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ABSTRACT
Testing is a vital part of the software development process.
In static testing, instead of executing the program on nor-
mal values (e.g., numbers), typically the program is exe-
cuted on symbolic variables representing arbitrary values.
Constraints on the symbolic variables are used to represent
the conditions under which the execution paths are taken.
Testing tools can uncover issues such as memory leaks, buffer
overflows, and also concurrency errors like deadlocks or data
races. Due to its inherent symbolic execution mechanism
and the availability of constraint solvers, Constraint Logic
Programming (CLP) has a big potential in the field of test-
ing. In this talk, we will describe a fully CLP-based frame-
work to testing of a today’s imperative language. We will
also discuss the extension of this framework to handle actor-
based concurrency, used in languages such as Go, Actor-
Foundry, Erlang, and Scala, among others.

CCS Concepts
•Computing methodologies→ Concurrent program-
ming languages; Distributed programming languages; Par-
allel programming languages; •Theory of computation→
Operational semantics;

Keywords
Testing; Static Analysis; Dynamic Analysis; Concurrency

1. INTRODUCTION
Testing is the most widely-used methodology for software

validation in industry. It typically requires at least half of
the total cost of a software project. Still, it remains a mostly
manual stage within the software development process. Test
Case Generation (TCG) is devoted to the automation of a
crucial part of the testing process, the generation of input
data for interesting coverage criteria. Coverage criteria aim
at measuring how well the program is exercised by a test
suite. Examples of coverage criteria are: statement coverage
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which requires that each line of the code is executed; path
coverage which requires that every possible trace through a
given part of the code is executed. Among the wide variety of
approaches to TCG (see e.g. [41]), our work focuses on glass-
box testing, where test cases are obtained from the concrete
program in contrast to black-box testing, where they are de-
duced from a specification of the program. We will initially
focus on static testing, where we assume no knowledge about
the input data, in contrast to dynamic approaches [21, 30]
which execute the program to be tested for concrete input
values, as will be discussed for the concurrent setting.

The standard approach to generating test cases statically
is to perform a symbolic execution of the program [32, 17,
29, 34, 35, 19, 18], where the contents of variables are ex-
pressions rather than concrete values. Symbolic execution
produces a system of constraints consisting of the conditions
to execute the different paths. This happens, for instance,
in branching instructions, like if-then-else, where we might
want to generate test cases for the two alternative branches
and hence accumulate the conditions for each path as con-
straints. The symbolic execution approach has been com-
bined with the use of constraint solvers [35, 29, 18] in order
to handle the constraint systems by solving the feasibility
of paths and, afterwards, to instantiate the input variables.
For instance, a symbolic JVM machine which integrates sev-
eral constraint solvers has been designed in [35] for TCG
of Java (bytecode) programs. In general, a symbolic ma-
chine requires non-trivial extensions w.r.t. a non-symbolic
one like the JVM: (1) it needs to execute (imperative) code
symbolically as explained above, (2) it must be able to non-
deterministically execute multiple paths (as without knowl-
edge about the input data non-determinism usually arises).

We overview our CLP-based approach to TCG of imper-
ative programs which consists of four main ingredients: (i)
The imperative program is first translated into an equiva-
lent CLP one, named CLP-translated program in what fol-
lows. The translation can be performed by partial evaluation
[25] or by traditional compilation. (ii) Symbolic execution
on the CLP-translated program can be performed by rely-
ing on the standard evaluation mechanism of CLP, which
provides backtracking and handling of symbolic expressions
for free. (iii) The use of dynamic memory requires to de-
fine heap-related operations that, during TCG, take care of
constructing complex data structures with unbounded data
(e.g., recursive data structures). Such operations can be
implemented in CLP [?]. (iv) We can guide the TCG pro-
cess towards specific paths by adding to our CLP-translated
programs trace terms that track the sequence of calls per-



formed. We can supply fully or partially instantiated traces,
thus guiding, completely or partially, the symbolic execution
towards specific paths.

