
Symboli Exeution ofConurrent Objets in CLPElvira Albert, Puri Arenas, and Miguel Gómez-ZamalloaDSIC, Complutense University of Madrid, SpainAbstrat. In the onurrent objets model, objets have oneptuallydediated proessors and live in a distributed environment with un-ordered ommuniation by means of asynhronous method alls. Methodallers may deide at runtime when to synhronize with the reply froma all. This paper presents a CLP-based approah to symboli exeutionof onurrent OO programs. Developing a symboli exeution engine foronurrent objets is hallenging beause it needs to ombine the OOfeatures of the language, onurreny and baktraking. Our approahonsists in, �rst, transforming the OO program into an equivalent CLPprogram whih ontains alls to spei� builtins that handle the onur-reny model. The builtins are implemented in CLP and inlude primitivesto handle asynhronous alls synhronization operations and shedulingpoliies, among others. Interestingly, symboli exeution of the trans-formed programs then relies simply on the standard sequential exeu-tion of CLP. We report on a prototype implementation within the PETsystem whih shows the feasibility of our approah.1 IntrodutionInreasing performane demands, appliation omplexity and multi-ore paral-lelism make distribution and onurreny omnipresent in today's software appli-ations. There is thus a renewed interest in investigating tehniques that help insimulating, debugging, testing, verifying, et., distributed and onurrent pro-grams. The fous of this paper is on developing a CLP-based framework forthe symboli exeution of onurrent objet-oriented (OO) imperative programs.Symboli exeution of a program onsists in exeuting it �a la Prolog�, i.e., usingas arguments free (logi) variables. It allows thus reasoning about all the in-puts that take the same path through the program. Symboli exeution is at theore of software veri�ation [14℄ and testing tools [15, 18, 23℄. In the latter ase,by inorporating overage and termination riteria, symboli exeution allowsautomatially obtaining test-inputs ensuring a ertain degree of ode overage.Within the OO paradigm, there are two main approahes to onurreny:(1) thread-based onurreny models (like those of Java and C#) are based onthreads whih share memory and are sheduled preemptively, i.e., they an besuspended or ativated at any time. To prevent threads from undesired inter-leavings, low-level synhronization mehanisms suh as loks have to be used.

Experiene has shown that software written in the thread-based model is error-prone, di�ult to debug, verify and maintain [20℄. (2) In order to overomethese problems, the ative-objets model [6,13,17,20,21℄ aims at providing pro-grammers with simple language extensions whih allow programming onurrentappliations with relatively little e�ort. Ative (also alled onurrent) objetsoperate similar to Ators [1℄ and Erlang proesses [5℄.In this paper, we onsider the imperative OO language ABS [12℄ whih isbased on the ative-objets onurreny model. A onurrent objet, oneptu-ally, has a dediated proessor and it enapsulates a loal heap whih is notaessible from outside the objet. The language supports asynhronous methodalls, whih trigger ativities in other objets without transferring ontrol fromthe aller. The method aller may deide at runtime when to synhronize withthe reply from a all. In general, an objet may have many method ativationsompeting to be exeuted. Among these, at most one proess (or task) is a-tive and the other proesses are suspended in a proess pool. Proess shedulingis non-deterministi, but ontrolled by proessor release points in a ooperativeway. Cooperative sheduling means that swithing between tasks of the same ob-jet happens only at spei� sheduling points during program exeution, whihare expliit in the soure ode and an be syntatially identi�ed.The goal of this paper is to design (and implement) a CLP-based symboliexeution engine for onurrent ABS programs. This is a hallenging problemas one needs to ombine the OO and onurrent aspets of the ABS languagewith the baktraking mehanism required to perform symboli exeution. Forsequential programs, we have seen in [7�9, 16℄ that, as symboli exeution isthe standard evaluation mehanism of CLP, symboli exeution of imperativeprograms an be performed in a natural and e�ient way by: (1) �rst, translatingthe imperative program into an equivalent CLP program and, (2) then, relyingon the exeution mehanism of CLP whih performs symboli exeution natively.The main ontribution of this paper is to lift suh CLP-based frameworkfrom the sequential to the onurrent OO setting. In partiular, we �rst pro-pose an automati transformation of onurrent imperative programs into CLPprograms whih inlude spei� builtin operations to handle the onurrenyaspets of the language. The global state is made expliit in the translation asan additional argument of lauses. It inludes the set of onurrent objets withtheir �elds values and orresponding queues of pending tasks. We then providean implementation in CLP of the builtins to treat all onurreny aspets of thelanguage: (a) asynhronous alls are handled by adding orresponding pendingtasks to the queues of the remote objets on whih the alls are performed, (b)synhronization operations an be performed to suspend the exeution of a taskin an objet until ertain ondition holds, () future variables beome part ofthe state and allow synhronizing with the reply from a all, and (d) di�erentsheduling poliies an be easily integrated in our symboli exeution engine. Wereport on a prototype implementation of our proposal within the PET system [8℄(a generi platform for CLP-based testing) and evaluate it on a series of smallappliations whih are lassial examples of onurrent programming.2

T ::= B | I | D | D〈T̄ 〉 A ::= N | T | D〈Ā〉
Dd ::= data D[〈Ā〉] = Cons[| Cons] Cons ::= Co[(Ā)]

F ::= def A fn[〈Ā〉](A x) = e p ::= x | t | Co[(p̄)]
e ::= b | x | t | this | Co[(e)] | fn(e) | case e {p ⇒ e} t ::= Co[(t̄)] | null

