case of occurrence counting analysis in mobile
systems of processes, which in our proposal can be obtained using a particular cost model, has been
addressed by several contributions in the literature, although they focus on high-level models, such
as the π-calculus and BioAmbients [21, 25].

When considering cumulative cost models, as we do in this paper, asynchronous calls can be
handled exactly as synchronous calls without sacrifying precision. This is because, in such cost
models, what is important is to approximate the number of times a method is executed (i.e.,
called), and not how many of them might be running in parallel. In contrast, when considering
noncumulative cost models, information on the lifetime of each task is important, since it might
directly affect the peak consumption of the corresponding resource. As future work, we plan to
integrate in our framework cost models that are noncumulative [8].

There exist other analyses for ABS programs that infer liveness properties (namely deadlock
freeness), and they are thus complementary to ours. Recent work [24, 23] studies the problem of
inferring deadlock freeness, i.e., there is no state in which a non-empty set of tasks cannot progress
because all tasks are waiting for the termination of other tasks in the set, or otherwise we show the
tasks involved in a potential deadlock set. In this case, the analysis tries to infer dependencies among
instructions which may lead to deadlocks. As the goal of this analysis is different from ours, the
basic techniques used in deadlock analysis are unrelated to those used in resource and termination
analysis. However, both deadlock and resource analyses can benefit from the same underlying
analysis. In both cases, points-to analysis and may-happen-in-parallel are auxiliary analysis that
can greatly improve their efficiency. As we have seen, points-to analysis allows us to approximate
to which objects a reference variable might be pointing. We can have an object-sensitive deadlock
analysis which uses the information inferred by the points-to analysis in a similar way as we do. In
the cases of may-happen-in-parallel, the deadlock analysis in [23] shows how it can greatly increase
the accuracy of the analysis. For termination and resource consumption, a recent extension of our
framework [10] proposes to rely on may-happen-in-parallel relations in order to automatically infer
class invariants (like those defined in Section 5.3) which allow us to reason on the values of fields
at processor release points.

An alternative approach to static cost analysis is the measurement-based approach [46], where
the program is first executed on a set of input values in order to measure the cost of interest
(e.g., execution time) for some code fragments, and then the results are combined to generate
an estimation of the overall cost. This measurement can also be used in a probabilistic model
to infer properties such average cost or its distribution [39]. The measurement-based approach is
particularly useful when the cost of interest depends on external factors other than the program
instructions. This is the case, for example, of timing analysis or energy consumption, where the
time or energy required for executing an instruction depends on the current state of the underlying
machine (e.g., the state of the cache). It is clearly less effective when analyzing a modeling language
like ours where the underlying execution architecture is not know. In such setting we typically
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concentrate on cost models that depend only on the program instructions and data, independently
from the environment on which they will be deployed. In a recent work [11] we have explored the
combination of static analysis of ABS with a simulation based approach, where the upper-bounds
inferred for the (sequential) functional part of ABS where used to estimate the imperative part of
the model by means of simulation, under some higher-level assumptions on the resources available
in the underlying deployment component.

9. CONCLUSIONS, CURRENT AND FUTURE WORK

We have presented a novel cost analysis framework for concurrent and distributed programs
based on actor-based concurrency. In summary, our main results are: (1) a sound size analysis
for concurrent execution which is field-sensitive, i.e., it tracks data stored in the heap whenever
it is sound to do so. The size analysis can be used in combination with class invariants which
contain information on the shared memory; (2) an extension of the notion of cost used in sequential
programming to the distributed setting by relying on the notion of cost centers, which represent
the (distributed) components and allow separating their costs; (3) a flow-sensitive object-sensitive
points-to analysis for the concurrent objects setting; (4) a novel form of object-sensitive recurrence
relations which relies on information gathered by the object-sensitive points-to analysis in order to
generate the cost equations; (5) a prototype implementation of a cost analyzer for programs written
in the ABS language.

To develop the analysis, we have considered an object-oriented language based on the notion
of concurrent objects which live in a distributed environment with asynchronous communication.
The basics of our techniques could be adapted to other concurrent programming languages. In
particular, the idea of having equations parametric on the cost centers is of general applicability
in the context of resource analysis of distributed systems, due to the association of cost center
and distributed component. The size analysis is tailored for the concurrency primitives of our
language, but similar abstractions could be developed for other languages which use monitors, and
an analogous abstraction would be directly applicable to other actor-based languages (e.g., Scala or
Erlang).

Current work is focused on the automatic inference of class invariants which can be used to know
the values of fields at processor release points. The challenge is on being able to infer the resource
consumption and prove termination even in cases in which fields involved in the loop conditions are
modified by several methods. For instance, consider the following two methods which belong to the
same class (elems is a field):

Int m() {
Int i = 0;
while (i < elems) {

f = o ! remoteCall();
await f?;
i = i + 1;

}
return i;

}

void inc() {
elems = elems + 1;

}

An interleaved execution of them would not allow us to prove termination. Recent work [10]
proposes the use of a may-happen-in-parallel analysis to detect whether at the await instruction in
the body of the loop, we might have an instance of method inc pending to be executed. If this is
not the case, we can safely prove termination of the loop in m. Even more, even if there might be
an instance of inc in the object queue when the processor is released, we would be able to prove
termination, as the value of elems will be incremented once, but it will then remain stable. The
general reasoning proposed in [10] is to prove that we have a finite number of instructions which
update the field of interest in the queue. If this is the case, the value of the field will eventually not
be modified any longer. Thus, the required invariants should establish the boundness of the field
values.
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The analysis described in this article infers bounds in terms of the explicit input parameters
and fields. In some cases, however, the cost of programs might depend on implicit input, such
as the length of a file. In principle, our analysis would fail to infer bounds for such parts of the
program. However, if we allow users to annotate the corresponding code with some information,
e.g., symbolic bounds for loops that traverse files, we will be able to handle such programs since
such annotations basically turn implicit to explicit one. This is left for future work. It is important to
note, however, that even if the analysis fails to infer bounds for some parts of the program, this does
not necessarily mean that it will fail to infer bounds for all other parts. In fact, the final upper bound
that we infer might include some symbolic values that refer to the (unknown) cost of the parts for
which the analysis failed.
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PROOFS (added for reviewers’ convenience and to appear in an electronic appendix)

A. SOUNDNESS (PROOF SKETCH FOR THEOREM 1)

In this section, we sketch the proof of the soundness of the points-to analysis, Theorem 1. The proof sketch
follows the next steps:

1. We first define a collecting semantics for the concrete setting. Such collecting semantics gathers all
transitions that can be produced by the execution of a program P ;

2. we continue by defining the points-to property as a property of this concrete collecting semantics; and

3. then we prove that the least solution of the set of constraints generated as described in Section 4.3 is
a safe approximation of the concrete collecting semantics w.r.t. the points-to property.

