
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Cost Relation Systems:

A Language-Independent Target Language

for Cost Analysis

Elvira Albert1 Puri Arenas1 Samir Genaim2 Germán Puebla2

1 DSIC, Complutense University of Madrid, {elvira,puri}@sip.ucm.es

2 Technical University of Madrid, {german,samir}@clip.dia.fi.upm.es

Abstract

Cost analysis aims at obtaining information about the execution cost of programs. This paper studies
cost relation systems (CRSs): the sets of recursive equations used in cost analysis in order to capture
the execution cost of programs in terms of the size of their input arguments. We investigate the notion
of CRS from a general perspective which is independent of the particular cost analysis framework. Our
main contributions are: we provide a formal definition of execution cost and of CRS which is not tied to a
particular programming language; we present the notion of sound CRS, i.e., which correctly approximates
the cost of the corresponding program; we identify the differences with recurrence relation systems, its
possible applications and the new challenges that they bring about. Our general framework is illustrated
by instantiating it to cost analysis of Java bytecode, Haskell, and Prolog.
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1 Introduction

Research about automatic cost analysis goes back to the seminal work by Wegbreit

in 1975 [22], which proposes to analyze the performance of programs by deriv-

ing closed-form expressions which capture their execution cost. Also, Cousot and

Cousot sketch an approach to performance analysis already in their seminal 1977

paper on abstract interpretation [10]. Since then, a good number of cost analysis

frameworks for a wide variety of programming languages have been devised, includ-

ing for functional [22,16,18,21,19,8], logic [13,17], and imperative [1,3] programming

languages. An important observation of this paper is that the result of cost anal-
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ysis in the different languages and programming paradigms can often be uniformly

expressed as Cost Relation Systems (CRSs for short).

In general, given a program, cost analyzers first compute an approximation of

the behaviour of the program by means of static analysis techniques. In most cases,

this is done by obtaining an abstract version of the program by relying on abstract

interpretation techniques. Essentially, the abstraction consists in inferring size rela-

tions between the arguments and replacing input arguments (numeric values, arrays,

dynamic data structures, etc.) by their corresponding sizes. Note that the size of a

piece of data is an abstraction of the actual information it contains. For example,

the size of an array can be its length, whereas for a linked data structure we can

take its size to be the length of the longest reference path. In addition, in order to

generate CRSs, iterative constructs (loops and recursion) in the program are trans-

formed into recursion. As a result, CRSs are sets of recursive equations which aim

at capturing the cost of a program in terms of the size of its input arguments. CRSs

have two features which make them interesting and powerful tools: (1) They are not

limited in principle to any complexity class. Therefore, they can be used to infer

cost which is polynomial, logarithmic, exponential, etc. (2) They can be used for

capturing a variety of non-trivial notions of resources, such as heap consumption,

number of calls to a specific method, bytecode instructions executed, etc.

A first objective of this paper is to characterize the notion of CRSs and motivate

its use as a common target language for cost analysis. The intuitive idea is that

CRSs abstract away the particular language features and are simply an instrumen-

tation of the abstracted version of the program which allows approximating its cost.

Also, we characterize the notion of a CRS being correct. To do this, we need to

define an evaluation mechanism for CRSs. We will see that CRSs can be formally

defined independently of the programming language in which the input programs to

cost analysis are written. Therefore, CRSs can be considered a lingua franca in the

sense that they can be used as the target for cost analysis of any language. Hence,

we argue that progress in the study of CRSs is of interest to cost analysis of any

programming language.

The second objective of the paper is to present the features and challenges that

CRSs bring about. As CRSs resemble Recurrence Relation Systems (RRSs) in

many aspects, it has been typically assumed that the output of cost analysis are

simply RRSs. We clarify the differences between CRSs and RRSs and point out the

limitations of existing computer algebra systems (CAS) to handle them. Finally,

the usefulness of CRSs is discussed by describing its applications in the context of

performance debugging and code certification. The main contributions of this paper

are:

i) We provide a unified view of cost analysis which captures the main components

of existing analyzers for the different programing paradigms.

ii) A formal definition of CRS is presented, together with a runtime evaluation

mechanism which is independent of the language and cost model.

iii) The differences between CRS and RRS are identified, as well as the limitations

that existing CAS have in order to handle them.

iv) The challenges that solving and bounding CRSs pose are described and also
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several applications of CRSs are sketched.

We argue that our work clarifies the notion of CRS and shows that CRSs can be

used as a common language within the development of cost analyzers.