IF ::= interface I [extends I] {Sg } Sg ::= T m (T x)

CL ::= classC [(T x)] [implements I] {T x; M} M ::= Sg {T x; s }
s ::= s ; s | x = rhs | await g | return e g ::= b | e? | g ∧ g

| if (b) { s } [else { s }] | while (b) { s } | skip
rhs ::= e | new C [(e)] | e ! m(e) | e.m(e) | x.getFig. 1. ABS Syntax for Funtional (top) and Conurrent Objet Level (bottom)2 An Overview of Conurrent ObjetsOur method is presented for the ore of the ABS language [12℄, a suessor ofCreol [6, 13℄. ABS is an OO language for distributed onurrent systems whoseonurreny model is based on onurrent objets. An ABS program de�nes in-terfaes, lasses, datatypes, and funtions, and has a main blok to on�gurethe initial state. The funtional sub-language allows abstrating from imple-mentation details: abstrat data types are used to speify internal, sequentialomputations, while onurreny is handled in the imperative part.Fig. 1 gives the syntax of ABS programs. In the funtional level (top), groundtypes T onsist of basi types B (Bool, Int, et.), names for interfaes I anddata types D. In ontrast to T , types A may ontain type variables named N .

Dd stands for data type delarations, where D has at least one onstrutor
Cons . Funtion delarations F onsist of a return type A, a funtion name fn,a list of variable delarations x of types A, and an expression e. Expressions einlude Boolean expressions b, variables x, (ground) terms t, the speial read-onlyvariable this whih refers to the identi�er of the objet, onstrutor expressionsof the form Co[(e)], funtion appliations of the form fn(e), and ase expressionsof the form case e{p ⇒ e}, where p is a pattern, as de�ned in the grammar.In the onurrent objet level of ABS (bottom), an interfae IF has a name
I and method signatures Sg, and it an extend other interfaes I. A lass has aname C, implements a list of interfaes, may ontain lass parameters and statevariables x of type T , and methods M . The �elds of the lass are both its param-eters and state variables. Objets are instanes of lasses; their delared �eldsare initialized to arbitrary type-orret values. A method signature Sg delaresthe return type T of a method m and formal parameters x of types T . M de�nesa method with signature Sg, a list of loal variable delarations x of types T ,and a statement s. All methods return a value (Unit plays the role of void in se-quential programming). Statements may aess �elds of the urrent lass, loallyde�ned variables, and the method's formal parameters. Right hand side expres-sions rhs inlude objet reation, method alls, and expressions e. Statements3

data List〈A〉=Nil | Cons(A,List〈A〉);
data Set〈A〉=EmptyS | Insert(A,Set〈A〉);
data Pairs〈A,B〉=Pair(A,B);
data Map〈A,B〉=EmptyM |

Assoc(Pairs〈A,B〉,Map〈A,B〉);
type FN , Packet=String ;
type FNs=Set〈String〉;
type File=List〈Packet〉;
type Catalog=List〈Pairs〈Node,FNs〉〉;
def B lookup〈A,B〉(Map〈A,B〉 ms, A k)=
case ms {Assoc(Pair(k,y),_) ⇒ y;

Assoc(_,tm) ⇒ lookup(tm,k);}
def Bool contains〈A〉(Set〈A〉 s,A e)=
case s {

EmptyS ⇒ False;
Insert(e, _) ⇒ True;
Insert(_, xs) ⇒ contains(xs, e);}

def Node findServer (FN f,Catalog)=
case {

Nil ⇒ null;
Cons(Pair(s, fs), r) ⇒
case contains(fs, f) {

True ⇒ s;
False ⇒ findServer(f, r); };}Fig. 2. (Fragment of) Funtional Sequential Part of ABS P2P Networkare standard for assignment x = rhs , sequential omposition s1 ; s2, skip, if,

while, and return onstruts. In await g, the guard g ontrols proessorrelease and onsists of Boolean onditions b, return tests x? and onjuntions.If g evaluates to false, the proessor is released, the urrent proess is suspendedand the proessor beomes idle. When the proessor is idle, any enabled proessfrom the objet's pool of suspended proesses may be sheduled.Example 1. Our running example is a peer-to-peer (P2P) distributed appliationborrowed from [13℄. Fig. 2 shows a fragment of the funtional program whihinludes type de�nitions (String and Int are prede�ned) and three funtionswhih are exeuted using strit evaluation. Fig. 3 shows the most relevant partof the imperative onurrent program (interfaes and the implementation of lassNetwork are not shown). Calls to funtions and funtional data appear in italis.Funtion nth returns the n-th element of a list and appr onatenates two lists.A P2P network is formed by a set of interonneted peers whih an at as lientsand servers. Peers make the �les stored in their database (an objet of type DB)available to other peers, without entral oordination. The only oordination isby means of an objet of lass Network. It is enough to know that nodes learnwho their neighbors are by invoking getNeighbors implemented in this lass. Anode ating as lient triggers omputations with searhFile, whih �rst �nds aneighbor node s that an provide the �le and then requests the �le using reqFile.Communiation in ABS is based on asynhronous method alls, denoted
o ! m(e), and future variables (Fut〈·〉). Method alls may be seen as triggersof onurrent ativity, spawning new tasks (so-alled proesses) in the alledobjet. After asynhronously alling x=o ! m(e), the aller may proeed withits exeution without bloking on the all. Here x is a future variable, o isan objet (typed by an interfae), and e are expressions. A future variable xrefers to a return value whih has yet to be omputed. There are two opera-tions on future variables, whih ontrol external synhronization in ABS. First,a return test x? evaluates to false unless the reply to the all an be retrieved.Seond, the return value is retrieved by the expression x.get, whih bloks4

class DBImp(Map〈FN ,File〉 db)
implements DB {
File getFile(FN fId) {
return lookup(db, fId);}