Finally, we will describe our work on the field of testing
concurrent programs [5, 13, 6, 12]. Concurrent programs
are becoming increasingly important as multicore and net-
worked computing systems are omnipresent. Writing correct
concurrent programs is more difficult than writing sequen-
tial ones, because with concurrency come additional hazards
not present in sequential programs such as race conditions,
deadlocks, and livelocks. Therefore, testing techniques urge
especially in the context of concurrent programming. Due to
the non-deterministic interleaving of processes, traditional
testing for concurrent programs is not as effective as for se-
quential programs. In order to ensure that all behaviors
of the program are tested, the testing process, in principle,
must explore all possible non-deterministic ways in which
the processes can interleave. This is known as systematic
testing [16, 39, 40] in the context of concurrent programs.
Such full systematic exploration of all process interleavings
produces the well known state explosion problem and is of-
ten computationally intractable (see, e.g., [40] and its ref-
erences). We will discuss our recent work [5, 13, 6, 12]
on defining strategies and heuristics for pruning redundant
state-exploration when testing concurrent systems by reduc-
ing the amount of unnecessary non-determinism.

2. CLP-BASED STATIC TESTING
This section overviews our CLP-based static testing frame-

work. It was originally proposed for the context of TCG of
a simple bytecode language in [14], and later extended to
sequential OO programs [?] and to concurrent actors [4,
6]. Its implementations for the Java (bytecode) and ABS
languages have led to the development of the jPET [15, 8]
and aPET [7] tools. The framework takes advantage of the
inherent characteristics of CLP, namely, its evaluation mech-
anism based on backtracking and its constraint solving fa-
cilities, for the purpose of symbolic execution. Moreover,
it shows that logic programming in general is an adequate
paradigm as the basis for reasoning about other program-
ming languages (meta-programming) [10]. The main archi-
tecture of the framework is shown in Fig. 1. It consists of
three independent phases: (1) First, the program-under-test
is translated into an equivalent CLP program. (2) The CLP
program is then symbolically executed in CLP relying on
CLP’s execution mechanism using a termination/coverage
criterion. (3) The obtained test-cases are presented to the
user in different forms, namely, graphically or as unit tests.
This scheme has the important property of being fexible and
generic, in the sense that the second and third phases are es-
sentially independent of the concrete target language. Note
that most of the concrete features of the target language are
translated and uniformly represented in CLP.

2.1 Translation from OO Imperative to CLP
programs

The translation of imperative object-oriented programs
into equivalent CLP-translated programs has been subject
of previous work (see, e.g., [3, 27]). We rely on the so-
called interpretive compilation by partial evaluation [27]. It
consists in compiling the imperative OO program to CLP
by partially evaluating an interpreter of the OO imperative
language written in CLP w.r.t. the imperative program.

1int exp(int a,int n) {
2 if (n < 0)
3 throw new Exception ();
4 else {
5 int r = 1;
6 while (n > 0) {
7 r = r*a;
8 n--;
9 }

10 return r;
11 }
12}

Figure 2: Imperative code for the exp method

1exp([A,N],Out ,Hin,Hout,EF) :-
2 if([A,N],Out ,Hin,Hout,EF).
3if([A,N],_Out ,Hin,Hout,exc(Ref)):-
4 N #< 0,
5 new_object(Hin,’Exception ’,Ref ,Hout).
6if([A,N],Out ,H,H,ok) :-
7 N #>= 0,
8 loop([A,N,1],Out).
9loop([_A ,N,R],R) :-

10 N #=< 0.
11loop([A,N,R],Out) :-
12 N #> 0,
13 R’ #= R*A,
14 N’ #= N-1,
15 loop(A,N’,R’,Out).

Figure 3: CLP-translation for the exp method

Example 2.1. Fig. 2 shows the imperative code for method
exp which takes two integer input arguments a and n and
computes an by successive multiplications. If the value of
n is less than 0 an exception is thrown. Fig. 3 shows its
corresponding (pretty-printed) CLP-translation.