The rest of the paper is organized as follows. In Sect. 2 we present a general

notion of execution cost. Sect. 3 describes the components that a cost analyzer

incorporates. In Sect. 4 we motivate the language independence of CRSs by means

of an example in Java bytecode, Haskell, and Prolog. Sect. 5 provides a formal

definition of CRS. We highlight the differences between CRSs and RRSs in Sect. 6.

A runtime evaluation mechanism of CRSs is presented in Sect. 7 together with the

notion of correct CRS. In Sect. 8, we identify the challenges of solving and bounding

CRSs. Finally, in Sect. 9 we conclude and review related work.

2 A General Notion of Execution Cost and Cost Model

We start by providing a general notion of Execution Cost, which is the feature of

executions which CRSs aim at capturing. The cost of executing a program for a

given input data is naturally related to the cost of the individual computation steps

performed during the computation. Every programming language comes equipped

with an operational semantics which describes how to perform computations. In

this setting, an execution starts from an initial state s0, and at each execution

step the rules dictated by the operational semantics are used to expand every non-

final state by computing its successor(s). A common way to rigorously represent

an execution is by means of a state transition system (STS), which is an abstract

machine that consists of a set Σ of states and a binary relation ; ⊆Σ×Σ which

represents transitions between states. We use si ; sj , with si, sj ∈ Σ, to denote

that there is a transition from si to sj , and we say that sj is a successor of si.

A state is final iff it has no successors. In many programming languages, STSs

representing executions consist of only one branch. However, for some programming

languages like Prolog, where multiple results for an initial call can be computed on

backtracking, it is often convenient to allow STSs to be trees, i.e., some nodes may

have multiple successors. Note that, under this operational semantics, Prolog is

deterministic since we always compute all possible results. Given an initial call

there is just one STS which represents its execution.

It is natural to relate the notion of cost to the transitions performed during ex-

ecution, i.e., the arcs in the STS. Since not all transitions are necessarily equivalent

from the point of view of the cost, we allow the possibility of assigning different

labels to different transitions. With this aim, we will introduce a set of labels L

and use labeled transition systems, which are state transition systems where each

transition si ; sj is marked with a label l ∈ L, which we denote by si ;l sj .

Therefore, now transitions correspond to a ternary relation ⊆ Σ×L×Σ. Obviously,

an unlabeled transition system is equivalent to a labeled transition system with only

one label. The choice of the labels we assign to each transition is important, since

it affects the observable information which we can use for obtaining the cost. As

an example, in a low-level programming language such as Java bytecode (JBC for

short), we can label each transition with the bytecode instruction executed during

the transition. We can further refine the label by encoding in it the values of the
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(possibly implicit) input arguments to the instruction. In the case of Prolog, we

can label transitions with (an identifier of) the clause which has been used in the

corresponding resolution step. We can optionally encode the input values in the

corresponding predicate call. For functional programs, we can annotate transitions

with the function definition w.r.t. which the expression is reduced. We can option-

ally encode the input values in the corresponding function call. A Cost Model is

a function M : L → Q+, i.e. which assigns a positive rational number to each

label. Different cost models measure different aspects of the execution. Given an

STS t, we use Labels(t) to denote the set of labels which appear in the transitions

of t. Then the Cost of an execution t is defined as the cost of the corresponding

labels, namely Cost(t,M) =
∑

l∈Labels(t) M(l).

Different classes of labels and associated cost models can be used to measure the

use of different resources of interest. For instance, the Java bytecode cost analyzer

of [3] can be used for observing, among other things, the number of execution steps

performed, the amount of heap allocated during execution, and the number of calls

to certain relevant methods. In particular, a cost model which counts the number

of execution steps can be defined as Mninst(l) = 1 for any l. The cost model

Mheap, which counts the number of bytes allocated on the heap has been defined

in [5], where the cost model returns zero for all bytecode instructions which do not

allocate memory in the heap and returns the corresponding number of bytes for

those instructions which actually allocate heap space.

In cost analysis, new cost models can be directly plugged in by just providing

the corresponding definition and CRSs for the provided model can be inferred by

the tools, usually without any modification in the analysis engine. In our examples,

and in order to keep the presentation simple, we use a cost model which counts the

number of execution of steps: for JBC it counts the number of bytecode instructions

executed; for Prolog it counts resolution steps; and for functional programs it counts

reduction (rewriting) steps.

