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1 Introduction

Java bytecode [8] is a low-level object-oriented language which is widely used in the
context of mobile code due to its security features and the fact that it is platform
independent. Recent works study advanced properties of Java bytecode like cost
analysis [2] or termination [1]. Automatic cost analysis has interesting applications
in the context of Java bytecode. For instance, the receiver of the code may want
to infer cost information in order to decide whether to reject code which has too
large cost requirements in terms of computing resources (in time and/or space), and
to accept code which meets the established requirements [7, 5, 6]. Also, in parallel
systems, knowledge about the cost of different procedures in the object code can
be used in order to guide the partitioning, allocation and scheduling of parallel
processes.

Given an input program, cost analysis aims at inferring Cost Equations Systems

(CES) which define the cost of the program as a function of (some of) its data input
size. CES are a general form of describing the resource consumption of programs
and, in a particular application, they can be used to infer heap consumption [4],
number of executed bytecode instructions [3], etc. Essentially, CES are generated
by abstracting the structure of the program such that when the program contains
an iteration the CES contains a corresponding recursion, which in addition includes
information about how the sizes of the different variables change when the program
goes through this recursion. The traditional approach is to infer upper bounds of
the cost by solving the CES, for instance using Computer Algebra Systems (CAS)
like Mathematica, Maple, etc.

The approach to cost analysis as described in [2] makes two initial steps in order
to obtain a structured representation for the bytecode:

1. The first step consists in constructing a Control Flow Graph (CFG) from the
bytecode which makes all implicit branching explicit. A control flow graph con-
sists of basic blocks and guarded edges which describe how control flows between
blocks. Basic blocks are sequences of non-branching bytecode instructions, and
edges are obtained from instructions which might branch such as virtual method
invocation, conditional jumps, exceptions, etc;

2. In the next step, the CFG is represented in a procedural way by means of an
intermediate representation. This representation consists of a set of guarded rules

which are obtained from the blocks in the CFG. A principal advantage is that
all possible forms of loops in the program are represented now in a uniform way,
and that stack variables are considered as local variables.

In the last step, size relations analysis is applied to the above intermediate repre-
sentation and a CES is generated from such representation. Traditionally, the CES



class a {
static int sum(int m, int n) {
int res=0;

for (int i=1; i<=m; i++) {
for (int j=i; j<=n; j++) {
res += i*j;

}
}
return res;

}
}

0: iconst 0

1: istore 2

2: iconst 1

3: istore 3

4: iload 3

5: iload 0

6: if icmpgt 37

9: iload 3

10: istore 4

12: iload 4

14: iload 1

15: if icmpgt 31

18: iload 2

19: iload 3

20: iload 4

22: imul

23: iadd

24: istore 2

25: iinc 4, 1

28: goto 12

31: iinc 3, 1

34: goto 4

37: iload 2

38: ireturn

Fig. 1. Java Program and its corresponding Java bytecode

is then solved using existing CAS in order to obtain a closed from upper bound on
the cost. An important observation is that many of the rules arguments may not
be relevant to the cost. For instance, typical accumulating parameters which merely
keep the value of some temporary result do not affect the control flow nor the cost of
the program. Such tools are more likely to fail in providing useful information if the
corresponding CES includes information which originates from the program’s parts
that do not affect its cost. Therefore, eliminating those superfluous parts from the
CES is crucial in practice.

Basically, given a rule, the arguments which can have an impact on the cost of
the program are those which may affect directly or indirectly the program guards
(i.e., they can affect the control flow of the program), or are used as input argu-
ments to external methods whose cost, in turn, may depend on the input size. The
problem of computing a safe approximation of these arguments can be formalized
as a backwards slicing problem using the reachable guards and external methods as
the slicing criterion [9].

In this abstract, we discuss several aspects of the role of static slicing to minimize
the number of arguments which need to be taken into account in CES. We will focus
on two benefits of eliminating the arguments which do not have an impact on the
cost of the program. On one hand, analysis can be more efficient if we reduce the
number of variables. And also CES are more likely to be solved by standard CAS.

2 Cost Analysis of Java Bytecode by Example

We illustrate the cost analysis of [2] on the example depicted in Fig. 1. The Java
program (on the left) and its corresponding Java bytecode (on the right) define a
method sum that, for a given two integer values n and m, computes the sum:

res =
m

Σ
i=1

n

Σ
j=i

i ∗ j (1)

The Java program is provided here just for clarity, the analysis is performed di-
rectly in the Java bytecode program. Computing a closed form function which is
an upper bound to the cost of sum (i.e., the number of bytecode instructions that
may be executed) in term of its input arguments is done in several steps: (1) re-
covering the structure of the Java bytecode program by mean of a set of control
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flow graphs (CFGs); (2) transforming the CFGs into a rule-based representation;
(3) inferring size relations between the program variables and generate cost equa-
tions system (CES) from which we can compute a closed form upper bound using
standard computer algebra systems (CAS).

