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Abstract

The aim of incremental analysis is, given a program, its analysis results,
and a series of changes to the program, to obtain the new analysis results as
efficiently as possible and, ideally, without having to (re-)analyze fragments of
code which are not affected by the changes. Incremental analysis can signif-
icantly reduce both the time and the memory requirements of analysis. The
first contribution of this article is a multi-domain incremental fixed-point algo-
rithm for a sequential Java-like language. The algorithm is multi-domain in the
sense that it interleaves the (re-)analysis for multiple domains by taking into
account dependencies among them. Importantly, this allows the incremental
analyzer to invalidate only those analysis results previously inferred by certain
dependent domains. The second contribution is an incremental resource usage
analysis which, in its first phase, uses the multi-domain incremental fixed-point
algorithm to carry out all global pre-analyses required to infer cost in an inter-
leaved way. Such resource analysis is parametric on the cost metrics one wants
to measure (e.g., number of executed instructions, number of objects created,
etc.). Besides, we present a novel form of cost summaries which allows us to
incrementally reconstruct only those components of cost functions affected by
the changes. Experimental results in the costa system show that the pro-
posed incremental analysis provides significant performance gains, ranging from
a speedup of 1.48 up to 5.13 times faster than non-incremental analysis.

1. Introduction

Static cost analysis [39] (a.k.a. resource usage analysis) aims at automati-
cally inferring the resource consumption of executing a program as a function of
its input data sizes, i.e., without actually executing the program. In this work,
we rely on a generic notion of resource, which can be instantiated to measure
the amount of memory allocated, number of instructions executed, number of
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Correas), german@fi.upm.es (Germán Puebla), groman@fi.upm.es (Guillermo Román-Dı́ez)

Preprint submitted to Theoretical Computer Science March 27, 2014



calls to methods, etc. Intuitively, the main steps in order to infer the cost of
programs written in an object-oriented (OO) language are:

1. OO pre-analyses. Almost for every property being analyzed, it is required
to perform a class (or application extraction) analysis [34] which deter-
mines the set of reachable classes which must be considered by subsequent
global analyses. Besides, analyzers of OO languages often perform non-
nullness analysis [22, 33] which allows removing unsatisfiable nullness
checks.

2. Cost relations. Given the program and the pre-analyses information, this
step consists in setting up cost recurrence equations, or cost relations for
short (CRs), which define the cost of executing the program in terms
of the input data sizes. The global analysis underlying this step is the
inference of size relations which determine how the sizes of data change
along program’s execution [3]. In the presence of heap-allocated data
structures, size analysis based on path-length [35] relies on a series of
pre-analyses, namely, sharing, acyclicity and constancy.

3. Cost functions. In the last step, cost relation solvers [2] try to obtain cost
functions which are not in recursive form and hence are directly evaluable.
Since exact solutions seldom exist, analyzers infer upper/lower bounds for
the CRs. This is again a global process which starts by solving the CRs
which do not depend on any other one and continues by replacing the
computed cost functions on the equations which call such relations until
all CRs are solved.

Hence, cost analysis is performed by a sequence of global analyses, i.e., which re-
quire to analyze the whole program in order to obtain sound and precise results.
Despite the great progress made in static analysis, most global analyzers still
read and analyze the entire program at once in a non-incremental way. In par-
ticular, current state of the art resource analyses are non-incremental [3, 18, 21].
Incremental analysis has applications in the following two scenarios: (1) Soft-
ware development. During software development, programs are often modified,
e.g., because a new implementation of an existing method is provided (which
improves its efficiency or fixes its correctness) or because an existing code is
extended with new functionality (typically by extending a class with further
methods). In such cases, the existing analysis information for the program may
no longer be correct and/or accurate. (2) SPLE. One increasing trend in soft-
ware engineering is to develop multiple, similar software products instead of just
a single individual program. Software Product Line Engineering (SPLE) [10]
offers a solution which is based on the explicit modelling of what is common and
what differs between product variants, and on building a reuse infrastructure
(product line asset) that can be instantiated and possibly extended to build the
desired similar products. Building a product consists in incrementally assem-
bling the product from the product line assets by applying the selected features.

Resource analysis is a compute-intensive task and, in scenarios as those
mentioned above, starting analysis from scratch (instead of reusing previous

2



results) is inefficient in most cases. Consider a given program, its analysis results
and a series of changes to the program, e.g., extensions to build a new product
in the SPLE scenario or modifications to fix a bug in the software development
scenario. Incremental resource usage analysis aims at obtaining the new analysis
results more efficiently, without having to (re-)analyze fragments of code which
are not affected by the changes.

1.1. Summary of Contributions

In this article, we present a generic incremental multi-domain analysis engine
for an imperative object-oriented programming language, and study its applica-
tion in the context of incremental resource usage analysis. The main challenge
when devising an incremental analysis framework is to recompute the least pos-
sible information and do it in the most efficient way. Our main contributions
can be summarized as follows:

• We introduce a multi-domain incremental analysis engine which inter-
leaves the computation for multiple analysis domains. Dealing with a
large number of pre-analyses, and threading the information about change
through all of them is the main challenge we face here. Our algorithm takes
into account the dependencies among them in such a way that it is possible
to invalidate only part of the pre-computed dependent information.

• We describe how the previous algorithm can be used in order to incre-
mentally compute all global pre-analyses required to infer the resource
usage of a program (including class analysis, nullness, sharing, cyclicity,
constancy and size analyses mentioned above). All such analysis informa-
tion is included in the so-called cost method summary and used by the
multi-domain incremental analysis engine.

• Even a small change within a method (e.g., adding an instruction) can
change the overall cost of the program. Our contribution, in order to
minimize the amount of information that needs to be recomputed, is on
the notion of upper bound summary which allows us to distinguish the cost
subcomponents associated to each method, so that the final cost functions
can be recomputed by replacing only the affected subcomponents.

• The correctness of our approach has been proved within the article. In
addition, complete details of some proofs can be found in an appendix of
the electronic version of this article.

• We have implemented the incremental analysis in the costa system, a cost
and termination analyzer for Java bytecode programs. Experimental re-
sults are performed on selected benchmarks from the standardized JOlden
benchmark suite [36] and from the Apache Commons Project [28]. Our
results show that the proposed incremental analysis achieves a significant
speedup with respect to the non-incremental approach.

To the best of our knowledge, this is the first approach to the incremental
inference of resource usage bounds.
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1.2. Organization

The rest of the article is organized as follows. In Section 2, we present our
running example, which is written in Java using delta-oriented programming
style [31] in order to define the changes to be applied on a core module. In Sec-
tion 3, we first describe the simple intermediate language on which the analysis
is developed. This language has been already used to formalize other resource
analyses (e.g., [3, 24]). We then present a classical event-based global analysis
algorithm which is generic on the abstract property of interest.

Our multi-domain incremental analysis algorithm is introduced in Section 4.
Given a change on a method, it reconstructs the information which needs to
be recomputed for a given set of domains. A unique feature of our incremental
algorithm is that it is able to handle multiple domains such that the minimal
amount of reanalysis is performed.

Section 5 presents first the application of the generic multi-domain algorithm
in Section 4 in order to infer all OO global pre-analysis required to infer the
cost (item 1 above) as well as the size analysis required to set up cost relations
(item 2 above). Once such global information is recomputed, cost relations can
be generated locally (and thus incrementally) for the code fragment that has
been changed.

In Section 6, an incremental resource usage bound inference is presented.
The algorithm recomputes the cost functions of the subcomponents affected by
the change and relies on the notion of resource bound skeleton which annotates
the cost subexpressions with an identifier of the method they originate from,
and besides deletes the content of the subexpressions that must be recomputed,
leaving only the skeleton.