Definition 14 (concrete collecting semantics). Given a program P , the concrete collecting semantics
operator CP is defined as follows:

CP (X) = {〈S,S′〉 | 〈_,S〉 ∈ X ∧ S ; S′}

The concrete semantics is defined as ξP =
⋃
n>0 C

n
P (X0), where X0 ≡

{〈∅, {ob(main,⊥,⊥, 〈tv , call(b,main(this, 〈〉, 〈〉))〉, ∅)}〉} is the initial configuration.

Definition 15 (points-to property). Let P be an IR program, ξP =
⋃
n>0 C

n
P (X0), and b an instruction at

program point 〈t, j〉, then:

(a) We say that ξP �〈t,j〉 this = T if T = {o | 〈S,S′〉 ∈ ξP ∧ ob(o, _, _, 〈_, b · b̄〉, _) ∈ S}.
(b) For a reference variable z, we say that ξP �〈t,j〉 z = Z if Z = {〈o, o′〉 | 〈S,S′〉 ∈ ξP ∧

ob(o, _, _, 〈_, b · b̄〉, _) ∈ S ∧ ob(o, _, _, 〈tv, b̄〉, _) ∈ S′ ∧ tv(z) = o′ ∧ o′ 6= null}.
(c) For a reference field f , we say that ξP �〈t,j〉 f = F if F = {〈o, o′〉 | 〈S,S′〉 ∈ ξP ∧

ob(o, _, _, 〈_, b · b̄〉, _) ∈ S ∧ ob(o, _, h, 〈_, b̄〉, _) ∈ S′ ∧ h(f) = o′ ∧ o′ 6= null}.

The following lemma states that the least solution of the constraint equation system defined in Section 4.3
is a safe approximation of ξP . We will use name(o) to refer to the object name of an object identifier o, as
described in Section 4. As in Section 4.3, we use X〈t,j〉 to refer to the value of the constraint variable that
corresponds to the abstract state after program point 〈t, j〉, and X〈t,j−1〉 to refer to the value computed for
the abstract state before program point 〈t, j〉. Similarly, the value of X〈t,0〉 is the abstract state before the
first instruction of rule rt. Thus, for j = 1, it is guaranteed that the abstract state for 〈t, 0〉 always exists.

Lemma 1. Let P be a program, 〈t, j〉 a program point and X〈t,j〉,XG the least solution of the constraints
equation system LP as defined in Section 4.3. Then, for any reference variable z in rt and any reference
field f in the class of rt, the following holds:

(a) If ξP �〈t,j〉 this = T , then ∀o ∈ T, name(o) ∈ X〈t,j〉(this).
(b) If ξP �〈t,j〉 z = Z, then ∀〈o, o′〉 ∈ Z, name(o′) ∈ X〈t,j〉(zname(o)).
(c) If ξP �〈t,j〉 f = F , then ∀〈o, o′〉 ∈ F, name(o′) ∈ X〈t,j〉(name(o).f).
(d) If ξP �〈t,j〉 f = F , then ∀〈o, o′〉 ∈ F, name(o′) ∈ XG(name(o).f).

We say that X〈t,j〉 covers z (resp. f ) in CnP (X0) at program point 〈t, j〉 when this lemma holds for the result
of computing CnP (X0). In order to prove this lemma, we can reason by induction on the value of n, the length
of the traces S0 ;n Sn considered in CnP (X0).

Base Case: If n = 0 then

C0
P (X0) = {〈ε, {ob(〈id0, ε〉,⊥,⊥, 〈tv0, call(b,main(this, 〈〉, 〈〉))〉, {})}〉}

and Lemma 1 trivially holds.

Induction Hypothesis: We assume that Lemma 1 holds for all ;-traces of length n ≥ 0 and after n
iterations of the algorithm that computes the least solution of the constraint equation system.

For any trace S0 ;m Sm,m ≤ n, where S0 is the initial state, the algorithm depicted in Section 4.3, after
n iterations, generates a value for the constraint variables X〈t,j〉 such that

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



OBJECT-SENSITIVE COST ANALYSIS FOR CONCURRENT OBJECTS 45

(a) X〈t,j〉 covers this in CnP (X0) at program point 〈t, j〉.
(b) X〈t,j〉 covers any program variable in rule rt in CnP (X0) at program point 〈t, j〉.
(c) X〈t,j〉 covers any reference field in the class of rt in CnP (X0) at program point 〈t, j〉.
(d) XG covers any reference field in CnP (X0).

Inductive Case: Let us consider traces of length n+ 1 > 0. Let 〈Sn,Sn+1〉 ∈ Cn+1
P (X0) be an element

that corresponds to a transition Sn ; Sn+1. We assume that transition Sn ; Sn+1 executes the instruction
at program point 〈t, j〉, which is the instruction bj of a rule rt ≡ p(this, x̄, ȳ)← g, b1, . . . , bk, except for
Rules (6), (7) and (11). Abstract states stored in constraint variables X〈t,j〉 and X〈t,j−1〉 have been obtained
after computing n iterations of the algorithm shown in Section 4.3. To extend the Lemma to traces of length
n+ 1 we reason for all possible cases in Figure 3. We assume that transition Sn ; Sn+1 executes bj from
an object a ∈ Sn as follows.

[Rule (1)] a ≡ ob(o, C, h, 〈tv , x := e · b̄〉,Q). If x is a reference variable, e can be one of the
following:

• e ≡ y, where y is a local variable (different from x). At state Sn+1 Rule (1) uses tv from Sn and
sets tv [x 7→ tv(y)]. By the induction hypothesis, at iteration n of the algorithm X〈t,j−1〉 covers
any variable in CnP (X0) before program point 〈t, j〉 and Sn+1 does not change tv(y). After the
iteration n+ 1, the algorithm evaluates the equation

X〈t,j〉 w X〈t,j−1〉[x
l 7→ X〈t,j−1〉(y

l)], ∀l ∈ X〈t,j−1〉(this)

This equation updates X〈t,j〉 so that it covers x in Cn+1
P (X0) at 〈t, j〉.