The main features that can be observed from the transla-
tion are: (1) The root predicates for methods (in this case
exp/5) include as parameters: the input arguments (as a
list), the output argument, the input and output heaps and
the exception flag. The rest of the predicates include the
required parameters depending on the context. (2) Condi-
tional statements and loops in the source program are trans-
formed into guarded rules and recursion in the CLP pro-
gram, resp., e.g., rules for while. Mutual exclusion between
the rules of a predicate is ensured either by means of mu-
tually exclusive guards, or by information made explicit on
the heads of rules, as usual in CLP. (3) The global memory
or heap is explicitly handled and carried along the execu-
tion being used and transformed by the corresponding heap
built-ins as a black box. E.g., the new object/4 operation
takes an input heap and a class name, and creates a new
object of that class, returning the new heap containing it
and its assigned reference. Heaps are therefore represented
in the CLP program by means of logic variables (e.g. Hin
and Hout). (4) Exceptional behaviour is handled explicitly
in the CLP-translated program by means of the exception
flag and exception objects. When an exception is thrown
the flag takes the value exp(Ref) being Ref the reference of
the corresponding exception object in the heap. Otherwise
the value ok is obtained.

2.2 CLP-based Symbolic Execution and TCG
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Figure 1: CLP-based static testing framework

The standard CLP execution mechanism, together with
a suitable implementation of the heap built-ins, suffices to
execute the CLP-translated programs. This can done sim-
ply running in a Prolog system a goal with the predicate
corresponding to the method under test and fully instanti-
ated input parameters. For instance, we can run the goal
exp([2, 10], Out, [ ], Hout, EF) to compute 210. Note that the
heap is represented as a list of Reference-Object pairs and
therefore [ ] represents an empty heap. As a result the fol-
lowing bounds are obtained: Out = 1024, Hout = [ ], EF = ok.

One of the main advantages of our CLP-translated pro-
grams is that they can be symbolically executed using the
standard CLP execution mechanism. To do that we simply
run a goal with the predicate corresponding to the method
under test and free variables for all its arguments. The in-
herent constraint solving and backtracking mechanisms of
CLP allow keeping track of so called path conditions (or
constraint stores), failing and backtracking when unsatis-
fiable constraints are hit, hence discarding such execution
paths; and succeeding when satisfiable constraints lead to
a terminating state in the program, which in the context of
symbolic execution implies that a new solution (or test case)
is generated.

Example 2.2. Let us perform a symbolic execution of the
exp method by running the goal exp([A, N], Out, Hin,Hout, EF).
As a first solution we get

N < 0, Hout = [(R, object(′Exception′, . . .))|Hin], EF = exc(R)

which reads as: if N < 0 the execution ends with an uncaught
exception whose associated object is R. If we ask for another
solution we get

N = 0, Out = 1, Hout = Hin, EF = ok

which reads as: if N = 0 we get 1 as output, regardless of the
value of A, and the heap does not change. The third solution
is:

N = 1, Out = A, Hout = Hin, EF = ok

It is well-known that the symbolic execution tree (SLD
tree in this framework) is in general infinite. This is because
iterative constructs such as loops and recursion, whose num-
ber of iterations depend on input arguments, usually induce
an infinite number of execution paths when executed with
symbolic input values. This happens for instance in the sym-
bolic execution of the exp method. It is therefore essential
to establish a termination criterion. Such a termination cri-
terion can be expressed in different forms. For instance, a
computation time budget can be established, or an explicit
bound on the depth of the symbolic execution tree can be

imposed. In our framework we adopt a more code-oriented
termination criterion, which consists in imposing an upper
bound on the number of times each loop (or recursive call)
is iterated. This can be easily implemented in CLP as a
meta-interpreter which controls and limits the number of
recursive calls made on each predicate [14].

