
Task-Level Analysis for a Language
with async-finish Parallelism

E. Albert P. Arenas S. Genaim
SIC, Complutense University of Madrid, E-28040

Madrid, Spain
{elvira,puri,samir}@clip.dia.fi.upm.es

D. Zanardini
Technical University of Madrid, E-28660

Boadilla del Monte, Madrid, Spain
{damiano}@clip.dia.fi.upm.es

Abstract
The task-levelof a program is the maximum number of tasks
that can beavailable(i.e., not finished nor suspended) simultane-
ously during its execution for any input data. Static knowledge of
the task-level is of utmost importance for understanding and de-
bugging parallel programs as well as for guiding task schedulers.
We present, to the best of our knowledge, the first static analy-
sis which infers safe and precise approximations on the task-level
for a language withasync-finish parallelism. In parallel lan-
guages,async andfinish are the basic constructs, respectively,
for spawning tasks and for waiting until they terminate. They are
the core of modern, parallel, distributed languages like X10. Given
a (parallel) program, our analysis returns atask-level upper bound,
i.e., a function on the program’s input arguments that guarantees
that the task-level of the program will never exceed its value along
any execution. Our analysis provides a series of useful (over)-
approximations, going from the total number of tasks spawned in
the execution up to an accurate estimation of the task-level.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: [Concurrent Programming]Distributed programming,
Parallel programming; D.3 [Programming Languages]: [Formal
Definitions and Theory]

General Terms Algorithms, Languages, Theory, Verification

Keywords Parallelism, Static Analysis, Resource Consumption,
X10, Java

1. Introduction
As embedded systems increase in number, complexity, and diver-
sity, there is an increasing need of exploiting new hardware archi-
tectures, and scaling up to multicores and distributed systems built
from multicores. This brings, to the embedded systems area, wide
interest in developing techniques that help in understanding, opti-
mizing, debugging, finding optimal schedulings, etc., for parallel
programs. Two of the key constructs for parallelism areasync and
finish. Theasync{s} statement is a notation for spawning tasks,
namely, tasks can run in parallel with any statement that follows
it. The finish{s} statement waits for termination ofs and of all

[Copyright notice will appear here once ’preprint’ option is removed.]

async statement bodies started while executings. In order to de-
velop our analysis, we consider a Turing-complete language with a
minimal syntax and a simple formal semantics. A program consists
of a collection of methods that all have access to a shared array.
The body of the method is a sequence of statements. Each state-
ment can be an assignment, conditional, loop,async, finish, or
method call. If we add some boilerplate syntax to a program, the
result is an executable X10 program. X10 [5] is a modern, paral-
lel, distributed language intended to be very easily accessible to
Java programmers. Our objective is to present a clear and concise
formalization of the analysis on a simple imperative language that
captures the essence of standard parallelism constructs.

As our main contribution, we present a novel static analysis
which infers thetask-levelof a parallel program, i.e., the maxi-
mum number ofavailable tasks (i.e., not finished nor suspended)
which can be run simultaneously along any execution of the pro-
gram (provided that sufficient computing resources are available).
A starting point for our work is the observation that spawning par-
allel tasks can be regarded as aresourceconsumed by a program.
This leads to the idea of adapting powerful techniques developed in
resource analysis frameworks forsequentialprograms [2, 9, 10, 20]
in order to obtain sound task-level Upper Bounds (UBs) onpar-
allel programs. Such adaptation is far from trivial since, among
other things, the task-level of a program is not anaccumulativere-
source, but rather it can increase and/or decrease along the execu-
tion. This renders direct application of cost analysis frameworks for
accumulative resources (such as time, total memory consumption,
etc.) unsuitable. We present our novel analysis to accurately (over)-
approximate the task-level of a program in the following steps,
which are the main contributions of this work:

1. We first produce over-approximations of thetotal number of
tasks spawned along any execution of the program. This can be
done by lifting existing accumulative cost analyses developed
for sequential programs to the parallel setting. The results of
such analysis are sound w.r.t. any particular scheduling of tasks.

2. Secondly, we present a novel approach to approximate thepeak
(or maximum) ofalive tasks, a resource which is not accumu-
lative. The challenge here is to come up with a technique which
over-approximates the peak of alive tasks among all possible
states that might occur in any execution of the program.

3. As a further step, we refine the previous approach and approx-
imate the peak ofavailable tasks, i.e., we exclude those tasks
which are alive but suspended, thus resulting in smaller UBs.

4. Then, we show how our task-level analysis can be improved by
first inferring theescaped tasksfrom a methodm, i.e., those
tasks that have been created during the execution ofm and can
be available on return fromm. This improvement requires a

Submitted for LCTES 2011 1 2010/12/16

more complex analysis but, when doable, leads to strictly more
precise bounds than those in points 2 and 3.

5. We report on a prototype implementation and experimentally
evaluate it on a set of simplified versions of applications from
the X10 website that contain interesting parallelism patterns.

2. Motivating Examples
In this section, we introduce by means of examples the main no-
tions that our task-level analysis over-approximates and show the
results that it can produce. These examples will also illustrate the
following applications of our analysis: (1) The task-level analysis
is useful for both understanding and debugging parallel programs.
For instance, our analysis can infer a task-level upper bound which
is larger (or smaller) than the programmer’s expectations. This can
clearly help find bugs in the parallel program. Even more, the
analysis results would be “unbounded” when an instruction which
spawns new tasks is (wrongly) placed within a loop which does
not terminate. (2) The results of our analysis are also useful for
optimizing and finding optimal deployment configurations. For ex-
ample, when parallelizing the program, it is not profitable to have
more processors than the inferred task-level.

2.1 Total Tasks versus Alive Tasks

The first example implements a parallel version of the Gauss elim-
ination algorithm. An invocationgaussian(n) applies the algorithm
on the matrix defined by the elements(i, j) where0 ≤ i, j ≤ n−1.
It assumes that the two-dimensional arrayA is initialized with in-
teger values.

1 i n t A [] [] ;
2

3 vo id gau s s i a n (i n t n) {
4 f o r (i n t k=0;k<n ; k++) {
5

6 f i n i s h f o r (i n t j=k+1; j<n ; j++) async {
7 A[k , j]=A[k , j] /A[k , k] ;
8 }
9

10 f i n i s h f o r (i n t i=k+1; i<n ; i++) async {
11 f o r (i n t j=k+1; j<n ; j++)
12 A[i , j] :=A[i , j]−A[i , k]∗A[k , j]
13 }
14 }
15 }

The total number of tasks spawned by this method is quadratic on
n, since at each iteration of the outer loop, each of the inner loops
spawn (in the worst case)n− 1 tasks. Note that the loop at line 11
does not spawn any task. Our analysis accurately infers that at most
1 + 2n(n− 1) tasks will be spawned along an execution.

Due to the use offinish at line 6, it is ensured that before
entering the loop at line 10, all asyncronous tasks spawned at line 6
are finished. Likewise, all asyncronous tasks spawned by the loop
at line 10 must be finished before starting the next iteration of the
outer loop. Hence, in any execution of this program, the maximum
number of tasks that can be alive simultaneously (orpeak of alive
tasks) corresponds to the maximum of the tasks spawned by the
loops at lines 6 and 10. Our analysis precisely infers that the peak
of alive tasks isn.

Observe that both the total and the peak number of alive tasks
are useful pieces of information for the programmer. E.g., by com-
paring the inferred upper bounds with the programmer’s expecta-
tions we might detect bugs, as explained above.

2.2 Alive Tasks versus Available Tasks

The following method implements the merge-sort algorithm. It
sorts the elements of the arrayA between the indexesfrom andto.

We omit the code ofmerge and only assume that it does not spawn
further tasks.

1 i n t A [] ;
2

3 vo id msort (i n t from , i n t to) {
4 i f (from < to) {
5 mid=(from+to) /2 ;
6 f i n i s h {
7 async msort (from , mid) ;
8 async msort (mid+1, to) ;
9 }

10 merge (from , to , mid) ;
11 }
12 }

The total number of tasks spawned by a callmsort(from,to) is
bounded by2∗ (to−from+1)−2. This upper bound is obtained
by proving that, in both recursive calls, the number of elements to
be sorted is decreased by half and, at each recursive call, two new
tasks are spawned.

