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Abstract

The task-levelof a program is the maximum number of tasks
that can beavailable(i.e., not finished nor suspended) simultane-
ously during its execution for any input data. Static knowledge of
the task-level is of utmost importance for understanding and de-
bugging parallel programs as well as for guiding task schedulers.
We present, to the best of our knowledge, the first static analy-
sis which infers safe and precise approximations on the task-leve
for a language withasync-finish parallelism. In parallel lan-
guagesasync andfinish are the basic constructs, respectively,
for spawning tasks and for waiting until they terminate. They are
the core of modern, parallel, distributed languages like X10. Given
a (parallel) program, our analysis returntak-level upper bound
i.e., a function on the program’s input arguments that guarantees
that the task-level of the program will never exceed its value along
any execution. Our analysis provides a series of useful (over)-
approximations, going from the total number of tasks spawned in
the execution up to an accurate estimation of the task-level.

Categories and Subject Descriptors D.1.3 [Programming Tech-
nique§: [Concurrent ProgrammingDistributed programming,
Parallel programming D.3 [Programming Languagés[Formal
Definitions and Theory]

General Terms  Algorithms, Languages, Theory, Verification

Keywords Parallelism, Static Analysis, Resource Consumption,
X10, Java

1. Introduction

As embedded systems increase in number, complexity, and diver-
sity, there is an increasing need of exploiting new hardware archi-
tectures, and scaling up to multicores and distributed systems built
from multicores. This brings, to the embedded systems area, wide
interest in developing techniques that help in understanding, opti-
mizing, debugging, finding optimal schedulings, etc., for parallel
programs. Two of the key constructs for parallelisma@sgnc and
finish. Theasync{s} statement is a notation for spawning tasks,
namely, tasks can run in parallel with any statement that follows

it. The finish{s} statement waits for termination efand of all
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async Sstatement bodies started while executingn order to de-
velop our analysis, we consider a Turing-complete language with a
minimal syntax and a simple formal semantics. A program consists
of a collection of methods that all have access to a shared array.
The body of the method is a sequence of statements. Each state-
ment can be an assignment, conditional, loagync, finish, or
method call. If we add some boilerplate syntax to a program, the
result is an executable X10 program. X10 [5] is a modern, paral-
lel, distributed language intended to be very easily accessible to
Java programmers. Our objective is to present a clear and concise
formalization of the analysis on a simple imperative language that
captures the essence of standard parallelism constructs.

As our main contribution, we present a novel static analysis
which infers thetask-levelof a parallel program, i.e., the maxi-
mum number ofavailabletasks (i.e., not finished nor suspended)
which can be run simultaneously along any execution of the pro-
gram (provided that sufficient computing resources are available).
A starting point for our work is the observation that spawning par-
allel tasks can be regarded aseaourceconsumed by a program.
This leads to the idea of adapting powerful techniques developed in
resource analysis frameworks &gquentiaprograms [2, 9, 10, 20]
in order to obtain sound task-level Upper Bounds (UBs)an
allel programs. Such adaptation is far from trivial since, among
other things, the task-level of a program is noz@eumulativere-
source, but rather it can increase and/or decrease along the execu-
tion. This renders direct application of cost analysis frameworks for
accumulative resources (such as time, total memory consumption,
etc.) unsuitable. We present our novel analysis to accurately (over)-
approximate the task-level of a program in the following steps,
which are the main contributions of this work:

1. We first produce over-approximations of ttegal number of
tasks spawned along any execution of the program. This can be
done by lifting existing accumulative cost analyses developed
for sequential programs to the parallel setting. The results of
such analysis are sound w.r.t. any particular scheduling of tasks.

Secondly, we present a novel approach to approximatectle

(or maximum) ofalive tasks, a resource which is not accumu-
lative. The challenge here is to come up with a technique which
over-approximates the peak of alive tasks among all possible
states that might occur in any execution of the program.

. As a further step, we refine the previous approach and approx-
imate the peak oévailabletasks, i.e., we exclude those tasks
which are alive but suspended, thus resulting in smaller UBs.

. Then, we show how our task-level analysis can be improved by
first inferring theescaped taskBom a methodm, i.e., those
tasks that have been created during the execution ahd can
be available on return frorm. This improvement requires a

2.
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more complex analysis but, when doable, leads to strictly more We omit the code oinerge and only assume that it does not spawn
precise bounds than those in points 2 and 3. further tasks.

5. We report on a prototype implementation and experimentally 1 int A[];
evaluate it on a set of simplified versions of applications from

the X10 website that contain interesting parallelism patterns. void msort(int from, int to) {

if ( from < to ) {
mid=(from+to) /2;
finish {
async msort(from,mid);
async msort(mid+1,to);

2. Motivating Examples

In this section, we introduce by means of examples the main no-

tions that our task-level analysis over-approximates and show the

results that it can produce. These examples will also illustrate the

following applications of our analysis: (1) The task-level analysis

is useful for both understanding and debugging parallel programs. ,, }

For instance, our analysis can infer a task-level upper bound which

is larger (or smaller) than the programmer’s expectations. This can The total number of tasks spawned by a cadort(from,to) is

clearly help find bugs in the parallel program. Even more, the hounded by « (to— from + 1) — 2. This upper bound is obtained

analysis results would be “unbounded” when an instruction which by proving that, in both recursive calls, the number of elements to

spawns new tasks is (wrongly) placed within a loop which does pe sorted is decreased by half and, at each recursive call, two new

not terminate. (2) The results of our analysis are also useful for {55ks are spawned.

optimizing and finding optimal deployment configurations. For ex-  For this example, we infer that the peak of alive tasks and the to-

ample, when parallelizing the program, it is not profitable to have ta) number of tasks are identical. This is because the recursive calls

more processors than the inferred task-level. are performed within the scope of tiienish construct. Thus, in

21 Total Tasks versus Alive Tasks the worst case, all tasks can be alive gimultaneously (though the
i ) ) . current task always blocks after launching the asyncronous calls).