The outcome of such bounded symbolic execution is a fi-
nite set of path conditions (variable bindings and constraints
over them), one for each symbolic execution path. Each path
condition represents the conditions over the input variables
that characterize the set of feasible concrete executions of
the program that take the same path. In a next step, off-
the-shelf constraint solvers can be used to solve such path
conditions and generate concrete instantiations for each of
them. This last step provides concrete test-cases for the pro-
gram, amenable to further validation by testing frameworks
such as JUnit, which execute such test inputs and check that
the output is as expected.

Example 2.3. The following concrete test-cases are ob-
tained by our framework for the exp method if we set a limit
of at most 2 loop iterations and the domain −10..10 to nu-
meric variables:

# Input (a,n) Output
1 (-10, -10) Uncaught Exception
2 (-10, 0) 1
3 (-10, 1) -10
4 (-10, 2) 100

As an example, the following JUnit test could be automati-
cally generated for the second test-case:

1 public void testExp2 (){
2 int input0 = -10, input1 = 0;
3 int output = exp(input0 ,input1);
4 int expected = 1;
5 assertEquals(expected ,output);
6 }

Handling Heap-manipulating Programs.
One of the main challenges in symbolic execution is to cor-

rectly and efficiently handle heap-manipulating programs [?].
This kind of programs often create and use complex and
possibly aliased dynamically heap-allocated data structures.
Symbolic execution must consider all possible shapes these
dynamic data structures can take. In trying to do so, scal-
ability issues arise since many (even an exponential number
of) shapes may be built due to the aliasing of references.
This lead us to the development of a heap solver [9] which
enables a more efficient treatment of reference aliasing in
symbolic execution by means of disjunctive reasoning, and



the use of advanced back-propagation of heap related con-
straints.

2.3 Guided Testing
It is well known that symbolic execution presents scalabil-

ity problems when it is applied on realistic programs. Also,
in the context of static testing, this complicates human rea-
soning on the generated test cases. Guided testing [36, 37]
aims at steering symbolic execution towards specific pro-
gram paths in order to efficiently generate more relevant
test cases and filter out less interesting ones with respect
to a given selection criterion. The goal is thus to improve
on scalability and efficiency by achieving a high degree of
control over the coverage criterion. This has potential ap-
plicability for industrial software testing practices such as
unit testing, where units of code (e.g. methods) must be
thoroughly tested in isolation, or selective testing, in which
only specific paths of a program must be tested. The in-
tuition of guided testing is the following: (1) A heuristics-
based trace-generator generates possibly partial traces, i.e.,
partial descriptions of paths, according to a given selection
criterion. This can be done by relying on the control-flow
graph of the program. (2) Bounded symbolic execution is
guided by the obtained traces. The process is repeated until
the selection criterion is satisfied or until no more traces are
generated.

We can define a concrete methodology for guided testing
in our CLP-based framework as follows:

1. We instrument our CLP-translated programs so that
they generate as an additional result so called trace-
terms. Trace-terms are of the form: p(K, [T1, . . . , Tn]),
where p is the name of the predicate, K a natural
number indicating the concrete predicate rule, and,
T1, . . . , Tn the trace-terms of the calls in the body of
the K-th rule of p. Trace-terms are tree-like represen-
tations of execution traces and enable us to keep track
of the sequence (and order) of rules executed in each
derivation.

2. We define a trace-generator which generates a set of,
possibly partially instantiated, trace-terms according
to a given selection criterion.

3. A set of symbolic executions is performed (possibly in
parallel), each of them using as input a different trace-
term. Trace-terms allow guiding, completely or par-
tially, the symbolic execution towards specific paths.