• e ≡ this.f , where f is a field of class C. This case is similar to the previous case, applied to
fields. At state Sn+1, Rule (1) sets tv [x 7→ h(f)]. By the induction hypothesis, at the iteration
n, X〈t,j−1〉 covers any field of the class in CnP (X0) before program point 〈t, j〉 and Sn+1 does
not change h(f). In the iteration n+ 1, the algorithm evaluates the equation

X〈t,j〉 w X〈t,j−1〉[x
l 7→ X〈t,j−1〉(l.f)], ∀l ∈ X〈t,j−1〉(this)

This equation updates X〈t,j〉 so that it covers f in Cn+1
P (X0) at program point 〈t, j〉.

• e ≡ null . In this case Lemma 1 is not applicable.

In all applicable cases, case (b) of Lemma 1 holds. Cases (c) and (d) also hold, as X〈t,j〉(name(o).f)

does not change for any f ∈ f̄C . Case (a) holds, as tv(this) is not modified in Sn+1.

[Rule (2)] a ≡ ob(o, C, h, 〈tv , this.f := y · b̄〉,Q). At state Sn+1, Rule (2) uses tv from Sn and
sets h[f 7→ tv(y)]. By the induction hypothesis, at iteration n of the algorithm, X〈t,j−1〉 covers any
variable in CnP (X0) before program point 〈t, j〉 and Sn+1 does not change tv(y). Then, case (a) of
Lemma 1 holds. After the iteration n+ 1, the algorithm evaluates the equation

X〈t,j〉 w X〈t,j−1〉[l.f 7→ X〈t,j−1〉(y
l)],∀l ∈ X〈t,j−1〉(this)

This equation updates X〈t,j〉 so that it covers f for any object pointed to by this in Cn+1
P (X0) at

program point 〈t, j〉. In addition, by the induction hypothesis, at iteration n of the algorithm variable
XG covers any reference field in CnP (X0). The following equation updates the global state stored in
XG :

XG w XG [o.f 7→ XG(o.f) ∪ X〈t,j−1〉(o.f)], ∀o ∈ X〈t,j−1〉(this)

This equation updates XG so that it covers f in Cn+1
P (X0). Therefore, cases (c) and (d) of Lemma 1

hold. Case (b) also holds, as variables are not changed at Sn+1. Case (a) holds, as tv(this) is not
modified in Sn+1.

[Rule (3)] a ≡ ob(o, C, h, 〈tv , x := new D · b̄〉,Q). As a result of the application of this rule, a fresh
object identifier o1 is created and stored in tv(x) by means of newRef (i , o). By the induction
hypothesis, at iteration n of the algorithm X〈t,j−1〉 covers this before program point 〈t, j〉. After
the iteration n+ 1 the algorithm evaluates the equation

X〈t,j〉 w X〈t,j−1〉[x
l 7→ {l ⊕k i}], ∀l ∈ X〈t,j−1〉(this)

This equation correctly updates X〈t,j〉 so that it covers x in Cn+1
P (X0) at program point 〈t, j〉.

Therefore, case (b) of Lemma 1 holds. As fields are not changed in Sn+1, cases (c) and (d) also
hold. Case (a) holds, as tv(this) is not modified in Sn+1.
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[Rule (4)] a ≡ ob(o, C, h, 〈tv , call(b, q(this, z̄, w̄)) · b̄〉,Q). This rule generates a fresh renaming of
program rule p and creates a new mapping in which reference variables are initialized to null . Then the
fresh variables z̄′ that correspond to formal parameters are assigned the values of the actual parameters
in the call, tv(z̄).
Observe that, according to row 1 of Definition 6, each rule rt′ ≡ q(this, ū, v̄)← b′1 . . . b

′
nt′

has an equation X〈t′,0〉 w X callq , and for each call to q there is an equation X callq w
restrict_block(X〈t,j−1〉, z̄, ū). Therefore,

X〈t′,0〉 w X
call
q w restrict_block(X〈t,j−1〉, z̄, ū)

In the proof we directly use

X〈t′,0〉 w restrict_block(X〈t,j−1〉, z̄, ū)

Analogously, upon block exit we have

X〈t,j〉 w extend_block(X〈t,j−1〉,X
exit
q , v̄, w̄), and X exitq w X〈t′,nt′ 〉

In the proof we use
X〈t,j〉 w extend_block(X〈t,j−1〉,X〈t′,nt′ 〉, v̄, w̄)

By the induction hypothesis, at iteration n of the algorithm X〈t,j−1〉 covers this in CnP (X0) before
program point 〈t, j〉. During iteration n+ 1 the algorithm evaluates the equations

X q〈t′,0〉 w restrict_block(X〈t,j−1〉, z̄, ū)

X〈t,j〉 w extend_block(X〈t,j−1〉,X〈t′,nt′ 〉, v̄, w̄)

}
∀t′rule identifiers for q,
nt′number of instructions in rule t’

First equation propagates fields and actual parameters in the call to formal parameters in q, according
to the definition of extend_block. After iteration n+ 1, all initial constraint variables for rules defining
q are updated with the points-to information regarding parameters and fields. Therefore,X〈t′,0〉 covers
all affected variables and fields in Cn+1

P (X0), and consequently, Lemma 1 holds.
Observe that second equation propagates with extend_block the result values and fields from the final
abstract state of the rules for q back to the variables and fields of the calling rule, with the abstract
state stored in X〈t,j〉. This equation will be used when b′nt′ is executed, whose abstract state X〈t′,nt′ 〉
is used by extend_block.

[Rule (5)] a ≡ ob(o, C, h, 〈tv , call(m,m(rec, z̄, w)) · b̄〉,Q). This rule corresponds to an asyn-
chronous call to a method on object o1 = tv(rec) that adds a new task to object o1 with the formal
parameters z̄′ initialized to the actual parameters z̄ in the call, i.e.,

ob(o1, D, h1, _, {〈tv3, b
′
1 · · · b′nt′ 〉} ∪ Q

′)

where D is the class that o1 belongs to, h1 is the current mapping of fields to values in o1 local heap,
and tv3 is a mapping of local variables, initialized to 0 or null , and parameters, that take their values
from tv , namely tv3(x̄′) = tv(x̄) and tv3(this) = tv(rec) = o1.
As before, for each rule rt′ ≡ m(rec, ū, v)← b′1 . . . b

′
nt′ , as we have

X〈t′,0〉 w X
call
m w include_global(XG , restrict_method(X〈t,j−1〉, z̄, ū))

X〈t,j〉 w X
exit
m w extend_method(X〈t,j−1〉,X〈t′,nt′ 〉, v, w),

we directly use

X〈t′,0〉 w include_global(XG , restrict_method(X〈t,j−1〉, z̄, ū))

X〈t,j〉 w extend_method(X〈t,j−1〉,X〈t′,nt′ 〉, v, w).