The first example implements a parallel version of the Gauss elim- \yie can improve the analysis result by proving that, at each re-

ination algorithm. An invocatiogaussian(n) applies the algorithm cursive call, after spawning the two asyncronous tasks, the cur-

i
o © o N O oA W N

merge(from, to, mid);

on the matrix defined by the elemeifits;) where0 < i,j < n—1. rent process becomemctiveby suspending its execution until the
It assumes that the two-dimensional arfays initialized with in- spawned tasks terminate. By taking advantage of this knowledge,
teger values. our analysis accurately infers that the pealaedilabletasks is at
tint A[][]; mostto — from + 1, which is almost half of the one we obtained
2 for alive tasks.
3 void gaussian(int n)
4 for(int k=0;k<n;k++) { 2.3 Improving Available Tasks with Escape Information
Z finish for(int j=k+1;j<n;j++) async { The following example simulates a pre-order traversal of a binary
7 Alk,j]=A[k,j]/Alk,k]; tree where, for each nodewe spawn two tasksactivity_a (i) and
8 activity_b (i). We omit the code ofactivity_a and activity_b and
9 only assume that they do not spawn further tasks. The binary tree
10 finish for(int i=k+1l;i<n;i++) async { is represented using the array such that the nodes at positions
1 for(int j=k+1;j<n;j++) _ 2xi+1 and2xi+2, respectively, are the left and right children of the
12 Alijl=AlT J1=ALT k]*A[k, ] node at position. The first argument is the depth of the tree. The
i } method is supposed to be called wiifm,0).
15 } 1int A [] y

2

The total number of tasks spawned by this method is quadratic on 3 veid f(int n, int i) {
n, since at each iteration of the outer loop, each of the inner loops ¢ if (1 n >0 ) {
spawn (in the worst case)— 1 tasks. Note that the loop at line 11~ *® finish { . )
does not spawn any task. Our analysis accurately infers that at most ° async ac : v .'Ey *E (i):
1+ 2n(n — 1) tasks will be spawned along an execution. ; } async activity-b(i);

Due to the use ofinish at line 6, it is ensured that before 0 f(n—1,2%i+1);
entering the loop at line 10, all asyncronous tasks spawned at line 6 ,, f(n—1,2%i42);
are finished. Likewise, all asyncronous tasks spawned by the loop 11
at line 10 must be finished before starting the next iteration of the 12 }
outer loop. Hence, in any execution of this program, the maximum
number of tasks that can be alive simultaneouslyp@ak of alive By accumulating all asyncronous calls spawned along the execu-
taskg corresponds to the maximum of the tasks spawned by the tion, our analysis generates the upper bo2rd 2™ — 1) + 1. As
loops at lines 6 and 10. Our analysis precisely infers that the peak expected, the obtained bound is exponential on the depth of the tree
of alive tasks isu. due to the two recursive calls which traverse all nodes in the tree.

Observe that both the total and the peak number of alive tasks For the peak of available tasks, we can greatly improve the task-
are useful pieces of information for the programmer. E.g., by com- level bound. In particular, we can see that the asyncronous calls in
paring the inferred upper bounds with the programmer’s expecta- lines 6 and 7 will be finished at line 8 before the recursive calls.

tions we might detect bugs, as explained above. This means that, given a call 1 there are no tasks thascape

. . from its scope, i.e., all tasks created during a calf {directly or
2.2 Alive Tasks versus Available Tasks transitively) are terminated before the execution of the call finishes.
The following method implements the merge-sort algorithm. It The use of escape information during our analysis allows proving
sorts the elements of the arraybetween the indexesom andto. that there cannot be more tharprocesses simultaneously avail-
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able. From the above examples, it should become clear that an upgaussian(n) <k:=0, for(k,n) fora(k,n,i)<—i>mn

per bound on the available tasks can be of utmost important for for(k,n) < k> n fora(k,m,i) i < mn,

finding an optimal deployment configuration. For instance, in the for(k,n) <k < n, Ji=k+1

above example, it is not worth having more tl2aprocessors when ji=k+1, async{fors.;(k,n,j,i)},

executing the code. finish{for;(k,n,j)},i:=k+1, ii=i 4+ 1,

finish{fors(k, n,i)}, fora(k,n, i)

3. A Simplified X10-like Language K=k + 1.for(K',n) fors 1 (k,n,j,1) <5 >n
: . fOT’](lﬂ,TL,j)(-jzn fOTZ-I(k7n7]7Z)<_]§n7

We develop our analysis on a representative subset of X10 [S], 4o, (k, n, ) < j < n, ops(k, 7, 1),

a parallel _Ianguage which uses the Java pr_ogramming language async{op; (k,7)} =i+ 1,

for the serial subset of the language and relies oratheic and §'i=j + 1,for; (k,n,5") fors.1(k,n, 5", i)

finish constructs for parallelism. From X10, we take:

* a Turing-complete core consisting of conditionals, loops, as- Figure 1. Recursive Intermediate Representation of Ex. in Sec. 2.1
signments and a single one-dimensional array;

e methods and method calls; . .

as arguments those variables that are input values to the scope
e theasync andfinish statements. of the loop; (2) by means of guards, we distinguish the case of
exiting the loop (first rule) and entering the loop (second rule);
(3) iteration is transformed into recursion. Note that, in the IR,
the finish construct is applied on a single instruction. If in the
foriginal program there are several instructions within the scope of
the finish, we just create an auxiliary procedure which contains
them all.

We omit many features from X10, including places, distributions
and clocks. Indeed, our simplified language is very similar to Feath-
erweight X10 [13] (FX10 for short), a subset of X10 which has
been proposed to develop formal analyses on X10. For the sake o
expressiveness, our language is richer than FX10 in that it allows
input parameters in method calls (in order to handle recursion),
has no restriction on conditional statements and has local variables.3 o Syntax
Note that the treatment of object fields is similar and simpler than

array accesses and the details are omitted for simplicity. A programin our intermediate representation consists of a set of
procedureseach of them defined by one or mgrearded rulesin
3.1 The Recursive Intermediate Representation the following, given any entity;, we usea to denote the sequence
1,...,an, n > 1. A procedurep with k input arguments is

As customary in the formalization of static analyses for realistic g

languages, we develop our analysis on an intermediate representa-

tion (IR) of the language which allows us to provide a clearer and  7ule = p(Z) < g,b1,...,bn

more concise formalization of the analysis. Similar representations ¢~ true | L b s i,

are used by other static analysis tools for Java (and Java bytecode) 1~ ;"rjﬁ[lﬂ ‘[ye]mgfgfi I') “1(;; ;La:af;n‘cgg;i)eg Tlel;ﬁig(x)}

and .NET, e.g., those in [2, 7, 8, 17, 21]. Essentially, all these tools op :> < |<|>|=]#

work by first building the control flow graph (CFG) from the pro- N - . . o

gram and then representing each block of the CFG in the interme-'Wherep(z) is the headof the rule; ¢ its guard, which specifies

diate language (in our IR by means of rules). conditions _for th(_e rule to _be appl_lcabIeL .. .,bﬁ the body of
Methods in the original program are represented by one or the rule;d is an integery is a variable nameqy(z) is a proce-

more proceduresin the IR. A procedure is defined by one or dure callasync{q(z)} is an asynchronous procedure call, and

moreguarded ruls. The translation is as follows. Given a method, finish{g(z)} is a synchronized call. All variables are of type

each block in its CFG is represented by means of a guarded rule.Integer. Computations work on a single shared memory given by

Guards state the conditions under which the corresponding block & On€-dimensional array of integer values namedith indexes

can be executed (they contain the conditions in the edges of the? - - - N — 1, with N > 0. When the execution of the program begins,