For this example, we infer that the peak of alive tasks and the to-
tal number of tasks are identical. This is because the recursive calls
are performed within the scope of thefinish construct. Thus, in
the worst case, all tasks can be alive simultaneously (though the
current task always blocks after launching the asyncronous calls).
We can improve the analysis result by proving that, at each re-
cursive call, after spawning the two asyncronous tasks, the cur-
rent process becomesinactiveby suspending its execution until the
spawned tasks terminate. By taking advantage of this knowledge,
our analysis accurately infers that the peak ofavailabletasks is at
mostto− from+ 1, which is almost half of the one we obtained
for alive tasks.

2.3 Improving Available Tasks with Escape Information

The following example simulates a pre-order traversal of a binary
tree where, for each nodei, we spawn two tasks:activity a (i) and
activity b (i). We omit the code ofactivity a and activity b and

only assume that they do not spawn further tasks. The binary tree
is represented using the arrayA, such that the nodes at positions
2∗i+1 and2∗i+2, respectively, are the left and right children of the
node at positioni . The first argumentn is the depth of the tree. The
method is supposed to be called withf (n,0).

1 i n t A [] ;
2

3 vo id f (i n t n , i n t i) {
4 i f (n > 0) {
5 f i n i s h {
6 async a c t i v i t y a (i) ;
7 async a c t i v i t y b (i) ;
8 }
9 f (n−1 ,2∗ i +1) ;

10 f (n−1 ,2∗ i +2) ;
11 }
12 }

By accumulating all asyncronous calls spawned along the execu-
tion, our analysis generates the upper bound2 ∗ (2n − 1) + 1. As
expected, the obtained bound is exponential on the depth of the tree
due to the two recursive calls which traverse all nodes in the tree.
For the peak of available tasks, we can greatly improve the task-
level bound. In particular, we can see that the asyncronous calls in
lines 6 and 7 will be finished at line 8 before the recursive calls.
This means that, given a call tof, there are no tasks thatescape
from its scope, i.e., all tasks created during a call tof (directly or
transitively) are terminated before the execution of the call finishes.
The use of escape information during our analysis allows proving
that there cannot be more than2 processes simultaneously avail-

Submitted for LCTES 2011 2 2010/12/16

able. From the above examples, it should become clear that an up-
per bound on the available tasks can be of utmost important for
finding an optimal deployment configuration. For instance, in the
above example, it is not worth having more than2 processors when
executing the code.

3. A Simplified X10-like Language
We develop our analysis on a representative subset of X10 [5],
a parallel language which uses the Java programming language
for the serial subset of the language and relies on theasync and
finish constructs for parallelism. From X10, we take:

• a Turing-complete core consisting of conditionals, loops, as-
signments and a single one-dimensional array;

• methods and method calls;

• theasync andfinish statements.

We omit many features from X10, including places, distributions
and clocks. Indeed, our simplified language is very similar to Feath-
erweight X10 [13] (FX10 for short), a subset of X10 which has
been proposed to develop formal analyses on X10. For the sake of
expressiveness, our language is richer than FX10 in that it allows
input parameters in method calls (in order to handle recursion),
has no restriction on conditional statements and has local variables.
Note that the treatment of object fields is similar and simpler than
array accesses and the details are omitted for simplicity.

3.1 The Recursive Intermediate Representation

As customary in the formalization of static analyses for realistic
languages, we develop our analysis on an intermediate representa-
tion (IR) of the language which allows us to provide a clearer and
more concise formalization of the analysis. Similar representations
are used by other static analysis tools for Java (and Java bytecode)
and .NET, e.g., those in [2, 7, 8, 17, 21]. Essentially, all these tools
work by first building the control flow graph (CFG) from the pro-
gram and then representing each block of the CFG in the interme-
diate language (in our IR by means of rules).

Methods in the original program are represented by one or
more proceduresin the IR. A procedure is defined by one or
moreguarded rules. The translation is as follows. Given a method,
each block in its CFG is represented by means of a guarded rule.
Guards state the conditions under which the corresponding block
can be executed (they contain the conditions in the edges of the
CFG). Each rule contains as arguments those variables that are
input values to the block. When the block has more than one
successor in the CFG, we just create acontinuation procedureand
a corresponding call in the rule. Blocks in the continuation will be
in turn defined by means of guarded rules (with mutually exclusive
conditions). As a result, all forms of iteration in the program are
represented by means ofrecursivecalls. The array remains as a
global variable in the IR. The process for obtaining the intermediate
representation from X10 programs is completely automatic. Since
it is identical as for Java programs, we will not go into the technical
details of the transformation (we refer to any of [2, 7, 8, 17, 21])
but just show the intuition by means of an example.

EXAMPLE 3.1. Fig. 1 shows the intermediate representation for
the example in Sec. 2.1. This example shows an interesting aspect of
the IR: loops are detected and extracted in separate procedures as
described in [18]. It can be observed that within the rulegaussian
we invoke procedurefor , which corresponds to the for-loop in
line 4. Similarly, when entering the remaining for-loops in the
program, we have calls in the IR to corresponding procedures
defining them. By looking at the two rules defining procedurefor ,
we observe the more interesting aspects of our IR: (1) rules contain

gaussian(n)←k :=0 , for(k ,n) for2 (k ,n, i)← i ≥ n
for(k ,n)← k ≥ n for2 (k ,n, i)← i < n,
for(k ,n)←k < n, j :=k + 1
j :=k + 1 , async{for2 .1 (k ,n, j , i)},
finish{for1 (k ,n, j)},i :=k+1 , i ′:=i + 1 ,
finish{for2 (k ,n, i)}, for2 (k ,n, i

′)
k ′:=k + 1 ,for(k ′,n) for2 .1 (k ,n, j , i)← j ≥ n

for1 (k ,n, j)← j ≥ n for2 .1 (k ,n, j , i)← j ≤ n,
for1 (k ,n, j)← j < n, op2 (k , j , i),
async{op1 (k , j)} j ′:=j + 1 ,
j ′:=j + 1 ,for1 (k ,n, j

′) for2 .1 (k ,n, j
′, i)

Figure 1. Recursive Intermediate Representation of Ex. in Sec. 2.1

as arguments those variables that are input values to the scope
of the loop; (2) by means of guards, we distinguish the case of
exiting the loop (first rule) and entering the loop (second rule);
(3) iteration is transformed into recursion. Note that, in the IR,
the finish construct is applied on a single instruction. If in the
original program there are several instructions within the scope of
thefinish, we just create an auxiliary procedure which contains
them all.

3.2 Syntax

A program in our intermediate representation consists of a set of
procedures, each of them defined by one or moreguarded rules. In
the following, given any entitya, we usēa to denote the sequence
a1, . . . , an, n ≥ 1. A procedurep with k input arguments̄x is
defined by rules which adhere to this grammar:
rule ::= p(x̄) ← g, b1, . . . , bn

g ::= true | exp1 op exp2
b ::= y:=exp | A[y]:=exp | q(x̄) | async{q(x̄)} | finish{q(x̄)}

exp ::= y | d | A[y] | exp−exp | exp+exp | exp∗exp | exp/exp
op ::= > | < | ≤ | ≥ | = | 6=

wherep(x̄) is the headof the rule;g its guard, which specifies
conditions for the rule to be applicable;b1, . . . , bn the body of
the rule;d is an integer;y is a variable name;q(x̄) is a proce-
dure call,async{q(x̄)} is an asynchronous procedure call, and
finish{q(x̄)} is a synchronized call. All variables are of type
integer. Computations work on a single shared memory given by
a one-dimensional array of integer values namedA with indexes
0 . . . N−1, with N > 0. When the execution of the program begins,
input values are loaded into all elements of the array. Thus, the ar-
rayA is fully initialized for all indices0 . . . N− 1. In the examples,
to simplify the presentation, we use several (possibly multidimen-
sional) arrays.