The direct application of this notion of execution cost is in principle possible for

deterministic programming languages, provided that the execution terminates and

involves the following steps: (1) given an initial state, produce its corresponding

STS t, (2) collect the set of labels in all transitions in t, (3) apply the cost model

to each label, and (4) obtain the final result by adding up such figures. From a

practical point of view, it is often better to interleave these phases so that the cost

is accumulated while executing the program. This can be done by instrumenting

the program with additional arguments which accumulate the cost or by instru-

menting the operational semantics. Both approaches share the disadvantage that

they require running the program in order to compute its costs for each input value

of interest. On the other hand, for a given initial state s0, static approaches aim

at approximating Cost(t,M) s.t. t corresponds to the execution which starts from

s0, but without constructing t, i.e., they allow approximating the cost of a program

for some input data without having to actually run the program for such data and

thus avoiding such overhead. Cost analysis, and within it CRSs, fall into the second

approach.

In deterministic languages, given an initial state s0, there is a unique STS which

corresponds to the execution. However, in languages where a non-deterministic
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Fig. 1. A general view of cost analysis

choice is possible, an initial state may lead to several possible STSs. This, in

fact, is the case for most realistic programming languages, as they provide con-

structs for random number generation and/or access to environment variables such

as date/time. In order to accommodate for truly non-deterministic programming

languages, from now on we consider that given an initial state s0 there is a set of

different executions, with their corresponding STSs, which can be built from s0. We

will refer to the set of all possible STSs for s0 as Executions(s0). In deterministic

executions, Executions(s0) is a singleton.

3 A Unified View of Cost Analysis

Fig. 1 provides a unified view of cost analysis with the main components that

it incorporates in order to compute CRSs for different programming paradigms.

Within double frames, we show that the analysis receives as input a program and

the selected cost model and yields as output a CRS. The analyzer can have a set of

predefined cost models and, in some cases, users can define their own cost model [17].

We now describe the main components in more detail.

Rule-based representation. On the top left side of the figure, we see that the incoming

program is often transformed into an intermediate rule-based representation. The

main purpose of this step is to detect loops in the program and represent them

by means of recursive rules in order to facilitate the subsequent CRS generation

phase. This step can be easily done from the Control Flow Graph (CFG for short)

of the program by associating a rule to each basic block. When cost analysis is

on a low-level language (see, e.g., [3]), having a rule-based form makes it possible

to represent the unstructured control flow of the bytecode into a procedural form

(e.g., goto statements are transformed into recursion). Naturally, cost analyses

of declarative languages do not need this transformation as they are natively in

recursive form.

Size analysis. Obtaining size-relations between the states at different program

points is indispensable for setting up cost relations. These sizes describe how the

data change when the program goes through its loops. For this purpose, the notion

of size measure is crucial. In general, various measures can be used to determine

the size of data. For instance, in symbolic languages (see, e.g., [13]), term-depth,

term-size and list-length are used as size measures. In object-oriented languages,

two size measures have been used. For values which are of integer type, we can take

their actual value as their size. For values which are references, their path-length [20]
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can be used as their size. The path length of a reference is defined as the length of

the longest reference path reachable from it. A wide range of size analyses exists

which compute useful size approximations for different programming languages.

Language dependent analyses. The computational nature of a programming lan-

guage might require some additional static analyses in order to generate useful

and sound CRSs. This is the case in Logic Programing, where additional informa-

tion, such as determinacy and non-failure, is required in order to obtain CRSs that

accurately and correctly approximate the corresponding cost, since such analyses

provide valuable information on the shape of the execution tree (see, e.g., [12]).

Similar analyses are required in cost analysis of functional programming with lazy

evaluation. These problems usually do not occur in imperative languages.

Useless variables. Ideally, cost analyzers are interested in obtaining CRSs where

only the program variables and arguments which affect the cost appear as arguments

in the equations. The program variables which may have an impact on the cost of a

program are those that may affect directly or indirectly the conditional statements

(i.e., they can affect the control flow of the program), and those that may be encoded

in transition labels (as discussed in Sect. 2 above). The elimination of useless

variables can be done by applying well-known slicing techniques (see, e.g., [4]).

Interfaces. In order to analyze realistic programs, it is essential to have a mod-

ular design which allows handling external methods during analysis. By external

methods, we mean code which is not accessible to the analyzer, including native

libraries written in a different language (and thus not analyzable), methods which

are not yet implemented, etc. Cost analyzers can support a modular design by

means of interfaces which store the required information about external methods.

As customary in modular analysis, the information learned from the interfaces is

used during the analysis much in the same way as the information inferred by the

analyzer itself.

CRS. Once the previous phases have their corresponding information available, the

analyzer can set up a CRS for the input program and the selected cost model.