In Section 7, the experimental results obtained by applying our approach
over a set of realistic programs are presented. The experiments try to simu-
late the classical scenarios for software development and for SPLE in which an
incremental approach can be of interest. Finally, related work is discussed in
Section 8, and in Section 9 the conclusions are presented.

2. Running Example

Our running example, shown in Figure 1, represents a very simple case of a
SPLE scenario. The example uses delta-oriented programming (DOP) [31] to
model the changes to be applied to a program. DOP has been proposed as a
novel programming language approach particularly designed for implementing
Software Product Lines (SPL), based on the concept of program deltas. In DOP,
the implementation of a SPL is divided into a core module and a set of delta
modules. The core module comprises a set of classes that implement a complete
program (or product) for a valid feature configuration. This allows developing
the core module with well-established single-application engineering techniques
to ensure its quality. Delta modules specify changes to be applied to the core
module in order to implement other products. A delta module can add classes
to a product implementation or remove classes from a product implementation.
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Furthermore, existing classes can be modified by changing the super class, the
constructor, and by additions, removals and renamings of fields and methods.

In our running example, the core module is composed of classes C, Mover,
Mover2 and List and we also have a delta module called SingleOrDoubleStep
which specifies the changes to be applied to the core module. Method main
receives a list of integers, checks the length of the list and modifies some of its
elements by invoking mod. In the core module, elements in odd positions of the
list are modified, starting from the third element of the list. The delta mod-
ule SingleOrDoubleStep modifies the implementation of class C by changing the
implementation of method get such that now it allows selecting two alternative
ways of traversing the list. In particular, depending on the value of the first
element of the list, all elements in the list are modified, or only those at odd
positions.

This modification of the program does not only change the resource con-
sumption of method get, but also of methods that are ancestors or descendants
of get. For instance, method mod is an ancestor of get (i.e. mod calls get)
and its resource consumption includes that of get and hence will be affected by
any change in get. Method dup is a descendant of mod and it uses the results
obtained from the invocation to get, through its ancestor mod, and hence its
resource consumption can be affected when the implementation of get changes.
As we will see in the following sections, when performing the incremental analy-
sis of a change specified by means of a delta, besides the method being modified,
its ancestors and descendants must also be considered. Those methods must be
reanalyzed if the previous analysis results are no longer valid (i.e. correct) after
applying the delta modification.

3. Global Analysis of OO Languages

To formalize the analysis algorithms, we consider a rule-based intermedi-
ate representation of a Java-like programming language (e.g., Java, Java byte-
code [3], and the sequential sublanguages of X10 [4] and ABS [23, 1] can be
compiled into this language). Although this representation has been first de-
fined by us in [3], some of its main features are similar to an intermediate form
used in Soot [37] (namely a main common idea is that the stack is flattened
into local variables). It should be noted also that our representation has been
adopted by other authors [24]. We then present a global analysis engine for such
rule-based representation (RBR) which is parametric w.r.t. the analysis domain
and that will later be extended to support incremental analysis.

3.1. The Rule-Based Language

A program in the RBR consists of a set of procedures which are defined as
a set of (recursive) rules. A procedure p with input arguments x̄ and output
arguments ȳ is defined by a set of guarded rules which adhere to the following
grammar:
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class C {
void main (List l) {

int s = len(l);
if (s % 2 != 0 || s < 2)

return;
a© mod(l);
}

void mod (List l) {
Mover o = get(l);
dup(o, o.forward(l));
}

Mover get (List l) {
return new Mover();
}

void dup (Mover o, List l) {
while (l != null) {

l.data = l.data * 2;
l = o.forward(l);

}
}

int len (List l) {
int i = 0;
for(; l != null; l = l.next) {

i++;
}
return i;
}
}

class Mover {
List forward (List l) {

return l.next.next;
}
}

class Mover2 extends Mover {
List forward (List l) {

return l.next;
}
}

class List {
List next;
int data;
}

delta SingleOrDoubleStep {
modifies class C {

modifies Mover get (List l) {
if ((l.data % 2) == 0)

return new Mover();
else

return new Mover2();
}

}
}

Figure 1: Running Example written in Delta-Oriented Programming Style.

rule ::= p(x̄, ȳ) ←[ g ], b1, . . . , bn
g ::= true | exp1 op exp2 | type(x,C)

exp ::= x | null | n | x−y | x+y | x∗y | x%y
op ::= > | < | ≤ | ≥ | = | 6=
b ::= x:=exp | x :=new c | x :=y .f | x .f :=y | q(x̄ , ȳ)

where p(x̄, ȳ) is the head of the rule; x̄ (resp. ȳ) are the input (resp. output)
parameters; g its guard, which specifies conditions for the rule to be applicable;
b1, . . . , bn the body of the rule; n an integer; x and y variables; f a field name,
and q(x̄, ȳ) a procedure call by value. The language supports class definition
and includes instructions for object creation, field manipulation, and type com-
parison through the instruction type(x,C), which succeeds if the runtime class
of x is exactly C. A class C is a finite set of typed field names, where the
type can be integer or a class name. The key features of this representation
which simplify later the formalization of the analysis are: (1) input and out-
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put parameters are explicit variables of rules, (2) recursion is the only iterative
mechanism, (3) guards are the only form of conditional and (4) objects can be
regarded as records, and the behavior induced by dynamic dispatch is compiled
into dispatch rules guarded by a type check.

A method m in a Java (bytecode) program is represented by a set of pro-
cedures in the RBR such that there is an entry procedure named m and the
remaining ones are intermediate procedures invoked only within m. We use
function is method(m) to check if m is the entry procedure of a method, and
function callers(p) to obtain the set of procedures that invoke p directly. The
translation of a program into the RBR works by first building the control flow
graph (CFG) from the program, and then representing each block of the CFG
in the RBR as a rule. For the generation of the CFG, a rapid type analy-
sis (RTA) [9] is used. RTA simply decides which are the classes to be loaded
and generates accordingly all possible instantiation types when a virtual call
is found. A standard single static assignment transformation is applied on the
rules variables. The process is identical to that in [4, 3, 24], hence, we will not
go into the technical details of the transformation, but just show the intuition
by means of an example. In [2], it is formalized that traces in the RBR mimic
those of bytecode and, hence, we can reason in the cost of the Java bytecode
program by analyzing the RBR.

Example 3.1 (RBR). The following RBR for some methods of the running
example before applying the delta SingleOrDoubleStep illustrates all features of
the intermediate representation mentioned above:

main(〈l〉, 〈〉) ← [ true ], len(〈l〉, 〈s〉), s′ := s%2, if(〈l, s, s′〉, 〈〉)
if(〈l, s, s′〉, 〈〉) ← [s′ 6= 0]
if(〈l, s, s′〉, 〈〉) ← [s′ = 0], if2(〈l, s〉, 〈〉)
if2(〈l, s〉, 〈〉) ← [s < 2 ]
if2(〈l, s〉, 〈〉) ← [s ≥ 2 ],mod(〈l〉, 〈〉)
len(〈l〉, 〈i′〉) ← [ true ], i := 0, for(〈l, i〉, 〈l, i′〉)
for(〈l, i〉, 〈l, i〉) ← [ l = null ]
for(〈l, i〉, 〈l′′, i′′〉) ← [ l 6= null ], i′ := i+ 1, l′ := l.next, for(〈l′, i′〉, 〈l′′, i′′〉)
mod(〈l〉, 〈〉) ← [ true ], get(〈l〉, 〈o〉), call forward(〈o, l〉, 〈l′〉),

dup(〈o, l′〉, 〈〉)
get(〈l〉, 〈r〉) ← [ true ], r := new Mover

dup(〈o, l〉, 〈〉) ← [ true ], while(〈o, l〉, 〈l′〉)
while(〈o, l〉, 〈l〉) ← [ l = null ]
while(〈o, l〉, 〈l′′′〉) ← [ l 6= null ], l′.data := l.data ∗ 2,

call forward(〈o, l′〉, 〈l′′〉), while(〈o, l′′〉, 〈l′′′〉)
call forward(〈o, l〉, 〈l′〉) ← [ type(o,Mover) ],Mover .forward(〈l〉, 〈l′〉)
Mover .forward(〈l〉, 〈l′′〉) ← [ true ], l′ := l.next, l′′ := l′.next