Int getLength(FN fId) {
return length(lookup(db,fId));}Unit storeFile(FN fId, File �le) {db=Assoc(Pair(fId,�le), db);}

FNs listFiles() {
return keys(db);}

}
class Node(DB db,FN �le)
implements Peer {
Catalog at=Nil ;
List〈Peer〉 myN=Nil ;Network admin=null;Unit run() {Fut〈Catalog〉 ; Fut〈List〈Peer〉〉 f;Server server ;
await admin != null;f=admin ! getNeighbors(this);
await f?; myN=f.get;=this ! availFiles(myN);
await ?; at=.get;server=findServer(�le, at);
if (server != null) {this.reqFile(server,�le);}}Unit setAdmin(Network admin) {this.admin=admin;}

FNs enquire() {Fut〈FNs〉 f; f=db ! listFiles();
await f?; return f.get;}

Int getLength(FN fId) {Fut〈Int〉 lth; lth=db ! getLength(fId);
await lth?; return lth.get;}

Packet getPak(FN fId, Int pNbr) {
File f=Nil ; Fut〈File〉 �;�=db ! getFile(fId);
await �?; f=�.get;
return nth(f, pNbr);}

Catalog availFiles (List〈Peer〉 sL) {
Catalog at=Nil ; FNs fNs=EmptyS ;Fut〈FNs〉 fN; Catalog atL=Nil ;Fut〈Catalog〉 L;if (sL != Nil) {fN=head(sL) ! enquire();L=this ! availFiles(tail(sL));
await fN? & L?;atL=L.get; fNs=fN.get;at=appr(atL,Pair(head(sL),fNs));}

return at;}Unit reqFile(Server sId, FN fId) {Fut〈Int〉 l1; Fut〈Packet〉 l2;l1=sId ! getLength(fId);
await l1?; Int lth=l1.get;
while (lth > 0) {lth=lth - 1;l2=sId ! getPak(fId, lth);
await l2?; Packet pak=l2.get ;�le=Cons(pak, �le);}db ! storeFile(fId, �le);}}Fig. 3. Conurrent Part of ABS Implementation of P2P Networkall exeution in the objet until the return value is available. A synhronousall, abbreviated as v=o.m(e), is internally transformed into the statement se-quene x=o ! m(e); if (o==this) await x?; v=x .get. Observe that hekingif o==this is neessary to avoid that the exeution of the urrent objet blokswhen a synhronous loal all is performed.Example 2. The following fragment of ode orresponds to a possible mainmethod for the P2P example.

Map〈FN ,File〉 dataBase = Assoc(Pair(”file0 ”,Cons(”a”,Cons(”b”,Cons(”c”,Nil)))),
Assoc(Pair(”file1 ”,Cons(”d”,Cons(”e”,Nil))),EmptyM));DB db1 = new DBImp(EmptyM); DB db2 = new DBImp(dataBase);Peer n1 = new Node(db1, ”file0”); Peer n2 = new Node(db1, ”file1 ”);Peer n3 = new Node(db2, ”file1”); NetWork admin = new NetWork(n1,n2,n3);5

n1 ! setAdmin(admin); n2 ! setAdmin(admin); n3 ! setAdmin(admin);n1 ! run(); n2 ! run();The network on�guration onsists of three nodes, two databases and oneNetwork objet (admin). Nodes n1 and n2 are neighbors of n3. Suh six objets be-ome distint onurrent entities whih ommuniate with eah other by meansof asynhronous alls and use future variables to eventually return/retrieve theresults. Any onurrent objet has its own heap, its queue of pending tasks andan ative task (if any).3 CLP-Translated ProgramsThe translation of sequential imperative programs into equivalent CLP programshas been subjet of previous work (see, e.g., [3, 7℄). Intuitively, for eah method(or funtion), the translation represents the method (or funtion) as well as theintermediate bloks within the method (e.g., loops, onditionals) by means ofprediates in the CLP program. The fat that the imperative program workson a global state is simulated by representing the state using additional argu-ments of all prediates. We will not go into details of how the transformation ofthe sequential part is formalized (see [3, 7℄). Instead, we fous on the syntatiextensions of the ABS translated onurrent programs.3.1 Syntax of CLP-Translated ProgramsAn ABS CLP-translated program is made up of a set of prediates, eah of themde�ned by one or more mutually exlusive lauses, whih adhere to the followinggrammar:
Clause ::=Pred(Args,Args, S ,S) : −[Ḡ,]B̄ .