Essentially, the recursive representation of the program determines the structure of

the CRS: for each equation in the rule-based representation, the cost relation has a

corresponding recursive equation. The arguments of the CRS denote the size of the

corresponding program variable. Size relations approximate (1) the applicability

conditions of each cost equation and (2) how data sizes increase or decrease over

the equation. The cost model is applied to define the cost of each block of code that

a cost equation comprises. As a result of this process, a CRS is an instrumented

version of the abstracted program aimed at observing its execution cost according

to the cost model of interest.

4 Language-Independence of CRSs by Example

By means of a simple example, we illustrate the above components of cost analysis

and motivate the notion of CRS as a language-independent target language for cost

analysis. We consider the three implementations in Fig. 2 of a method merge which

merges two sorted lists. To the right, the implementation in Java merges the list
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Prolog Java (recursive)

merge(This,[ ],R):- !,R = This.

merge([D|Next],[OD|ONext],R):-

D>OD, !, R = [OD|T],

merge([D|Next],ONext,T).

merge([D],O,R):- !,R = [D|O].

merge([D|Next],O,R):-

R = [D|T], merge(Next,O,T).

Haskell

merge this [ ] = this

merge (d:next) o =

if (d> od) then

(od: merge (d:next) onext)

else if (next==[ ]) then (d:o)

else (d:merge next o)

where (od:onext) = o

public class MLRec {

private int d;

private MLRec next;

public MLRec(int d, MLRec next){

this.d = d;

this.next = next;

}

public MLRec merge(MLRec o) {

if (o == null) return this; (1)m

else if (d>o.d)

return new MLRec(o.d,merge(o.next)); (2)m

else if (next = null)

return new MLRec(d,o); (3)m

else return new MLRec(d,next.merge(o)); (4)m

}

Fig. 2. Prolog, Haskell and Java implementations of recursive merge

(1)m merge(this, o)=k1 {this≥1 , o=0}

(2)m merge(this, o)=k3+merge(this, o′) {this≥1 , o≥1 , o>o′, o′≥0}

(3)m merge(this, o)=k2 {this≥1 , o≥1}

(4)m merge(this, o)=k4+merge(this′, o) {this>this′, this≥2 , this′≥1 , o≥1}

Mninst k1=4, k2=26, k3=26, k4=29

Fig. 3. Structure of the CRS for recursive merge (capturing different implementations)

o received as input parameter and the object this and outputs the result in a new

list. To the left, we show two implementations, one in Prolog and one in Haskell.

In both cases, the lists to be merged are shown as explicit input parameters. The

three implementations have the same precondition, which is that the first argument

(this in the Java version) is non null.

The CRS depicted in Fig. 3 models a possible output of cost analysis for any of

the three implementations of merge shown in Fig. 2, since they have similar oper-

ational behaviour. In particular, the CRS shown has been automatically inferred

from the bytecode associated to the Java version by using the analyzer of [3]. 1 De-

pending on the programming language and on the cost model used, the constants

k1, . . . , k4 take different values. The values we show at the bottom of the figure

correspond to the Mninst cost model (see Sect. 2 above).

The purpose of this section is to illustrate the main steps involved in the genera-

tion of the CRS from the three implementations. The first important point to note

is that, as explained in Sect. 3, the CRS should match the structure of the program

such that when the program contains a loop construct, its CRS has a recursion.

From the declarative implementations, it can be directly seen that each program

rule (or clause) leads to an associated cost equation. In the imperative program,

this step requires to go through some form of intermediate, rule-based representa-

tion which makes the correspondences between the program constructs and the cost

equations explicit. Fig. 4 depicts the CFG for the Java code of merge. One rule

(or equation) is obtained for each of the execution paths in the graph. Eq. (1)m

1 For readability, the CRS is presented after simplifying it by performing partial evaluation, which replaces
calls by their definitions.
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next=null return MLRec(d,o);return MLRec(d,next.merge(o))

return MLRec(o.d,merge(o.next));

merge
1

merge
2

merge
3

merge
6

o=nullyes d > o.dno yes

yesno

7
merge

merge
5

return this;

no
merge 4

Fig. 4. Control flow graph for method merge

captures the cost of the trace merge1-merge3 when the list o is null (see the Java

program). Eq. (3)m captures the cost of the trace merge1-merge2-merge4-merge6,

which occurs when the list this has only one element. Eq. (2)m captures the cost

of the trace merge1-merge2-merge5, which corresponds to the first recursive call.