3.3 Semantics

Fig. 2 shows theoperational semanticsfor X10 programs in the
IR. It adapts the small-step operational semantics of FX10 [13]
to our syntax and extends it to handle the additional language
features discussed in the beginning of the section. It uses the binary
operator‖ in the semantics ofasync and ⊲ in finish. A state
in the semantics is a pair, consisting of the state of the array and a
tree which describes the code executing. Namely, it is of the form
(A ; T) whereA : {0, . . . , N − 1} 7→ Z is an array of integers and
T is an execution tree defined by the following grammar:

T ::= T ⊲ T | T ‖ T | 〈id, instr , tv〉

whereid ∈ N is a unique task identifier,instr is a sequence of in-
structions (as in Sec. 3.2) andtv :V7→Z is a partial map from the set
of variable namesV to integers. The symbolǫ denotes an empty se-
quence of instructions. We refer to the tuple〈id, b̄, tv〉 as a record.
Executions start from aninitial stateof the form(A ; 〈1, p(x̄), tv〉),

Submitted for LCTES 2011 3 2010/12/16

(1)
(A ; 〈id, ǫ, tv〉 ⊲ T)→ (A ; T)

(2)
(A ; T1)→ (A′ ; T ′

1)
(A ; T1 ⊲ T2)→ (A′ ; T ′

1 ⊲ T2)

(3)
(A ; 〈id, ǫ, tv〉 ‖ T)→ (A ; T)

(4)
(A ; T ‖ 〈id, ǫ, tv〉)→ (A ; T)

(5)
(A ; T1)→ (A′ ; T ′

1)
(A ; T1 ‖ T2)→ (A′ ; T ′

1 ‖ T2)

(6)
(A ; T2)→ (A′ ; T ′

2)
(A ; T1 ‖ T2)→ (A′ ; T1 ‖ T

′

2)

(7)
b ≡ x:=exp, v = eval(exp, tv , A)

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, instr , tv [x 7→ v]〉)

(8)
b ≡ A[x]:=exp, v = eval(exp, tv , A), n = tv(x), 0 ≤ n ≤ N− 1

(A ; 〈id, b · instr , tv〉)→ (A[n 7→ v] ; 〈id, instr , tv〉)

(9)
b ≡ q(x̄), r ≡ q(x̄′)← g, b1, · · · , bk ≪tv P, eval(g, tv ′, A) ≡ true
tv ′=tv ∪ {x′

i 7→ tv(xi) | ∀x
′

i ∈ x̄′} ∪ {y 7→ 0 | ∀y ∈ vars(r) \ x̄′}
(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, b1 · · · bk · instr , tv

′〉)

(10)
b ≡ async{q(x̄)}, id′ is a new identifier not used before

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id′, q(x̄), tv〉 ‖ 〈id, instr , tv〉)

(11)
b ≡ finish{q(x̄)}

(A ; 〈id, b · instr , tv〉)→ (A ; 〈id, q(x̄), tv〉 ⊲ 〈id, instr , tv〉)

Figure 2. Operational semantics

wherep is the entry procedure name, and the elements of the array
A andtv(xi) for all xi ∈ x̄ are initialized to some initial values. We
often viewtv as a set{x1 7→ v1, · · · , xn 7→ vn} where eachxi

is a variable name and eachvi is an integer value. Executions are
regarded astracesof the form(A0 ; T0) → (A1 ; T1) → · · · →
(An ; Tn), sometimes denoted as(A0 ; T0) →

∗ (An ; Tn). Infi-
nite traces correspond to non-terminating executions. We say that a
call to a procedurelocally terminates if the execution of its proce-
dure’s body terminates, and we say that itglobally terminates if, in
addition, all tasks it spawns terminate.

The left side of Fig. 2 contains the rules for dealing with paral-
lelism and synchronization. A treeT1 ⊲ T2 gives the semantics of
thefinish statement. As shown in rule (2),T1 must complete ex-
ecution before moving on to executingT2, i.e.,T1 must be reduced
to 〈id, ǫ, tv〉 in order to apply rule (1). Rules (3) and (4) remove
trees whose evaluation is completely finished whereas (5) and (6)
allow choosing treesT1 or T2 non-deterministically, i.e, there is no
assumption on the task scheduler.

The right side of Fig. 2 contains the rules for executing instruc-
tions. Intuitively, rule(7) accounts for all instructions in the se-
mantics which perform arithmetic and assignment operations. We
assume thateval(exp, tv , A) returns the evaluation of the arith-
metic expressionexp using the values of the corresponding vari-
ables fromtv andA in the standard way. Moreover, we assume that
it fails when trying to accessA with an index which is not in the
range0 . . . N−1. Rule(8) deals with assignments onA. After eval-
uatingexp, the resulting value is stored on the positiontv(x) of A.
Rule(9) corresponds to invoking a procedureq(x̄). It first takes a
rule r for q. The notation≪tv means that we rename the rule vari-
ables so they will not clash with names already in the domain oftv .
Then, we generate a new variable mappingtv ′ which extendstv by
initializing the formal parameters̄x′ with the values of the actual
parameters̄x, and the remaining variables not inx̄ (i.e.,vars(r)\x̄)
to 0. We require that the guardg of rule r is evaluated totrue (as
usual, the valuestrue andfalse can be simulated with0 and non-0
integers). Rule(10) takes care of theasync statement by spawning
a new task to be executed in parallel. Finally, rule(11) introduces
the operator⊲ to wait for the termination of the task, when we
have afinish instruction.

EXAMPLE 3.2. As an example of how the semantics works, con-
sider the following simple program. For brevity, we ignore the code
of proceduresq1, . . . , q5 and assume that do not make directly or
indirectly any asynchronous call and they do not modify the array.

p← async{q1}, finish{q}, 1©async{q2}, q3
q← async{q4}, async{q5}

The following derivation starts from the entry procedurep:

(A ; 〈1, p, tv〉)→
(A ; 〈1, async{q1} · finish{q} · async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖ 〈1, finish{q} · async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖ 〈1, q, tv〉 ⊲ 〈1, async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖
〈1, async{q4} · async{q5}, tv〉 ⊲ 〈1, async{q2} · q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖
(〈3, q4, tv〉 ‖ 〈1, async{q5}, tv〉) ⊲ 〈1, async{q2} · q3, tv〉)→

(3) (A ; 〈2, q1, tv〉 ‖
(〈3, q4, tv〉 ‖ 〈4, q5, tv〉 ‖ 〈1, ǫ, tv〉) ⊲ 〈1, async{q2} · q3, tv〉)→∗

(A ; 〈2, q1, tv〉 ‖ 〈1, ǫ, tv〉 ⊲ 〈1, async{q2} · q3, tv〉)
(∗) (A ; 〈2, q1, tv〉 ‖ 〈1, async{q2} · q3, tv〉)

(A ; 〈2, q1, tv〉 ‖ 〈5, q2, tv〉 ‖ 〈1, q3, tv〉)→
(A ; 〈2, q1, tv〉 ‖ 〈5, q2, tv〉 ‖ 〈1, ǫ, tv〉)→∗ (A ; 〈2, ǫ, tv〉)

Note that sinceq1 is invoked asynchronously,p can continue to
the next statement at the third step. However, when executing
finish{q} at step four, the execution ofp blocks untilq and its
asynchronous sub-tasksq4 andq5 terminate and then resumes exe-
cution at program point1© (state(*) in the derivation).

4. Concrete Definitions in Task Parallelism
We first introduce basic notions related to the task parallelism of
a program. They define the notions that later we want to approxi-
mate by means of static analysis. First, we introduce two auxiliary
definitions to count the number of tasks that can be simultaneously
alive at some program point (i.e., in a given state) by means of the
following functionalive(T) which goes from the set of trees to the
set of task identifiers℘(N):

alive(T1 ‖ T2) = alive(T1) ∪ alive(T2)
alive(T1 ⊲ T2) = alive(T1) ∪ alive(T2)
alive(〈id, ǫ, tv〉) = ∅
alive(〈id, instr , tv〉) = {id}

Note that when a task does not have any further instruction to
execute (third equation) it is not counted as alive. In the above
function, we are including tasks which areblocked, i.e., they are not
available in the configuration. For instance, for the configuration
(S1 ‖ S2) ⊲ S3 such thatSi contains instructions to be processed,
function alive returns3. However, the semantics of⊲ ensures
that S3 is blocked, i.e., it remains suspended until the execution
of S1 ‖ S2 finishes. The next functionavailable counts only
the available tasks, i.e., alive tasks which are not suspended. It is
defined asalive except foravailable(T1 ⊲ T2) = available(T1).

Submitted for LCTES 2011 4 2010/12/16

Given a tracet ≡ T0→T1→· · ·→Tn, by relying on the above two
functions, we can define the following three important notions that
our analysis approximates:

• total(t). First, we define thetotal number of spawned tasks
along an execution, which corresponds to the total number of
tasks that have been started, as:total(t) = | ∪n

i=0 alive(Ti)|.
Function |.| returns the number of elements in the set. Note
that this resource is accumulative, i.e., it always increases as
the execution proceeds.