The conditional statement in method main is translated into 4 rules defined by
procedures if and if2 . Since only simple comparisons are allowed as guards
in the RBR representation, the additional rules defined in procedure if2 are re-
quired to represent the disjunctive condition. The loops in methods dup and len
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1: proc analysis(m,CP ,D)
2: Q = ∅
3: LD=∅
4: Q.add(m,CP)
5: while (¬Q.empty()) do
6: (p,CP)=Q.extract first()
7: process analysis(p,CP ,D)

8: function get proc answer(p,CP ,D)
9: CP ′ = CP

10: AP ′ = ⊥
11: if (LD .exists(p)) then
12: (CPL 7→APL)= LD .get(p)
13: if (CP v CPL) then
14: return APL

15: CP ′ = CP t CPL

16: AP ′ = APL

17: Q.add(p,CP ′)
18: LD .update(p,CP ′ 7→ AP ′)
19: return AP ′

20: proc invalidate callers(p)
21: for all (p′ in callers(p)) do
22: if (LD .exists(p′)) then
23: (CP ′ 7→ AP ′)=LD .get(p′)
24: Q.add(p′,CP ′)

25: proc process analysis(p,CP ,D)
26: AP=⊥
27: for all (Ri : p← [bi0 ], bi1, . . . , bin) do
28: ST=extend(CP ,vars(Ri),D)
29: for each (bij , 0 ≤ j ≤ n) do
30: if (bij = q( , )) then
31: CP ′=restrict(ST ,vars(bij),D)
32: ST ′=get proc answer(bij ,CP

′,D)
33: ST ′=extend(ST ′,vars(Ri),D)
34: else
35: ST ′= τ (bij , ST,D)
36: ST= ST u ST ′

37: AP = AP t ST
38: (CPL 7→ APL)=LD .get(p)
39: if (AP 6v APL) then
40: invalidate callers(p)
41: LD .update(p,CP 7→ AP)

Algorithm 1: Fixed-point algorithm (operators t, v, u are parametric w.r.t.
the analysis domain, D)

are translated into recursive procedures, defined by a rule guarded by the loop
condition and another one by its negation. The RBR of the program is built
during the execution of the RTA analysis which allows resolving statically vir-
tual invocations. In particular, we create dispatch rules (e.g., call forward) that
are guarded by type conditions which cover all possible runtime types. Note that
the dispatch rule defined by procedure call forward does not include a call to
Mover2.forward because the delta is not applied yet.

3.2. A Global Fixed-Point Analysis Engine

Algorithm 1 presents an event-based global fixed-point analysis engine for
the RBR, similar to other worklist algorithms [26]. The analysis is based on the
theory of abstract interpretation [11], which we briefly summarize below. In ab-
stract interpretation, the program execution is simulated using a description (or
abstract) domain D which is simpler than its corresponding concrete domain C.
The algorithm is parametric w.r.t. the abstract domain D that describes some
property of interest. Description (or abstract) values and sets of concrete values
are related by an abstraction function α : 2C → D, and a concretization func-
tion γ : D → 2C . The pair 〈α, γ〉 forms a Galois connection. The concrete and
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abstract domains must be related in such a way that the following condition
holds [11]:

∀x∈2C ,∀y∈D : (α(x) v y)⇐⇒ (x ⊆ γ(y))

In general v is induced by ⊆ and α. In order to guarantee termination of
analysis, it is required that the elements in D be ascending chain finite under
the partial order v. Similarly, the operations of least upper bound (t) and
greatest lower bound (u) mimic those of 2C in a precise sense.

Each abstract domain comes equipped with a transfer function (denoted τ )
which provides an abstraction of the behaviour of all basic instructions accord-
ing to the corresponding abstract domain. The transfer function receives as
input the next instruction to be executed, the current abstraction, and the ab-
stract domain under consideration. It returns the new abstraction which corre-
sponds to the state where the instruction has already been executed. Function
restrict(ST, V,D) projects an abstraction ST onto the variables in the set V
w.r.t. domain D , and extend(ST, V,D) extends the abstraction ST to the vari-
ables in V w.r.t. domain D .

The analysis results for a procedure are computed with respect to a specific
calling pattern CP , which is a description of the input data (e.g., the input list
is of type List) in the abstract domain. The analysis is monovariant, i.e., the
goal of the analysis is to compute for each procedure p in the program at most
one answer of the form CP 7→ AP , where AP is the answer pattern, which is
also a description in the abstract domain, and the call pattern CP is general
enough to cover all possible patterns for p that appear during the analysis of
the program. Let us show these concepts by means of an example

Example 3.2 (restrict, extend). The abstract domain “ size” infers size con-
straints which determine how the size of data is modified along the program’s
execution. For objects, this domain abstracts them to their maximal path length
[35]. Integers are abstracted to their values. In general, elements in the abstract
domain are constraints on the sizes of program variables. For example, if b and
s are variables of type List, the constraint b ≥ s+ 1 means that the length of list
b is greater than the length of s. Let us consider method foo defined as follows,
which calls method Mover.forward shown in Figure 1.

void foo (Mover o, List s) { CPfoo ≡ {o = 1, s ≥ 0}
List b = new List(); b.next = s;
List a = new List(); a.next = b; ST1 ≡ {a ≥ b + 1, b ≥ s + 1, s ≥ 0}

b© List c = o.forward(a); CPforward 7→ APforward ≡ {l ≥ 2} 7→ {l≥r+2, r≥0}
...} ST2 ≡ {a ≥ c + 2, b ≥ s + 1, s ≥ 0, c ≥ 0}

Code for foo has been annotated with the abstract state for size abstract domain
at relevant program points. The analysis of foo starts from the call pattern
CPfoo which states that the size of object o is 1 and that the length of the list is
non-negative. At program point b©, function restrict is used to project abstract
information from ST1 to the parameters of forward. restrict first projects ST1 in
terms of a, resulting in {a ≥ 2}, and then renames a to l, the variable in the
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definition of forward, generating CPforward ≡ {l ≥ 2}. After analyzing forward,
function extend projects and extends APforward, expressed in terms of r, back to
the abstract state ST2, renaming the result to variable c.

The algorithm uses two global data structures: (1) the local answer table LD

for domain D, where the answers for all procedures are stored and (2) the queue
of events Q, which initially contains as single element the pair (m,CP ) with
the entry procedure m and a given call pattern CP . The analysis of a method is
carried out in process analysis, where we analyze all rules defining a procedure
in Line 27 (L27 for short) by traversing the instructions in its body from left to
right (L29). Here, bi0 stands for the rule guard, which is handled together with
the rest of instructions. When the instruction is not a procedure call, we abstract
it according to the abstract domain (L35). As usual, the abstract description
obtained from one instruction is conjoined with the previously computed one
(L36). The analysis results obtained from the different rules which define a
procedure are joined together (L37). When the instruction is a procedure call
(L30), get proc answer first checks if a previously computed answer exists in L
(L11). We assume that get returns the answer for a given call properly renamed
w.r.t. the arguments in the call (L12). If the existing calling pattern is general
enough (L13), we just use the previous answer (L14). Otherwise, since the
algorithm is monovariant, we join the calling patterns (L15) and analyze again
the corresponding method (L17). At the end of process analysis, if the answer
for p has changed (L39), i.e., a fixed point has not been reached, we need to
invalidate the information for all rules that invoke p (calling invalidate callers
in L40), and update the local answer table L (L41). invalidate callers adds to
Q those methods that invoke p directly, denoted callers(p) (L21), and have an
entry in L (L22).