Finally, Eq. (4)m captures the cost of trace merge1-merge2-merge4-merge7 which

corresponds to the second recursive call.

The second important point is that data structures in the program are abstracted

to their sizes in the CRS. For instance, in the recursive call of Eq. (2)m, it is ensured

that the size of o has decreased (o>o ′), but we do not know how much. This is

because the size analysis for pointer based data structures used in [3] is based

on path-length analysis [14], where size-relations are expressed using only > and

≥. More precise size analysis in logic and functional programming could infer the

precise relation, i.e., o ′=o−1 . Size relations also contain applicability conditions

(i.e., guards) for the different equations, if any, by providing constraints which only

affect (a subset of) the variables in the lhs. Among them, we have e.g. o=0 which

requires that the list o is null.

The third important point is that the condition d>o.d in the program does not

appear in the size relation of equation (2)m (resp. d≤o.d in (3)m and (4)m). This

is because this condition is not observable in our CRS, as the lists this and o have

been abstracted to their length, and hence the values in this.d and o.d are unknown.

This is indeed the case in the three different languages.

The final conclusion is that, regardless of the language in which the program is

written, cost analysis produces a cost relation system in the same form. This obser-

vation has motivated us to formalize the notion of CRS, its evaluation mechanism,

its main properties and challenges, which are the subject of the remaining of the

paper.

5 Cost Relation Systems

This section presents formally the notion of cost relation system. We use x, y,

z, possibly subscribed, to denote variables, v, w denote integer values from Z, a,

b natural numbers from N, and q rational numbers from Q. We use x to denote

sequence of variables x1, . . ., xn, for some n>0. Similarly, v denotes a sequence of

integer values. For simplicity, we sometimes interpret these sequences as sets. Given

a sequence x, we say that an assignment for x is a sequence v of integer values (the

actual assignment is denoted [x/v]). Given any entity A, A[x/v] stands for the

result of replacing in A each occurrence of variable xi by vi. Also, we use vars(A)

to refer to the set of variables occurring in A. A linear expression has the form

q0+q1x1+ · · ·+qnxn. A linear constraint has the form l1 op l2 where l1 and l2 are
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linear expressions and op ∈ {=,≤, <, >,≥}. A set of linear constraints is used to

represent the conjunction of the corresponding constraints. Size relations are sets of

linear constraints. We now define the notion of cost expression, which syntactically

characterizes the kind of expressions which CRSs contain.

Definition 5.1 [cost expression] A cost expression exp is a symbolic expression of

the form:

exp ::= q | xq | exp op exp | expexp | loga(exp) |max(S) | min(S)

where op ∈ {+,−, /, ∗} and S is a non empty set of cost expressions.

Cost expressions are the basic elements of CRSs. They are used to indicate the re-

sources we are accumulating; they are also used to represent the bounds of CRSs. As

CRSs can be used to capture any complexity class, cost expressions must cover poly-

nomial, logarithmic and exponential expressions and we must be able to bound its

solution (by using functions max and min). We now present a language-independent

definition of the notion of CRS.

Definition 5.2 A cost relation system S is a set of cost equations of the form

〈C(x)=exp+
∑k

i=1 Di(yi), ϕ〉 with k≥0 where

1. All variables x, vars(exp) and yi are distinct variables,

2. exp is a cost expression,

3. ϕ is a size relation between the variables x̄ ∪ vars(exp)
⋃k

i=1 ȳi.

The CRS depicted in Fig. 3 contains simple cost equations with only one recur-

sive call. Also, all expressions exp are constants, as we are giving the same constant

value “1” to the cost of steps. This is clearly not the case in all cost models. For

instance, if we measure heap consumption, the operation of creating an array of

integers costs 4∗n heap cells, where n is the length of the array and 4 is the number

of bytes required to represent an integer.

Example 5.3 Let us illustrate the use of non-constant expressions. We include the

following method insertSort which sorts the input list by using the previous method

merge. The CRS appears to the right. We can observe in (3)s the call to the cost

of merge in which the first parameter is always a list of one element. Also, the size

relations appear attached to the equations describing the relations for the variables

in the head of the rules and between the head and the body. As expected, the size

of the list l decreases over the loop.

public static MLRec insertSort(MLRec l){

MLRec acu=null;

while (l!=null) {

MLRec node = new MLRec(l.d,null);

acu=node.merge(acu);

l=l.next;}

return acu;}

(1)s insertSort(l)=4+loop(l, 0) {l≥0}

(2)s loop(l, acu)=2 {l=0, acu≥0}

(3)s loop(l, acu)=26+merge(1, acu)+

loop(l′, acu′)