By the induction hypothesis, at iteration n of the algorithm X〈t,j−1〉 covers all variables in CnP (X0)

before program point 〈t, j〉. During iteration n+ 1 the algorithm evaluates the equations
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(?) X〈t′,0〉 w include_global(XG , restrict_method(X〈t,j−1〉, rec, z̄, ū))
(�) X〈t,j〉 w extend_method(X〈t,j−1〉,X〈t′,nt′ 〉, rec, v, w)

}
∀t′ rule id. for m,
nt′ number of
instr. in rule t’

For any rule rt′ defining method m, first equation updates X〈t′,0〉 to propagate actual parameters in
the call to formal parameters in m, according to the definition of extend_method, and to include the
global information stored in XG by means of include_global. In addition, extend_method also updates
X〈t′,0〉 to cover the value of this , thus case (a) of Lemma 1 holds.

Note that X〈t′,0〉 is the constraint variable that keeps points-to information before the first instruction
of rt′ . Therefore, after iteration n+ 1 of the algorithm X〈t′,0〉 covers all variables and fields of the
class at the beginning of rule t′, thus cases (b), (c) and (d) of Lemma 1 hold. This result will be used
by Rule (11).
Second equation uses extend_method to propagate the result value from the final abstract state of
the rules for m to the future variable y of the calling rule. At state Sn+1 future variable y does not
point to any value yet, as the method call is asynchronous. It will change its value when executing
a w.get instruction. Therefore, after iteration n+ 1, X〈t,j〉 covers all affected variables and fields in
Cn+1
P (X0).

[Rules (6) and (7)] a ≡ ob(o, C, h, 〈tv , ε〉,Q). Both rules correspond to the end of a block or a method,
respectively. By the induction hypothesis, Lemma 1 holds for CnP (X0), and therefore for any program
point 〈t, j〉, X〈t,j〉 covers any variable and field in the class in CnP (X0). As variables and fields are not
changed, Lemma 1 holds at iteration n+ 1 of the algorithm. Observe that Rule (7) stores the value
returned by an asynchronous execution of a method in fut(fn, v) ∈ Sn+1. The iteration n+ 1 of the
algorithm propagates this value to the abstract state of any program point 〈t′′, j′′〉 that corresponds to
a call to this method by evaluating the following equation, which was already considered (�) in Rule
(5):

X〈t′′,j′′〉 w extend_method(X〈t′′,j′′−1〉,X〈t,nt〉, rec, v, w)
∀t rule identifier for m,
nt number of instructions in rule t

Observe that function extend_method updates the abstract value ofw at the calling program point with
the return value v at the last program point of the method called. Therefore, for any program point
〈t′′, j′′〉 that corresponds to a call to m, at iteration n+ 1 X〈t′′,j′′〉 covers variable w in Cn+1

P (X0).

[Rule (8)] a ≡ ob(o, C, h, 〈tv , x := y.get · b̄〉,Q). This rule corresponds to the execution of a get
instruction. By the induction hypothesis, Lemma 1 holds for Sn and previous states. The application
of this rule requires the application of Rule (7) in a previous step Sj for some j ≤ n, in order to set
a value for the future variable fut(fn, v) ∈ Sj . As it has been already mentioned, the value of the
future variable is correctly propagated to future variable y in a previous iteration of the algorithm.
Therefore, X〈t,j−1〉 covers variable y in CnP (X0) before program point 〈t, j〉. Iteration n+ 1 of the
algorithm evaluates equation

X〈t,j〉 w X〈t,j−1〉[x
l 7→ X〈t,j−1〉(y

l)], ∀l ∈ X〈t,j−1〉(this)

This equation updates X〈t,j〉 so that it covers x in Cn+1
P (X0) at program point 〈t, j〉. Therefore, case

(b) of Lemma 1 holds, and cases (c) and (d) also hold, as fields are not changed. Case (a) holds, as
tv(this) is not modified in Sn+1.

[Rules (9) and (10)] a ≡ ob(o, C, h, 〈tv , await x? · b̄〉,Q). These rules correspond to the execution
of an await instruction. First rule considers the case in which the future variable is ready, and the
task continue its execution. In the case of rule (10), the condition of the await does not hold and the
processor is released. Any other task in o may continue executing, possibly changing field values in
h.
By the induction hypothesis, at iteration n of the algorithm X〈t,j−1〉 covers all variables and fields
and XG covers all fields in CnP (X0) before program point 〈t, j〉. During iteration n+ 1 the algorithm
evaluates the equation

(�) X〈t,j〉 w include_global(XG ,X〈t,j−1〉)

Function include_global updates X〈t,j〉 with the global information stored in XG . Since XG covers
all fields in CnP (X0) and the await instruction does not change any field, XG also covers all fields
in Cn+1

P (X0), and the equation above guarantees that X〈t,j〉 also covers all fields in Cn+1
P (X0).
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Therefore, cases (c) and (d) of Lemma 1 hold. Case (b) also holds since variables are not changed in
Sn+1. Case (a) holds, as tv(this) is not modified in Sn+1. Observe that future variable x is updated
by means of equation (�) at all program points 〈t′′, j′′〉 which call the method awaited for by variable
x.

[Rule (11)] a ≡ ob(o, C, h, ε,Q). This rule corresponds to a context switch in an object. At state Sn+1
a task from Q is selected and executed. The execution of the program starts with an empty Q, and
tasks are added to Q in two cases: when a method is invoked, using Rule (5), or when an await is
executed and the processor is released, Rule (10). Therefore, if Rule (11) selects a task from Q, there
exists a previous step m ≤ n in the corresponding trace that has executed one of those rules, and by
the induction hypothesis at iteration m+ 1 the corresponding constraint variable covers the variables
in the calling (resp. releasing) rule and the fields in the class of the rule in Cm+1

P (X0). The algorithm
depicted in Section 4.3 obtains the least solution by means of the operation t, and therefore if X〈t,j〉
covers a variable or field at In particular, if the task was added toQ by Rule (5), then there is a method
rule rt′ that was selected by (5). Equation (?) in Rule (5) guarantees that X〈t′,0〉 covers all fields in
the class and variables in the rule rt′ before the first instruction of the rule. Note that equation (?)
uses function include_global to include the global information stored in XG into local information of
the selected task, thus local information is correctly updated regarding fields. In the case of Rule (10),
the processor was released at program point 〈t, j〉 such that, at iteration m, X〈t,j〉 covers all fields
and variables in Cm+1

P (X0) at that program point (Equation (�)). When the task is selected again, it
is resumed at that program point, and therefore Lemma 1 also holds. As before, equation (�) uses
function include_global to include the global information stored in XG into local information of the
selected task, thus flow-sensitive information regarding fields is correctly updated.