Example 2.4. Let us consider selective testing for method
exp. As a selection criterion, e.g., one could be interested
in generating a test-case that raises an exception. The chal-
lenge is to generate such a test avoiding traversing as much
as possible the rest of the paths. Fig. 4 shows the CLP-
translated program instrumented with trace-terms (step 1
above). Let us observe the additional trace-term parame-
ter on each program predicate. An effective trace-generator
for the above criterion would be able to generate the trace
exp(1, [if(2, )]) (step 2). A symbolic execution using such
trace-term as input will generate only the path that raises
the exception (step 3).

In [36] we define concrete trace-generators and guided
testing schemes for two different selection criteria, and demon-
strate its effectiveness via an experimental evaluation. We

1exp([A,N],Out ,Hin,Hout,EF,exp(1,[T])) :-
2 if([A,N],Out ,Hin,Hout,EF,T).
3if([A,N],_Out ,Hin,Hout,exc(Ref),if(1 ,[~])):-
4 N #< 0,
5 new_object(Hin,’Exception ’,Ref ,Hout).
6if([A,N],Out ,H,H,ok,if(2,[T])) :-
7 N #>= 0,
8 loop([A,N,1],Out ,T).
9loop([_A ,N,R],R,loop (1 ,[~])) :-

10 N #=< 0.
11loop([A,N,R],Out ,loop(2,[T])) :-
12 N #> 0,
13 R’ #= R*A,
14 N’ #= N-1,
15 loop(A,N’,R’,Out ,T).

Figure 4: CLP-translation instrumented with traces
for exp

also discuss about two central aspects of guided testing,
namely completeness and effectiveness.

3. TESTING CONCURRENT (ACTOR) PRO-
GRAMS

We consider actor systems [2, 31], a model of concur-
rent programming that has been gaining popularity and
that it is being used in many systems (such as Go, Ac-
torFoundry, Asynchronous Agents, Charm++, E, ABS, Er-
lang, and Scala). The Actor Model is having also influence
on commercial practice, namely Twitter has used actors for
scalability, also, Microsoft has used the actor model in the
development of its asynchronous agents library.

Actor programs consist of computing entities called ac-
tors, each with its own local state and thread of control,
that communicate by exchanging messages asynchronously.
An actor configuration consists of the local state of the ac-
tors and a set of pending tasks. In response to receiving a
message, an actor can update its local state, send messages,
or create new actors. At each step in the computation of
an actor system, firstly an actor and secondly a process of
its pending tasks are scheduled. We consider a language for
distributed and concurrent programming which, in addition
to the usual sequential instructions, has two instructions for
concurrency: x = new C which allows the dynamic creation
of an actor x of class C, and x ! m(z̄) which spawns a new
task or process within the actor x to execute m(z̄). As ac-
tors do not share their states, in testing one can assume
[39] that the evaluation of all statements of a task takes
place serially (without interleaving with any other task) un-
til it releases the processor (gets to a return instruction).
In this context, transitions correspond to the execution of
complete tasks. In particular, a transition or derivation step

Si
t−→ Si+1 denotes that the task t of an existing actor in Si

has been selected and fully executed, resulting in a modified
state Si+1. This corresponds to the notion of macro-step se-
mantics in [39]. Both the selection of which actor executes
and which task within the selected component is scheduled
is non-deterministic. In order to ensure that all behaviors
of the program are tested, the testing process, in princi-
ple, must systematically explore all possible ways in which
the processes can interleave. This is known as systematic
testing [16, 39, 40] in the context of concurrent programs.
Such full systematic exploration of all process interleavings
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Figure 5: An execution tree from a given state

produces the well known state explosion problem and is of-
ten computationally intractable (see, e.g., [40] and its refer-
ences).

Example 3.1. Consider the program in Fig. 5, where we
have a state with two actors o and o′, each of them with a
task (t1 and t′ respectively) in its queue. The complete exe-
cution tree contains three branches with the results this.f = 7,
this.f = 7 and this.f = 5 respectively.