{l>l′, l′≥0, acu≥0, acu′>acu}

We can safely assume the following upper bound (see Def. 8.1) for the cost of

merge: merge(l1, l2) = 26+29∗(l1+l2 ). In this case the equation (3)s takes the form:
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loop(l, acu)=52+29∗(1+acu)+loop(l′, acu ′) . We can observe here the use of non-

constant cost expressions and, in particular, that they must cover the complexity

classes that the CRS can be bounded to. 2

6 CRSs vs. Recurrence Relation Systems

CRSs have several important features which are a consequence of being obtained by

automatic program analysis, and which are not present in traditional Recurrence

Relation Systems (RRSs):

Non-deterministic relations. In contrast to RRSs, cost equations for the same rela-

tion do not need to be mutually exclusive. The reason for allowing this is because

cost analysis needs to use size abstractions. Unavoidably, the use of abstraction

introduces a loss of precision: some guards which make the execution of the origi-

nal program deterministic may not be observable when using the size of arguments

instead of their actual values. In our example, this happens with the guard d>o.d

between equations (2)m and (4)m as it talks about the concrete values of the ele-

ments in the list, which are clearly not observable as the lists have been abstracted

to their length.

Inexact size relations. CRSs can have size relations which contain inequality con-

straints. This is essential in order to handle cost relations automatically obtained

from the analysis of realistic programs with complex data structures, for which size

analysis may lose precision. For instance, analysis may be able to infer that a given

data structure strictly decreases in size from one iteration to another, but it may be

unable to provide the precise reduction. This happens in our example in equations

(2)m, (4)m, (3)s, where we only know that o>o′, this>this′, l>l′.

Multiple arguments. Cost relations can have several arguments that may increase

or decrease at each iteration. Importantly, the number of times a given relation

is executed can depend, or be a combination of, several of its arguments. For

instance, function merge is executed min(this, o) times. In contrast, most RRS

solvers assume that the number of times a function is executed only depends on one

argument (often a decreasing variable).

As a result of the first two points above, CRSs are not required to define func-

tions, but rather relations, in the sense that, given input values v, there may exist

multiple results for C(v). This raises the questions: is it practical to evaluate a CRS

at runtime, i.e., does it make sense to run an instrumentation of the abstracted pro-

gram? Are existing CAS (Maple, Mathematica, etc.) sufficient to solve CRSs, as

it had been assumed typically by the cost analysis community? The next sections

address these issues and the challenges that CRSs bring about.

7 Evaluation of CRS

We now provide a formal semantics for CRSs. This semantics is in terms of calls

and answers. Calls are of the form C(v), where C is a cost relation and v are

integer values. A call C(v) is evaluated in S by repeatedly replacing calls to rela-
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(1)s

s(3) loop(1,1) 26

(1)s insertSort(2) 4

4 4

loop(2,0)

26

s(3)

(2)sm(1)

(3)s

m(1)

(3)m (2)s

insertSort(2) 4

merge(1,0)loop(0,1) 2

26 loop(2,0)

loop(0,2)

26

2

merge(1,0)

merge(1,1)

Fig. 5. Two evaluation trees for insertSort(2)

tions by appropriate instantiations of the rhs of applicable equations until a cost

expression (i.e., call-free) is reached. This evaluated expression consists of the sum

of a series of cost expressions. Note that CRSs are potentially non-deterministic,

which means that there may be different ways of evaluating a call and which re-

sult in different answers to the call. The process of obtaining an answer can be

represented graphically using trees defined as (possibly nested) terms of the form

node(Call,Local Cost ,Children).

Example 7.1 Fig. 5 depicts two evaluation trees for the call insertSort(2). We can

observe that each node in the tree contains a call (middle box) and its local cost

(right box) and it is linked by arrows to its children. In the figure, for clarity, each

call is annotated with a number (left box) which indicates the equation which was

selected for evaluating the corresponding call. The leftmost tree is an evaluation

tree of minimal cost, which results in 36 cost units, and the rightmost one is an

evaluation tree of maximal cost, which results in 88 cost units. 2

Definition 7.2 [evaluation tree] Given a CRS S and a call C(v), an evaluation tree

of C(v) in S, denoted Tree(C(v),S), is node(C(v), e, 〈t1, . . . , tk〉), where:

(1) there is a renamed apart equation 〈C(x)=exp+
∑k

i=0 Di(yi), ϕ〉 ∈ S s.t. ϕ′ is

satisfiable in Z, where ϕ′=ϕ[x/v], and

(2) there exist assignments w, vi for vars(exp), yi respectively s.t. ϕ′[vars(exp)/w,

yi/vi] is satisfiable in Z, and

(3) e=exp[vars(exp)/w], ti is an evaluation tree Tree(Di(vi),S) with i=0, . . ., k.