CFG). Each rule contains as arguments those variables that ard"Put values are loaded into all elements of the array. Thus, the ar-

input values to the block. When the block has more than one @y A is fully initialized for all indices) . . .N — 1. In the examples,

successor in the CFG, we just createsatinuation procedurand to simplify the presentation, we use several (possibly multidimen-

a corresponding call in the rule. Blocks in the continuation will be Sional) arrays.

in turn defined by means of guarded rules (with mutually exclusive 3.3 Semantics

conditions). As a result, all forms of iteration in the program are ] ] )

represented by means wmfcursivecalls. The array remains as a  Fig. 2 shows theoperational semanticfor X10 programs in the

global variable in the IR. The process for obtaining the intermediate |R. It adapts the small-step operational semantics of FX10 [13]

representation from X10 programs is completely automatic. Since 0 our syntax and extends it to handle the additional language

itis identical as for Java programs, we will not go into the technical features discussed in the beginning of the section. It uses the binary

details of the transformation (we refer to any of [2, 7, 8, 17, 21]) Operator|| in the semantics o&sync and > in finish. A state
but just show the intuition by means of an example. in the semantics is a pair, consisting of the state of the array and a

tree which describes the code executing. Namely, it is of the form
ExAmMPLE 3.1. Fig. 1 shows the intermediate representation for (A ; 7') whereA : {0,...,N — 1} — Z s an array of integers and
the example in Sec. 2.1. This example shows an interesting aspect of " is an execution tree defined by the following grammar:
the IR: loops are detected and extracted in separate procedures as L L
described in [18]. It can be observed that within the ryleissian Tw=TeT|T | T|((id, instr, tv)
we invoke procedurgor, which corresponds to the for-loop in  whereid € N is a unique task identifieinstr is a sequence of in-
line 4. Similarly, when entering the remaining for-loops in the structions (as in Sec. 3.2) anat)V—Z is a partial map from the set
program, we have calls in the IR to corresponding procedures of variable name¥ to integers. The symbeldenotes an empty se-
defining them. By looking at the two rules defining procedure guence of instructions. We refer to the tugid, b, tv) as a record.
we observe the more interesting aspects of our IR: (1) rules contain Executions start from ainitial stateof the form(4; (1, p(%), tv)),

efined by rules which adhere to this grammar:
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(1) (&5 (id,e,tv)ypT) — (A; 1) ™ . b = zi=erp, v= eva.l(e:{cp, tv, A)
(A T1) — (A5 TY) (A5 (id, b - instr, tv)) — (A; (id, instr, tv[x — v]))

(2) (A7 T1[>T2)—> (Al, T{DTQ) (8) bEA[ZB]ZZEIEp, v = eval(emp,tv,A), Tl:t’U(.T),O S n SN_ 1
(A; (id, b - instr, tv)) — (Aln — v]; (id, instr, tv))
(3) (A; <id,€, t’U> H T) — (A; T) bEQ(j)/rEQ(‘iJ) <_g7b17"' 7bk <L P7 eval(gv t’UlvA) = true

(9) tv'=tv U {xj — tv(z;) |Va; € T} U{y — 0| Yy € vars(r) \ T’}
(A (id, b - instr, tv)) — (A; (id, b1 -+ - by - instr, tv'))
b = async{q(z)}, id'is anew identifier not used before

(4) (a; T (id, e, tv)) — (A; T)

(A3 Ty) = (A5 TY) (10) & Gd, b - instr, t0)) — (& (id,q(@), o) || (id, instr f0))
O wnIm S @ T b= finish{q(ia’:)}
(6) (A; To) — (A" T3) (11) (&5 (id, b - instr, tv)) — (&5 (id, q(T), tv) > (id, instr, tv))
AT [[T2) » (W5 T [[ T3)

Figure 2. Operational semantics

wherep is the entry procedure name, and the elements of the array The following derivation starts from the entry procedpre

Aandtv(z;) forall z; € z are initialized to some initial values. We (A; (1,p, tv)) =

often viewtv as a sef{z1 — V1, T v, Where eachr; (A: (1,async{q} - £inish{q} - async{gz} - g, tv)) —
is a variable name and eachis an integer value. Executions are (A; (2,q1,tv) || (1, £inish{q} - async{qa} - g3, tv)) —
regarded agracesof the form (Ao ; 7o) — (A1 ; ) — - — (a5 (2,q1,t) || (1,q tv) > (1,async{qa} - g3, tv)) —
(A, ; T,), sometimes denoted &8 ; 7o) —* (An ; Tn). Infi- (A; (2,q1,t0) ||
nite traces correspond to non-terminating executions. We say that a (1,async{qs} - async{qs}, tv) > (1,async{q2} - g3, tv)) —
call to a proceduréocally terminates if the execution of its proce- (A5 (2,q1, tv) |
dure’s body terminates, and we say thaglibally terminates if, in ({3,494, tv) || (1, async{gs}, tv)) > (1, async{q2} - g3, tv)) —
addition, all tasks it spawns terminate. (©) (A5 (2,q1,t0) || .

The left side of Fig. 2 contains the rules for dealing with paral- (1<\3; %% t) || (4, % tvi l <1:f: tv)) > (1, async{q2} - g3, tv)) —
lelism and synchronization. A treg > T, gives the semantics of (A5 (2,q1, tv) || (L, € tv) > (1,async{gz} - g3, tv))

(4 : _ () (A5 (2,q1, tv) || (1,async{ga} - g3, tv))

thefinish statement. As shown in rule (2); must complete ex (A (2 qu.t0) || (5.qo. t0) || (1, qs. tv)) —
ecution before moving on to executifg, i.e., 71 must be reduced (A; (2, q1, t0) || (5, q2, t) || (1, e, t0)) —=* (A; (2,¢, tv))

to (id, ¢, tv) in order to apply rule (1). Rules (3) and (4) remove

trees whose evaluation is completely finished whereas (5) and (6) ) o )

allow choosing tree} or T» non-deterministically, i.e, thereisno  Note that sincey, is invoked asynchronously, can continue to

assumption on the task scheduler. the next statement at the third step. However, when executing
The right side of Fig. 2 contains the rules for executing instruc- finish{q} at step four, the execution gfblocks untilg and its

tions. Intuitively, rule(7) accounts for all instructions in the se- asynchronous sub-tasks andgs ier_mlnate and then resumes exe-

mantics which perform arithmetic and assignment operations. We Cution at program pointh (state(*) in the derivation).

assume thatwval(ezp, tv, A) returns the evaluation of the arith-

metic expressiorezp using the values of the corresponding vari- R . .

ables fromév anda in the standard way. Moreover, we assume that 4. Concrete Definitions in Task Parallelism

it fails when trying to access with an index which is not in the  we first introduce basic notions related to the task parallelism of
range0 ... N — 1. Rule(8) deals with assignments anAfter eval- a program. They define the notions that later we want to approxi-
uatingezp, the resulting value is stored on the positieiix) of A. mate by means of static analysis. First, we introduce two auxiliary
Rule (9) corresponds to invoking a proceduer). It first takes a  definitions to count the number of tasks that can be simultaneously
ruler for ¢. The notation<(,, means that we rename the rule vari-  glive at some program point (i.e., in a given state) by means of the
ables so they will not clash with names already in the domaimof ~ following functionalive(7") which goes from the set of trees to the