3.1 The Path Explosion Problem
The challenge of systematic testing of concurrent pro-

grams in general is to avoid as much as possible the ex-
ploration of redundant paths which lead to the same config-
uration. There are two levels of non-determinism:

1. actor-selection, the selection of which actor executes,
and

2. task-selection, the selection of the task within the se-
lected actor.

Such non-determinism might result in different configura-
tions, and they all need to be explored as only some specific
interleavings may reveal the bugs.

Partial-order reduction (POR) [23, 20, 24] is a general
theory that helps mitigate the state-space explosion prob-
lem by formally identifying equivalence classes of redundant
explorations. The basic observation that motivates these
techniques is that, in general, the set of executions from
a state S contains many redundant derivations. Basically,
given a derivation where there are two consecutive transi-
tions which are“independent”, i.e., whose execution does not
interfere with each other, changing their order of execution
will not modify their combined effect. More formally, two
macro-step transitions t1, t2, possibly belonging to different
actors, are independent if:

1. they do not enable each other, i.e., the execution of t1
does not lead to introducing t2, or viceversa, and

2. for every state S in which they are both enabled, there

is a unique state S2 such that S
t1−→ S1

t2−→ S2 and

S
t2−→ S′

1
t1−→ S2, i.e., they can commute.

Conversely, two transitions are dependent iff they are not
independent. Transition dependencies can thus be catego-
rized in:

• enabling dependencies, if one of the transitions enables
the other one, and,

• interacting dependencies, if they can be both enabled
and their combined effect varies with their order.

A complete derivation thus represents an equivalence class
of similar derivations that can be obtained by swapping ad-
jacent independent transitions. The so-called happens-before
relation [22], written <d, is used to characterize these equiv-

alence classes. Given a derivation S0
t1−→ · · · tn−→ Sn, we

say that transition ti happens-before transition tj , written
ti <d tj , if i < j and ti is dependent with tj . The happens-
before relation is a partial-order relation, hence the name
POR. Furthermore, two derivations are redundant if they
have the same happens-before relation.

Example 3.2. Consider the execution tree in Fig. 5. The
happens-before relation, or partial order, of the leftmost and
middle derivations is {t′ <d t2, t1 <d t2}. Thus both deriva-
tions compute the same result this.f = 7. However the right-
most derivation has as partial order {t′ <d t2, t2 <d t1},
computing this.f = 5 as result.

The goal of POR methods is to detect these redundant ex-
ecutions and ideally generate only one representative deriva-
tion for each equivalence class and with the minimum num-
ber of explored states. Early POR algorithms were based on
different static analyses to detect and avoid exploring redun-
dant derivations. The state-of-the-art POR algorithm [22]
DPOR (Dynamic POR), improves over those approaches by
dynamically detecting and avoiding the exploration of re-
dundant derivations on-the-fly. Since the invention of DPOR,
there have been several works [1, 16, 39, 40, 38] proposing
improvements, variants and extensions in different contexts
to the original DPOR algorithm. The most notable one
is [1] which proposes an improved DPOR algorithm which
further reduces redundant computations ensuring that only
one derivation per equivalence class is generated. Some of
these works [40, 39, 33] have addressed the application of
POR to the context of actor systems from different per-
spectives. The most recent one [40] presents the TransD-
POR algorithm, which extends DPOR to take advantage of
a specific property in the dependency relations in pure actor
systems, namely transitivity, to explore fewer configurations
than DPOR.

