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ABSTRACT
We present the concepts, usage and prototypical implemen-
tation of aPET, a test case generation tool for a distributed
asynchronous language based on concurrent objects. The sys-
tem receives as input a program, a selection of methods to be
tested, and a set of parameters that include a selection of a
coverage criterion. It yields as output a set of test cases which
guarantee that the selected coverage criterion is achieved.
aPET is completely integrated within the language’s IDE via
Eclipse. The generated test cases can be displayed in textual
mode and, besides, it is possible to generate ABSUnit code
(i.e., code runnable in a simple framework similar to JUnit
to write repeatable tests). The information yield by aPET
can be relevant to spot bugs during program development
and also to perform regression testing.

Categories and Subject Descriptors
D1.3 [Programming Techniques]: Concurrent Program-
ming; D2.5 [Testing and Debugging]: [testing tools, sym-
bolic execution]; D2.6 [Programming Environments]: [in-
tegrated environments]

General Terms
Languages, Verification, Reliability

Keywords
Test case generation, Concurrency, Concurrent objects, Soft-
ware testing, Symbolic execution

1. INTRODUCTION
It is widely recognized that writing concurrent programs is

error-prone. The concurrency errors that programmers face
are frequently related to undesired task interleavings, which
may be the result of wrong synchronization. For instance, it
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frequently happens that, when a task suspends its execution,
another task starts to execute and possibly modifies the
global state without the programmer expecting it. This type
of synchronization errors can lead to unpredicted behaviors,
to non-termination, to erroneous computed results, etc. Also
programmers are not always aware of the behavior of the
task scheduler. The scheduler can give priority to a task
without the programmer expecting it. Such task can modify
the global state and give the same types of errors as above.

Several techniques are used in practice to ensure the reli-
ability of concurrent programs. Software testing [6] is one
of the techniques that is most widely used in practice. The
basic idea is to use some sample of the data that a program is
expected to handle to test its functional behavior. If the pro-
gram produces correct results for the sample, it is assumed
to be correct. Most current research focuses on the question
of how to choose this sample. Test case generation (TCG) is
the process of automatically generating test inputs for inter-
esting test coverage criteria. The test inputs are constraints
on the input arguments that identify classes of inputs that
lead to the same output. The testing tool uses such test
inputs to validate the functional behavior of programs. The
coverage criteria ensure termination and also that the code
is sufficiently exercised by the test inputs.
aPET is a TCG tool for a distributed asynchronous lan-

guage based on concurrent objects, named ABS [11]. The
actor -based paradigm [1] on which concurrent objects are
based has evolved as a powerful computational model for
defining distributed concurrent systems. Actors are the uni-
versal primitives of concurrent computation: in response to
a message, an actor can make local decisions, create more
actors, send more messages, and determine how to respond
to the next message received. Concurrent objects are ac-
tors which communicate via asynchronous method calls, e.g.
“o!m();” denotes an asynchronous call from the this object to
object o. Each concurrent object (both this and o in this
case) allows at most one active task to execute within the
object. The synchronization between the caller and the callee
methods can be optionally performed when the result is neces-
sary by means of future variables. For instance, “f = o!m();

await f?;” denotes that the caller synchronizes with the
result of the execution of m such that at the await point if m
has not finished, the this object releases the lock and another
process which is pending to be executed on the this object
can start its execution. Each object has an unbounded set of
pending tasks. When the lock of an object is free, any task in
the set of pending tasks can (non-deterministically) grab the
lock and start to execute. Scheduling among the tasks of an



object is cooperative such that a task has to release the ob-
ject lock explicitly using await. This is an essential difference
with thread-based concurrency since unlike threads switching
between tasks happens only at specific points which are ex-
plicit in the source code. Non-deterministic and cooperative
scheduling are features essential in the development of our
testing tool. The underlying concurrency model of actor
languages also forms the basis of the programming languages
Erlang [5] and Scala [9] that have gained in popularity, in
part due to their support for scalable concurrency. There
are also implementations of actor libraries for Java.