G ::=Num∗ OpR Num∗ | Ref ∗1 \ == Ref ∗2 | Var = FTerm∗ |
diff (Var ,FTerm∗) |type(S ,Ref ∗,C)

B ::=Var #= Num∗ OpA Num∗ | Pred(Args,Args, S ,S) | Var=FTerm |new(C ,Ref ∗,S ,S) | getField(Ref ∗,FSig ,Var , S) | asyn(Ref ∗,Call ,S ,S) |setField(Ref ∗,FSig ,Var∗,S , S) | await(Call ,Call ,S ,S) |get(Var ,Var ,Call ,S ,S) | return(Var∗,Var , S ,S) | futAvail(Var ,Var)
Call ::=Pred(Args,Args)
Pred ::=BlockN | MethodN | FuncN
Args ::= [℄ | [Data∗|Args℄
Data ::=Num | Ref | FTerm Ref ::= null | Var

OpR ::=#> | #< | #>= | #=< | #= | #\ =
OpA ::=+ | − | ∗ | / | mod

S ::=VarWe use FuncN ,MethodN , FSig to denote the set of funtions names, methodsand �eld signatures. Clauses an de�ne methods and funtions whih appear inthe original soure program (MethodN , FuncN) and additional prediates whihorrespond to intermediate bloks in the program (BlockN). Num is a number,
Var is a Prolog variable and FTerm is a term that represents a orrespondingfuntional data (namely p in Fig. 1). An asterisk on any element denotes thatit an be either as de�ned by the grammar or a variable. Eah lause reeivesas input a possibly empty list of parameters (1st argument) and a global state6

(3rd argument), and returns an output (2nd argument) and a �nal global state(4th argument). The body of a lause may inlude a sequene of guards followedby a sequene of instrutions, inluding: arithmeti operations, alls to otherprediates, builtins to reate objets and to write and read on objet �elds, andbuiltins to handle the onurreny.We use three di�erent kinds of inequalities in guards, namely, �\==�, �=�and diff to represent, resp., arithmeti omparisons, omparisons of referenesand pattern mathings in ABS funtions. Virtual method invoations in theOO language are resolved at ompile-time and translated into a hoie of typebuiltins followed by the orresponding method invoation for eah runtime in-stane. As expeted, the builtin new(C ,R, S1 , S2) reates a new objet of lass
C in state S1 and returns its assigned referene R and the updated state S2;getField(R,FSig,V , S) retrieves in variable V the value of �eld FSig of the ob-jet referened by R in the state S; setField(R,FSig,V , S1 , S2) sets the �eldFSig of the objet referened by R in S1 to V and returns the modi�ed state S2.In the translation of onurrent programs, when a onurreny onstrut ap-pears (namely an asynhronous all, an await or get statement), we introduea all to a orresponding builtin prediate that will simulate the onurrent be-haviour. Besides, an important point to notie is that, for all await and getstatements, we introdue a ontinuation prediate whih allows us to suspendthe urrent task (if needed) and then be able to resume its exeution at thispreise point. Also, we introdue in the translation return statements in orderto syntatially identify in the CLP-translated program when the exeution ofa task �nishes and thus another task from the queue an be sheduled.Example 3. The following ode shows the CLP-translated program for method
reqFile of lass Node.'Node.reqFile'([This, SId ,FId], [Out], S1 ,S2) :-

async(SId ,'Node.getLength'([SId , FId], [L1]),S1 ,S3),
await(awguard1 ([L1], [_]), cont1 ([This, SId ,FId ,L1], [Out]), S3 ,S2).

awguard1 ([L1], [V]) :- futAvail(L1 ,V).
cont1 ([This, SId ,FId ,L1], [Out], S1 , S2) :-

get(L1 ,Lth, cont2 ([This,SId ,FId ,Lth], [Out]), S1 , S2).
cont2 ([This, SId ,FId ,Lth], [Out], S1 ,S2) :- File ='Nil ',

while([This,SId ,FId ,File,Lth], [Out], S1 ,S2).
while([This,SId ,FId ,File,Lth], [Out], S1 ,S2) :- # <= (Lth, 0),

getField(This,'Node.db',Db,S1),
async(Db,'DBImp.storeFile'([Db,FId ,File], [_],S1 ,S3),
return(['Unit '], [Out], S3 ,S2).

while([This,SId ,FId ,File,Lth], [Out], S1 ,S2) :- # > (Lth, 0),# = (Lth1 ,Lth − 1),
async(SId ,'Node.getPack '([SId , FId ,Lth1], [L2]),S1 ,S3),
await(awguard2 ([L2],_), cont3 ([This, SId ,FId ,File,L2 ,Lth1], [Out]), S3 ,S2).

awguard2 ([L2], [V]) :- futAvail(L2 ,V).
cont3 ([This, SId ,FId ,File,L2 ,Lth], [Out], S1 , S2) :-

get(L2 ,Pack , cont4 ([This,SId ,FId ,File,Pack ,Lth], [Out], S1 ,S2).
cont4 ([This, SId ,FId ,File,Pack ,Lth], [Out], S1 , S2) :- File1 ='Cons'(Pack ,File),

while([This,SId ,FId ,File1 ,Lth], [Out], S1 , S2).7

The main features that an be observed from the translation are: (1) Meth-ods (like reqFile), intermediate bloks (like cont1) and funtions are uniformlyrepresented by means of prediates and are not distinguishable in the trans-lated program. The input arguments list of all rules inludes: the this referene,the list of input parameters of the ABS method from whih the rule originates,and, in the ase of prediates orresponding to intermediate bloks, their loalvariables. The output arguments list is always a unitary list with the returnvalue. (2) Conditional statements and loops in the soure program are trans-formed into guarded rules and reursion in the CLP program, resp., e.g., rulesfor while. (3) Additional rules are produed for the ontinuations after awaitand get statements. The alls to suh ontinuation rules are inluded within thearguments of the await and get builtins (see e.g. rules 'Node.reqFile' for the aseof await or cont1 for get). This allows the symboli exeution engine to suspendthe exeution at this point and resume it later. (4) A global state is expliitlyhandled. Observe that eah rule inludes as arguments an input and an outputstate. The state is arried along the exeution being used and transformed bythe orresponding builtins as a blak box, therefore it is always a variable in theCLP program.3.2 The Global StateIn a sequential OO language, the global state arried along by the CLP-translatedprogram only ontains the data stored in the heap. Instead, in our onurrentsetting, it has to inlude the set of existing onurrent objets, eah of them withits assoiated internal state. The internal state of an objet inludes two pieesof information: (1) its heap (set of �elds) whih is not aessible from outsidethe objet and (2) the queue of pending tasks. Formally, the syntax of the globalstate is as follows:
State ::= [] | [(Num,Object)|State] Object ::= object(C ,Fields,Q)
Fields ::= [] | [field(f ,Data)|Fields] Q ::= [] | [Task |Q]