• peakAlive(t). Another interesting notion is the peak ofalive
tasks, i.e., the maximum number of tasks that are simultane-
ously started and not finished. FunctionpeakAlive(t) is defined
asmax({|alive(T0)|, . . . , |alive(Tn)}|). Note that this resource
is not accumulative but, instead, it can increase or decrease at
any state. Thus, in order to approximate it, we need to observe
all possible states and capture the maximum.

• peakAvailable(t). Similarly, we can define the peak ofavail-
able tasks along the execution, i.e., the maximum number of
tasks that are simultaneously started and not blocked. Thus,
peakAvailable(t)=max({|available(T0)|, . . . , |available(Tn)|}.
We also refer to this notion as thetask-levelof the execution.
The above definitions are over-approximations of the task-level.

EXAMPLE 4.1. By applying the above definitions to the deriva-
tion of Ex. 3.2, we have:total(t) = 5, peakAlive(t) = 4 and
peakAvailable(t) = 3. Note that the difference betweenpeakAlive
andpeakAvailable occurs in the state labeled(3). This is because
after creating the new tasks, the task on whichq is executing is alive
but blocked (hence not available).

5. Static Inference of Spawned Tasks
In the previous section, our definitions assume a trace. Thus, the
program must be executed on a specific input in order to compute
them. Now, we want to approximate these notionsstatically, i.e.,
without executing the program and the results must be valid for
any input. In particular, by concentrating on the total number of
spawned tasks first, given a methodp(x̄), the goal of our analysis
is to infer pub(x̄), calledtask-level UB forp, which is a function
on the input data ofp which guarantees that, given any concrete
valuesv̄ for x̄, the total number of tasks spawned along the trace
t resulting from executingp(v̄) (i.e., total(t)) is smaller than or
equal topub(v̄) plus one for the main task.

Since the total number of tasks is an accumulative resource,
in principle, any of the existing resource analysis frameworks that
count a particular form of accumulative resource (e.g., instructions
[9], total memory [10, 20], etc.) can be adapted to the total number
of spawned tasks by counting the instructionsasync that spawn
tasks and ignoring the rest. However, all above approaches assume
sequential programs and must be lifted to the parallel setting. This
is because, as we will see later, the resulting UB can be affected by
the fact that tasks can run in parallel. Among all possible resource
analysis frameworks, we rely on the most traditional one, proposed
by Wegbreit [23] in 1975. As our first contribution, we adapt such
approach to infer sound results on the task-level in a parallel setting.
The next three subsections present the main steps of the analysis:

• First, we discuss in Sec. 5.1 the value abstraction component
which is used to infer inter-relations between the program vari-
ables. Interestingly, by losing information about the global data
during the value abstraction, we are able to ensure soundness of
the overall UBs in the parallel setting.

• Given the value relations, we proceed in Sec. 5.2 to define,
for our intermediate language, how to generate the recurrence
equations which define the spawned tasks.

• Finally, in Sec. 5.3, we briefly describe the process of obtaining
safe over-approximations from the generated equations by rely-
ing on existing solvers of recurrence equations (e.g., computer
algebra systems like MAXIMA).

5.1 Value Abstraction

Given a rule, we describe how to generate a conjunction of (linear)
constraints (sometimes written as a set) that describes the relations
between the values of the rule’s variables at the different program
points. This information is later used, for example, to understand
how values change when moving from one procedure to another.
In particular, it is essential for bounding the number of recursive
calls (i.e., iterations of loops). The following definition presents the
notion ofvalue abstractionfor a given rule. In order to distinguish
between the values of a variable at different program points (inside
a single rule), rules are given in static single assignment (SSA)
form [3] (array accesses remain the same). The rules in Fig. 1
and in all remaining examples are in SSA. This transformation is
straightforward for a single rule, as rules do not have branching.

DEFINITION 5.1. Give a ruler≡p(x̄)←g, b1 . . . , bn in SSA form,
its value abstraction isϕr = α(g) ∧ α(b1) ∧ · · · ∧ α(bn) where:

• α(y:=exp) = (y=exp) if exp is a linear expression which
does not involve arrays;
• α(exp1 op exp2)=(exp1 op exp2) if op ∈ {>,≥, <,≤,=}

andexp1 andexp2 are linear expressions not involving arrays;
• α(b) = true, otherwise.

For simplicity, the above abstraction ignores non-linear arithmetic
expressions by abstracting the corresponding instructions toun-
known(true). Non-linear arithmetic can be handled at the price of
performance using non-linear constraints manipulation techniques.

EXAMPLE 5.2. Applying Def. 5.1 on the second rule for “for ” of
Fig. 1, we obtain as value abstraction{k<n, k′=k+1, j=k′, i=k′}.

An important point in the above abstraction is that we ignore data
which resides in the global arrayA. This provides us correctness
in the context of parallel execution without requiring any other
sophisticated heap analysis for ensuring theindependence[22]
between tasks. Let us see an example.

EXAMPLE 5.3. Consider the following program and observe that
whenm invokes the two asynchronous calls, proceduresp and q
might run in parallel depending on the underlying task scheduler.

m(n) ← async{p(0, n)}, async{q(n)}
p(i, n)← i ≥ A[n]
p(i, n)← i < A[n], async{q1}, i

′:=i+ 1, p(i′, n)
q(n) ← A[n]:=A[n] + 1, q(n)

By looking at a complete execution ofp in isolation (i.e., if it does
not interleave with that ofq), we can see that a sound upper bound
on the number of tasks spawned byp is A[n] (the value of then-the
element of the array). However, if the execution ofq interleaves
with that of p, the execution ofp might not terminate sinceq
increases the value ofA[n]. Hence, the previous UB is not correct.

Our practical solution to avoid the above problem is to abstract in-
structions that involve global data (i.e., array elements) to unknown
(i.e., true). In the above case, the guardi < A[n] is abstracted to
true and thus the value ofA[n] is lost. Hence, we will fail to infer an
UB for the method. This does not mean that we cannot analyze pro-
grams that use the array but rather that, when the UB is a function
of an array element, we cannot find it. In Sec. 11, we discuss how to
improve the accuracy by relying on a may-happen-in-parallel anal-
ysis [13] in combination with a field-sensitive value analysis [14].

Submitted for LCTES 2011 5 2010/12/16

It should be noted that the value abstraction is an independent com-
ponent in our analysis and we can improve it regardless of the next
components that we will introduce in what follows. Also, when
improving it, we can integrate advanced value abstractions for data
structures such as path-length [17] or term value [15], without any
modification to the rest of our analysis.

5.2 Generation of Recurrence Equations

Given a programP and the value abstractions of its rules, a re-
currence relation (RR) system forP is generated by applying the
following definition to all rules inP .

DEFINITION 5.4 (total number of spawned tasks).Let r be a rule
of the formp(x̄)← g, b1, . . . , bn andϕr its corresponding value
relations as computed in Def. 5.1. Then, itstotal tasks equationis
defined asp(x̄) = Σn

i=1T (bi), ϕr, where

T (b) = 1 + q(x̄) if b = async{q(x̄)}
T (b) = q(x̄) if b = finish{q(x̄)}
T (b) = q(x̄) if b = q(x̄)
T (b) = 0 otherwise

The set of equations generated for a program P is denoted bySP .

EXAMPLE 5.5. By applying the above definition to the rules of
Fig. 1, we obtain the following set of total tasks equations:
gaussian(n) = for(k ,n) {k=0}
for(k ,n) = 0 {k ≥ n}
for(k ,n) = {k < n, k′ = k + 1,

for1 (n, j)+for2 (k ,n, i)+for(k ′,n) j = k′, i = k′}
for1 (n, j) = 0 {j ≥ n}
for1 (n, j) = 1 + for1 (n, j

′) {j < n, j′ = j + 1}
for2 (k ,n, i) = 0 {i ≥ n}
for2 (k ,n, i) = {i < n, i′ = i+ 1,

1 + for2 .1 (n, j) + for2 (k ,n, i
′) j = k + 1}

for2 .1 (n, j) = 0 {j ≥ n}
for2 .1 (n, j) = for2 .1 (n, j

′) {j < n, j′ = j + 1}

It can be observed that the only two rules in Fig. 1 that contain
async constructs are the second ones infor1 andfor2 . Their cor-
responding equations accumulate “1” for such instruction. Note
that the value relations of the variables in the original are trans-
formed into linear constraints attached to the equations. They con-
tain the applicability conditions for the rules and how the values of
variables change when moving from one procedure to another.