Observe that the analysis engine adds entries to Q during its execution when
(i) a rule must be analyzed for a given calling pattern in L17, either because
there was not an answer for it or because it had been analyzed for a less general
calling pattern and (ii) when the answer of a rule invoked from it changes (L24).
The execution finishes when there are no more events to process in Q (L5).

Example 3.3 (algorithm 1). The following table shows some relevant states
of the execution of Algorithm 1 when analyzing method main of the running
example w.r.t. the calling pattern CP ≡ {l :{List}} for the domain “ class”.
In the class domain, an abstract value represents the set of classes that the
corresponding variable can be typed to. Thus, the CP indicates that the type of
the input list l is List.
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(1) Q: (main,{l:{List}})
L: (main,{l:{List}} 7→ ⊥)

(2) Q: (len,{l:{List}}),(mod,{l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥)

(3) Q: (mod,{l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ ⊥), (dup,{o:⊥, l:{List}} 7→ ⊥)
(4) Q: (get,{l:{List}}), (dup,{o:⊥,l:{List}})

L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),
(get,{l:{List}} 7→ {r:{Mover}}), (dup,{o:⊥, l:{List}} 7→ ⊥)

(5) Q: (dup,{o:⊥,l:{List}}), (mod,{l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ {r:{Mover}}), (dup,{o:⊥, l:{List}} 7→ ⊥)
(6) Q: (mod,{l:{List}}), (Mover.forward,{l:{List}}),

(dup,{o:{Mover.forward}, l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ {r:{Mover}}), (dup,{o:⊥, l:{List}} 7→ ⊥),
(Mover.forward,{l:{List}} 7→ ⊥)

...
...

When explaining the example, internal rules are ignored because they do not
add any relevant information to the class analysis. Relevant iterations proceed
as follows: At iteration (1), method main is analyzed using the CP {l:{List}}.
Method main calls len and mod which are added to Q and to L at iteration (2),
see L17 and L18 of Algorithm 1, with the default AP, ⊥. At (3), method mod is
analyzed, adding to L methods get and dup. The call to forward is not resolved
at (4) and (5) because the callgraph is being built during class analysis and the
type of o is not known yet. Iteration (4) corresponds to the analysis of method
get where a greater AP for get is found (before it was ⊥). Thus, according to
invalidate callers, mod is added again to Q. At iteration (5), dup is analyzed.
Iteration (6) analyzes mod and the dynamic dispatching of forward can be solved,
thus the calls to Mover.forward and to dup are added to Q. The algorithm iterates
until a fixpoint is reached (the result is shown later in Example 4.2).

4. A Generic Multi-Domain Incremental Fixed-Point Analyzer

This section introduces a generic multi-domain incremental fixed-point en-
gine which, given a change and the previous analysis results, is able to recon-
struct the new analysis results for all domains. The algorithm relies in the
notion of method summary which contains the analysis information that has
been computed globally in a non-incremental way.

4.1. Method Summary for Global Properties

We now provide a generic definition for the notion of method summary on
which our fixed-point algorithm relies.
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Definition 4.1 (method summary). Given a method m(x̄, ȳ) and a set of
domains D applied over m(x̄, ȳ), a method summary for m is defined as a set
of pairs CPD 7→ APD for all D ∈ D, where CPD is the calling pattern used for
analyzing m and APD is the answer pattern obtained by the analysis of m.

Therefore, the method summary simply comprises the final analysis results
obtained for a number of domains.

Example 4.2 (method summaries). For the running example, we will con-
sider two domains: (1) class, which determines the instantiation types of objects
and hence the code that must be analyzed in the next steps, refining the infor-
mation obtained by RTA. This domain is finite since it only contains the classes
available in the program at run-time; and, (2) size, as defined in Example 3.2.
The following method summaries are obtained by applying Algorithm 1 on the
RBR in Example 3.1 by first performing the class and then the size analysis.
We use r to represent the return value:

Method Summaries

void main (List l)
class {l:{List}} 7→ ⊥
size {l ≥ 0} 7→ {l ≥ 0}

void mod (List l)
class {l:{List}} 7→ ⊥
size {l ≥ 2} 7→ {l ≥ 2}

Mover get (List l)
class {l:{List}} 7→ {r:{Mover}}
size {l ≥ 2} 7→ {l ≥ 2, r = 1}

void dup (Mover o, List l)
class {o:{Mover}, l:{List}} 7→ ⊥
size {o = 1, l ≥ 0} 7→ {o = 1, l ≥ 0}

int len (List l)
class {l:{List}} 7→ ⊥
size {l ≥ 0} 7→ {l ≥ 0}

List forward (List l)
class {l:{List}} 7→ {r:{List}}
size {l ≥ 2} 7→ {l ≥ r + 2, r ≥ 0}

In the summary of dup, observe that after creating the object in get, the type
of the object is instantiated to Mover and its size is 1 (this means that it is not
null). The inferred answer pattern for main states that the size of the returned
list is greater than or equal to zero because of the return in the if statement.
Note that although the size of the list in the summary of main is greater than
or equal to zero, after analyzing len, the size analysis of main learns from the
conditional statement that the size of the list is greater than or equal to two at
program point a© in Figure 1. This size constraint is used as precondition of
the (descendant) methods, mod, get and forward. It is important to understand
the size relation obtained for method forward which allows us to know that the
size of the output list is the size of the input list decreased by two. This piece of
information is essential to bound the cost, as we will see later.

The summaries obtained for a program P and a particular domain D can
also be represented as a summaries graph.
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Definition 4.3 (summaries graph). Given a program P and a global answer
table G with entries of the form (m,D) : CP 7→ AP, a summaries graph GP is
a directed graph represented by the pair 〈Ns, Es〉 where:

• Ns is the set of nodes which consists of the set of methods m for which
there is an entry (m,D) : CP 7→ AP stored in G

• Es ⊆ N×N is the set of edges, generated from G according to the following
rules. For every entry (m,D) : CP 7→ AP ∈ G and every node n ∈
callers(m),

– there is an edge from n to m labeled with CP, and

– there is an edge from m to n labeled with AP

Example 4.4 (summaries graph). The summaries shown in Example 4.2
can be presented as a summaries graph. In the graph we only show the class
analysis information to avoid cluttering the figure, but size information can be
added in the same way. Normal lines represent CP’s and dashed lines represent
the AP’s returned by methods.

main(l)

len(l) mod(l)

get(l) dup(o,l)

Mover.forward(l)

l:List
⊥ l:List ⊥

l:List
r:Mover

l:List r:List

l:List
r:List

o:Mover, l:List

⊥

4.2. A Multi-Domain Incremental Analysis Engine

When performing incremental analysis, after a modification in the program,
a change in the analysis results associated to one domain must invalidate the re-
sults previously inferred by subsequent dependent domains. We say that domain
B depends on domain A when B uses information inferred by A. Dependencies
can be represented by means of a dependencies graph.