Proof of Theorem 1 is straightforward using Lemma 1.

B. SOUNDNESS (PROOF SKETCH FOR THEOREM 2)

Note that, each time we give a ;α-step, of the form A ◦ φ;α A′ ◦ φ′, it holds that either φ′ = φ or
φ′ = φ ∧ ϕ, where φ ∧ ϕ is satisfiable. This means that φ′ |= φ trivially. Hence it is trivial that in any α-trace
of the form A0 ◦ φ0 ;α . . .;α An ◦ φn it holds that φn |= φi, for all 0 ≤ i ≤ n. The rest of conditions of
the Theorem are proved by induction on the length n of the trace S0 ;n Sn.

Base Case: If the trace is of length 0, i.e., n = 0, then:

S0 ≡ {ob(main,⊥,⊥, 〈tv0, call(b,main(this, 〈〉, 〈〉))〉, ∅)}

Then it is enough to consider A0 ≡ 〈call(b,main(this, 〈〉, 〈〉)), ρ · ρ′〉, where ρ (resp. ρ′) is the identity
mapping. Thus all conditions in Definition 10 trivially holds.

Inductive Case: Let us consider traces of length n+ 1 > 0. Assuming that the theorem holds for all ;-
traces of length n ≥ 0 (the induction hypothesis), we show that it also holds for traces that consist of n+ 1
steps. Consider a ;-trace of length n:

S0 ≡ {ob(main,⊥,⊥, 〈tv0, call(b,main(this, 〈〉, 〈〉))〉, ∅)};n Sn
By the induction hypothesis, there exists an abstract trace:

A0 ≡ 〈call(b,main(this, 〈〉, 〈〉)), ρ · ρ′〉 ◦ true ;n
α An ◦ φn

such that Si ≈ Ai ◦ φi, 1 ≤ i ≤ n. Let us analyze how the theorem extends to all possible ;-traces of length
n+ 1 generated from the above concrete and abstract traces. We reason for all possible cases in Figure 3, by
assuming we select non-deterministically one a ∈ Sn as follows:

[Rule (1)] a ≡ ob(o, C, h, 〈tv , x := e · b̄〉,Q). Then Sn+1 is equals to Sn by replacing object a by the
new one ob(o, C, h, 〈tv ′, b̄〉,Q), where v = evale(e, h, tv) and tv ′ = tv [x 7→ v]. Now by the induction
hypothesis, it holds that aα ≡ 〈ϕ · b̄α, ρ1 · ρ2 · ρ̄〉 ∈ An and the conditions of the Theorem holds.
Let σ be an assignment satisfying point 2 of Definition 10, and let us analyze all possible forms of
expression e:

• e ≡ y. Then ϕ ≡ ρ2(x) = ρ1(y) and by the induction hypothesis φn is satisfiable, and thus,
since ρ2(x) is a fresh variable, then φn+1 ≡ φn ∧ ρ2(x) = ρ1(y) is also satisfiable and we
can apply the ;α rule (3)α to An ◦ φn and compute the abstract state An+1 ◦ φn+1 in
which 〈b̄α, ρ2 · ρ̄〉 ∈ An+1. Let us define a new assignment σ′ as σ together with σ′(ρ2(x)) =
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α(x,Sn+1). Then the only point to prove is that σ′ |= φn+1, i.e., that σ′(ρ2(x)) ≡ σ′(ρ1(y)) ≡
σ(ρ1(y)). But from the definition of σ′ together with the induction hypothesis, this is equivalent
to prove that α(x,Sn+1) ≡ α(y,Sn). Now it is enough to distinguish the possible values of
tv(y):

– If tv(y) ∈ Z then tv ′(x) ∈ Z. Thus α(x,Sn+1) = tv ′(x) = v = tv(y) = α(y,Sn) and the
result holds.

– If tv(y) ∈ Objects then tv ′(x) ∈ Objects . Hence α(y,Sn) = 1 = α(x,Sn+1).
– If tv(y) = null then tv ′(x) = null . Then α(y,Sn) = 1 = α(x,Sn+1) and the result holds.
– If tv(y) = fn and fut(fn, v) ∈ Sn, then tv ′(y) = fn and fut(fn, v) ∈ Sn+1. Thus, in

order to prove the result, it is enough to reason similarly as done in the items above, by
considering the different possible types of v.

• e ≡ null . Then ϕ ≡ ρ2(x) = 0 and since ρ2(x) is a fresh variable, then φn+1 ≡ φn ∧ ϕ is clearly
satisfiable. Thus we can apply rule (3)α and compute An+1 ◦ φn+1. Let us select σ′ defined
as σ together with σ′(ρ2(x)) = 0. Clearly σ′ |= φn+1 and, since tv ′(x) = null = tv(y), then
α(x,Sn+1) = 0 = α(y,Sn). Then the result holds.

• e ≡ this.f , evale(e, h, tv) = h(f) = v, ϕ ≡ ρ2(x) = ρ1(f) and φn+1 ≡ φn ∧ ρ2(x) = ρ1(f).
Again, since by the induction hypothesis φn is satisfiable and ρ2(x) is a fresh variable, then
φn+1 is also satisfiable and rule (3)α can be applied. Let us define σ′ as σ extended with
σ′(ρ2(x)) = α(x,Sn+1). Then it is enough to prove that σ′ |= ρ2(x) = ρ1(f), i.e., σ′(ρ2(x)) =
σ′(ρ1(f)). But since σ′(ρ1(f)) = σ(ρ1(f)) and by induction hypothesis σ(ρ1(f)) = α(f,Sn),
then it is enough to prove that α(x,Sn+1) = α(f,Sn). We distinguish all possible cases
depending on the type of h(f):

– If h(f) = v ∈ Z, then α(f,Sn) = v. Furthermore, since tv ′(x) = v ∈ Z then
α(x,Sn+1) = v and the result holds.

– If h(f) = v ∈ Objects then α(f,Sn) = 1. Similarly to the previous cases, then tv ′(x) ∈
Objects , i.e., α(x,Sn+1) = 1, getting the result.

– If h(f) = v = null , then α(f,Sn) = 0. But since tv ′(x) = null , then α(x,Sn+1) = 0 and
the result holds.