Intuitively a DPOR algorithm carries out the exploration
of the execution tree using POR. Each node (i.e., state) in
the execution tree is evaluated with a backtracking set back ,
which is used to store those actors that must be explored
from this node. The backtracking set in the initial state
is empty. DPOR algorithms look dynamically at occurring
interacting dependencies (i.e., tasks that can be both en-
abled in a state and their combined effect varies with their
execution order) and only backtracks at the those states in
which it is possible to reverse them. The TransDPOR algo-
rithm [40] uses an over-approximation <αd of <d which con-
siders as dependent those tasks which belong to the same
actor. Thus once an actor has been selected the algorithm
always tries with the selection of all tasks, since they are
in principle considered to be dependent with each other.
Instead, at the level of actor selection, the back set is dy-
namically updated only with the actors that need to be ex-
plored. In particular, an actor is added to back only if dur-
ing the execution the algorithm realizes that it was needed



because a new task t of an actor a previously selected ap-
pears. This situation might indicate an interacting depen-
dency, and therefore, the algorithm must try to explore the
reverse reordering, by updating the back set of the last state
S in which a was used. As a simple example, consider a state
S in which an actor a1 with a unique task t1 is selected. Now,
assume that when the execution proceeds, a new task t2 of
a1 is spawned by the execution of a task t ′ of an actor a2

and that t ′ was in S. This means that it is required to con-
sider also first the execution of t2 and, next the execution of
t1, since it represents a different partial order between the
tasks of a1. This is accomplished by adding a2 to the back
set of S, which allows exploring the execution in which a2

is selected before a1 at S, and thus considering the partial
order t2 <αd t1. The formal process of updating the back
sets (and its optimization with freeze-flags to avoid further
redundancy) can be found at [40].

Example 3.3. Figure 5 shows the execution tree explored
by TransDPOR using the over-approximation <αd . We dis-
tinguish two types of edges: dotted edges that will be removed
later when introducing the notion of stable actor in Sec. 3.2,
and normal edges which are introduced when an actor has
been selected and thus all its tasks must be executed. The
unique back set updated by TransDPOR is the one associ-
ated to the root of the tree. Concretely, o′ is introduced in
back(S0) when executing o′.t′ in the left branch, what gener-
ates the new state o:{t2}, o′:{}. At this point, since o.t1 was
previously executed from S0, t2 does not belong to the queue
of o in S0 but t′ belongs and introduces t2 in the queue of o
in S0, then t′ must be added to back(S0).

The techniques that we describe below enhance previous
approaches with novel strategies to further prune redundant
state exploration, and that can be easily integrated within
the aforementioned algorithms.

3.2 Stable Objects
In previous DPOR algorithms actors are selected arbi-

trarily. As noticed in [33], the pruning that can be achieved
using DPOR algorithms is highly dependent on the order
in which tasks are considered for processing. Consider the
execution tree in Figure 5. We can see that the same partial
order t1 <

α
d t2 occurs in the executions computing this.f = 7

as result. Hence, the dotted subtree can be removed by con-
sidering only the rightmost one.

The notion of temporal stability allows us to guide the
selection of actors so that the search space can be pruned
further and redundant computations avoided. An actor is
stable if there is no other actor different from it that intro-
duces tasks in its queue. Basically, this means that the actor
is autonomous since its execution does not depend on any
other actor. In general, it is quite unlikely that an actor
is stable in a whole execution. However, if we consider the
tasks that have been spawned in a given state, it is often
the case that we can find an actor that is temporarily stable
w.r.t. the actors in that state.

Example 3.4. Let us re-consider the exploration of the
example in Fig. 5 with our improved actor selection func-
tion. Observe that at the root node, actor o is not temporar-
ily stable because in the queue of o′ there is a call t′, and
in the body of method t′ there is also a call to method t2 of
object o (i.e., o can possibly be modified by o′). However,

int f = 1; int g = 1;
void r0() {this.f++; }
void r1() {this.g = this.g∗2; }
void r2() {this.g++; }
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Figure 6: Task independence

actor o′ is temporarily stable at the root. Our algorithm will
therefore select o′. The rightmost subtree in Fig. 5 corre-
sponds to the state space explored by our algorithm, in which
we can observe that there is no redundant state exploration
(with the over-approximation of dependencies used).

3.3 Independent Tasks
As mentioned in Sec. 3.1, the notion of task dependency

has to be over-approximated in order to be used in practice
within DPOR. The precision of this over-approximation can
be crucial for the effectiveness of DPOR, as the following
example shows.