Fut ::= ready(Data)|Var Task ::= call(Call) | await(Call ,Call) |
get(Fut,V ar,Call)The state is represented as a list of pairs, where Num is a unique referene tothe objet Object . Eah objet is a term whih inludes its lass C, a list of�elds Fields and a queue Q of pending tasks. Eah element in Fields is a termontaining a �eld name and its assoiated data. The meaning of the di�erentkinds of tasks Task and the syntax of future variables Fut is related to thesymboli exeution of the translated programs and will be explained in detail inthe next setion.Example 4. Consider an exeution of the main method in Ex. 2 whih startsfrom an initial state []. After reating the objets of type DBImp, the state takesthe form [odb1 , odb2], where odb1=(1 , object('DBImp', [field(db,'EmptyM ')], []))and odb2=(2 , object('DBImp', [field(db, dataBase)], []))]. Here, 1 and 2 are thereferenes for db1 and db2, respetively. Similarly, the next three new instrutionsadd three new elements to the state, resulting in [odb1 , odb2 , on1

, on2
, on3

], where:8

asyn(Ref,Call,S1,S2) :- addTask(S1,Ref,all(Call),S2).await(Cond,Cont,S1,S3) :-Cond =..[_,[This|_℄,[Ret℄℄, buildCall(Cond,S1,S2,CondCall), CondCall,(Ret = 'False' -> addTask(S1,This,await(Cond,Cont),S2), swithContext(S2,S3); buildCall(Cont,S1,S3,ContCall), ContCall).get(FV,V,Cont,S1,S3) :- Cont =..[_,[This|_℄,_℄,(var(FV) -> addTask(S1,This,get(FV,V,Cont),S2), swithContext(S2,S3); FV = ready(V), buildCall(Cont,S1,S3,ContCall), ContCall).return([Ret℄,[ready(Ret)℄,S1,S2) :- swithContext(S1,S2).futAvail(FV,'False') :- var(FV), !.futAvail(ready(_),'True').addTask(S1,Ref,T,S2) :- getCell(S1,Ref,objet(C,Fs,Q1)),insert(Q1,T,Q2), setCell(S1,Ref,objet(C,Fs,Q2),S2).swithContext(S1,S3) :- S1 = [(Ref,_)|_℄, �rstToLast(S1,S2),swithContext_(S2,S3,Ref).swithContext_(S,S,Ref1) :- S = [(Ref2,objet(_,_,[℄))|_℄, Ref1 == Ref2, !.swithContext_(S1,S3,Ref) :-(extratTask(S1,Task,S2) -> runTask(Task,S2,S3)�rstToLast(S1,S2), swithContext_(S2,S3,Ref)).runTask(all(ShortCall),S1,S2) :- buildCall(ShortCall,S1,S2,Call), Call.runTask(await(Cond,Cont),S1,S2) :- await(Cond,Cont,S1,S2).runTask(get(FV,V,Cont),S1,S2) :- get(FV,V,Cont,S1,S2).buildCall(ShortCall,S1,S2,Call) :- ShortCall =..[RN,In,Out℄, Call =..[RN,In,Out,S1,S2℄.Fig. 4. Implementation of Conurreny builtins
on1 = (3 , object('Node', [field(db, 1), field(file, ”file0”), field(cat ,'Nil '),

field(myN ,'Nil '), field(admin, null)], []))and on2
, on3

are similar to on1
exept for the objet identi�ers (4 and 5 respe-tively) and the value of �eld file (whih is ”file1” in both objets). Field db hasvalue 1 for on2

, and value 2 for on3
.4 Symboli Exeution of Conurrent ObjetsIn dynami (or onrete) exeution, the initial state must be a ground term (e.g.,if exeution starts from a main, it is an empty list). Objets must be reatedusing new/4 before their �elds an be read or written. In symboli exeution, theintuitive idea proposed in [8℄ is that the state ontains two parts: the known part(beginning of the list) with the objets that have been expliitly reated duringsymboli exeution, and the unknown part whih is a logi variable (tail of thelist) in whih new data an be added by produing the orresponding bindings.Therefore, the state starts being a free variable, and the implementation of get-Field/4 and setField/5 invokes prediates getCell/3 and setCell/4 whih, if theobjet whose �elds are going to be read or written is not in the known part,9