– If h(f) = fn and fut(fn, v) ∈ Sn, then tv ′(y) = fn and fut(fn, v) ∈ Sn+1. Thus, in
order to prove the result, it is enough to reason similarly as done in the items above, by
considering the different possible types of v.

• e ≡ n and n ∈ Z. Then ϕ ≡ ρ2(x) = n. We take σ′ which extends σ with σ′(ρ2(x)) = n.
Thus σ′ |= ϕ ∧ φn, i.e., rule (3)α can be applied. Now it is enough to prove that σ′(ρ2(x)) =
α(x,Sn+1). This is trivial since by definition α(x,Sn+1) = tv ′(x) = n.

• e ≡ y + w. Then tv ′(x) = tv(y) + tv(w) and ϕ ≡ ρ2(x) = ρ1(y) + ρ1(w). Consider σ′

extending σ with σ′(ρ2(x)) = σ(ρ1(y)) + σ(ρ1(w)). Clearly φn+1 ≡ φn ∧ ϕ is satisfiable and
rule (3)α can be applied. Thus we only need to ensure that σ′(ρ2(x)) = α(x,Sn+1). But
by definition of α it holds that α(x,Sn+1) = tv ′(x) = tv(y) + tv(w) and tv(y) + tv(w) =
α(y,Sn) + α(w,Sn). Finally by the induction hypothesis we get that α(y,Sn) + α(w,Sn) =
σ(ρ1(y)) + σ(ρ1(w)) and the result holds.

[Rule (2)] a ≡ ob(o, C, h, 〈tv , this.f := y · b̄〉,Q) and ob(o, C, h′, 〈tv , b̄〉,Q) ∈ Sn+1, where tv(y) =
v and h′ = h[f 7→ v]. After applying the induction hypothesis we compute 〈ϕ · b̄α, ρ1 · ρ2 · ρ̄〉 ∈ An,
where ϕ ≡ ρ2(f) = ρ1(y) and the conditions of the theorem hold. Since ρ2(f) is a fresh variable
and φn is satisfiable, then φn+1 ≡ φn ∧ ρ2(f) = ρ1(y) is satisfiable and rule (3)α can be applied
to An ◦ φn. Now, let σ be the valuation satisfying the conditions of the theorem and let us define a
new valuation σ′ which behaves similarly to σ but extended with σ′(ρ2(f)) = α(f,Sn+1). Thus to
get the result, we only need to prove that σ′(ρ2(f)) = σ′(ρ1(y)), what by definition of σ′ and by the
induction hypothesis, it is equivalent to prove α(f,Sn+1) = α(y,Sn). We distinguish several cases
depending on the type of v.

• If tv(y) = v ∈ Z, then by definition of α it holds that α(y,Sn) = v. Now h′(f) = v and thus
α(f,Sn+1) = v and the result holds.

• If tv(y) = v = null then α(y,Sn) = 0. Since h′(f) = null , then α(f,Sn+1) = 0 and the result
holds.

• If tv(y) = v ∈ Objects then α(y,Sn) = 1. Since h′(f) = v ∈ Objects , then α(f,Sn+1) = 1
and the result holds.

• Finally, if tv(y) = fn and fut(fn, v) ∈ Sn, then h′(f) = fn and fut(fn, v) ∈ Sn+1. Thus,
in order to prove the result, it is enough to reason similarly as done in the items above, by
considering the different possible types of v.
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[Rule (3)] a ≡ ob(o, C, h, 〈tv , x := new D · b̄〉,Q) and ob(o, C.h, 〈tv ′, b̄〉,Q) ob(o1, D, h1, ε, ∅)
belongs to Sn+1, where tv ′ = tv [x 7→ o1]. By the induction hypothesis 〈ρ2(x) = 1 · b̄α, ρ1 · ρ2 · ρ̄〉 ∈
An, and all conditions in Definition 10 hold. Note that since ρ2(x) is a fresh variable and φn is
satisfiable (by the induction hypothesis), then φn+1 ≡ φn ∧ ρ2(x) = 1 is also satisfiable. Let σ be
an assignment ensuring Sn ≈ An ◦ φn. Let us consider σ′ defined as σ together with σ′(ρ2(x)) = 1.
Then σ′ |= φn+1, and we only need to prove that σ′(ρ2(x)) = 1 = α(x,Sn+1). But this follows from
the definition of α, since tv ′(x) ∈ Objects . Note that since tasks(ob(o1, D, h1, ε, ∅)) = ∅, this object
has not to be considered.

[Rule (4)] In this case it holds that a ≡ ob(o, C, h, 〈tv , call(b, p(this, x̄, ȳ)) · b̄〉,Q) ∈ Sn,
ob(o, C, h, 〈tv ∪ tv2, b

′
1 · · · b′n · b̄〉,Q) ∈ Sn+1 and r ≡ p(this ′, x̄′, ȳ)← g ′, b′1, . . . , b

′
n �

〈ȳ〉
p P ,

tv1 = newEnv(vars(r)− {ȳ}), tv2 = tv1[this ′ 7→ o, x̄′ 7→ tv(x̄)], evalgd (g ′, tv2 ) = true. By the
induction hypothesis 〈call(b, p(this1 , x̄1 , ȳ1 )) · b̄α, ρ0 · ρ1 · ρ̄〉 ∈ An and the conditions of the
theorem hold. Concretely,

(∗)1 ρ0(this) = this1 , ρ0 (x̄ ) = x̄1 , ρ1 (ȳ) = ȳ1

Let us do the abstract compilation of r by starting from the identity renaming ρ′0, what results in rα,
where rα ≡ p(this ′, x̄ ′, ȳ)→ g ′

α
, b′

α
1 , . . . , b

′α
n ◦ ρ′0 · · · ρ′n+1 . Let σ be the assignment satisfying the

conditions of the theorem, and concretely that σ |= φn. We build a new assignment σ′ defined as σ
but extended with:

(∗)2 σ′(x̄′) = σ(x̄1), σ′(this ′) = σ(this1)

Then σ′ |= φn ∧ x̄′ = x̄1 ∧ this ′ = this . Let us prove also that σ′ |= g′α. To this end, let us suppose
that g′α ≡ z′3w′, where z′, w′ ⊆ x̄′. Then:

evalgd (g′, tv2) = true ⇒ (By definition)
tv2(z′)3tv2(w′) is true ⇒ (By definition)
tv(z)3tv(w) is true ⇒ (By definition)
α(z,Sn)3α(w,Sn) is true ⇒ (By the induction hypothesis)
σ(ρ0(z))3σ(ρ0(w)) is true ⇒ (By (∗)1)
σ(z1)3σ(w1) is true ⇒ (By (∗)2)
σ′(z′)3σ(w′) is true