5.3 Closed-form Upper Bounds

Once the RR are generated, a worst-case cost analyzer uses a
solver in order to obtain closed-form UBs, i.e.,cost expressions
without recurrences. Traditionally, cost analyzers rely on computer
algebra systems (e.g., MAXIMA, MAPLE) to solve the obtained
recurrences. Advanced systems develop their own solvers [2, 19]
in order to be able to handle more types of RR. The technical
details of the process of obtaining a cost expression from the RR
are not explained in the paper as our analysis does not require any
modification to this part. Given a RRp(x̄), we denote bypub(x̄) its
closed-form UB, which is a cost expression of the following form
(and could be obtained by any of the above solvers):

e ≡ q|nat(l)| log(nat(l) + 1)|e ∗ e|e+ e|2nat(l)|max(e, . . . , e)

whereq is positive rational number,l is a linear expression, and
functionnat is defined asnat(v)=max({v, 0}).

EXAMPLE 5.6. As usual, UBs are obtained by first computing UBs
for cost relations which do not depend on any other relation and
continuing by replacing the computed UBs on the equations which
call such relations. The solutions for the equations in Ex. 5.5 are:

for2 .1 (n, j) = 0 ∈ O(1)

for2 (k ,n, i) = n−i ∈ O(n−i)
for1 (n, j) = n−j ∈ O(n−j)
for(k ,n) = 2 (n−k)(n−k−1) ∈ O((n−k)2)
gaussian(n) = 2n(n−1) ∈ O(n2)

As intuitively explained in Sec. 2.1, the UB we obtain for the method
gaussian is quadratic onn. We will add1 to this UB in order to
count the task in which the initial callgaussian(n) is executing.

The following theorem states the soundness of our total tasks anal-
ysis. Proofs of all technical results are available from the program
chair. Intuitively, the main issue is to prove that derivations in the
equations of Def. 5.4 capture all possible paths in a parallel execu-
tion of the program (and due to the overapproximation in the value
abstraction possibly more). We then assume soundness of the UBs
solver. In what follows, in all theorems we add one to the UB in
order to count the current task on which the initial call is executing.

THEOREM 5.7. Let P be a program with an entry procedurep,
and letpub(x̄) be a closed-form UB function forp(x̄) ∈ SP . Then,
for any tracet ≡ (A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn), it holds that
pub(v̄) + 1 ≥ total(t), wherev = tv(x̄).

6. Inference of Peak of Alive Tasks
In the previous section, we have (over)approximatedtotal, an ac-
cumulative resource, as defined in Sec. 4. In this section, our goal is
to (over)approximatealive, a non-accumulative resource that might
increase and/or decrease along execution. The main difference is
that in accumulative resources one can reason by overapproximat-
ing the resource consumption in the final state of execution. This
is what traditional RR (like those in Def. 5.4) do. However, in
the case of non-accumulative resources, one aims at observing and
(over)approximating all those states of the execution in which the
consumption can be maximal and not only the final one. For our
particular task-level resource, an important observation is that it
is enough to approximate the behavior of the program around the
program points in which the number of tasks can decrease, i.e.,
when reaching afinish construct. Such points can be detected
syntactically from the program. The key idea of our analysis is to
introduce adisjunctionbetween the task-level just before executing
eachfinish and the task-level reached after thefinish resumes
execution. The peak is the maximum of both disjuncts.

EXAMPLE 6.1. Consider again the simple program of Ex. 3.2. The
peak of alive tasks can be defined as the maximum of the following
two scenarios:

1. the peak beforefinish{q} (globally) terminates:one task for
async{q1}, plus the peak of alive tasks ofq (which is2); and

2. the peak afterfinish is executed:one task forasync{q1},
since it might still be alive at program point1©, plus 1 task
for async{q2} and0 tasks forq3.

Note that, in scenario 2, we do not count the tasks created during
the execution ofq sincefinish guarantees that the are not alive
when we reach program point1©. In summary, the peak of alive
tasks when executingp is 3. Additionally, we add1 for the task in
whichp is running. This coincides what we have obtained in Ex. 4.1
for a particular trace.

The next definition presents a novel form of RR, calledpeak alive
equations, which overapproximates the peak of alive tasks along
any execution of the program, according to the above intuition.

DEFINITION 6.2 (peak alive equations).Let r be a rulep(x̄) ←
g, b1, . . . , bn in SSA form andϕr its corresponding value abstrac-
tion. Then, its equation for the peak of alive tasks isp̂(x̄) =
P(b1, . . . , bn), ϕr, whereP is defined recursively as follows:

Submitted for LCTES 2011 6 2010/12/16

P(ǫ) = 0
P(b · instr) = 1 + q̂(z̄) + P(instr) if b=async{q(z̄)}
P(b · instr) = max(q̂(z̄),P(instr)) if b=finish{q(z̄)}
P(b · instr) = q̂(z̄) + P(instr) if b=q(z̄)
P(b · instr) = P(instr) otherwise

The set of equations generated for a program P is denoted byŜP .

Intuitively, in the above definition, we transform the peak of tasks
for a given (non-empty) sequence of instructions by transforming
each instruction as follows: (i) when we find anasync{q(x̄)} state-
ment, we accumulate one new task plus the peak of tasks created
along the execution ofq(x̄); (ii) in the case offinish{q(x̄)}, since
it is ensured that all tasks created during the execution ofq(x̄) are
terminated, we introduce a disjunction between the peak reached
during the execution ofq(x̄) and the peak reached after execut-
ing thefinish{q(x̄)}, and we then take the maximum of both;
(iii) when we find a method call, we accumulate the peak reached
during its execution with the continuation; and (iv) the remaining
instructions are ignored.

EXAMPLE 6.3. Let us first see the equations generated for the
simple program of Ex. 6.1. Note that, as there are no variables,
all ϕr are simplytrue and we ignore them.

p̂ = 1 + q̂1 +max(q̂, 1 + q̂2 + q̂3)
q̂ = 1 + q̂4 + 1 + q̂5

In order to solve the above recurrence equations, themax oper-
ator can be eliminated by transforming the equation into several
non-deterministic equations, e.g.,p̂(x̄) = A + max(B,C), ϕ is
translated into the two equationŝp(x̄) = A + B,ϕ and p̂(x̄) =
A+ C,ϕ. Solving the above equations, under the assumption that
q̂i = 0 for all 1 ≤ i ≤ 5, results inq̂ = 2 and p̂ = 3. In this
example, the accuracy gain ofalive w.r.t. total is just constant but,
in general, it can be much larger. For instance, the peak alive equa-
tions for the example in Sec. 2.1 are:

ˆgaussian(n) = ˆfor(k ,n) {k = 0}
ˆfor(k ,n) = 0 {k ≥ n}
ˆfor(k ,n) =max{ ˆfor

1
(n, j),max{ ˆfor

2
(k ,n, i), ˆfor(k ′,n)}}

{k < n, k ′ = k + 1 , j = k ′, i = k ′}
ˆfor

1
(n, j) = 0 {j ≥ n}

ˆfor
1
(n, j) = 1 + ˆfor

1
(n, j ′) {j < n, j ′ = j + 1}

ˆfor
2
(k ,n, i) = 0 {i ≥ n}

ˆfor
2
(k ,n, i) = 1 + ˆfor

2
(k ,n, i ′)

{i < n, i ′ = i + 1 , j = k + 1}

The solution ofˆfor1 and ˆfor2 is like in Ex. 5.6. After replacing them
in the second equation of̂for and eliminating the max operator, we
obtain as peak alive UB is ˆgaussian(n) = n − 1 ∈ O(n). Note
that the total UB was quadratic onn. Again, we should add1 to
count the task in which the initial call is being executed.

The following theorem states that the solutions of the equations
generated in Def. 6.2 is a sound approximation ofpeakAlive.

THEOREM 6.4. Let P be a program with an entry procedurep,
and let p̂ub(x̄) be a closed-form UB function̂p(x̄) ∈ ŜP . Then,
for any tracet ≡ (A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn) it holds that
p̂ub(v̄) + 1 ≥ peakAlive(t) wherev̄ = tv(v̄).