Fig. 2. CFG for the Java bytecode program in Fig. 1

Step I: Control Flow Graph.

In the first step, each JBC instructions sequence (which corresponds to a method)
is transformed into a corresponding set of CFGs. This is done by dividing the se-
quences into maximal sub-sequences of non-branching instructions, which form the
basic blocks (nodes) of the initial CFG. Then, the basic blocks are connected by
guarded edges that describe the possible transitions. The guards and the edges are
introduced by considering the last bytecode instruction of each block. Finally, a loop
extraction step is applied on the initial CFG in order to separate those parts that
correspond to loops, this is crucial when the program contains nested loop since it
allow compositional reasoning.

The CFGs of the sum method are depicted in Fig. 2. In block 0, the variables
i and res are initialized (the first 4 bytecode instructions) and then the control is
transferred to the middle CFG (using the instruction call loop) which corresponds to
the outer-loop, and, upon return from that loop, the method returns the value res

(the last two instructions). In block 1 (the entry of the outer-loop), the values of i and
n are compared. If i≤n then the control is transferred to block 2 which corresponds
to the loop’s body, otherwise the control is transferred to a block which indicates
that the loop has terminated and the control is transferred back to the caller. Note
that the corresponding edges are annotated by conditions which correspond to i≤n

and i>n. Block 2 corresponds to the body of the outer-loop, it first initializes j and
then the control is transferred to block 3 which corresponds to the inner-loop, and,
upon return it increases i by one. The inner-loop is defined similarly by the CFG on
the right.
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sum(〈m, n〉, 〈r〉) :=
init local vars(〈res, i, j〉),
sum0(〈m, n, res, i, j〉, 〈r〉).

sum0(〈m, n, res, i, j〉, 〈r〉) :=
iconst(0, s0),
istore(s0, res),
iconst(1, s0),
istore(s0, i),
sum1(〈m, n, res, i, j〉, 〈res, i, j〉),
iload(res, s0),
ireturn(s0, r).

sum1(〈m, n, res, i, j〉, 〈res, i, j〉) :=
iload(i, s0),
iload(m, s1),
nop(if icmpgt(s0, s1)),
sumc

1(〈m, n, res, i, j, s0, s1〉, 〈res, i, j〉).

sumc
1(〈m, n, res, i, j, s0, s1〉, 〈res, i, j〉) :=

guard(if icmple(s0, s1)),
sum2(〈m, n, res, i, j〉, 〈res, i, j〉).

sumc
1(〈m, n, res, i, j, s0, s1〉, 〈res, i, j〉) :=

guard(if icmpge(s0, s1)).

sum2(〈m, res, i, j〉, 〈res, i, j〉) :=
iload(i, s0),
istore(s0, j)
sum3(〈m, n, res, i, j〉, 〈res, j〉).
iinc(i, 1)
nop(goto),
sum1(〈m, n, res, i, j〉, 〈res, i, j〉).

sum3(〈m, n, res, i, j〉, 〈res, j〉) :=
iload(j, s0),
iload(m, n, s1),
nop(if icmpgt(s0, s1)),
sumc

3(〈m, n, res, i, j, s0, s1〉, 〈res, j〉).

sumc
3(〈m, n, res, i, j, s0, s1〉, 〈res, j〉) :=

guard(if icmple(s0, s1)),
sum4(〈m, n, res, i, j〉, 〈res, j〉).

sumc
3(〈m, n, res, i, j, s0, s1〉, 〈res, j〉) :=

guard(if icmpge(s0, s1)).

sum4(〈m, n, res, i, j〉, 〈res, j〉) :=
iload(res, s0),
iload(i, s1),
iload(j, s2),
imul(s1, s2, s1),
iadd(s1, s0, s0),
istore(s0, res),
iinc(j, 1),
nop(goto),
sum3(〈m, n, res, i, j〉, 〈res, j〉).

Fig. 3. The Intermediate Represenation for the CFGs of Fig. 2

Step II: Rule-Based Representation.