This means that φn+1 ≡ φn ∧ x̄′ = x̄1 ∧ this ′ = this ∧ g′α is satisfiable and rule (1)α can be applied
on An ◦ φn to compute An+1 ◦ φn+1, where 〈b′α1 · · · · · b′

α
n · b̄α ◦ ρ′1 · · · ρ′n+1 · ρ1 · ρ̄〉 ∈ An+1. All

conditions required on Sn+1 and An+1 ◦ φn+1 to prove the equivalence trivially hold except for the
following both statements:

α(this ′,Sn+1) = σ′(ρ′1(this ′))
α(x̄′,Sn+1) = σ′(ρ′1(x̄′))

However observe that α(this ′,Sn+1) is defined using tv2(this ′) which is equals to tv(this). Hence
α(this ′,Sn+1) = α(this,Sn). On the other hand, note that by the induction hypothesis:

α(this,Sn) = (By the induction hypothesis)
σ(ρ0(this)) = (By (∗)1)
σ(this1) = (By (∗)2)
σ′(this ′) = (ρ′1 is the identity renaming)
σ′(ρ′1(this ′))

i.e., α(this ′,Sn+1) = σ′(ρ′1(this ′)). Similarly we can prove also α(x̄′,Sn+1) = σ′(ρ′1(x̄′)) to get the
result.

[Rule (5)] It can be reasoned similarly to rule (4) but applying rule (2)α. Note that at this point the
new future variable introduced in Sn+1 is undefined and thus nothing new w.r.t. the above case must
be proved.
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[Rule (6)] The result trivially holds by the induction hypothesis and the application of rule (6)α.

[Rule (7)] It holds that ob(o, C, h, 〈tv , ε〉,Q) ∈ Sn, fut(fn,⊥) ∈ Sn, ret ∈ dom(tv), (y, fn) =
tv(ret), v = tv(y) and ob(o, C, h, ε,Q) ∈ Sn+1 and fut(fn, v) ∈ Sn+1. By the induction hypothesis
〈ε, _〉 ∈ An. Thus rule (6)α can be applied on such an abstract configuration.

Let us assume that there exists an object† o1 such that ob(o1, C1, h1, 〈tv1, b̄1〉,Q1) ∈ Sn and
tv1(y1) = fn. Thus ob(o1, C1, h1, 〈tv1, b̄1〉,Q1) ∈ Sn+1. By the induction hypothesis 〈b̄α1 , ρ · ρ̄〉 ∈
An and also toAn+1. Suppose that σ is the valuation satisfying the Theorem. Then what it is required
to prove is that:

σ(ρ(y1)) = α(y1,Sn+1)

Suppose that v ∈ Z (the rest of cases can be reasoned similarly). Then, by definition of α it holds that
α(y1,Sn+1) = tv1(y1) = v, i.e., it is enough to prove:

σ(ρ(y1)) = v

Because of the form of o1 in Sn, it is for sure that there exists a configuration Sk, with k < n, such
that ob(o1, C1, _, 〈tv2, call(m, p(rec1 , x̄1 , y1 ) · _〉, _) ∈ Sk, tv2(rec1 ) = o and, after applying rule
(5) in Figure 3 with r ≡ p(this ′, x̄′, y)← _�〈y〉p P , it holds that ob(o1, C1, _, 〈tv3, _〉, _) ∈ Sk+1,
where tv3(y1) = fn. By the induction hypothesis, then 〈call(m(p, rec2 , x̄2 , y2 )) · _, ρ′1 · ρ′2 · ρ̄′〉 ∈
Ak, where ρ′2(y1) = y2, and after applying rule (2)α with the abstract compilation of r, let us say
rα ≡ p(this ′, x̄′, y′)← _ ◦ ρ′′1 · · · ρ̄′′n+1 �α

p P
α, with ρ′′1 being the identity mapping and ρ′′n+1(y) =

y′, we get that y′ = y2 ∈ φk+1, and thus y′ = y2 ∈ φj , k + 1 ≤ j ≤ n+ 1.

Now since σ |= φn, then σ(y2) = σ(y′), where σ(y′) = σ(ρ′′n+1(y)). By the induction hypothesis,
σ(ρ′′n+1(y)) = α(y,Sn), where α(y,Sn) = v. Since y2 = ρ′2(y1), then we have proved that
σ(ρ′2(y1)) = v. The only point to observe now is that since y1 is an output variable, ρ(y1) will be
for sure equals to ρ′2(y1) and hence we have proved that σ(ρ(y1)) = v.

[Rule (8)] ob(o, C, h, 〈tv , x := y.get · b̄〉,Q) ∈ Sn , fut(fn, v) ∈ Sn, where fn = tv(y), v 6= ⊥. By
the induction hypothesis, 〈ρ2(x) = ρ1(y) · b̄α, ρ1 · ρ2 · ρ̄〉 ∈ An, where φn is satisfiable, and there
exists σ such that σ |= φn and σ(ρ1(y)) = v. Now we apply rule (8) on Sn, what transforms Sn
as ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q), fut(fn, v) ∈ Sn+1. Since φn is satisfiable and ρ2(x) is a fresh
variable, then φn+1 ≡ φn ∧ ρ2(x) = ρ1(y) is satisfiable and we can apply rule (3)α to compute
〈bα, ρ2 · ρ̄〉 ∈ An+1. Suppose that v ∈ Z (the rest of cases can be reasoned similarly). Let us choose
an assignment σ′ defined as σ but extended with σ′(ρ2(x)) = v. This assignment satisfies that
σ′ |= φn+1. Furthermore σ′(ρ2(x)) = tv [x 7→ v](x) = v = α(x,Sn+1). Thus the result holds.

[Rules (9) and (10)] In both cases the proof follows immediately from the induction hypothesis
by applying respectively, rules (4)α and (5)α. Note that for rule (10) we have that tasks(Sn ) =
tasks(Sn+1 ) since the task is only introduced in the queue of the current object.

[Rule (11)] Since after the application of rule (11) it holds that tasks(Sn ) = tasks(Sn+1 ), then the
result trivially follows from the induction hypothesis and the application of rule (7)α.

C. SOUNDNESS (PROOF SKETCH FOR THEOREM 3)

We sketch the main ideas of the proof for the object-insensitive analysis, and then we comment on the
straightforward changes required to handle the object-sensitive case. The proof sketch consists of two parts:

• In the first one, we instrument the abstract states in the abstract operational semantics of Figure 9 with
a cost component that measures the cost of abstract executions; and show that each concrete trace has
a corresponding abstract one with the same cost.