7. Inference of Peak of Available Tasks
The goal of this section is to accurately approximatepeakAvailable,
or the task-level. Note that, when inferringpeakAlive in the pre-
vious section, we have possibly included tasks which are alive but
suspended. For the applications discussed in Sec. 2, it is clearly
useful to exclude suspended tasks from the peak, e.g., it is not
worth allocating suspended tasks in a separate processor.

EXAMPLE 7.1. Consider again the program of Ex. 6.1, and recall
that in 6.3 we have inferred that the peak of alive tasks isp̂ = 3
plus 1 for the task in whichp is running. However, during the
execution ofp the maximum number of tasks which are available
(not suspended) is only3. This is because the task in whichp is
executing is available until it reaches the callasync{q5} since, as
soon asq5 is invoked asynchronously,p suspends and has to wait
for q4 andq5 to terminate before proceeding to program point1©.

In general, it is not easy to detect when tasks are blocked, since
often the execution offinish{p(x̄)} spawns asynchronous calls
but it also executes other instructions. Therefore, the task in which
finish{p(x̄)} is executed does not always block. However, in all
cases where the last instruction ofp(x̄) (directly or indirectly) is
an asynchronous call, we have a behavior similar to the above
example, i.e, at the same time the task in whichfinish{p(x̄)}
is executing suspends and another task starts. Many of these cases
can be syntactically detected and treated in a special way. In what
follows, we explain how to handle a common pattern in which
p(x̄) consists of only asynchronous calls, as in the above example.
In order to keep the task-level analysis as simple as possible, we
introduce an auxiliary construct in the language, calledfinish-
-async, by means of the following program transformation.

DEFINITION 7.2 (finish-async). Given an instruction of the
form finish{p(x̄)}, if p is defined by a single rule of the form
p(x̄) ← async{q1(x̄1)}, . . . , async{qn(x̄n)}, then we replace
the original instruction byfinish−async{q1(x̄1), . . . , qn(x̄n)}.

The use of well-known transformations such asunfoldingcan be
useful to detect the above pattern in the presence of intermediate
rules and be able to apply the transformation more often. For
instance, if we have,p ← q, . . . , async{qn} whereq is defined
asq ← async{q1}, we need to unfold the body ofq in order to
be able to introduce thefinish-async construct. Luckily, this is
a well-studied problem in the field of partial evaluation [12] and
existing unfolding strategies can be directly applied in our context.

DEFINITION 7.3 (peak available equations).The peak available
equations extend those of Def. 6.2 with the additional case

P(b · instr) = max(n−1 + q̂1(z̄1)+ · · ·+q̂n(z̄n),P(instr))

which is applied whenb = finish−async{q1(z̄1), . . . , qn(z̄n)}.

EXAMPLE 7.4. Applying thefinish-async transformation on
the program of Ex. 3.2 results in the following rule forp

p← async{q1}, finish−async{q4, q5}, async{q2}, q3

Applying Def. 7.3, we obtain the following peak available equation:
p̂ = 1 + q̂1 +max(1 + q̂4 + q̂5, 1 + q̂2 + q̂3). Solving the above
equation, under the assumption thatq̂i = 0 for all 1 ≤ i ≤ 5,
results in p̂ = 2. Therefore, at most̂p + 1 = 3 tasks might be
available at the same time during the execution ofp. The accuracy
achieved by the peak available equations w.r.t. the alive ones can
be large. For instance, consider the (intermediate representation
for the) program in Sec. 2.2:

msort(from, to)← from ≥ to.
msort(from, to)← from < to,mid :=(from + to)/2 ,

finish−async{msort(from,mid),msort(mid + 1 , to)}
merge(from, to,mid).

We show at the top (resp. bottom) the equations obtained by apply-
ing Def. 6.2 (resp. Defs. 7.2 and 7.3) to the above rules:

Submitted for LCTES 2011 7 2010/12/16

ˆmsort(f , t) = 0 {f ≥ t}
ˆmsort(f , t) = max(ˆaux(f , t ,m ′), ˆmerge(f , t ,m ′))
{f < t , 2m ′ = f + t}

ˆaux(f , t ,m) = 2 + ˆmsort(f ,m) + ˆmsort(m ′, t) {m ′ = m + 1}
ˆmsort(f , t) = 0 {f ≥ t}
ˆmsort(f , t) = max(1 + ˆmsort(f ,m ′) + ˆmsort(m ′′, t),

ˆmerge(f , t ,m ′))
{f < t , 2m ′ = f + t ,m ′′ = m ′ + 1}

As pointed out in Sec. 2.2, the solution for the equations at the top
is 2∗(t−f+1)−2, while for the ones at the bottom is(t−f+1).
Clearly, the available tasks are a more useful piece of information
when deciding how to distribute execution.

The following theorem states the soundness of Def. 7.3 when rules
are transformed using Def. 7.2.

THEOREM 7.5. Let P be a program with an entry procedurep,
and letp̂ub(x̄) be a closed-form UB function for̂p(x̄) ∈ ŜP where
ŜP is the cost relation generated after applying thefinish-
-async transformation of Def. 7.2. Then, for any tracet ≡
(A0 ; 〈1, p(x̄), tv〉) →∗ (An ; Tn) it holds that p̂ub(v̄) + 1 ≥
peakAvailable(t), wherev̄ = tv(x̄).

8. Combining Escaped and Peak
In this section, our goal is to improve the accuracy of the UBs we
have obtained in the previous sections by exploiting knowledge on
which tasksescapefrom the scope of a method call. The number
of escaped tasks from a (normal) method callq(x̄), refers to the
number of tasks created during the execution of the method call
q(x̄) which are alive after its local termination. Such escaped tasks
could start its execution even after the local termination ofq(x̄).
For an asynchronous callasync{p(x̄)}, in principle, the number
of tasks that can escape from it is bounded by its peak, and for
finish{q(x̄)} is 0 by definition. In this section, we use this infor-
mation in order to improve the peak of alive and available tasks.
We use the term peak of tasks to refer to any of the former, alive or
available. Let us see the idea on a simple example.

EXAMPLE 8.1. Consider the following program:
m← p, 1©async{q}
p← async{q}, finish{h}, async{q}
h← async{q}, async{q}, async{q}

and assume that procedureq does not make any asynchronous call.
By applying Def. 7.3, we generate the following equations for the
peak of available tasks:

m̂ = p̂+ 1 + q̂
p̂ = 1 + q̂ +max(2 + q̂ + q̂ + q̂, 1 + q̂)

which, sincêq = 0, are solved tom̂ = 4. Let us explain how we
can refine this peak usingescapeinformation. While the peak of
available tasks when executingp is 3, only 2 tasks canescapefrom
p, i.e., they can be available after program point1©. The idea is that
the peak of available tasks form (ignoring the task in whichm is
being executed) can be defined as the maximum of the following
two scenarios: (a) the peak of the tasks while executingp or (b)
those that escape fromp plus1 for the last asynchronous call inm.
This will lead to3, which improves the previous peak by one.

Let us first specify the notion of escaped tasks from a given call
more precisely in the concrete setting.

DEFINITION 8.2 (escaped tasks).Consider a programP with
an entry procedurep and a tracet = (A ; 〈1, p(x̄), tv〉) →∗

(An ; Tn) such thatp locally terminates before reachingTn.
The number of escaped tasks fromp in t can be defined as
escape(p) = |available(Tn)|.

The following definition presents a novel form of equations, called
combined peak/escapeequations, which allows us to take advan-
tage of static knowledge on the escaped tasks in order to approxi-
mate the peak of tasks more accurately. Given a procedurep(x̄), the
main idea is to set up two kinds of relations: (1)the peak equations
p̂(x̄): which define the peak of tasks reached during the execution
of p and (2)the escaped equationšp(x̄): which define the escaped
tasks from a call top(x̄). The definition for both relations is mutu-
ally recursive, as the next definition shows.

DEFINITION 8.3 (combined peak/escape equations).Let r be a
rule andϕr its corresponding value abstraction as in Def. 6.2. The
combined peak and escapedequations forr consist of itsescape
equationp̌(x̄) =

∑
n

i=1 E(bi), ϕr, where:

E(b) = 1 + q̂(z̄) if b = async{q(z̄)}
E(b) = q̌(z̄) if b = q(z̄)
E(b) = 0 otherwise

and its peak equationwhich is obtained like the peak equations
of Def. 7.3, but changing the definition ofP whenb = q(z̄) by:
P(b · instr) = max(q̂(z̄), q̌(z̄) + P(instr))

In the above definition, it can be observed that the peak equation
modifies that in Def. 6.2 in the case of a synchronous call in order to
take advantage of the escape information, as intuitively explained
in Ex. 8.1. In the escape equation, we distinguish three cases: (i)
when we find an asynchronous call, then such new task can escape
plus thepeakof tasks created along the execution of such call; (ii)
for synchronous calls, we count those that escape from such call;
(iii) the remaining instructions map to zero, e.g., when we have a
finish{s}, we are sure that nothing escapes from it.