In step 1 we look for an equation E which is applicable for solving C(v). Note

that there may be several equations which are applicable. In step 2 we look for

assignments for the variables in the rhs of E which are compatible with the size

relations associated to E . This is another non-deterministic step as there may be

(infinitely many) different assignments which satisfy all size relations. Finally, in

step 3 we apply the assignment to the expression exp and continue recursively

evaluating the call.

Example 7.3 In the CRS of Fig. 3, whenever equation (4)m is applicable, equation

(2)m is also applicable, since this≥2 implies this≥1. Also note, that in the recursive

call to loop we are allowed to pick any values l′, acu ′ such that l′<l, acu ′>acu. The

rightmost tree in Fig. 5 corresponds to the maximal real cost, where we assign

l′=l−1 and acu ′=acu+1 in the recursive call. This is what happens in actual

11
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executions of the program. In the rightmost tree we assign l′=l−2 and acu ′=acu+1

in the recursive call to loop, this results in a minimal approximation, however,

it does not correspond to any actual execution. This is a side effect of the safe

approximations computed by static analysis: it allows obtaining correct information,

but it may be imprecise sometimes. It is interesting to observe that we can compute

an infinite number of evaluation trees, as the instantiation step 2 can give an infinite

number of assignments to variable acu ′ satisfying the condition acu ′>acu. 2

Since multiple evaluation trees can be obtained for a given call, we use the

notation Trees(C(v),S) to refer to the set of all evaluation trees for C(v) in S.

Then, we can define answers(C(v),S)={Sum(t) | t ∈ Trees(C(v),S)}, where Sum(t)

traverses all nodes in t and computes the sum of the cost expressions in them. The

following definition presents the notion of correct CRS.

Definition 7.4 [correct CRS ] Let m be a method with n input parameters and M

a cost model. A CRS S is correct for m and M iff for any v∈Zn and a corresponding

initial state s0, we have Cost(t,M)∈answers(Cm(v),S) for any t∈Executions(s0).

Intuitively, a CRS is correct if it safely approximates the actual execution cost in

the sense that such cost must be a possible solution to the equations. In a given

cost analysis framework, the correctness of the CRS is usually entailed from the

correctness of the particular size analysis used in the framework.

8 Solving CRSs: Overview of Existing Tools

In the previous section, we have seen that due to the recursive nature of CRSs,

directly evaluating calls to a relation defined in a CRS requires to perform an

iterative computation following the recursive calls. As there are often multiple

(possibly infinite) possible evaluations of a call, trying to obtain a solution (or an

upper bound for it) in this way is impractical. Besides, it can difficult to glean

immediate information about the cost of a program by looking at its associated

CRS, especially when there are multiple relations involved. As a result, CRSs

have rather limited applicability unless closed form (i.e., non-recursive) solutions or

bounds for them are obtained.

An important point to note is that the actual cost of executing the program for

a given goal is necessarily a solution of the CRS. In principle, this makes CRSs valid

tools for computing upper and lower bounds of the cost. We start by recalling the

definition of upper bound of relations.

Definition 8.1 [upper bound] Let 〈P,≤〉 be a partially ordered set, and let S be

a subset of P . A value a∈P is an upper bound of S iff ∀s∈S we have that s≤a.

Also, let C be a relation over Zn×R. A function U :Zn→R is an upper bound of C

iff ∀v∈Zn we have that U(v) is an upper bound of answers(C(v),S).

Most of existing analyzers try to use computer algebra systems (CAS) for solving

RRSs, like Mathematica, Maple, Maxima, etc. Essentially, there are two ways in

which cost analyzers use them 1) directly trying to apply them to solve CRSs (if

they have the form of RRSs) or 2) converting CRSs to RRSs.

12
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In our experience with the analyzer in [3], applying directly CAS on CRSs is not

a realistic choice. The main problem is that CAS admit only a form of RRSs which

does not cover the essential features of CRSs that distinguish them from RRSs, as

pointed out in Sect. 6. This happens even for our simple running example; there

exists no RRS solver that we can use directly. With this, we do not mean to say that

existing CAS are not powerful. In fact, from an algebraic perspective, if we ignore

the additional features that CRSs have, cost relations would be casted as a simple

class of recurrence equations. Indeed, the recurrence equations solved by CAS can

present a much more complex structure. For instance, they support equations with

coefficients to function calls which can be polynomials. However, this power is not

really needed for the equations in CRSs, since the equations generated from cost

analysis of programs are not usually in such complicated form, as their structure

is obtained from the structure of the program. On the other hand, existing CAS

fall short in order to attack some of the features of CRSs which are not present in

RRSs.