they instantiate the unknown part of the heap to be able to assume the previousalloation of the objet and aess its �elds. Figure 4 shows the CLP implemen-tation of the builtins to handle onurreny. They rely on the above getCell/3and setCell/4 operations (whose implementation is in [8℄) to symbolially aessthe heap. The following setions explain the behavior of the di�erent builtins.4.1 Asynhronous CallsPrediate asyn(Ref,Call,S1,S2), given the urrent state S1 adds the asynhronousall Call to the queue of tasks of the reeiver objet Ref produing the updatedstate S2. The all to addTask/4 searhes the state for the objet pointed to byreferene Ref by means of getCell/3, adds the task to its queue and updates thestate with the updated objet. As explained above, if the objet pointed to byRef is not in the known part of the state, getCell/3 produes a orrespondinginstantiation on the unknown part so that after this operation the objet is inthe state.Example 5. Let us onsider the symboli exeution of method reqFile, i.e., we runin CLP the goal 'Node.reqFile'(In,Out , S0 , S1). After the �rst all to asyn/4the following instantiations are produed:
S0=[(SId , object('Node', [field('Node.db',DB), . . .]), [])]
S1=[(SId , object('Node', [field('Node.db',DB), . . .]), [call('Node.getLength'(. . .))])]Observe that, as expeted, asynhronous alls do not transfer ontrol from thealler, i.e., they are not exeuted when they our but rather added as pendingtasks on the reeiver objets that will eventually shedule them for exeution.4.2 Implementation of Distribution and ConurrenyThe fat that objets do not share memory ensures that their exeution states(and thus the global state) are not a�eted by how distribution is realized.Therefore, symboli exeution an simulate distribution in any onvenient way.We implement it in the following spei� way: eah objet exeutes its sheduledtask as far as possible and, when a task �nishes or gets bloked, simulationproeeds irularly with the next objet in the state (whih ould be running inparallel in an atual deployment on�guration). In ontrast, onurreny oursat the level of objet in the sense that tasks in the objet queue are exeutedonurrently. Cooperative sheduling of the ABS language only spei�es that theexeution of the urrent task must proeed until a all to return/4, await/4 orget/5 is found. The sheduling poliy whih deides the task that exeutes next(among those ready for exeution) is left unspei�ed.Prediate swithContext/2 is used when the exeution of the urrent task anno longer proeed. It gives the turn of exeution to the �rst task (aording tothe sheduling poliy) of the following objet (the next one in the state). This isimplemented by always keeping the urrent objet in the head of the state, andmoving it to the last position when its urrent task �nishes or gets bloked, as it10

an be observed in the implementation of swithContext/2. If the urrent objethas some pending task in its queue, the task is run (alling runTask/3). Otherwise(prediate extratTask/3 fails), the following objet is tried. The exeution of thewhole appliation �nishes when there is no pending task in any objet (see �rstrule of swithContext_/3). Observe that there are three di�erent types of tasks,all, await and get, whose behaviour is explained below.One an implement di�erent sheduling poliies by providing onrete im-plementations of prediates insert/3 and extratTask/3. For instane, a FIFOsheduling poliy is implemented by 1) inserting at the end of the queue, and2) extrating always the �rst task. One an also use priority queues. The im-plementation beomes parametri on the sheduling poliy by just asserting theseleted poliy and adding a parameter to prediates insert and extratTask toapply the seleted poliy. Furthermore, the language allows that di�erent objetsapply di�erent sheduling poliies. Thus, one an also selet the desired poliyper objet. In this ase, when sheduling a new task, we �rst read the assertedinformation whih indiates the sheduling poliy at the objet level and, then,invoke the appropriate implementation of insert and extratTask for the urrentobjet. Having parametri sheduling poliies is interesting in the appliation ofsymboli exeution to regression testing, as one then wants to save the seletedpoliy within the test-ases in order to be able to replay them.4.3 Synhronization: future variables, await, get and returnAwait. Prediate await(Cond,Cont,S1,S3) �rst heks its ondition Cond by meansof the meta-all CondCall. If the ondition holds (Ret gets instantiated to 'True'),a meta-all to the ontinuation Cont is made (meta-all ContCall). Otherwise (Retis 'False'), an await task is added to the queue of the involved objet and weswith ontext. Let us observe that the alls wrapped within asyns, awaits andgets as well as those stored in objet queues, do not inlude states but just inputand output arguments (see grammars in Set. 3). This is beause when a task isto be exeuted the urrent state must be used (and not the one that was urrentwhen the task was �rst reated). Prediate buildCall/4 builds a full all from aall without states and the two states involved.Future variables. The evaluation of await onditions an involve return testson future variables. This is represented in our CLP programs by a all to thefutAvail/2 builtin. Future variables our in the global state in the output argu-ments of all tasks, and are available when they get instantiated. Sine, in theontext of symboli exeution, the return value of a method an be a variable
V , we use the speial term ready(V) to know whether the exeution has �nished(see the global state grammar in Set. 3.2). Prediate futAvail/2 then just has tohek whether the future variable is a CLP variable or is instantiated to ready(_)and returns, resp., 'False' or 'True'.Example 6. Let us ontinue with the symboli exeution of method reqFile rightafter the exeution of the �rst asyn (see Ex. 5). The all to await �rst pro-dues a all to awguard1 whih heks whether the return value L1 (future11