Then, we generate a new variable mappinigivhich extendgv by set of task identifierg(N):

initializing the formal parameterg’ with the values of the actual ) . .

parameters, and the remaining variables notit{i.e., vars(r)\z) alive(Ty || T2) = alive(Ty) Ualive(T3)

to 0. We require that the guarglof rule r is evaluated tarue (as alive(T' > T) = alive(T1) U alive(T3)

usual, the valuesrue andfalse can be simulated with and nond alive((id, e, tv)) = @_

integers). Rulé10) takes care of thesync statement by spawning alive((id, instr, tv)) = {id}

a new task to be executed in parallel. Finally, rll¢) introduces  Note that when a task does not have any further instruction to
the operator> to wait for the termination of the task, when we  execute (third equation) it is not counted as alive. In the above
have af inish instruction. function, we are including tasks which @ckedi.e., they are not

) available in the configuration. For instance, for the configuration
EXAMPLE 3.2. As an example of how the semantics works, con- (g, || S,) > S5 such thatS; contains instructions to be processed,
sider the following simple program. For brevity, we ignore the code  function alive returns3. However, the semantics of ensures

of proceduresys, ..., g5 and assume that do not make directly or  that S is blocked, i.e., it remains suspended until the execution
indirectly any asynchronous call and they do not modify the array. of §;, || S, finishes. The next functiomvailable counts only
p < async{q },finish{q}, ®async{q=}, g3 the available tasks, i.e., alive tasks which are not suspended. It is
q + async{q},async{qs} defined aslive except foravailable(T} > T>) = available(T7).
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Given atrace = To—1T1— - - - — T, by relying on the above two e Finally, in Sec. 5.3, we briefly describe the process of obtaining
functions, we can define the following three important notions that safe over-approximations from the generated equations by rely-
our analysis approximates: ing on existing solvers of recurrence equations (e.g., computer

. ) | r tems like MAXIMA).
e total(t). First, we define theaotal number of spawned tasks algebra systems like )

along an execution, which corresponds to the total number of 5 1 \/ajue Abstraction

tasks that have been started, asal(t) = | UL, alive(T3)|. ) ) o .
Function |.| returns the number of elements in the set. Note Given arule, we describe how to generate a conjunction of (linear)
that this resource is accumulative, i.e., it always increases asCconstraints (sometimes written as a set) that describes the relations

the execution proceeds. be_tween the_values (_)f th_e rule’s variables at the different program
i ) . L points. This information is later used, for example, to understand
* peakAlive(t). Another interesting notion is the peak alive how values change when moving from one procedure to another.
tasks, i.e., the maximum number of tasks that are simultane- |n particular, it is essential for bounding the number of recursive
ously started and not finished. FunctiosakAlive(t) is defined calls (i.e., iterations of loops). The following definition presents the
asmax({[alive(To)l, . . ., [alive(T) }|). Note that this resource  pqtion ofvalue abstractiorior a given rule. In order to distinguish

is not accumulative but, instead, it can increase or decrease afyeqyeen the values of a variable at different program points (inside
any state. Thus, in order to approximate it, we need to observe 3 gsingle rule), rules are given in static single assignment (SSA)
all possible states and capture the maximum. form [3] (array accesses remain the same). The rules in Fig. 1
peakAvailable(t). Similarly, we can define the peak afail- and in all remaining examples are in SSA. This transformation is
able tasks along the execution, i.e., the maximum number of straightforward for a single rule, as rules do not have branching.
tasks that are simultaneously started and not blocked. Thus,

peakAvailable(t)=max({|available(Ty)|, . .., [available(T},)|}. ~ DEFINITION 5.1. Give aruler=p(z)<-g, b ..., bn in SSA form,

We also refer to this notion as thask-levelof the execution.  its value abstraction i, = a(g) A a(b1) A -+ - A a(bn) Where:

The above definitions are over-approximations of the task-level. 4 a(y:=exp) = (y=exp) if exp is a linear expression which
EXAMPLE 4.1. By applying the above definitions to the deriva- does not involve arrays; _
tion of Ex. 3.2, we havetotal(t) = 5, peakAlive(t) = 4 and * afexpr op expa)=(expr op exps) if op € {>,>, <, <, =}
peakAvailable(t) = 3. Note that the difference betwepeakAlive andezp; andexps are linear expressions not involving arrays;
andpeakAvailable occurs in the state labelg@>). This is because * a(b) = true, otherwise.
after creating the new tasks, the task on whiéhexecuting is alive . o . . .
but blocked (hence not available). For simplicity, the above abstraction ignores non-linear arithmetic

expressions by abstracting the corresponding instructions1{o
known(true). Non-linear arithmetic can be handled at the price of

5. Static Inference of Spawned Tasks , , , IEH € ;
performance using non-linear constraints manipulation techniques.

In the previous section, our definitions assume a trace. Thus, the
program must be executed on a specific input in order to compute EXAMPLE 5.2. Applying Def. 5.1 on the second rule fofdr” of
them. Now, we want to approximate these notistetically, i.e., Fig. 1, we obtain as value abstractidh<n, k'=k+1, j=k', i=k'}.
without executing the program and the results must be valid for ] o o ]
any input. In particular, by concentrating on the total number of AN important point in the above abstraction is that we ignore data
is to infer p"* (z), calledtask-level UB forp, which is a function in thg context of parallel execution nghout requiring any other
on the input data op which guarantees that, given any concrete SoPhisticated heap analysis for ensuring theéependencg2?]
valuesa for z, the total number of tasks spawned along the trace P€tween tasks. Let us see an example.
t resulting from executing(v) (i.e., total(t)) is smaller than or
equal top™ (%) plus one for the main task.

Since the total number of tasks is an accumulative resource
in principle, any of the existing resource analysis frameworks that

ExampPLE 5.3. Consider the following program and observe that
whenm invokes the two asynchronous calls, procedyremnd ¢
"might run in parallel depending on the underlying task scheduler.

count a particular form of accumulative resource (e.g., instructions m(”) = ?SYnc{p(Ov n)}, async{q(n)}
[9], total memory [10, 20], etc.) can be adapted to the total number ~ P(é;n) <= i > A[n] L }
of spawned tasks by counting the instructiegnc that spawn p(i,n) < i < A[n},async{q},i":=i + 1, p(i’, n)

tasks and ignoring the rest. However, all above approaches assume q(n) < Aln]:=A[n] +1,q(n)

sequential programs and must be lifted to the parallel setting. This By looking at a complete executionofn isolation (i.e., if it does

is because, as we will see later, the resulting UB can be affected bynot interleave with that of), we can see that a sound upper bound
the fact that tasks can run in parallel. Among all possible resource on the number of tasks spawnedbig A[n] (the value of the:-the
analysis frameworks, we rely on the most traditional one, proposed element of the array). However, if the executiornydhterleaves
by Wegbreit [23] in 1975. As our first contribution, we adapt such with that of p, the execution op might not terminate since
approach to infer sound results on the task-level in a parallel setting. increases the value afn]. Hence, the previous UB is not correct.