Definition 4.5 (dependencies graph). Given a set of domains D, a depen-
dencies graph is a directed acyclic graph represented by the pair 〈Nd, Ed〉 where
Nd is the set of nodes and Ed ⊆ N × N is the set of edges, such that: Nd is
the set of domains in D, and, Ed has one edge when, for each pair 〈A,B〉 taken
from the elements in D, such that B uses the information inferred by A.
Given a domain D, we will refer to the set of reachable domains starting from
D (including D) as dep(D).
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1: proc incremental fixpoint(m)
2: P =[(m,D)]; C = ∅;
3: G.invalidate(m,D)
4: while (¬P.empty()) do
5: R=∅
6: (m′,Dm′) =P.extract first()
7: for each D in Dm′ do
8: R.add(m′,D)
9: (CPm′ 7→ APm′)=G.get(m′,D)

10: noincr:analysis(m′,CPm′ ,D)
11: for all ((n,D) in R) do
12: (CPG

n 7→ APG
n )=G.get(n,D)

13: (CPL
n 7→ APL

n )=LD .get(n,D)
14: if (APL

n 6v APG
n )) then

15: P.add dom(callers(n),dep(D))
16: G.update(n,CPL

n 7→APL
n tAPG

n )
17: C.add(R);
18: P.remove(R)

19: function get proc answer(p,CP ,D)
20: CP ′=CP
21: if (is method(p) ∧ G.exists(p,D))

then
22: (CPG 7→ APG)=G.get(p,D)
23: if (G.valid(p,D)) then
24: if (CP v CPG) then
25: return APG

26: else
27: G.invalidate(p,dep(D))
28: P.add dom({p},dep(D))
29: CP ′=CP t CPG

30: R.add((p,D))
31: AP=noincr:get proc answer(p,CP ′,D)
32: return AP

Algorithm 2: Generic multi-domain incremental fixed-point algorithm.

Example 4.6. Given the two domains described in Example 4.2, the dependen-
cies graph contains two nodes, class and size, and one edge from class to size
because the class analysis determines the code to be analyzed by the size analysis.

Note that the algorithm we will propose is able to handle multiple pre-analyses
as long as the dependencies among analyses form a directed acyclic graph, which
is generally the case. Note that if the dependencies form cycles, the same pre-
analysis may need to be recomputed multiple times even in the non-incremental
scenario. This is most often not the case since analyses are typically performed
in a fixed order which avoids the need of recomputing analyses.

Algorithm 2 presents the extensions required to make Algorithm 1 multi-
domain and incremental by relying on the summaries in Definition 4.1 and
the dependencies between domains defined in the dependencies graph. We use
the notation noincr:m to refer to a procedure m defined in Algorithm 1 (see
L10 and L31 in Algorithm 2) and incr:m to refer to a procedure m defined
in Algorithm 2. The incremental algorithm uses method noincr:analysis of Al-
gorithm 1 (and its data structures) and two implementations of get proc answer,
noincr:get proc answer and incr:get proc answer. In L32 of noincr:process analysis
of Algorithm 1, we invoke incr:get proc answer instead of noincr:get proc answer.
The remaining of this section explains how the algorithm works and its sound-
ness.

In contrast to other approaches [20], the granularity of our analysis is set at
the level of methods, i.e., we establish the method as the smallest piece of code
whose analysis information will be stored and reanalyzed in case of changes.
Procedure incremental fixpoint receives the signature of the method m which
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has been changed. Algorithm 2 uses three global data structures: (1) the global
answer table G, which contains the set of summaries for all previously analyzed
methods; (2) the queue of pending events P, which is formed by pairs of the
form (m,D) where D is the list of domains for which m must be reanalyzed
in the order stated in Figure 2; (3) a list, R, to store all methods that have
been reanalyzed in the current iteration of the while loop in L4; and (4) another
list, C, to store all methods that have belonged to P along the execution of the
algorithm, i.e., the set of methods that have been reanalyzed at least for one
domain. The latter data structure is built only for its use in the second phase
of cost analysis (Section 6). The main goal of the incremental algorithm is,
starting from the modified method, to propagate the new information obtained
from the modification.

Let us explain how the new information propagation occurs by using the
notion of affected edge. We start by providing some notation. Let P0 be the
initial program, and P1 the program after the modification of method m. We
will use GP0

and GP1
to represent the summaries graphs of P0 and P1 and GP0

and GP1
to refer to the global answer tables generated by the non-incremental

algorithm (Algorithm 1) for P0 and P1, respectively.

Definition 4.7 (affected edge). Let GP0
and GP1

be the summaries graphs
for programs P0 and P1, respectively. We say that an edge from node n to
node m in GP1 , labeled with abstract state STP1 , is affected by the change when
either:

• Node m exists in GP1
but not in GP0

, or

• The corresponding edge from P0, labeled STP0 , fulfills STP0 6w STP1

Definition 4.8 (affected method). Let GP0
and GP1

be the summaries graphs
for programs P0 and P1, respectively. We say that a method m is affected by
the change when there is an affected edge that goes to m.

Example 4.9 (affected edge, method). Let us consider the application of
the delta SingleOrDoubleStep to the core module defined by class C. After ap-
plying the delta, we have a new implementation of method get. The answer
pattern obtained by the analysis of the new version of get is AP1 ≡ {r :
{Mover,Mover2}}, which is not contained in the previous answer pattern AP0 ≡
{r : {Mover}}, i.e. AP1 6v AP0. This new answer pattern returned by get cre-
ates an affected edge from get to mod, and, consequently, mod is an affected
method that will have to be reanalyzed.

The goal of the algorithm is to start the analysis of P1 from the changed
method and reanalyze only those methods that have been affected by the change.
Note that the aim is to build GP1

(we do not have it a priori). Affected methods
are either descendants or ancestors (transitively) of the changed method and
information if propagated as follows:
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Descendants. L7-10 take care of reanalyzing those methods that are pending
to be reanalyzed. We use the CP stored in G to initiate the analysis (L9-
L10). Besides, all reanalyzed methods are added to R in L8 in order to later
(L11) decide the recomputation that must be done (see the previous ances-
tors paragraph). The call noincr:analysis (L10) reanalyzes m for a particular
domain by calling Algorithm 1. During the execution of noincr:analysis (Algo-
rithm 1) those methods reachable from m (descendants) whose answer for such
domain must be recomputed will also be reanalyzed. Observe that the execution
of noincr:analysis uses incr:get proc answer instead of noincr:get proc answer.
The new function get proc answer in Algorithm 2 differs from the one in Algo-
rithm 1 in that, for method calls, it tries to reuse an existing answer from the
method summary (stored in G) (L21) if its calling pattern is general enough
and the entry has not been invalidated (L23-24). Otherwise, both calling pat-
terns are joined (L29) and the pair of method signature and domain is added
in L30 to the list R. Entries of the method summary for dependent domains
are invalidated (L27) and added to P (L28). If there is no summary for the
method, or if it is an intermediate procedure of a method (L21), the function
noincr:get proc answer of Algorithm 1 is invoked, and it analyzes m in the non-
incremental way (L30). As we have seen in the non-incremental analysis, the
analysis of one method may produce a new answer that must be propagated to
its callers, by means of noincr:invalidate callers (L40 of Algorithm 1). Observe
that, in the incremental case, L only contains information regarding descen-
dants of m which have been reanalyzed. Therefore, noincr:invalidate callers
only invalidates methods which have been reanalyzed in the current call to
noincr:analysis (L22 of Algorithm 1). The execution of noincr:analysis fin-
ishes when no new information is propagated and a fixpoint for the reanalyzed
methods is reached. This process is repeated for all domains for the considered
method (L7).

Ancestors. When the call noincr:analysis finishes (L10), reanalyzed methods
have been added to the listR. Now, we need to take care of reanalyzing all those
methods that relied on answers for methods in R. The list P is used for this
purpose. Initially, P contains an entry for the changed method and all domains
(L2). It is later updated in L15 as follows. For each element in R, we know that
it is reanalyzed for such domain (L11). We compare the new answer APLn with
the one in the summary APGn (L12-14). If the new one is not contained in the
previous one (L14), we have an affected method and thus we need to reanalyze
all methods that invoke m (L15) for such domain and its dependent domains.
However, some methods that invoke m may have been already reanalyzed in
this iteration (during L7-10) and, therefore, they do not need to be reanalyzed
again. All methods in R are removed from P in L18. Finally, the fixed point is
reached when there are no more methods to analyze in P.