Benhmark D=50 D=75 D=100#I #S T #I #S T #I #S TProduerImpl.loop 1175 29 30 8028 134 140 35291 437 630ConsumerImpl.loop 35 2 10 159 4 20 254 5 20BoundedBu�er.append 2751 77 10 10494 198 30 24840 360 40DistHT.lookupNode 319 11 20 697 17 10 1219 23 10DistHT.getAllData 6 1 10 1406 21 40 9466 111 130DistHT.getAllKeysAux 96 3 10 849 14 60 15622 173 360DistHT.getAllKeys 22 1 11 160 3 30 1177 14 119DistHT.putData 2220 50 10 14608 242 30 47532 612 70DBImp.getLength 9108 253 61 30940 595 160 78208 1128 359Node.run 0 0 10 51241 720 240 14219536 148466 45640Node.getLength 3731 91 40 20475 351 150 55081 741 360Node.getPak 1736 42 20 9919 169 40 26961 361 60Node.reqFile 0 0 10 1988 28 110 16530 190 390SessionImp.order 0 0 30 0 0 110 5647 59 320AgentImp.free 616 22 10 1435 35 10 2491 47 10DBImp.on�rmOrder 95568 2167 599 4863238 71277 21230 - - -Table 1. Statistis about the Analysis Proessvariable) of the all to getLength is already available (by means of the allto futAvail/2). Sine it is not the ase (i.e, a 'False' is returned) the exeu-tion of the urrent task annot proeed, therefore the await task is added tothe urrent objet (so that it is re-tried later on) and ontext is swithed (seethe alls to addTask/4 and swithContext/2). This, in turn, produes a all torunTask(all('Node.getLength'(. . .)),S2,S3) where the urrent state is now
S2=[(SId , object('Node', [field('Node.db',DB1), . . .]), []),
(This, object('Node', [field('Node.db',DB2), . . .]), [await(awguard1 (. . .), cont1 (. . .))])]Return.When a method �nishes its exeution, we reah a return statement whihinstantiates the future variable V assoiated to the urrent task to ready(V). Thisallows that, if the task that requested the exeution of this one was bloked await-ing on this future variable, it an proeed its exeution when it is re-sheduled.Get. Prediate get �rst heks if the task an resume exeution beause thefuture variable that is bloking it has beome instantiated. In suh ase, theontinuation of the get is exeuted (meta-all ContCall). Otherwise, the urrenttask is added to the queue and ontext is swithed.5 Experimental Results in aPETPET [8℄ is a test-ase generation tool whih aims at being a generi platformfor CLP-based test-ase generation of di�erent languages. This work implements12

the ore part of aPET, an extension of PET to generate test-ases from onur-rent ABS programs. Currently, we have implemented the automati translationof ABS programs into CLP equivalent programs and extended the symboli ex-eution engine of PET with the onurreny primitives of ABS desribed alongthe paper. Experimental evaluation has been arried out using several typialonurrent appliations: BBu�er, a lassial bounded-bu�er for ommuniat-ing several produers and onsumers, DistHT whih implements a distributedhash-table, PeerToPeer, our running example; BookShop, whih implements aweb shop lient-server appliation. The ode of the examples an be found in
http://costa.ls.fi.upm.es/pet/apet.Table 1 summarizes our experiments. Eah set of rows ontains the results ofsymbolially exeuting methods whih belong to the above benhmarks. Sym-boli exeution for all methods works properly but, in the table, we have onlyshowed the results for the methods whih have more omplex ode and whosesymboli exeution takes longer. As methods ontain loops or reursion, symboliexeution does not terminate unless we introdue some termination riteria. Inour ase, we limit the length of the branhes of the symboli exeution tree toa onstant D (i.e., the depth of the tree to D). For eah experiment, we showthree sets of olumns with the results of setting D to 50, 75 and 100 steps.Then, olumn #I shows the total number of instrutions that have been exe-uted inluding all branhes, #S shows the number of solutions (branhes) inthe resulting symboli exeution tree, and T the total time (in milliseonds)required to build the tree. Experiments have been performed on an Intel Core i5at 3.2GHz with 3.1GB of RAM, running Linux. All times have been omputedas the average of 5 runs. When time is negligible, the system gives T = 10.As expeted, when allowing larger values for the depth of the tree, the numberof branhes grows exponentially and thus the total time. This is not a problemrelated to our approah, but rather inherent to symboli exeution. MethodsNode.run and DBImp.on�rmOrder have larger times (and number of instru-tions) beause the size of the ode reahable from them is muh larger (theyontain many alls to other methods). For the last one, no result is omputed ina reasonable time for D=100. In order to alleviate this problem, testing toolsoften limit the number of iterations on loops to a small number. Otherwise, theproess an beome quite expensive and too many test-ases an be obtained,as it an be observed from the large number of solutions obtained.6 Conlusions and Related WorkWe have presented the �rst CLP-based approah to symboli exeution of on-urrent objets. The main idea is that onurrent distributed imperative pro-grams an be translated into equivalent CLP programs whih ontain alls tobuiltin operations that simulate the onurrent behavior of the ative objetsparadigm. A unique feature of our approah is that, as the builtin operationsan be fully implemented in logi programming, symboli exeution boils downto standard sequential exeution of the CLP transformed program.13