EXAMPLE 8.4. The solution of the following combined equations,
obtained by applying Def. 8.3 to the rules of the program of Ex. 8.1,
corresponds to the improved peak UB, as explained in Ex. 8.1:
m̂ =max(p̂, p̌+ 1 + q̂) m̌ = p̌+ 1 + q̂
p̂ = 1 + q̂ +max(2 + q̂ + q̂ + q̂, 1 + q̂) p̌ = 1 + q̂ + 1 + q̂

In the above example, the accuracy gain is constant. In general, it
can be much larger (even in complexity order). Let us consider the
program in Sec. 2.3 whose intermediate representation is:
f (n, i)← n ≤ 0
f (n, i)← n > 0 , finish−async{activity a(i), activity b(i)},

n ′:=n − 1 , i ′:=2 ∗ i + 1 , i ′′:=2i + 2 ,
f (n ′, i ′), f (n ′, i ′′)

By applying Def. 8.3, we obtain the equations:

f̌ (n, i) = 0 {n ≤ 0}
f̌ (n, i) = f̌ (n ′, i ′) + f̌ (n ′, i ′′) ϕ

f̂ (n, i) = 0 {n ≤ 0}

f̂ (n, i) = max(1 + ˆactivity a(i) + ˆactivity b(i),

max(f̂ (n ′, i ′), f̌ (n ′, i ′) + max(f̂ (n ′, i ′′), f̌ (n ′, i ′′))) ϕ

whereϕ = {n > 0 ,n ′ = n − 1 , i ′ = 2i + 1 , i ′′ = 2i + 2} and
ˆactivity a(i) = ˆactivity b(i) = 0. Sincef̌ (n, i) is solved to

0, the solution to the combined equations is the constant1. Note
that, applying Def. 5.4, we obtain the exponential bound shown
in Sec. 2.3. Applying either Def. 6.2 or Def. 7.3, we obtain an
exponential bound as well. Hence, the solution of the combined
equations is much more accurate than all previous solutions.

Soundness of our analysis guarantees thatp̂ and p̌ correctly ap-
proximate the peak of available tasks and the escaped tasks, respec-
tively. The proof relies on an auxiliary notion of escaped tasks from
a given state and derivation that appears in the technical report.

THEOREM 8.5. Let P be a program with an entry procedurep.
Letq be a procedure defined inP . Let p̂ub(x̄) be a closed-form UB

Submitted for LCTES 2011 8 2010/12/16

functions for its combined peak/escape equations. Given a trace
t ≡ (A0 ; 〈1, p(x̄), tv〉)→∗ (An ; Tn). Then, it holds that

1. p̂ub(v̄) + 1 ≥ peakAvailable(t); and
2. p̌ub(v̄) + 1 ≥ escape(t).

wherev̄ = tv(x̄)

Note that if we use the peak equations as in Def. 6.2 instead of point
1 above it holds that̂pub(v̄) + 1 ≥ peakAlive(t).

As final remarks, we note that the further accuracy of the com-
bined equations might come at the price of efficiency and effec-
tiveness of the analysis. As regards efficiency, the fact that for each
procedure in the program, we generate two sets of equations, in-
creases the analysis time. In particular, the time required to infer
closed-form UBs for the combined relations almost doubles. As re-
gards effectiveness, the fact that the definition of both relations are
mutually recursive, can make their solving process more complex.
Nonetheless, the mutual recursion disappears in many cases, e.g.,
when the number of escaped tasks is constant. Also, certain solvers
(e.g., MAXIMA) have support to solve such mutual recursions. Af-
ter solving the equations, it is guaranteed that the obtained UBs are
strictly more precise than those obtained in the previous sections.

9. Experimental Results
We have implemented our technique within the XYZ1 system
which can be tried out online at: XYZ2. The experimental eval-
uation has been performed on a set of small but representative X10
programs (available at the X10 websitehttp://x10-lang.org/)
containing interesting parallelism patterns. In the implementation,
we are using existing tools developed for Java to translate the origi-
nal program into the IR. Hence, the examples have been first (man-
ually) translated from X10 to Java, preserving the structure of the
parallelism. From that point on, the analysis is fully automatic.
In some cases, purely numerical computations have been omitted
(e.g., most of the methoddoBlackScholes inCUDABlackScholes),
and pieces of code which manipulate data structures in a way which
is specific to X10 have been simplified.Placeshave been ignored.
Also, to avoid virtual invocations that often complicates the analy-
sis, we sometimes translate callso.m() to m(o) and definem as a
static method. Finally,async andfinish statements have been sim-
ulated (only for the sake of the analysis, not for actual execution
in the JVM) by means of special method calls. Overall, the trans-
lation is done in such a way that the Java code arguably preserves
the properties of interest.

The results are shown in Table 3. For each benchmark, the total
numberUT of spawned tasks (first row), the peakUA of alive tasks
(second row), and the refined peakUE of alive tasks using escape
information (third row) are inferred. We do not add “1” for the
initial task. Most examples take as input a numerical parameter,
which is a measure of the size of the problem. Such parameter
is usually taken to be the length of the array ofString which is
the argument of themain method, and appears asN in the table
(N1 andN2 if the input consists of two parameters). In two cases,
UA is better thanUT, meaning that the analysis was able to infer
that some tasks cannot be alive at the same time. Moreover,UE

improves onUA in four examples, thus showing the usefulness of
considering escape information. The table also shows (next to the
name of the benchmark) the size in Kbytes of the.class file, and
the total analysis timems in milliseconds.

Let us explain the results in more detail.ArraySum is interesting
because the sum is executed many times under different assump-
tions about the number of tasks which are going to be spawned:

1 the system name is withheld
2 the actual link is withheld

UT/ UA/ UE ms # UT/ UA/ UE ms
1 (N−1)(logN) 500 2 61441N+61441 310

(N−1)(logN) 310 61441N+61441 270
N−1 450 61569 460

3 2048N+48 240 4 2N−1−1 200
2048N+48 260 2N−1−1 210
1024N+16 390 2N−1−1 240

5 kN3+3kN2+kN 830 6 50 ∗ (2N+2000) 170
(k+1)N3+(k+2) 760 max(N, 2000) 170
N2+(k+1)N

(k+1)N3+(2k+3) 1340 max(N, 2000) 210
N2+(k+3)N+1

7 10N1N2 2680 8 N 100
10N1N2 1780 1 90

N1N2 +N1 2850 1 140

Figure 3. Benchmarks: 1ArraySum (1044 Kb); 2CUDABlackSc-
holes (1071); 3FRASimpleDist (1134); 4Fib (717); 5HeatTrans-
fer v1 (1913); 6KMeansDist (1124); 7PLU 2 C (8520); 8 method
print()V of SparseMat (706).

at each iteration, this number is multiplied by 2 (starting from 1)
until a thresholdN is reached (note that the X10 code uses a con-
stant threshold 4, so that our version is more general). The result
is that at mostN − 1 tasks are spawned at each one of thelogN
iterations, thus giving a total of(logN) ∗ (N − 1) tasks. On the
other hand, due to thefinish statement which wraps each iteration,
only N − 1 tasks can be alive at the same time, thus giving such
number asUE. Note that the analysis of alive tasks needs escape
information in order to get the linear upper bound.

In CUDABlackScholes, N is the number of iterations which is
the constant 512 in the original program. It can be seen thatUT is
bigger since every iteration is performed inside afinish statement,
so that tasks created during different iterations cannot be alive at
the same time. The UB ofFib is exponential due to the structure of
the recursive calls. The total number and the peak number of tasks
are equal and indeed all spawned tasks can be alive at the same
time.