In the second step, the CFGs are represented in a procedural way by means of rule-

based program. A rule-based program defines a set of procedures, each of them defined
by one or more rules. Each rule has the form head(x̄ , ȳ):=guard , instr , cont where
head is the name of the procedure the rule belongs to, x̄ and ȳ respectively indicate
sequences of input and output arguments, guard is of the form guard(φ), where φ is a
Boolean condition on the variables in x̄, instr is a sequence of bytecode instructions
that include explicitly the local variables and stack elements on which they operate,
and cont indicates a call to another procedure which represents the continuation
of this procedure. In principle, x̄ should include the local variables for the method
and the stack elements at the beginning of the block. In most cases, ȳ only includes
the return value of the method, which we denote by r, but in rules that correspond
to loops it usually includes more variables. The rule-based program(s) depicted in
Fig. 3 correspond respectively to the CFGs in Fig. 2. In what follows we explain
some of the rules.

The entry rule sum (the first one on the left column) is the method’s entry.
It takes the input variables m and n and returns the output variable r. It first
initializes the local variables and then calls the rule sum0 (which corresponds to
block 0). The rule sum0 takes all local variables (including the method’s formal
parameters) as input and returns r as output. The instructions iconst(0, s0) and
istore(s0, res) initialize res to zero, note that s0 corresponds to a stack position which
is explicit in the rule-based representation. Similarly, iconst(1, s0) and istore(s0, i)
initialize i to one. Then the outer-loop is called using sum1(〈m, n, res, i, j〉, 〈res, i, j〉),
and upon return, the last two instructions iload(res, s0) and ireturn(s0, r) bind the
output variable r to the return value of the method sum. Note that when calling
the outer-loop sum1, the list of output arguments includes only those that might
be modified during the execution of sum1. The rule sum1 (which corresponds to
block 1) is the entry rule to the outer-loop. The fact that block 1 has two successors,
block 2 and the loop-exit block, is expressed in sum1 by a call to a continuation rule
sumc

1 (at the end of sum1) which in turn is defined by two rules: the first one for to
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(1) sum(m, n) = sum0(m, n, res, i, j) {res = 0, i = 0, j = 0}

(2) sum0(m, n, res, i, j) = 6 + sum1(m, n, res′, i′, j) {res′ = 0, i′ = 1}

(3) sum1(m, n, res, i, j) = 3 + sumc
1(m, n, res, i, j, s0 , s1 ) {s0 = i, s1 = m}

(4) sumc
1(m, n, res, i, j, s0 , s1 ) = sum2(m, n, res, i, j) {s0≤s1}

(5) sumc
1(m, n, res, i, j, s0 , s1 ) = 0 {s0>s1}

(6) sum2(m, n, res, i, j) = 4 + sum3(m, n, res, i, j′)

+ sum1(m, n, res′, i′, j′′) {j′ = i, i′ = i + 1}

(7) sum3(m, n, res, i, j) = 3 + sumc
3(m, n, res, i, j, s0 , s1 ) {s0 = j, s1 = n}

(8) sumc
3(m, n, res, i, j, s0 , s1 ) = sum4(m, n, res, i, j) {s0≤s1}

(9) sumc
3(m, n, res, i, j, s0 , s1 ) = 0 {s0>s1}

(10) sum4(m, n, res, i, j) = 9 + sum3(m, n, res, i, j′) {j′ = j + 1}

Fig. 4. CES for the rule-based program of Fig. 3

the case where i≤n which continues to sum2; and the second one for the i>n which
terminates the loop.

Step III: Generating a Cost Equations System

In the last step, size relations analysis is applied to the rule-based program and a
cost equations system, which defines the cost of each rule as a function of its input
arguments, is generated. The aim of the size analysis is to infer (linear) relations
between the values (or sizes of data structures) of the different variables at different
program points. For example, it infers that the value of i when calling sum1 (in the
rule sum2) is greater than the input value of i by one. Using these size relations, for
each rule in the corresponding rule-based program we generate an equation of the
form

p(x̄) = c+
k

Σ
i=1

pi(x̄i), ϕ

which defines the cost of the rule p in term of its input arguments x̄ to be: (1) the
number of bytecode instructions c in the rule; plus (2) the cost of all calls to other
rules, namely p1(x̄1) . . . , pk(x̄k). The linear constraints ϕ (which is inferred by the
size analysis) describe the size relations between the variables x̄ ∪ x̄i · · · ∪ x̄k. We
refer to the set of all generated equation as cost equations system (CES). The CES
of the rule-based program of Fig. 3 is depicted in Fig. 4.

Let us consider, for example, the equations 3-6 which correspond to the outer-
loop. Equation 3 defines the cost of sum1(m, n, res, i, j) to be the number of its byte-
code instructions, namely 3, plus the cost of executing sumc

1(m, n, res, i, j, s0, s1) where
s0 = i and s1 = m. Equations 4 and 5 define the cost of sumc

1(m, n, res, i, j, s0, s1)
to be like the cost of sum2(m, n, res, i, j) in case that s0≤s1, and 0 in case that
s0>s1. Equation 6 defines the cost of sum2(m, n, res, i, j) to be the number of its
bytecode instructions, namely 4, plus the cost of sum3(m, n, res, i, j′) (the inner-loop)
and sum1(m, n, res′, i′, j′′) where j′ = i (the initial value for j in the inner-loop) and
i′ = i + 1 (the outer-loop counter is increased).