Example 4.10 (descendants and ancestors). The modification described in
delta SingleOrDoubleStep launches the execution of incremental fixpoint(get).
Let us see how the new information for the class domain is propagated by Al-
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gorithm 1. The execution of the algorithm starts by adding get to P and inval-
idating its results (L2-3) and L8-10 analyze the new version of get. The class
analysis result for get stored in G does not cover the newly generated answer
pattern, detailed in Example 4.9, thus all direct ancestors of get, that is mod,
are affected methods and must be reanalyzed (L14-15). During the reanalysis
of mod, a call to dup with a new call pattern to method is found. Observe that
variable o can now be of types {Mover,Mover2}. This new call pattern forces the
reanalysis of dup (L24-28), which is a descendant of mod, also affected by the
change. The propagation of the new class information can be graphically seen
in the portion of the summaries graph that corresponds to the affected methods.
Thick edges denote the propagation of the new information.

mod(l)

get(l) dup(o,l)

l:List

r:{Mover,Mover2}
���r:Mover o:{Mover,Mover2}, l:List

((((
(

o:Mover, l:List

⊥

Now let us see that all affected methods are reachable from the modified
method by an affected path.

Definition 4.11 (affected path). An affected path in a summaries graph is
a path formed by affected edges.

Example 4.12. The affected path in Example 4.10 is made of the thick edges.

Proposition 4.13. Given a program P , a domain D and GP1
, all affected

methods of GP1
are reachable from the modified method m by an affected path.

Proof. We use the correctness result of Algorithm 1, which is similar to other
worklist algorithms ([26], Section 6.1). Algorithm 1 returns the least fixed point
of the analysis regardless of the order in which events are processed. Given a
method n, Algorithm 1 uses as information for analyzing n the code of n plus
the labels of the incoming edges to n in the summaries graph. The result of
the analysis of n is the set of outgoing edges from node n in the summaries
graph. Therefore, (1) if the code of n has not changed and the incoming edges
to n in the summaries graph are not affected, then, due to the monotonicity
of the analysis, Algorithm 1 will not produce outgoing affected edges from n.
Furthermore, this can be generalized to a set of nodes N . Let I be the set of
those edges from nodes not in N to nodes in N . (2) If none of the nodes in N
has changed and the edges in I are not affected, then Algorithm 1 will produce
no affected outgoing edges from any node in N .

Now, let us prove the proposition by contradicting the following:

(*) “There exists an affected node n not reachable from the node
corresponding to the modified method m by an affected path.”
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If n is an affected node, then, by Definition 4.7, there is at least one affected edge
from another method n′ to n. n′ must be an affected node, by (1). Furthermore,
n′ cannot be the modified method m, because it would contradict (*). Let N
be the set of affected nodes connected to n by affected paths, including n, and
M the rest of nodes in GP1

. Also, n′ ∈ N . Clearly, there are no affected edges
from methods in M to methods in N , and m ∈ M . Thus, by (2), there are
no affected outgoing edges from any node in N . This contradicts the fact that
there is an affected edge from n′ to n. Thus, node n is not reachable from m
by an affected path cannot exist, contradicting (*).

2

Besides ensuring that all affected methods are reanalyzed we need to prove
that their analysis gives sound result.

Proposition 4.14. The loop in L4-18 of Algorithm 2 obtains correct analysis
information for affected methods.

Proof (sketch). We consider one analysis domain D. The extension to several
domains will be studied in Proposition 4.16. First, it must be proved that one
iteration of the loop in L4-18 of Algorithm 2 correctly propagates analysis results
to both callers(m) and methods called by m. The latter is handled by calling
noincr:get proc answer in L32 of Algorithm 1, reanalyzing methods called by m
if either they where not analyzed before, or the new call pattern for them is not
contained in the results stored in G. On the other hand, methods in callers(m)
are added to P in L15 of Algorithm 2 if the analysis information obtained for
m is not included in the information already stored in G. The loop in L4-18
transitively processes affected methods, which are reachable from m by affected
paths (Proposition 4.13). When the loop terminates, all affected methods are
reanalyzed and G is updated with correct analysis information. The complete
proof can be found in the online version. 2

The extension of Proposition 4.13 and Proposition 4.14 is straightforward for
global answer tables which are obtained after executing Algorithm 2, in order
to handle consecutive changes.

Up to now, we have seen how the algorithm works incrementally for one
domain. Now, let us see how the algorithm is able to interleave the computation
of multiple domains.

Multi-domain. When a method changes, its code must be reanalyzed with
respect to all domains. This is done by the algorithm in L2-3 where we add
to P the modified method for all domains and invalidate its entries in G. Our
aim is to handle multiple domains in the context of incremental analysis such
that the minimal amount of reanalysis is performed. Our approach consists
in interleaving the computation of the incremental fixed point for all domains
by means of validity flags. The idea is that a change in a summary for a
specific domain invalidates only the entries for those dependent domains (see
Definition 4.5). This is handled in the algorithm by means of G such that each
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entry stored in G has a flag to indicate whether the entry for this particular
domain is valid. Initially all entries are valid. We use function valid(p,D) to
check if the summary for p and domain D is valid. The call invalidate(p,D)
sets up to invalid the flags for the set of domains D for method p. Invalidated
entries must be reanalyzed. This occurs in the algorithm when the entries to be
reanalyzed are added to P in L15 and L28. Note that class analysis determines
the CFG of the program being analyzed. Hence, after a change, the callers
information used in L15 by Algorithm 2 is recomputed. To that end, add dom
receives a set of methods M and a set of domains D and, for each m ∈ M,
D ∈ D, if there exists an entry (m,Dm), it is updated to (m, add(Dm, D)),
where the addition of D is ordered as determined by the domains dependencies
graph. If an entry does not exist, it adds (m, {D}).

Example 4.15 (algorithm 2). At this point, let us explain how Algorithm 2
handles the modification of delta SingleOrDoubleStep and interleaves the com-
putation of class and size analysis. The application of the delta launches the
following iterations of the loop in L7 of Algorithm 2:

mod

get dup

Mover.forward Mover2.forward

(1) (3)

(3)

(5)

Iter P
(1) {(get, class), (get, size)}
(2) {(get, size), (mod, class), (mod, size)}
(3) {(mod, class), (mod, size)}
(4) {(mod, size), (dup, size)}
(5) {(dup, size)}

The left figure graphically represents the iterations of the incremental analysis
algorithm. Arrows represent parental relations among methods. Dashed lines
(arrows and boxes) indicate the recomputed information due to the application
of the delta. Some arrows are labeled with the iteration number that computes
it. The table to the right shows the contents of P at each iteration. Intuitively,
the algorithm proceeds as follows:

(1) analysis(get, ,class) of Algorithm 1 is executed. As it is explained in Ex-
ample 4.9 and Example 4.10, the new answer pattern for get forces the
reanalysis of its direct ancestors, namely mod is added to P for domains
dep(class). This is shown graphically by a dashed arrow from get to mod
labeled with (1).

(2) Afterwards, size analysis for get does not propagate new information to
its callers, hence no arrow is labeled with (2).

(3) analysis(mod, ,class) is launched. During class analysis, calls to dup and
forward are found. According to the new results obtained for get, vari-
able o can now be of types {Mover,Mover2}. Due to this polymorphism,
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an invocation to Mover2.forward1 is found in addition to the previous
Mover.forward. Since there are no entries for Mover2.forward in G, it is an-
alyzed during the execution of analysis and added to G for the domain class.
Besides, the entry for dup in G has CP1 ≡ {o:{Mover}, l:{List}} and thus
it does not cover the new CP2 ≡ {o:{Mover,Mover2}, l:{List}}. Both CPs
are joined (resulting in CP2) and dup is reanalyzed for the class domain
w.r.t. CP2. During the class analysis of dup, a new call to Mover2.forward
is found, but now G contains valid information for Mover2.forward, and
thus the AP stored in G can be directly used. As dup has been reanalyzed
for domain class, entries for dup for dep(class) in G are invalidated and
added to P. Note that (dup,class) is not added to P because it has been
handled as a descendant of mod.