The next three subsections present the main steps of the analysis: ) ) _ _ _
Our practical solution to avoid the above problem is to abstract in-

structions that involve global data (i.e., array elements) to unknown
(i.e., true). In the above case, the guard A[n] is abstracted to
rue and thus the value afin] is lost. Hence, we will fail to infer an
B for the method. This does not mean that we cannot analyze pro-
grams that use the array but rather that, when the UB is a function
e Given the value relations, we proceed in Sec. 5.2 to define, of an array element, we cannot find it. In Sec. 11, we discuss how to
for our intermediate language, how to generate the recurrenceimprove the accuracy by relying on a may-happen-in-parallel anal-
equations which define the spawned tasks. ysis [13] in combination with a field-sensitive value analysis [14].

e First, we discuss in Sec. 5.1 the value abstraction component
which is used to infer inter-relations between the program vari-
ables. Interestingly, by losing information about the global data
during the value abstraction, we are able to ensure soundness o
the overall UBs in the parallel setting.
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It should be noted that the value abstraction is an independent com-
ponent in our analysis and we can improve it regardless of the next

components that we will introduce in what follows. Also, when

improving it, we can integrate advanced value abstractions for data

structures such as path-length [17] or term value [15],
modification to the rest of our analysis.

without any

5.2 Generation of Recurrence Equations

Given a programP and the value abstractions of its rules, a re-
currence relation (RR) system fét is generated by applying the
following definition to all rules inP.

DEFINITION 5.4 (total number of spawned taskgptr be a rule
of the formp(z) « g,b1,...,b, andy, its corresponding value
relations as computed in Def. 5.1. Then,tit¢al tasks equatiois
defined a®(z) = X7, T (bi), -, Where

Tb)=1+¢q(z) ifb=async{q(®)}
if b= finish{q(Z)}

T =q@) i
T(b) = q(z) if b= q(z)
T(b)=0 otherwise

The set of equations generated for a program P is denoteizhy

ExamPLE 5.5. By applying the above definition to the rules of
Fig. 1, we obtain the following set of total tasks equations:

gaussian(n) = for(k, n) {k=0}

for(k,n) =0 {k > n}

for(k,n) = {k<n, k' =k+1,
for (n,j)—&—forg(hn,z')—i—for(k',n) Jj= k/>i = k/}

fors(n, ) = 0 {j > n}

Jori(n,j) =1 + fors(n,j") {i<nj =j+1}

fora(k,n,i) =0 {i>n}

fora(k,n, i) = {i<n,i =i+1,
1+ forz.1(n,j) + forz(k,n,i’) j=k+1}

fora.i(n,j) =10 {7 >n}

forz.1(n,j) = forz.1(n,j") {i<nj =j+1}

It can be observed that the only two rules in Fig. 1 that contain
async constructs are the second onegfim; and fors. Their cor-
responding equations accumulate “1” for such instruction. Note
that the value relations of the variables in the original are trans-
formed into linear constraints attached to the equations. They con-
tain the applicability conditions for the rules and how the values of
variables change when moving from one procedure to another.

5.3 Closed-form Upper Bounds

Once the RR are generated, a worst-case cost analyzer uses
solver in order to obtain closed-form UBs, i.eqQst expressions
without recurrences. Traditionally, cost analyzers rely on computer

fora(k,n,i) = n—i € O(n—1)

fori(n,j) = n—j € O(n—j)

for(k,n) = 2(n—k)(n—k—1) € O((n—k)?)

gaussian(n) = 2n(n—1) € O(n?)

As intuitively explained in Sec. 2.1, the UB we obtain for the method
gaussian is quadratic onn. We will add1 to this UB in order to
count the task in which the initial cafaussian(n) is executing.

The following theorem states the soundness of our total tasks anal-
ysis. Proofs of all technical results are available from the program
chair. Intuitively, the main issue is to prove that derivations in the
equations of Def. 5.4 capture all possible paths in a parallel execu-
tion of the program (and due to the overapproximation in the value
abstraction possibly more). We then assume soundness of the UBs
solver. In what follows, in all theorems we add one to the UB in
order to count the current task on which the initial call is executing.

THEOREMS.7. Let P be a program with an entry proceduye
and letp*’ (%) be a closed-form UB function fer(z) € Sp. Then,
for any tracet = (Ao ; (1,p(7), tv)) —* (A, ; Ty), it holds that
p** () + 1 > total(t), wherev = tv(Z).

6. Inference of Peak of Alive Tasks

In the previous section, we have (over)approximated|, an ac-
cumulative resource, as defined in Sec. 4. In this section, our goal is
to (over)approximatelive, a non-accumulative resource that might
increase and/or decrease along execution. The main difference is
that in accumulative resources one can reason by overapproximat-
ing the resource consumption in the final state of execution. This
is what traditional RR (like those in Def. 5.4) do. However, in
the case of non-accumulative resources, one aims at observing and
(over)approximating all those states of the execution in which the
consumption can be maximal and not only the final one. For our
particular task-level resource, an important observation is that it
is enough to approximate the behavior of the program around the
program points in which the number of tasks can decrease, i.e.,
when reaching &inish construct. Such points can be detected
syntactically from the program. The key idea of our analysis is to
introduce aisjunctionbetween the task-level just before executing
eachfinish and the task-level reached after thienish resumes
execution. The peak is the maximum of both disjuncts.

EXAMPLE 6.1. Consider again the simple program of Ex. 3.2. The
peak of alive tasks can be defined as the maximum of the following
iyvo scenarios:

1. the peak beforéinish{q} (globally) terminatesone task for
async{qi }, plus the peak of alive tasks @{which is2); and

algebra systems (e.g., MAXIMA, MAPLE) to solve the obtained 2 the peak aftefinish is executedone task forasync{q:},

recurrences. Advanced systems develop their own solvers [2, 19]

in order to be able to handle more types of RR. The technical

details of the process of obtaining a cost expression from the RR

since it might still be alive at program poird, plus 1 task
for async{q2} and0 tasks forgs.

are not explained in the paper as our analysis does not require alm}\Iote that, in scenario 2, we do not count the tasks created during

modification to this part. Given a RR %), we denote by’ (z) its
closed-form UB, which is a cost expression of the following form
(and could be obtained by any of the above solvers):

e = g|nat(D)|log(nat(l) 4+ 1)|e * e|e + ¢|2"| max(e, . . . , €)

wheregq is positive rational numbel, is a linear expression, and
functionnat is defined asat(v)= max({v, 0}).