Proess sheduling in onurrent objets has some similarities with the dy-nami sheduling available in Prolog systems. However, the behavior is not thesame and it annot be diretly used. This is beause synhronization using dy-nami sheduling an resume the exeution of a task as soon as the await on-dition is satis�ed, while ooperative sheduling only allows swithing betweentasks at spei� sheduling points. As onurrent objets do not share memory,one ould think of using Prolog's parallelism [11℄ to simulate the distributedexeution by running eah objet as a parallel task. However, there is no sup-port to simulate the fat that one objet reeives requests from another oneby means of asynhronous alls. Some systems, like SWI, implement parallelismusing threads with assoiated queues and synhronization is ahieved by meansof asserted variables. Indeed, for onrete exeution, we have a working imple-mentation using SWI Prolog parallelism in whih tasks ommuniate by meansof global variables (asserted in Prolog's database). However, the use of impurefeatures does not allow the baktraking required in symboli exeution. Re-ent years are witnessing a wealth of researh in testing onurrent programs.Symboli exeution is the entral part of most stati test-ase generation tools,whih typially obtain the test-ases from the branhes of the symboli exeutiontree. There is previous related work on using Creol for modeling and testing sys-tems against spei�ations [2℄, though the problem of symboli exeution is notstudied there. Later, [10℄ studies dynami symboli exeution of Creol programswhih ombines onrete and symboli exeution. A fundamental di�erene withour approah is that they use an interpreter of Creol to perform symboli exeu-tion, while in our ase, we transform the ABS program into an equivalent CLPwhih does not require any interpretation layer, rather it is exeuted natively inCLP. Simulation tools for ABS programs that perform onrete exeution [4℄ areonly tangentially related to our work. This is beause dynami exeution doesnot require baktraking and hene the use of CLP has less interest.Reent work on testing thread-based languages studies ways to improve sal-ability [19℄ whih ould also be adapted to our ontext. Likewise, [22℄ proposesnew overage riteria in the ontext of onurrent languages that ould be stud-ied in our CLP-based setting. As future work, we plan to integrate our symboliexeution mehanism within a test-ase generation tool in order to generate unittests for ABS programs in a fully automati way.Aknowledgments. This work was funded in part by the Information & Com-muniation Tehnologies program of the European Commission, Future andEmerging Tehnologies (FET), under the ICT-231620 HATS projet, by theSpanish Ministry of Siene (MICINN) under the TIN-2008-05624DOVES projet,the UCM-BSCH-GR35/10-A-910502 GPD Researh Group and by the MadridRegional Government under the S2009TIC-1465 PROMETIDOS-CM projet.Referenes1. G.A. Agha. Ators: A Model of Conurrent Computation in Distributed Systems.MIT Press, Cambridge, MA, 1986. 14

2. B. K. Aihernig, A. Griesmayer, R. Shlatte, and A. Stam. Modeling and TestingMulti-Threaded Asynhronous Systems with Creol. ENTCS, 243:3�14, 2009.3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysisof Java Byteode. In Pro. of ESOP'07, volume 4421 of LNCS, pages 157�172.Springer, 2007.4. E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Shlatte, andS. L. Tapia Tarifa. Simulating Conurrent Behaviors with Worst-Case CostBounds. In Pro. of FM'2011, vol. 6664 of LNCS, pages 353�368. Springer, 2011.5. J. Armstrong, R. Virding, C. Wistrom, and M. Williams. Conurrent Programmingin Erlang. Prentie Hall, 1996.6. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. InPro. of ESOP'07, volume 4421 of LNCS, pages 316�330. Springer, 2007.7. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Deompilation of Java Byteodeto Prolog by Partial Evaluation. JIST, 51:1409�1427, 2009.8. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Objet-Oriented Imperative Languages in CLP. TPLP, ICLP'10 Speial Issue, 2010.9. A. Gotlieb, B. Botella, and M. Rueher. A CLP Framework for Computing Stru-tural Test Data. In Computational Logi, 2000.10. A. Griesmayer, B. K. Aihernig, E. B. Johnsen, and R. Shlatte. Dynami SymboliExeution of Distributed Conurrent Objets. In Pro. of FMOODS/FORTE'2009,volume 5522 of LNCS, pages 225�230. Springer, 2009.11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Exeu-tion of Prolog Programs: a Survey. ACM TOPLAS, 23(4):472�602, July 2001.12. E. B. Johnsen, R. Hähnle, J. Shäfer, R. Shlatte, and M. Ste�en. ABS: A CoreLanguage for Abstrat Behavioral Spei�ation. In Pro. of FMCO'2010, LNCS.Springer, 2011. To appear.13. E. B. Johnsen and O. Owe. An Asynhronous Communiation Model for Dis-tributed onurrent objets. Software and Systems Modeling, 6(1):35�58, 2007.14. S. Khurshid, C. S. P�as�areanu, and W. Visser. Generalized Symboli Exeution forModel Cheking and Testing. In Pro of TACAS, pages 553�568, 2003.15. J. C. King. Symboli Exeution and Program Testing. Commun. ACM, 19(7):385�394, 1976.16. C. Meude. Atgen: Automati Test Data Generation using Constraint Logi Pro-gramming and Symboli Exeution. Softw. Test., Verif. Reliab., 11(2):81�96, 2001.17. B. Meyer. Objet-Oriented Software Constrution. Prentie-Hall, In., Upper Sad-dle River, NJ, USA, 2nd edition, 1997.18. Roger A. Müller, Christoph Lembek, and Herbert Kuhen. A Symboli JavaVirtual Mahine for Test Case Generation. In IASTED Conf. on Software Engi-neering, pages 365�371, 2004.19. N. Rungta, E.G. Merer, and W. Visser. E�ient Testing of Conurrent Programswith Abstration-Guided Symboli Exeution. In Pro. of SPIN'09. Springer, 2009.20. J. Shäfer and A. Poetzsh-He�ter. Jobox: Generalizing Ative Objets to Conur-rent Components. In Pro. of ECOOP'10, volume 6183 of LNCS, pages 275�299.Springer, 2010.21. S. Srinivasan and A. Myroft. Kilim: Isolation-Typed Ators for Java. In Pro. ofECOOP'08, volume 5142 of LNCS, pages 104�128. Springer, 2008.22. J. Takahashi, H. Kojima, and Z. Furukawa. Coverage based Testing for ConurrentSoftware. In ICDCS Workshops, pages 533�538. IEEE Computer Soiety, 2008.23. Nikolai Tillmann and Jonathan de Halleux. Pex-white Box Test Generation for.NET. In TAP, pages 134�153, 2008. 15