(4) Similarly to (3), during the analysis of mod for the size domain, the entry
for (Mover2.forward,size) is added to G.

(5) Polymorphism of the call to forward forces that the size relations for pro-
cedure while change. Now, we combine the size results of Mover.forward
and Mover2.forward, since any of the two methods can be executed within
the loop.

At the end of (5) a fixed-point is reached since there are no further changes
in the answer pattern for any domain. Importantly, only affected methods have
been reanalyzed and their information in G is up-to-date. Methods main, len and
Mover.forward have not required reanalysis for any domain. The following table
shows the summaries that have changed w.r.t. the ones in Ex. 4.2:

Method Summaries

Mover get(l)
class {l:{List}} 7→ {r:{Mover,Mover2}}
size {l ≥ 2} 7→ {l ≥ 2, r = 1}

void dup(o,l)
class {o:{Mover,Mover2}, l:{List}} 7→ ⊥
size {o = 1, l ≥ 0} 7→ {o = 1, l ≥ 0}

List Mover2.forward(l)
class {l:{List}} 7→ {r:{List}}
size {l ≥ 2} 7→ {l ≥ r + 1, r ≥ 0}

Proposition 4.16. The loop in L4-18 of Algorithm 2 obtains correct analysis
information for affected methods.

Proof. Proving the correctness of the algorithm to handle multiple domains is
a straightforward extension of the proof of Proposition 4.14. All methods that
are reanalyzed must be invalidated and reanalyzed not only for the analyzed
domain, but also for all dependent domains. G entries are invalidated by the
Algorithm alg:noincr-algorithm in L27 and L15, which add the method to the

1Method references include the class they belong to when disambiguation is needed.
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queue of pending events P, not only the current domain (D), but also all depen-
dant domains using function dep(D). The invalidation of one entry in G forces
its reanalysis for all dependant domains and the behaviour of the algorithm is
analogous to handling only one domain. 2

Theorem 4.17 (correctness). Incremental fixpoint(m) terminates and returns
a correct G for all methods.

Proof (sketch). Correctness is an immediate consequence of Propositions 4.13
and 4.16. Termination is guaranteed by the ascending chain condition (ACC) of
the abstract domains and the t domain operator. L29 and L16 of Algorithm 2
and L15 of Algorithm 1 guarantee that the abstract states always ascend or
stabilize in the analyzed domain. More details can be found in the online version.
2

Final Remarks. For simplicity of the presentation, when there are multiple
methods changed, changes will be handled one after another. The algorithm
can be extended in order to handle sets of methods changed simultaneously,
which may result in improved efficiency of the incremental analysis in some
situations.

Regarding accuracy of the incremental versus non-incremental analyses, it
must be mentioned that one of our design decisions when proposing Algorithm 2
was to recompute analysis information as efficiently as possible by reusing all
information which is guaranteed to remain correct, and only recompute the anal-
ysis information which is potentially no longer correct. This results in improved
efficiency but the results are potentially less accurate than those which may be
obtained by analyzing the program from scratch. Though in our experience, the
precision loss does not happen very often, the situations where it can occur are
easy to identify during incremental analysis and can be used to inform the user
that the analysis results may be improved by performing analysis from scratch.
In particular, this occurs when the new call pattern for a method is strictly less
general than the one for which analysis is stored. If that is the case, an analysis
from scratch can be performed when requested by the user or at the end of the
development phase.

5. Incremental Inference of Cost Relations

We now illustrate how the generic incremental fixed-point analysis engine is
used for the generation of cost relations in the first phase of cost analysis (see
Section 1).

5.1. Method Summary for Global Properties

All analysis required for cost analysis (class, sharing, acyclicity, ...) can
be computed by using the generic fixed-point engine in Algorithm 1 for each
domain. These pre-analyses are executed consecutively and the information
inferred for one domain is used for analyzing subsequent domains. Figure 2
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shows the dependencies graph between domains, where the order of execution
and the dependencies between domains are shown. The following definition of
cost method summary together with the dependencies is used by Algorithm 2
to perform incremental analysis.

Definition 5.1 (cost method summary). Given a method m(x̄, ȳ), a method
summary for m is a tuple of five answers CPD 7→ APD for the following do-
mains:

(1) D=class, where x:{C1, . . . , Cn}∈APcl (resp. CPcl) represents the set of
classes that variable x may be typed to after (resp. before) executing
m [34];

(2) D=sharing, where (x, y) ∈ APsh (resp. CPsh) means that x and y might
share after (resp. before) executing m [32];

(3) D=acyclicity, where x ∈ APac (resp. CPac) means that x may point to a
cyclic data structure after (resp. before) executing m [30];

(4) D=constancy, where x ∈ APcn if the structure of x may have changed
during the execution of m [17] (this analysis is context-insensitive);

(5) D=size, where APsz (resp. CPsz ) are a set of linear constraints describing
the relation between the size of the variables x̄ and ȳ after (resp. before)
executing m [4].

class

sharing

constancyacyclicity

size

cost relations

Figure 2: Domain dependencies

Let us mention the most relevant issues re-
lated to the five points in the above defini-
tion and explain the domain dependencies in
Figure 2. The class analysis information de-
termines the types of objects and thus allows
us to refine the information obtained by the
RTA analysis for generating the CFG. For
instance, assume that class B extends A, if
we have a code like the leftmost two lines:

A o = new B(); call ← type(o,A),A.m()
o.m(); call ← type(o,B),B.m()

The RTA analysis had decided to load
classes A and B and the virtual invocation
had been decompiled into the two rules that
appear to the right. Then, class analysis determines that o is of type A and the
analysis will only infer information from the second rule. Regarding size analy-
sis, we assume that the size of a heap-allocated data structure is its path-length
(i.e., the length of the longest path reachable from it), if the data structure is not
cyclic. Hence, acyclicity is a soundness requirement for size analysis; besides, if
two variables x and y share and there is a reference field assignment x.f = y,
then no safe information can be provided regarding the acyclicity of x nor y
since cycles might be introduced. Hence, sharing is a soundness requirement for
acyclicity and hence for size. It is essential to know the arguments of m whose
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shape remains constant upon return because in such case their path-length is
preserved on exit from m [17]. Once all previous analyses have been performed,
size relations can be inferred in order to determine how the size of data is mod-
ified along the program’s execution. Finally, size relations are used to generate
the cost relations whose definition is given in Section 5.2.

Example 5.2. After applying the analysis using the domains defined in 5.1
to the running example, the only relevant information obtained is related to
class and size domains. As it is usual in resource analysis, we assume that the
input list for method main is not cyclic, and analyses for sharing, constancy
and acyclicity guarantee that, after program execution, the list remains acyclic.
Example 4.15 has showed the detailed execution of our incremental analysis
engine for the domains used in cost analysis.

5.2. Generation of Cost Relations

Given the size relations, the second phase of cost analysis (item 2 of Sec-
tion 1) is the generation of CRs. This step is performed locally to each rule and
hence it is already “incremental” (or local). Nevertheless, in order to link with
the next phase of cost analysis in Section 6 and make the article self-contained,
we recall what CRs are and how the incremental analysis has to treat them.

Intuitively, the generation of an equation for a rule consists of the next
steps: (1) apply the selected cost model to each instruction in the rule (a cost
model M maps an instruction b to a corresponding cost, denoted M(b)), (2)
abstract each basic instruction by a size constraint [3] and, (3) when we find a
call to a method, the size constraint is the size relation for the answer pattern
of the size summary.2 The actual cost of executing the call is defined by a
corresponding equation. Output variables of methods do not appear in the
equations, as the cost is given in terms of the input arguments only. Given a
RBR rule r ≡ p(x̄, ȳ)←B, we use the following functions: calls(B) to obtain
the set of elements q(w̄, z̄) which are calls to procedures in B, and instr(B) to
refer to the set of elements of B which are other instructions. Given a rule r,
its size relation ϕr is the conjunction of the size constraints of its instructions
in instr(B) (point 2 above) and of the size relations in the answer patterns of
the summaries for calls(B) (point 3 above).