In HeatTransfer v1, the UB is cubic in all cases, since the op-
erations on the data structures spawn a cubic number of tasks, and
all tasks are alive at the same time since a singlefinish statement
wraps this part of the code. The difference (not in the order of mag-
nitude) between the UBs is due to the different loss of precision
when solving the equations. The number of iterations of the loop
in run() depends on the guarddelta<epsilon on double numbers.
This bound is unpredictable by most state-of-the-art static analyz-
ers, so that the program has been modified in order to iterate a fixed
number of timesk. In KMeansDist, the constants 2000 and 50 ap-
pearing in the UBs are constants in the X10 code, whileN is a
measure of the size of the data structure. In the biggest example
PLU 2 C, considering escape information allows to remove a con-
stant factor 10 which is a constant in the program code.

Overall, we argue that, although our implementation is still
prototypical, the experiments show that our approach is promising
and leads to reasonably accurate task-level UBs in a fully automatic
way.

10. Related Work
As regards the language, several subsets of X10 ([1, 13, 16]) have
been defined in the literature. For the parallel part of the language,
the subset we consider is like [13]. The sequential part is richer
than [13], as not handling recursion would be an important restric-

Submitted for LCTES 2011 9 2010/12/16

tion for the task-level analysis. The majority of related work around
the X10 language is on may-happen-in-parallel analysis [13] and
determinism [22]. This is a complementary line of research to ours,
in the sense that we can use the results of such analyses to improve
ours, as we will discuss in Sec. 11.

Due to our interpretation of the task-level of a program as
a resource consumed along its execution, our work is more di-
rectly related to cost analysis (or resource usage analysis) frame-
works [2, 9, 10, 20]. All such frameworks assume a sequential ex-
ecution model. Moreover, they often are applied to measure accu-
mulative resources. Another non-accumulative resource is memory
consumption in the presence of garbage collection. There has been
a respectable development in heap space analysis for Java-like and
functional languages [2, 4, 6, 11, 20] during the last years. Among
them, our work is more related to those that rely on RR [2, 20].
Still, heap space bounds are fundamentally different from task-level
bounds, as in the case of memory, the challenge is to model the be-
haviour of the garbage collector at the level of the cost equations.
In our case, the challenge is to handle concurrency and be able to
capture in the equations the states in which tasks terminate.

11. Conclusions and Future Work
We have presented a novel static analysis to approximate the task-
level of parallel X10-like programs. Our approach is based by
the view that the task-level of a program is a particular (non-
accumulative) resource consumed along its (parallel) execution.
Existing cost analysis frameworks assume a standardsequential
programming model on resources which are typicallyaccumula-
tive. It is clear that both these deviations from existing frameworks
add significant complexity to the problem of inferring task-level
bounds. Our key contribution is the generation of task-levelrecur-
rence relationsthat soundly and accurately approximate the task-
level of the program in the parallel setting. An important observa-
tion (and a side-effect contribution of our work) is that obtaining
an UB from the RR implies bounding the number of iterations of
loops in the original X10 program. Therefore, our work indirectly
provides aglobal termination analysisfor X10 programs. In other
words, if the analysis finds a task-level UB, it is guaranteed that the
original X10 program terminates for any input data.

The abstraction performed by the value analysis component,
though simple, ensures that the UBs obtained are sound for any
particular task scheduler. One direction for future work is to im-
prove the precision of the analysis by enriching the value analysis
assuming a particular scheduling. To do this, we first need to make
some assumption on the policy which establishes which tasks run in
parallel. Then, we can reuse existing may-happen-in-parallel anal-
ysis as those in [13], which specifically treat theasync-finish
constructs of X10. The output of such analysis annotates each in-
struction with the set of instructions that can be executed in parallel
with it. One could then prove that the fragments of code which
might be executed in parallel are independent [22] (i.e., they do not
read/write on the same global data). In such case, we can then use
existing field-sensitive value analyses [14] developed for similar
languages in order to improve the precision of our UBs.

As another direction for future work, we plan to extend our anal-
ysis to the full X10 language. In particular, we believe handling
places can give us some interesting results. This requires enhanc-
ing theasync construct asasync{s, id}, with the identifierid of
the server encharged of running the tasks asyncronously. An in-
teresting application of our analysis in this setting is to infer the
throughput of the different servers of the system, which could be
very useful to balance the workload in distributed applications.

Our approach can be easily adapted to count the peak at a
program point, i.e., the maximum number of tasks that can be alive
(or available) in parallel at that specific program point. Suppose that

the program point of interest isa©, then we can modify Def. 6.2 as
follows: we addP(a© · instr) = 1 + P(instr) and remove the
constant1 from the equation ofasync. Such information is useful,
for example, when at the program point of interest, we query a
server. The obtained UB indicates the load of the server.

References
[1] M. Abadi and G. D. Plotkin. A model of cooperative threads.In Proc.

of POPL’09, pages 29–40. ACM, 2009.

[2] E. Albert, S. Genaim, and M. Ǵomez-Zamalloa. Parametric Inference
of Memory Requirements for Garbage Collected Languages. In9th
International Symposium on Memory Management (ISMM’10), pages
121–130, New York, NY, USA, June 2010. ACM Press.

[3] Andrew W. Appel. Ssa is Functional Programming.SIGPLAN No-
tices, 33(4):17–20, 1998.

[4] V. Braberman, F. Ferńandez, D. Garbervetsky, and S. Yovine. Para-
metric Prediction of Heap Memory Requirements. InISMM. ACM
Press, 2008.

[5] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-Oriented
Approach to Non-Uniform Cluster computing. InOOPSLA, pages
519–538. ACM, 2005.

[6] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. InISMM. ACM Press,
2008.

[7] R. DeLine and K.R.M. Leino. BoogiePL: A typed procedurallanguage
for checking object-oriented programs. Technical Report MSR-TR-
2005-70, Microsoft Research, 2005.

[8] M. Fähndrich. Static Verification for Code Contracts. InSAS, volume
6337 ofLNCS, pages 2–5. Springer, 2010.

[9] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Preciseand
Efficient Static Estimation of Program Computational Complexity. In
POPL, pages 127–139. ACM, 2009.

[10] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with
Polynomial Potential. InESOP, volume 6012 ofLNCS, pages 287–
306. Springer, 2010.

[11] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Anal-
ysis. In 15th European Symposium on Programming, ESOP 2006,
volume 3924 ofLecture Notes in Computer Science, pages 22–37.
Springer, 2006.

[12] N.D. Jones, C.K. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice Hall, New York, 1993.

[13] Jonathan K. Lee and Jens Palsberg. Featherweight X10: ACore Cal-
culus for Async-Finish Parallelism. InProc. of the 15th ACM SIG-
PLAN symposium on Principles and practice of parallel programming
(PPoPP’10), pages 25–36, New York, NY, USA, 2010. ACM.

[14] A. Miné. Field-Sensitive Value Analysis of Embedded C Pro-
grams with Union Types and Pointer Arithmetics. InACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Toolsfor
Embedded Systems (LCTES’06), 2006.

[15] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated
Termination Analysis of Java Bytecode by Term Rewriting. InProc.
of RTA’10, volume 6 ofLIPIcs, pages 259–276, 2010.

[16] V. A. Saraswat and R. Jagadeesan. Concurrent ClusteredProgram-
ming. In Proc. of CONCUR’05, volume 3653 ofLecture Notes in
Computer Science. Springer, 2005.

[17] F. Spoto, F. Mesnard, and́E. Payet. A Termination Analyser for Java
Bytecode based on Path-Length.ACM TOPLAS, 32(3), 2010.

[18] W. Zou T. Wei, J. Mao and Y. Chen. A new algorithm for identifying
loops in decompilation. InSAS’07, LNCS 4634, pages 170–183, 2007.

[19] L. Unnikrishnan and S. Stoller. Parametric heap usage analysis for
functional programs. InProc. of ISMM’09. ACM Press, 2009.

[20] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized Live Heap
Bound Analysis. InProc. of VMCAI’03, volume 2575 ofLNCS, pages
70–85, 2003.

Submitted for LCTES 2011 10 2010/12/16

[21] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java Optimization Framework. In1999 conference
of the Centre for Advanced Studies on Collaborative Research (CAS-
CON’99), 1999.

[22] M. T. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic Verifi-
cation of Determinism for Structured Parallel Programs. InProc. of
SAS’10, volume 6337 ofLecture Notes in Computer Science, pages
455–471. Springer, 2010.

[23] B. Wegbreit. Mechanical Program Analysis.Communications of the
ACM, 18(9), 1975.

Submitted for LCTES 2011 11 2010/12/16