ExAmMPLE 5.6. As usual, UBs are obtained by first computing UBs
for cost relations which do not depend on any other relation and
continuing by replacing the computed UBs on the equations which
call such relations. The solutions for the equations in Ex. 5.5 are:

forz.1(n,7) =0 € O(1)
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the execution of sincefinish guarantees that the are not alive
when we reach program poird. In summary, the peak of alive
tasks when executingis 3. Additionally, we add for the task in
whichp is running. This coincides what we have obtained in Ex. 4.1
for a particular trace.

The next definition presents a novel form of RR, calpedk alive
equations which overapproximates the peak of alive tasks along
any execution of the program, according to the above intuition.

DEFINITION 6.2 (peak alive equationsl.et » be a rulep(z) «+
g,b1,...,b, in SSA form and,. its corresponding value abstrac-
tion. Then, its equation for the peak of alive taskspi{s)
P(b1,...,bn), ¢r, whereP is defined recursively as follows:
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Pe) =0
P(b-instr) =1+ §(z) + P(instr) if b=async{q(2)}
P(b - instr) = max(q(z), P(instr)) if b=finish{q(z)}
P(b- instr) = §(z) + P(instr) if b=q(2)
P(b - instr) = P(instr) otherwise

The set of equations generated for a program P is denotesi-by

Intuitively, in the above definition, we transform the peak of tasks
for a given (non-empty) sequence of instructions by transforming
each instruction as follows: (i) when we find async{q(%)} state-
ment, we accumulate one new task plus the peak of tasks create
along the execution af(Z); (i) in the case ot inish{q(Z)}, since

it is ensured that all tasks created during the executioy{of are

terminated, we introduce a disjunction between the peak reached

during the execution ofi(z) and the peak reached after execut-
ing the finish{q(Z)}, and we then take the maximum of both;
(iii) when we find a method call, we accumulate the peak reached
during its execution with the continuation; and (iv) the remaining
instructions are ignored.

ExAMPLE 6.3. Let us first see the equations generated for the
simple program of Ex. 6.1. Note that, as there are no variables,
all ¢, are simplytrue and we ignore them.

p=1+q +max(qd,1+ G2+ qs)

G=1+aG¢+1+4¢s
In order to solve the above recurrence equations,iihwex oper-
ator can be eliminated by transforming the equation into several
non-deterministic equations, e.g(z) = A + maxz(B,C), ¢ is
translated into the two equationiz) = A + B,y andp(z) =

A + C, . Solving the above equations, under the assumption that

gi = 0forall1 < i < 5,resultsing = 2 andp = 3. In this
example, the accuracy gain sfive w.r.t. total is just constant but,

in general, it can be much larger. For instance, the peak alive equa-
tions for the example in Sec. 2.1 are:

gqusﬁsian(n) =for(k,n) {k =0}
for(k,n) =0 {k > n}

for(k, n) =max{for, (n,5), max{for,(k,n, i), for(k', n)}}
{(k<n k' =k+1,j=Fk,i=Fk}

fori(n,j)=0 {j >n}
fory(n.g) = 1+ for, (n, ') G <nj =i+1)
fory(kym, i) =0 {t >n}

for,(k,n,i) = 1 + for,(k,n,i')
{i<ni=i+1,j=k+1}
The solution ofor, andfor, is like in Ex. 5.6. After replacing them
in the second equation g&fr and eliminating the max operator, we
obtain as peak alive UB igaussian(n) = n — 1 € O(n). Note
that the total UB was quadratic on. Again, we should add to
count the task in which the initial call is being executed.

The following theorem states that the solutions of the equations
generated in Def. 6.2 is a sound approximatiop@&fkAlive.

THEOREM6.4. Let P be a program with an entry proceduye
and letp"’(z) be a closed-form UB functiop(z) € Sp. Then,
for any tracet = (Ao ; (1,p(Z), tv)) = (A, ; Ty) it holds that
" (0) 4+ 1 > peakAlive(t) wheret = tv (7).

7. Inference of Peak of Available Tasks

The goal of this section is to accurately approximsdgkAvailable,
or the task-level. Note that, when inferripgakAlive in the pre-

vious section, we have possibly included tasks which are alive but

ExAMPLE 7.1. Consider again the program of Ex. 6.1, and recall
that in 6.3 we have inferred that the peak of alive taskg is 3
plus 1 for the task in whichp is running. However, during the
execution ofp the maximum number of tasks which are available
(not suspended) is onB. This is because the task in whighis
executing is available until it reaches the callync{gs} since, as
soon asgs is invoked asynchronously,suspends and has to wait
for g4 andgs to terminate before proceeding to program paibt

n general, it is not easy to detect when tasks are blocked, since
ften the execution ofinish{p(Z)} spawns asynchronous calls
but it also executes other instructions. Therefore, the task in which
finish{p(Z)} is executed does not always block. However, in all
cases where the last instructiong(ft) (directly or indirectly) is
an asynchronous call, we have a behavior similar to the above
example, i.e, at the same time the task in whidmish{p(z)}
is executing suspends and another task starts. Many of these cases
can be syntactically detected and treated in a special way. In what
follows, we explain how to handle a common pattern in which
p(z) consists of only asynchronous calls, as in the above example.
In order to keep the task-level analysis as simple as possible, we
introduce an auxiliary construct in the language, caliédish-
-async, by means of the following program transformation.

DEFINITION 7.2 (finish-async). Given an instruction of the

form finish{p(Z)}, if p is defined by a single rule of the form
p(Z) «+ async{qi(Z1)},...,async{q.(T»)}, then we replace

the original instruction byfinish—async{qi(Z1),...,¢n(Tn)}.

The use of well-known transformations suchuwagoldingcan be
useful to detect the above pattern in the presence of intermediate
rules and be able to apply the transformation more often. For
instance, if we havep < q,...,async{g,} whereq is defined

asq <« async{qi}, we need to unfold the body af in order to

be able to introduce theinish-async construct. Luckily, this is

a well-studied problem in the field of partial evaluation [12] and
existing unfolding strategies can be directly applied in our context.