Usually, the CES are used to obtain a closed form upper bounds on the cost,
e.g., sum(m,n) = O(m ∗ n), and this is usually done by using standard computer
algebra systems, such as Mathematica and Maple. The problem is that in its current
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(1) sum(m, n) = sum0(m, n) {}
(2) sum0(m, n) = 6 + sum1(m, n, i′) {i′ = 1}

(3) sum1(m, n, i) = 3 + sumc
1(m, n, i) {}

(4) sumc
1(m, n, i) = sum2(m, n, i) {i≤m}

(5) sumc
1(m, n, i) = 0 {i>m}

(6) sum2(m, n, i) = 4 + sum3(n, j′) + sum1(m, n, i′) {j′ = i, i′ = i + 1}

(7) sum3(n, j) = 3 + sumc
3(n, j) {}

(8) sumc
3(n, j) = sum4(n, j) {j≤n}

(9) sumc
3(n, j) = 0 {j>n}

(10) sum4(n, j) = 9 + sum3(n, j′) {j′ = j + 1}

Fig. 5. A Simplified version of the CES of Fig. 4

form, the CES are not even considered a valid input for such systems, and therefore
they should be further simplified. The main problem in the generated CES is that
some equations may contain variables that do not affect the cost of the corresponding
rules. For example, in the CES of Fig. 4, the underlined variables are irrelevant to the
cost and therefore should be eliminated; and moreover all stack variables (appear in
frames) can be replaced by corresponding local variables. The next section describe
how this can be automatically done.

3 Eliminating Irrelevant Variables in CES

As described in the previous section, we are interested in eliminating two kind of
variables from the CES: (1) stack variables which can be replaced by corresponding
local variables or constant values; and (2) variables that do not affect the cost of
their corresponding rules. Eliminating the first kind of variables can be done by a
simple dependencies analysis which is applied locally to the rules, and eliminating
the second kind of variables can be done using program slicing.

Eliminating Stack Variables

Replacing stack variables by their corresponding local variables (or constants) can be
done by tracking dependencies that are introduced by instructions that link between
stack elements and local variables (or constants), such as iload(v, si) which pushes the
variable v on the top stack si, iconst(1, si) which pushes the constants 1 on the top
of the stack si, and istore(si, v) which assigns the variable v to the value of the top of
the stack si. This is a simple process that can be done locally to the rules by keeping
dependencies list, and it does not require any fixpoint computation. For example, in
the rule sum1 (Fig. 3), we can keep the dependencies s0 7→ i and s1 7→ m which are
introduced by the first two bytecode instructions, and then using these dependencies
to eliminates s0 and s1 are from sum1 and sumc

1. In practice, using this simple
analysis all stack variables can be eliminated except some of those that correspond
to return value of a method. In addition, eliminating the stack variables from the
rule-based representation before applying the size analysis improves significantly its
performance as the number of total variables is significantly reduced.
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Eliminating Irrelevant Variables

The process of eliminating variables that do not affect the cost of their corresponding
rules is based on the basic observation that the cost is affected only by variables
that appear in guards of the different rules, since only those variables correspond
(directly) to loop conditions, recursion base-case conditions, etc. Therefore variables
that are guaranteed not to affect, directly or indirectly, any variable that appear
in a guard are irrelevant to the cost and therefore can be safely removed. This
can be done by computing a superset (approximation) for the set of variables that
might affect guards’ variables, which in turn can be formalized as a backward slicing
problem where the slicing criterion includes all guards and their variables. This
is a simple instance of backwards slicing, mainly due to the fact that the slicing
criterion includes all conditions and their variables. Therefore, the slicing algorithm
does not need to track implicit dependencies that stem from conditional assignments
(e.g., assignment in the then or else branches) since, by the definition of the slicing
criterion, all variables in guards will be included in the relevant set of variables.
Standard backward slicing algorithms [9] can be adapted and applied directly to the
rule-based representation or to the CES. For example, applying backward slicing on
the rule based program of Fig.3 (after eliminating the stack variables) results in the
following set of relevant variables for the different rules:

sum = {m,n} sum1 = {m,n, i} sum3 = {n, j}
sum0 = {m,n} sumc

1 = {m,n, i} sumc
3 = {n, j}

sum2 = {m,n, i} sum4 = {n, j}

which can be used to simplify the CES in Fig. 4 to the one in Fig. 5.
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