2. DESCRIPTION OF aPET
ABS is a concurrent object-oriented language which offers

an Integrated Development Environment (IDE) for writing
ABS programs. The IDE is realized as an Eclipse plugin that
can be downloaded from http://tools.hats-project.eu

and installed by using the standard Eclipse installation rou-
tine. Additionally, we have developed an aPET Eclipse plugin
which is completely integrated within the main ABS plugin
and downloadable from http://costa.ls.fi.upm.es/apet.

aPET follows the standard approach to TCG of performing
symbolic execution of the program [12, 8] in which the con-
tents of variables are expressions rather than concrete values.
Symbolic execution produces a system of constraints over
the input variables consisting of the conditions to execute
the different paths. The conjunction of these constraints
represents the equivalence class of inputs that would take
this path. We refer to a test case as such conjunction of
conditions or constraints which a tester will use to determine
whether the application is working correctly. By test inputs
we refer to concrete instantiations of the test cases which
satisfy their constraints and that can be used to actually run
the application or method under test.

2.1 System Parameters
The main novelty of aPET is on the parameters that it

provides to simulate the concurrency features during the
TCG process. Besides concurrency-related parameters, aPET
includes options to control aliasing of references, advanced
coverage criteria, domains for generating input values for
Integers and for Strings, etc. As these parameters are rather
standard, we omit explanations on them.

2.1.1 Coverage Criteria (CC)
An important problem in symbolic execution is that, since

the input data is unknown, the execution tree to be traversed
is in general infinite. Hence it is required to integrate a
termination criterion which guarantees that the length of
the paths traversed remains finite while at the same time an
interesting set of test cases is generated such that certain code
coverage is achieved. The following criteria are available:

Loop-k : In order to ensure termination of each task, we
provide the loop-count criteria [10] which limits the number
of times we iterate on loops to a threshold k.

Task-switching : Applying the loop-k CC to all tasks does not
guarantee termination because we can switch from one task
to another an infinite number of times. The task-switching
criterion ensures fairness in the selection of objects whose
tasks are being tested by limiting task switches on each object
to a threshold k.

For both CC, the value of k must be provided by the user.
Let us consider the following method sum, defined in class A,
and doSum, defined in class B:

1 Int sum(Int n){
2 Int r=0; Fut<Int> f;
3 if (n == 0) r = 0;
4 else{
5 f = this ! sum(n-1);
6 await f?;
7 Int aux = f.get;
8 r = n + aux;
9 }

10 return r;
11 }

1 Int doSum(Int m, Int n){
2 A o = new A();
3 if (m > 0){
4 Fut<Int> g;
5 g = o ! sum(n);
6 await g?;
7 r = g.get;
8 }
9 else r = o.q();

10 return r;
11 }

When symbolically executing method doSum, the if branch in-
vokes asynchronously method sum on object o. Once method
sum starts to execute, a new task sum is created at line 5 and
added to the queue of tasks of o. Limiting the number of loop
iterations (in this case recursive calls) of each task does not
ensure termination because each recursive call is a new task.
As a consequence, symbolic execution of sum does not ter-
minate and the else branch of doSum will be never executed
(nor tested). The task switching criterion allows us to bound
the number of task switching per object. In particular, if we
set up a threshold of 1, we get the solutions 〈m>0, n=0, r=0〉
and 〈m≤0, n= , r=v〉, where v is some value returned by q.
The first solution corresponds to executing o ! sum(0), which
requires one task switching on o. The second one exercises
the else branch of doSum.

2.1.2 Scheduling Policies
One of the core components of a concurrent system is the

task scheduler which decides which task to run next among
those available in the queue. For the sake of flexibility, ABS
assumes that scheduling is non-deterministic such that any
pending task can be selected. As fields can be accessed by all
tasks, different behaviors can occur depending on the order
in which tasks are scheduled in the object. aPET implements
a parametric task scheduler which can be instantiated to
adopt the following policies for each of the objects: (1) FIFO,
(2) LIFO and (3) priorities.

As an example, consider the methods below that belong
to the same class, where a is a class field. Let us symboli-
cally execute method check. We first adopt a FIFO strategy.
When the execution arrives to the await g?, the queue of
tasks for object this will contain the three asynchronous calls
toOdd, toEven and oddEven. Now, the current task in which
the await g? is executing also has to go to the queue since the
value of g is not ready. The FIFO strategy selects toOdd that
changes the value of field a to 1. Next, toEven updates the
field with the value 2. Then, oddEven returns 0 as result, and
it is stored in the future variable g. Now the execution of the
await can proceed and the method returns r=0 as result. If
we adopt a LIFO strategy in the queue of object this, we will
not be able to compute any solution, because when the task
await g? is suspended, it is put to the queue and extracted
again. This process will be repeated until the threshold for
the task switching coverage criterion is exceeded. Since the
return statement is never reached, no test cases are generated.
Finally, we consider a strategy based on priorities in which
we need to take into account all possible priority orders for
the four tasks toOdd, toEven, oddEven, and await g?. Test
cases are only produced if task oddEven has higher priority



than the task suspended in await g?. In total, we obtain 12
test cases.