DEFINITION 7.3 (peak available equations)he peak available
equations extend those of Def. 6.2 with the additional case

P(b - instr) = max(n—1+ G1(Z1)+ - - - +Gn(Zn), P(instr))
b q”(z_n)}

which is applied wheh = finish—async{qi(%1),...
EXAMPLE 7.4. Applying thefinish-async transformation on
the program of Ex. 3.2 results in the following rule for

p < async{q },finish—async{qs, g5}, async{q2}, g3

Applying Def. 7.3, we obtain the following peak available equation:
p =1+ ¢ + mazx(l+ da+ ds,1+ G2 + g3). Solving the above
equation, under the assumption that= 0 forall 1 < i < 5,
results inp = 2. Therefore, at mosp + 1 = 3 tasks might be
available at the same time during the executiop.ofhe accuracy
achieved by the peak available equations w.r.t. the alive ones can
be large. For instance, consider the (intermediate representation
for the) program in Sec. 2.2:

msort(from, to) < from > to.

msort(from, to) < from < to,mid:=(from + to)/2,
finish—async{msort(from, mid), msort(mid + 1,to)}
merge(from, to, mid).

suspended. For the applications discussed in Sec. 2, it is_ c_IearIyWe show at the top (resp. bottom) the equations obtained by apply-
useful to exclude suspended tasks from the peak, e.g., it is NOting Def. 6.2 (resp. Defs. 7.2 and 7.3) to the above rules:

worth allocating suspended tasks in a separate processor.
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The following definition presents a novel form of equations, called

msort(f,t) =0 {f >t} combined peak/escamguations, which allows us to take advan-
msort(f, ¢) = max(ade(f, ¢, m'), metge(f, t, m')) tage of static knowledge on the escaped tasks in order to approxi-
CAF <t 2ml=f4 ) . , ) mate the peak of tasks more accurately. Given a procedethe
atz(f, t, m) = 2 + msort(f, m) + msort(m’,¢) {m’=m+ 1} main idea is to set up two kinds of relations: (i peak equations
msort(f,t) =0 {f >t} ) . p(z): which define the peak of tasks reached during the execution
msort(f, t) = max(1 + msort(f, m’) + msort(m", ¢), of p and (2)the escaped equationgz): which define the escaped
(<t 27;’35;9;(’;’ '; Z,/)): w4 1) tasks from a call ty(z). The definition for both relations is mutu-

ally recursive, as the next definition shows.
As pointed out in Sec. 2.2, the solution for the equations at the top
is2x(t— f+1)—2, while for the ones at the bottom(is— f +1).
Clearly, the available tasks are a more useful piece of information
when deciding how to distribute execution.

DEFINITION 8.3 (combined peak/escape equatiohst » be a
rule andy, its corresponding value abstraction as in Def. 6.2. The
combined peak and escapeduations forr consist of itsescape
equationp(z) = 1", £(bi), ¢r, where:

The following theorem states the soundness of Def. 7.3 when rules E(b) =1+ 4(z) if b = async{q(z)}

are transformed using Def. 7.2. E(b) = §(2) if b= q(2)

THEOREM7.5. Let P be a program with an entry proceduge £(b)=0 otherwise

and letp"* (z) be a closed-form UB function fgi(z) € Sp where and its peak equatiom_/hich is obt_a!ned like the peak equations
Sp is the cost relation generated after applying tfi¢nish- of Def. 7.3, but changing the definition Bf whenb = ¢(%) by:

-async transformation of Def. 7.2. Then, for any trace P(b - instr) = max(4(2), 4(2) + P(instr))
(ho 5 (1,p(Z),tv)) =" (An ; Ty) it holds thatp™’ (v) + 1

peakAvailable(t), wherev = tv(Z).

IVl

In the above definition, it can be observed that the peak equation
modifies thatin Def. 6.2 in the case of a synchronous call in order to
- take advantage of the escape information, as intuitively explained
8. Combining Escaped and Peak in Ex. 8.1. In the escape equation, we distinguish three cases: (i)
In this section, our goal is to improve the accuracy of the UBs we When we find an asynchronous call, then such new task can escape
have obtained in the previous sections by exploiting knowledge on plus thepeakof tasks created along the execution of such call; (ii)
which tasksescaperom the scope of a method call. The number for synchronous calls, we count those that escape from such call;
of escaped tasks from a (normal) method eglt), refers to the (i) the remaining instructions map to zero, e.g., when we have a
number of tasks created during the execution of the method call finish{s}, we are sure that nothing escapes from it.

q(z) which are alive after its local termination. Such escaped tasks

could start its execution even after the local terminatiory (af). EXAMPLE 8.4. The solution of the following combined equations,

N\ i btained by applying Def. 8.3 to the rules of the program of Ex. 8.1,

For an asynchronous calkync{p(z)}, in principle, the number ~ © ; X ‘ )
of tasks that can escape from it is bounded by its peak, and for coArrespondsAto the |mpAroved peak UB, as explained in EAX' 8.1:
finish{q(z)} is 0 by definition. In this section, we use this infor- ™ =maz(p,p+1+4q) om=p+l4+q
mation in order to improve the peak of alive and available tasks. = 1+ {d+mar(2+¢+¢+4,1+4) p= 1+4¢+1+¢
We use the term peak of tasks to refer to any of the former, alive or In the above example, the accuracy gain is constant. In general, it
available. Let us see the idea on a simple example. can be much larger (even in complexity order). Let us consider the
program in Sec. 2.3 whose intermediate representation is:

f(n,i) < n<0

f(n,i) <= n > 0,finish—async{activity_a(i), activity b(1)},

. L . N
h +- async{q}, async{q}, async{q) e G R

and assume that procedugedoes not make any asynchronous call. RS AN o
By applying Def. 7.3, we generate the following equations for the BY @Pplying Def. 8.3, we obtain the equations:

ExAamMPLE 8.1. Consider the following program:

m < p, Dasync{q}
p + async{q}, finish{h}, async{q}

peak of available tasks: f(n,i) =0 {n <0}
m=p+1+4 fln,i) = f(n',i") + f(n',i") @
p= 1+g+max(2+q+q+d1+4q) fn,i)y=0 {n<0}
which, sincej = 0, are solved tan = 4. Let us explain how we f(n,i) = max(1 + activity_a(i) + activity_b(i),

can refine this peak usingscapenformation. While the peak of max(f(n', '), f(n',i') + max(f(n',i"), f(n,i")))
available tasks when executipgs 3, only 2 tasks caascapdrom
p, i.e., they can be available after program poit The idea is that

®
wherep = {n > 0,n' =n— 1,7 =2+ 1,i" = 2i+ 2} and

the peak of available tasks for (ignoring the task in whichn is activity-a(i) = activity b(i) = 0. Sincef(n, i) is solved to
being executed) can be defined as the maximum of the following®: the solution to the combined equations is the constaitote
two scenarios: (a) the peak of the tasks while execuirg (b) that, applying Def. 5.4, we obtain the exponential bound shown
those that escape fromplus 1 for the last asynchronous call im. in Sec. 2.3. Applying either Def. 6.2 or Def. 7.3, we obtain an
This will lead to3, which improves the previous peak by one. exponential bound as well. Hence, the solution of the combined

] ) . . equations is much more accurate than all previous solutions.
Let us first specify the notion of escaped tasks from a given call

more precisely in the concrete setting. Soundness of our analysis guarantees thahd p correctly ap-

. . proximate the peak of available tasks and the escaped tasks, respec-
DEFINITION 8.2 (escaped tasksConsider a programP with tively. The proof relies on an auxiliary notion of escaped tasks from
an entry procedure and a tracet = (A ; (1,p(2), tv)) — a given state and derivation that appears in the technical report.