Example 3.5. Consider the program in Fig. 6, where all
methods belong to the same class which contains two fields
f and g, both of them initialized to 1. Using the theoreti-
cal definition of task dependency, there are only two equiva-
lence classes of non-redundant executions (branches labeled
with (1) and (2)), whereas using the over-approximation
of [40] there are six equivalence classes (the complete exe-
cution tree).

The over-approximation of [40] could be improved by look-
ing at shared memory accesses among tasks of the same ac-
tor. This way, two tasks belonging to the same actor would
have an interacting dependency only if they access a non-
disjoint area of their shared memory. In our example, this
improved over-approximation would detect task r0 indepen-
dent to both r1 and r2, hence allowing DPOR to behave in
an optimal way. We call dep to this particular relation.

Example 3.6. Let us consider the program in Fig. 6. As-
sume that R(t) and W (t) denote the set of fields that are read
and written, respectively, in task t. We have that R(r0) =
W (r0) = {f}, R(r1) = W (r1) = {g} and R(r2) = W (r2) =
{g}. Thus, r1, r2 are dependent but r0, r1 and r0, r2 are
independent.

In order to use the dep relation in testing, we have defined
a specialized algorithm at the task selection level which takes
full advantage of the over-approximation used in it. The al-
gorithm makes use of marks in the tasks so that the elements
in the queues can now be marked or unmarked, written t or
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Figure 7: Exploration performed by DPOR applying
marks

t respectively. The mark indicates that the task cannot be
selected in the next selection step. The intuition of the algo-
rithm is as follows. Let us consider a state S with an actor a
whose queue Q contains a list of unmarked tasks [t1, . . . , tn].
The algorithm tries with the selection of all tasks on back-
tracking. Let us have tasks ti, tj ∈ Q with i < j such that
¬dep(ti, tj). When a task ti is selected, the task tj is marked
for the next state. In the following state S′ in which actor
a is selected, task tj cannot be chosen, hence avoiding the
derivation in which ti is executed immediately before tj in
a. However, the derivation in which tj is selected in a im-
mediately before ti is allowed to be expanded. In this case
ti has not been marked since it does not go in the list after
tj . Also, if at state S′, some other task tk with dep(tk, tj) is
selected, then tj gets unmarked therefore allowing expand-
ing the derivations with partial orders ti <

α
d tk, tk <αd tj and

tj <
α
d tk, tk <αd ti which are not redundant.

Example 3.7. Consider again the execution of the pro-
gram in Fig. 6. Figure 7 shows the actions performed by
our specialized task selection algorithm from state 1. Ini-
tially all tasks are unmarked. Thus, task r0 is selected from
[r0, r1, r2] and no tasks are unmarked. Then, our task se-
lection algorithm marks tasks r1 and r2 since ¬dep(r0, r1)
and ¬dep(r0, r2). This derivation is therefore cut at state
2. Afterwards, the selection of r1 at state 1 does not mark
any task. However, when selecting r0 at state 7, task r2 is
marked since ¬dep(r0, r2). Hence, at node 8 the derivation
is cut since all tasks are marked. Similarly, at node 13 the
derivation is cut because ¬dep(r0, r1). The only expanded
derivations are those ending in nodes 11 and 16 which cor-
respond to the partial orders r1 <αd r2 and r2 <αd r1, re-
spectively.

4. CONCLUSIONS AND FUTURE WORK
We have presented a generic TCG framework that uses

CLP as enabling technology, it allows an efficient handling of
heap-manipulating programs, as well as guiding the process.
We have also discussed the challenges of extending such basic
framework to handle concurrent actor systems. As future
work, we plan to define new notions of dependency that can

be used to improve the detection of independent tasks. Also,
we have recently worked on the extension of our framework
for concurrent testing so that it can be driven towards paths
that potentially lead to deadlock [12].
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