1 Unit toOdd(){
2 this.a = this.a*2+1;
3 }
4 Unit toEven(){
5 this.a = this.a*2;
6 }
7 Int oddEven(){
8 Int r = 0;
9 if (this.a == 0) r = 0;

10 else r = this.a % 2;
11 return r;
12 }

1 Int a; // field
2 Int check(){
3 Int r = 0;
4 this.a = 0;
5 Fut<Int> g;
6 this ! toOdd();
7 this ! toEven();
8 g = this ! oddEven();
9 await g?;

10 r = g.get;
11 return r;
12 }

2.1.3 Task Interleavings
An important problem in TCG of concurrent languages is

that, when a task suspends, there could be other tasks on
the same object whose execution could interleave with it and
modify the information stored in the heap. Thus, when a
task is suspended we need to take into account the different
methods that can modify the heap. The first thing is to fix
the maximum queue length per object. Given a fixed length,
aPET system considers interleavings with:

pruning1: any method that modifies object fields, either
directly or transitively by calling other methods that modify
them;

pruning2: those methods that modify fields directly;

pruning3: those methods that write directly on fields which
are used (read or written) before an await, and read after an
await.

Let us symbolically execute, setting as maximum queue
length 2, method pruning that contains an await synchro-
nizing the execution with the value of field b.

1 Unit setField_b(Int n){
2 this.b = n;
3 }
4 Unit setField_c(Int n){
5 this.c = n;
6 }
7 Unit setField_bc(){
8 this.setField_b(30);
9 this.setField_c(80);

10 }

1 Int b = -5; // field
2 Int c = -5; // field
3 Int pruning(){
4 Int r = 0;
5 this.b = -1;
6 this.c = 40;
7 await (this.b > 0)?;
8 r = this.b + 5;
9 return r;

10 }

If we assume that the queue of pending tasks for the this
object is empty when executing the await instruction, no
test cases are computed. Using pruning1, symbolic exe-
cution assumes that methods setField b, setField c and
setField bc can be in the queue of this. Among the 12
test cases computed by aPET, one of them corresponds to
the solution r=35, this.b=30 and this.c=80 , i.e., the last
method executed in the queue is setField bc. By using prun-
ing2, we only consider interleavings with setField b and
setField c. Thus, the solution shown before for pruning1 is
not computed for this pruning. One of test cases is r=this.b
+5 together with the constraint this.b>0 . No constraints
on this.c are imposed. In total, pruning2 computes 5 test
cases which subsume those of pruning1. The intuition is that
by considering the method that modifies the field alone, we
execute it from a more general context, while its execution
from another one will be just more specific. Finally pruning3

only assumes interleaving with setField b. The intuition for
this option is that, if a field has not been accessed before the
await then there is no information about the field. Thus, the
context with no interleaving corresponds to the most general
possible context for the field. If it is not read afterwards
information about the field does not matter.

2.2 System Output
The test cases computed by aPET are provided in two

different formats: (1) a textual mode which is meant to
be used during software development to spot bugs and (2)
ABSUnit code runnable in a simple framework similar to
JUnit meant to be used for regression testing.

2.2.1 Test Cases in Textual Format
In the textual mode, we show the constraints on the input

arguments and the returned value, as well as the initial and
final states. The states are the lists of objects that have been
accessed, where each object encapsulates information about
its class and set of fields. Additionally, when we use a task
scheduler based on priorities, the system returns also the
priorities assigned to each task. As an example, for method
check of Sec. 2.1.2, bounding the number of loop iterations
to 1 and the number of task switching to 4, we get 12 different
test cases. For all test cases Args = [This] (i.e., the only
input argument is the this object) and the constraint store is
[ ]. In 6 test cases oddEven has the maximum priority and, in
3 of them, odd has the maximum priority and, in the others,
even has it. We show two test cases which compute the same
returned value R but differ on the final heaps, where Si and
Sf stand for the initial and final heap respectively.