• Then, in a second part, we show that the cost relations generated from the abstract program indeed
approximate the resource consumption behaviour of the abstract program.
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(1)α

p(this ′, x̄′, ȳ′)← gα, b′
α
1 , . . . , b

′α
n ◦ ρ0 · · · ρn+1 �α

p Pα, gα ∧ φ 6|= false, e ′ =M(p(this, x̄ , ȳ)) + e

{〈call(b, p(this, x̄, ȳ)) · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b′α1 · · · b′
α
n · b̄α, ρ1 · · · ρn+1 · ρ̄〉|A}◦

φ ∧ gα ∧ this = this ′ ∧ x̄′ = x̄ ◦ e′

(2)α

p(rec′, x̄ ′, y ′)← b′
α
1 , . . . , b

′α
n ◦ ρ1 · · · ρn+1 �α

p Pα, e ′ =M(p(rec, x̄ , ȳ)) + e

{〈call(m, p(rec, x̄, y)) · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b̄α, ρ̄〉, 〈b′α1 · · · b′
α
n, ρ1 · · · ρn+1〉|A}◦

φ ∧ rec′ = rec ∧ x̄ ′ = x̄ ∧ y ′ = y ◦ e ′

(3)α
ϕ ∧ φ 6|= false, e′ =M(ϕ) + e

{〈ϕ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b̄α, ρ̄〉|A} ◦ φ ∧ ϕ ◦ e′

(4)α
e′ =M(⊥) + e

{〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b̄α, ρ̄〉|A} ◦ φ ◦ e′

(5)α
{〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e

(6)α
{〈ε, ρ〉|A} ◦ φ ◦ e;α {ε|A} ◦ φ ◦ e

(7)α
A ◦ φ ◦ e;α A ◦ φ ◦ e

Figure 13. Semantics of abstract programs with cost annotations

Figure 13 depicts an abstract operational semantics derived from the one of Figure 9 by instrumenting
the abstract states with a component that accumulates cost. Namely, an abstract state now has the form
A ◦ φ ◦ e where e is the amount of resources consumed so far. The instrumentation is straightforward: when
executing bα we simply accumulate the costM(bα) that, by abusing of notation, we assume to be equivalent
to M(b), i.e., to the cost of the original instruction from which bα originate. Given an abstract trace
T α ≡ A0 ◦ true ◦ 0 ;n

α An ◦ φn ◦ en , its cost is defined asM(T α) = en. Note that this instrumentation
has no effect on the abstract executions, i.e., we still have the same abstract traces as those generated using
the abstract semantics of Figure 9, and, moreover, Theorem 2 holds for the instrumented abstract semantics
of Figure 13.

Now let S0 be an initial state, and let T ≡ S0 ;n Sn be a concrete trace that starts from S0. Recall
that the cost of T , denoted M(T ), is defined as the sum of all M(b) for each instruction b used in an
execution step of T . From Theorem 2, it immediately follows that there is a corresponding abstract trace
T α ≡ A0 ◦ true◦;n

α An ◦ φn ◦ en such that M(T α) = en =M(T ). This is because according to the
proof in Appendix B, the instructions of T and T α coincide, i.e., whenever we make a concrete step that
uses an instruction b, we can also make an abstract step that uses bα. This means that any concrete trace T ,
has a corresponding abstract one with the same cost.

Next we briefly explain why the cost relations generated from the abstract rules approximate the resource
consumption of the abstract program, and thus the resource consumption of the original program. We do this
by starting from the abstract program and the abstract semantics of Figure 13, and then modify them several
times until we obtain the corresponding cost relations and the corresponding semantics [4].

In the first step, we consider a program that is obtained from the abstract program by removing all output
variables, we refer to this program as output-free program. Removing output variables means syntactically
removing them from the abstract rule heads and calls. Namely, a head p(this, x̄, ȳ) is rewritten into p(this, x̄),
and a call call(ct , q(rec, z̄, w̄)) is rewritten into call(ct , q(rec, z̄)). Clearly, any trace obtained using the
abstract program has a corresponding trace that is obtained using the output-free program with the same
resource consumption. This is true since the only difference is that in each step we might add less constraints
to the store (we do not add those that match the formal and actual output parameters).

†Otherwise nothing must be proved.
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In the second step, we change the abstract semantics such that instead of accumulating the resource
consumption of each execution step, it accumulates the resource consumption of all abstract instructions
immediately when they are added to the abstract state in rules (1)α and (2)α. This change amounts to: (i)
changing rules (3)α and (4)α such that they do not accumulate any cost, and (ii) changing rules (1)α and
(2)α to accumulate also c =M(bα1 ) + · · ·+M(bαn). Clearly, this change only anticipates the consumption
of resources, and thus for any abstract trace that is obtained using the output-free program and the abstract
semantics of Figure 13, we can generate a corresponding abstract trace using the same program and the
modified abstract semantics such that it consumes at least the same amount of resources.

In the third step, we eliminate Rules (3)α-(7)α from the abstract semantics and we modify rules (1)α
and (2)α such that (i) they add all constraints that appear in the body of the selected rules (let us call them
ϕ = ϕ1 ∧ ϕk) to the store, and the rest, which are calls, are added as usual to the corresponding task. It is
still guaranteed that using this abstract semantics we can reproduce the resource consumption of any trace
generated in the above step. This is because the constraints in the body are obtained by applying a single
static assignment transformation, thus for any i > j the constraint ϕi does not restrict the values of the
variables in ϕj .

Now let us consider an equation p(x̄) = c+ Σqi(w̄i), ϕ in the cost relation. Here c and ϕ are the total
resource consumption and the constraints of a given rule respectively (as above). It is easy to see that this
equation is just a denotational form of the resource consumption as developed in the third step above. Thus,
any upper-bound of the cost relation is also an upper bound in the resource consumption of the corresponding
abstract traces.

The correctness for the object-sensitive case is straightforward given the soundness of the points-to
analysis. The above proof can be adapted to the object-sensitive case by: (i) modifying the abstract program
such that it includes corresponding points-to annotations; and (ii) change the abstract semantics in order to
accumulate expressions of the form c(o) ∗M(b). The correctness of the points-to analysis guarantees that if
in the concrete setting we accumulateM(b) when executing within object o′, then in the abstract setting we
accumulate c(o) ∗M(b) where o is the approximation of the o′ inferred by the points-to analysis. Finally,
cloning the equation as done in Definition 13 just makes the points-to information explicit in the rules names.
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