(A, ; T,) such thatp locally terminates before reachin,.
The number of escaped tasks frgmin ¢ can be defined as  THEOREMS8.5. Let P be a program with an entry proceduge
escape(p) = |available(7},)|. Letq be a procedure defined iR. Letp"*(z) be a closed-form UB
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functions for its combined peak/escape equations. Given a trace | # Ut/ Ua/ U ms || # Ut/ Ua/ Ug ms
t = (Ko ; (1,p(Z), tv)) =~ (A, ; Ty). Then, it holds that 1| (N=1)(log N) 500 |[2] 61441N+61441 | 310
b . _ N—1)(log N 310 61441N+61441 | 270
;- 13112(11) + 1 i peakAv:ﬂabIe(t), and ( N)(—lg ) 750 61569 460
(P7(@) 4 1 2 escape(h) 3] 2048N+48 240 | 4 2N 1] 200
wherev = tv(z) 2048N +48 260 2N T 210
Note that if we use the peak equations as in Def. 6.2 instead of point 1024N +16 390 2" -1 240
1 above it holds that"® () + 1 > peakAlive(t). 5[ EN3+3kN2+EN | 830 [[6] 50+ (2N+2000) | 170
As final remarks, we note that the further accuracy of the com- (k+1)N°+(k+2) | 760 max(N,2000) | 170
bined equations might come at the price of efficiency and effec- N2+ (k+1)N
tiveness of the analysis. As regards efficiency, the fact that fdr eac (k+1)N°+(2k+3) | 1340 max (N, 2000) 210
procedure in the program, we generate two sets of equations, in- N24(k+3)N+1
creases the analysis time. In particular, the time required to infer
closed-form UBs for the combined relations almost doubles. As re- ! 10N, Vs 2680 || 8 N 100
ards effectiveness, the fact that the definition of both relations are 10N, V2 1780 ! 20
g ' NiN> + N; | 2850 1 140

mutually recursive, can make their solving process more complex.

Nonetheless, the mutual recursion disappears in many cases, e.g.,

when the number of escaped tasks is constant. Also, certain solverd=igure 3. Benchmarks: ArraySum (1044 Kb); 2CUDABIackSc-

(e.g., MAXIMA) have support to solve such mutual recursions. Af-

holes (1071); 3FRASimpleDist (1134); 4Fib (717); 5HeatTrans-

ter solving the equations, it is guaranteed that the obtained UBs arefer_v1 (1913); 6KMeansDist (1124); 7PLU_2_C (8520); 8 method

strictly more precise than those obtained in the previous sections.

9. Experimental Results

We have implemented our technique within the XY&ystem
which can be tried out online at: XY¥Z The experimental eval-

print()V of SparseMat (706).

at each iteration, this number is multiplied by 2 (starting from 1)

until a thresholdV is reached (note that the X10 code uses a con-

stant threshold 4, so that our version is more general). The result

uation has been performed on a set of small but representative X10js that at mostV — 1 tasks are spawned at each one ofltheN

programs (available at the X10 websitetp: //x10-1ang.org/)

iterations, thus giving a total dflog V) * (N — 1) tasks. On the

containing interesting parallelism patterns. In the implementation, other hand, due to thinish statement which wraps each iteration,
we are using existing tools developed for Java to translate the origi- only N — 1 tasks can be alive at the same time, thus giving such

nal program into the IR. Hence, the examples have been first (man-
ually) translated from X10 to Java, preserving the structure of the
parallelism. From that point on, the analysis is fully automatic.

number adUg. Note that the analysis of alive tasks needs escape
information in order to get the linear upper bound.
In CUDABIackScholes, N is the number of iterations which is

In some cases, purely numerical computations have been omittethe constant 512 in the original program. It can be seentthais

(e.g., most of the methatbBlackScholes in CUDABIlackScholes),

bigger since every iteration is performed insidérésh statement,

and pieces of code which manipulate data structures in away whichsg that tasks created during different iterations cannot be alive at
is specific to X10 have been simplifiellaceshave been ignored.  the same time. The UB dfib is exponential due to the structure of
Also, to avoid virtual invocations that often complicates the analy- the recursive calls. The total number and the peak number of tasks

sis, we sometimes translate cailsn() tom (o) and definenasa  are equal and indeed all spawned tasks can be alive at the same
static method. Finallyasync andfinish statements have been sim-  tjme.

ulated (only for the sake of the analysis, not for actual execution | HeatTransfer_v1, the UB is cubic in all cases, since the op-
in the JVM) by means of special method calls. Overall, the trans- erations on the data structures spawn a cubic number of tasks, and

lation is done in such a way that the Java code arguably preservesy|| tasks are alive at the same time since a siffigieh statement

the properties of interest.

The results are shown in Table 3. For each benchmark, the total
numberU~ of spawned tasks (first row), the pellls of alive tasks
(second row), and the refined petl¢ of alive tasks using escape
information (third row) are inferred. We do not add “1” for the
initial task. Most examples take as input a numerical parameter,
which is a measure of the size of the problem. Such parameter
is usually taken to be the length of the arraySafing which is
the argument of thenain method, and appears a§ in the table
(V1 and N if the input consists of two parameters). In two cases,
U, is better tharlU+y, meaning that the analysis was able to infer
that some tasks cannot be alive at the same time. Moretker,
improves onU, in four examples, thus showing the usefulness of

wraps this part of the code. The difference (not in the order of mag-

nitude) between the UBs is due to the different loss of precision

when solving the equations. The number of iterations of the loop

in run() depends on the guarttlta<epsilon on double numbers.
This bound is unpredictable by most state-of-the-art static analyz-
ers, so that the program has been modified in order to iterate a fixed
number of timesk. In KMeansDist, the constants 2000 and 50 ap-
pearing in the UBs are constants in the X10 code, whilés a
measure of the size of the data structure. In the biggest example
PLU_2_C, considering escape information allows to remove a con-
stant factor 10 which is a constant in the program code.

Overall, we argue that, although our implementation is still
prototypical, the experiments show that our approach is promising

considering escape information. The table also shows (next to theang leads to reasonably accurate task-level UBs in a fully automatic

name of the benchmark) the size in Kbytes of ttass file, and
the total analysis timens in milliseconds.
Let us explain the results in more det#ikraySum is interesting

because the sum is executed many times under different assump

tions about the number of tasks which are going to be spawned:

1the system name is withheld
2the actual link is withheld
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10. Related Work

As regards the language, several subsets of X10 ([1, 13, 16}) hav
been defined in the literature. For the parallel part of the language,
the subset we consider is like [13]. The sequential part is richer
than [13], as not handling recursion would be an important restric-
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tion for the task-level analysis. The majority of related work around the program point of interest @®, then we can modify Def. 6.2 as
the X10 language is on may-happen-in-parallel analysis [13] and follows: we addP(@ - instr) = 1 + P(instr) and remove the
determinism [22]. This is a complementary line of research to ours, constantl from the equation cdsync. Such information is useful,
in the sense that we can use the results of such analyses to improvéor example, when at the program point of interest, we query a
ours, as we will discuss in Sec. 11. server. The obtained UB indicates the load of the server.
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