Args = [This] R = 0 C = [ ]
Si = [(O, obj(′Check′, [field(a, 0)], [ ])|Os]
Sf = [(O, obj(′Check′, [field(a, 2)], [ ])|Os]
Priorities = odd,even,oddEven,await

Args = [This] R = 0 C = [ ]
Si = [(O, obj(′Check′, [field(a, 0)], [ ])|Os]
Sf = [(O, obj(′Check′, [field(a, 1)], [ ])|Os]
Priorities = even,oddEven,await,odd

2.2.2 ABSUnit Code
The test cases obtained by aPET can be used to generate

ABSUnit code, i.e., repeatable tests typically used for re-
gression testing. Here we show the ABSUnit code generated
from the first test case of the method check above, where the
priority is odd, even, oddEven and await. The test method
is named testCheck.

1 [Fixture] interface CheckTest {
2 [Test] Unit testCheck();
3 }
4 [Suite]
5 class CheckTestImpl implements CheckTest {
6 Check c; ABSAssert aut;
7 { aut = new ABSAssertImpl(); }
8 Unit testCheck() {
9 this.setHeap(); Int r = c.check();

10 aut.assertTrue(r == 0); this.assertHeap();
11 }
12 Unit setHeap() { }
13 Unit assertHeap() { }
14 }

ABSUnit provides annotations (in brackets) to annotate
various parts of the generated test codes. In this case the
method is declared as a test method at the level of the



interface. At the level of method implementation, it first
invokes setHeap to set up the initial heap, which consists
of object c of type Check. Next, method check is called on
c and asserts that the return value is as expected. It also
invokes the generated method assertHeap to assert that the
invocation of check changed the heap as expected.

To correctly set up the initial heap and assert the final heap,
we employ ABS’s delta modules [7]. Delta modules realize
code reuse in the paradigm of Delta-Oriented Programming
[13]. A delta module is a named entity that describes the
code changes associated with the realization of new features.
A delta module may add, remove and modify existing classes,
fields, interfaces and methods. Specifically two delta modules
are generated for executing the test cases. The first of these,
MDeltaForCheck completes existing interfaces and classes to
permit easy setup of their initial state. For example, it pro-
vides a getter method for the object field f. The second delta,
TestDelta modifies the methods setHeap and assertHeap

to set up the initial heap and check the final heap. Here
TestDelta initializes object c and asserts that the field f of
c is updated to 2 after check is executed.

1 delta MDeltaForCheck;
2 adds interface MCheck
3 extends Check {
4 Int getf();
5 }
6 modifies class Check
7 adds MCheck {
8 adds Int getf() {

return this.f; }
9 }

1 delta TestDelta;
2 modifies class CheckTestImpl{
3 modifies Unit setHeap() {
4 c = new Check();
5 }
6 modifies Unit assertHeap(){
7 Int x = c.getf();
8 aut.assertTrue(x == 2);
9 }

10 }

3. CONCLUSIONS AND RELATED TOOLS
We have presented a state-of-the-art TCG tool for con-

current objects which features advanced options to control
the concurrency behavior during the testing process, namely
we can adopt different scheduling policies, simulate differ-
ent tasks interleavings, and use a coverage criterion which
ensures task scheduling fairness. Java Path Finder (JFP)
[14] is a symbolic model checker for multi-threaded Java.
It tries all possible scheduling sequences and interleavings.
Thus, the user has less control during TCG than in our
framework, since we can set up specific policies and select
different criteria for task interleavings. Having fine-grained
control is especially important when using TCG for bug dis-
covery during software development. There are other tools
(like MultithreadedTC) in which the user must specify the
specific interleaving to be exercised. This lack of automation
could be a handicap for the use of the tool by non-experts.

aPET uses the symbolic execution engine of the PET sys-
tem [4]. This is a generic engine which can be applied to
programs originating from different languages by first trans-
lating them to equivalent constraint logic programs (CLP)
and then using the symbolic execution engine of PET for
such CLP programs. We have translated ABS programs
to CLP and then implemented the particular concurrency
model used in ABS by means of CLP predicates. Also we
have added our coverage criteria to the basic engine. Pex [15]
is one of the most powerful tools for TCG, but it currently
handles only sequential programs.

4. ACKNOWLEDGMENTS
This work was funded partially by the projects ICT-231620,

TIN2008-05624, TIN2012-38137, PRI-AIBDE-2011-0900 and
S2009TIC-1465.

5. REFERENCES
[1] G.A. Agha. Actors: A Model of Concurrent

Computation in Distributed Systems. MIT Press,
Cambridge, MA, 1986.

[2] E. Albert, P. Arenas, and M. Gómez-Zamalloa.
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