The second approach is to obtain closed form upper bounds by converting CRSs

into RRSs and then using CAS. This requires, among other things, removing non-

determinacy while preserving the worst-case solution. For this, we need to remove

equations from the CRS as well as sometimes to replace inexact size relations by

exact ones. This transformation would be easy to do in our example, as we can

take the most expensive recursive case (4)m and the most expensive base case (3)m.

However, neither of these transformations can be safely done in all cases. In partic-

ular, this is not possible when the maximum cost might be a result of interleaving

between the different equations. For instance, if we are interested in obtaining an

upper bound solution, there are cases, where if we remove any of the equations in

the CRS in order to obtain determinacy, we no longer obtain the worst case and

the resulting closed form is not guaranteed to correspond to a correct upper bound.

Therefore, though this approach can be applied in simple cases, is not a sound

alternative either.

A CRS solver which computes solutions or upper/lower bounds for CRS output

by automatic cost analysis must be able to:

(i) Bound the number of iterations of the cost relation when the (maximum) num-

ber of times that a given relation is executed can be a combination of several

of its arguments.

(ii) Handle inequalities in a general way. Previous systems either cannot handle

them or they only allow inequalities which relate variables to constant terms,

but not inequalities between variables (e.g., this>this ′).

(iii) Provide a general and sound way to compute the maximum (or minimum)

over non-deterministic equations. This is complicated in general as the maxi-

mum (or minimum) cost might be a result of interleaving between the different

equations.

We are only aware of three tools which aim at solving or bounding CRSs. One of the

first existing systems was CASLOG [13]. It is though limited to rather simple CRS

and in particular it cannot handle the first two features above. Another relevant

work in this direction is PURRS [7], which has been the first system to provide,
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in a fully automatic way, non-asymptotic upper and lower bounds for a wide class

of recurrences. Unfortunately, it requires CRSs to be deterministic (item 3 above)

and does not handle inequalities (item 2). The PUBS system [2] has been recently

developed (it is available from http://www.cliplab.org/Systems/PUBS). It is an

important step in this direction as, in principle, it is able to handle the three items

above. We believe that the recent development of automatic solving tools will be

of importance for the practical use of cost analysis.

9 Discussion and Related Work

We have presented a general notion of cost and a unified view of cost analysis

which includes the main components of state-of-the-art resource usage analyzers.

In this context, we have motivated and formalized the notion of CRSs as a language-

independent means to target the analysis output. There is an important point which

has remained unclear in the area of cost analysis, and which is a contribution of this

paper, which is to state the differences between CRSs and RRSs. Indeed with the

development of advanced CAS (such as MathematicaR©, MAXIMA, MAPLE, etc.),

recent cost analyses [8,15] try to use them. This paper has clarified the differences

between CRSs and RRSs. The important consequence of such differences is that

existing CAS do not cover the distinguishing aspects of CRSs and there is a need

to develop practical solvers which are able to directly handle them, as we have done

in [2] as a first attempt to solve this problem.

To conclude, note that given a solution for a CRS, or an upper/lower bound

approximation for it, CRSs bring about very interesting applications in the following

fields:

• Resource Bound Certification [11,6,9]. It proposes the use of safety proper-

ties involving cost requirements, i.e., that the untrusted code adheres to specific

bounds on resource consumption. CRSs enable to express arbitrary resource

bounds certificates. Approaches based on type systems are usually restricted to

polynomial bounds [11,6]. An example of this application is mobile code, where

the code consumer receives code to be executed. The receiver of the code may

want to infer cost information in order to reject code which has too large cost

requirements in terms of computing resources (in time and/or space).

• Performance Debugging and Validation. This is a direct application of cost anal-

ysis, where the analyzer tries to verify or falsify assertions about the efficiency of

the program which are written by the programmer. The role of CRSs is essential

in order to infer the performance, either as an exact solution or upper bound.

• Granularity Control [13]. Parallel computers with multicore processors are cur-

rently becoming mainstream. In parallel systems, knowledge about the cost of

different procedures can be used in order to guide the partitioning, allocation and

scheduling of parallel processes.
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