Definition 5.3 (cost relation system [3]). Given a cost model M, a rule
r ≡ p(x̄, ȳ)←B in the program and its size relation ϕr, we generate the cost
equation:

〈 p(x̄) =
∑

b∈instr(B)

M(b) +
∑

q(w̄,z̄)∈calls(B)

q(w̄), ϕr〉

Given a program P , its cost relation system is obtained by applying the above
transformation to all rules.

2Note that in order to obtain such size summaries we need all pre-analyses discussed above.
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The above kind of CRs can be generated for any kind of cumulative cost that
always increases along the execution of the program (e.g., number of executed
instructions, number of objects created). However, certain cost criteria are
non-cumulative (e.g., the peak of the memory consumption in the presence of
garbage collection) and require non-standard CRs that capture such cost peaks
(see [7]).

Example 5.4. Consider the original program before applying the delta of the
running example and the summaries in Example 4.2. In the example we will use
a cost model which counts the number of instructions executed by the program,
i.e. M(b) = 1 (guards are not counted as instructions in the cost model). As
an example, by applying the cost model to the rule mod(l) we obtain that the
number of instructions is 3. By applying Definition 5.3, the rule for method
mod is transformed into the equation: mod(l) = 3 + get(l) + call forward(l) +
dup(l ′) {l ′ ≥ 0 , l ≥ l ′+2} where the 3 stands for the three calls in the instruction
and the size relations are obtained from the size summaries for the methods in
Example 4.2. Irrelevant constraints on the input are omitted in the example, e.g.
in get(l), the constraint l ≥ 2 is not shown in the CRs. The cost of the calls
to the methods is defined by corresponding equations. For the running example,
we get the following set of equations:

mod(l) = 3 + get(l) + call forward(l) + dup(l′) {l′ ≥ 0, l ≥ l′ + 2}
get(l) = 1 {}
dup(l) = 1 + while(l) {l ≥ 0}
while(l) = 3 + call forward(l) + while(l′) {l′ ≥ 0, l ≥ l′ + 2}
while(l) = 0 {l = 0}
call forward(l) = 0 + Mover .forward(l) {l ≥ 2}
Mover .forward(l) = 2 {}

The resulting constraints to the right define the applicability conditions of the
equations and the size relations between the variables. We omit in the equations
the variables that are not involved in the equation guards (e.g., the first argument
o in rule dup) because they are useless for solving the equations.

After a modification in a program, when Algorithm 2 finishes, we need to
generate new CRs for all methods which have been reanalyzed (i.e., those that
belong to C). This is because their size relations may have changed; and, besides,
for the changed method its accumulated cost may have changed as well. The
remaining ones do not require any change.

Example 5.5. Considering the application of the delta SingleOrDoubleStep and
the summaries in Example 4.15. When Algorithm 2 finishes C contains {get,
mod, dup, Mover2.forward}. Thus, CRs for all those methods must be recomputed
by using the standard CR generation as explained in Definition 5.3:
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mod(l) = 3 + get(l) + call forward(l) + dup(l′) {l′ ≥ 0, l ≥ l′ + 1}
get(l) = 3 {}
dup(l) = 1 + while(l) {l ≥ 0}
while(l) = 3 + call forward(l) + while(l′) {l′ ≥ 0, l ≥ l′ + 1}
while(l) = 0 {l = 0}
call forward(l) = 0 + Mover .forward(l) {l ≥ 2}
call forward(l) = 0 + Mover2.forward(l) {l ≥ 1}
Mover2.forward(l) = 1 {}

When comparing the equations with the ones in Example 5.4, we observe that
after merging the size information gathered for the two implementations of for-
ward, in the new CR, we have to assume that the length of the list decreases
(in the worst-case) by one. This corresponds to the underlined constraints. The
cost relations for main, len and Mover.forward do not need to be updated.

6. Incremental Inference of Upper Bounds

The third phase in cost analysis (see item 3 in Section 1) consists in trans-
forming the CRs obtained in Section 4 into cost functions [2], i.e., cost ex-
pressions without recurrences. Since a precise solution often does not exist,
cost analyzers infer upper bounds/lower bounds (UBs/LBs) from them which
are, resp., over/under-approximations of the worst/best-case cost. This is also
the reason why computer algebra systems (CAS) cannot be used in general
to transform CRs into cost functions (see [2]). In other words, CRs do not
define functions, but rather relations and thus CAS cannot be used to solve
them. Very shortly, the reasons why they are relations are (1) that CRs are
highly non-deterministic: equations for the same relation are not required to
be mutually exclusive. Even if the programming language is deterministic, size
abstractions introduce a loss of precision: some guards which make the original
program deterministic may not be observable when using the size of arguments
instead of their actual values. (2) Besides, CRs may have constraints other than
equalities, such as l > l′. When dealing with realistic programming languages
which contain non-linear data structures, such as trees, it is often the case that
size analysis does not produce exact results.

W.l.o.g., we make three simplifications for the sake of clarity of the presen-
tation:

1) We focus on upper bounds, since the problem of lower bounds is dual [8].
2) We consider polynomial CRs. Note that the technique in [2] can solve also

exponential and logarithmic relations. In the same way, our incremental
analysis can be applied to these kinds of relations without requiring any
modification other than the upper bound formula (UBC in Definition 6.1)
which gathers all components together.

3) We ignore base cases, because they are handled in a strictly simpler way
than recursive equations. Thus, the same reasoning applies.
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A precondition in order to apply the method of [2] (and thus also for our
approach) is that the CR form an acyclic graph. Thus, after a change in the
program, the CRs are generated and the precondition is checked.

In Section 6.1, we first introduce the notion of UB summary which specifies
the information which needs to be stored in order to recompute UBs after a
change in a program (and hence in its CR). Section 6.2 presents an algorithm
to support incremental inference in this step.

6.1. The Notion of Upper Bound Summary

Our starting point is the technique of [2] which proposes an automatic ap-
proach to obtaining UBs from CRs by obtaining an UB for the standalone CRs
which do not call any other relation, and consecutively replacing such UBs in
the equations which call such relations until all CRs are solved. The following
definition summarizes such solving process:

Definition 6.1 (upper bound [2]). Consider a CR defined by n equations of
the form:

〈C(x)=exp+

k∑
i=1

Yi(yi) + C(y), ϕ〉 (1)

where the size relations (ϕ) are linear constraints on variables x and yi ∪ y,
An upper bound for C(x) is UBC(x) = #iter ∗ mexp such that:

1. #iter is an upper bound on the number of recursive calls of C,

2. the invariant (ψ) relates variables yi∪y to their initial values x (we denote
the initial value of a variable x as x0),

3. ubi are upper bounds for each call Yi(yi),

4. for each recursive equation, we have that:

mexp′=maximize(exp,x,ψ,ϕ)+
∑k

i=1 maximize(ubi, x, ψ, ϕ)

where function maximize(e, x, ψ, ϕ) returns the maximization of e for ψ
and ϕ w.r.t. the equation entry variables x,

5. if C has n recursive equations, mexp=max(mexp′1, ..., mexp
′
n), where mexp′j

is the maximized cost of equation j obtained in point 4, with j = 1, . . . , n.

Example 6.2. Let us see the application of Definition 6.1 to the following CRs:

while1(i) = 3 + while2(j) + while1(i′) {i′ > 0, i ≥ i′ + 1, i = j}
while1(i) = 0 {i = 0}
while2(j) = 5 + while(j′) {j′ < 10, j ≥ j′ − 1}
while2(j) = 0 {j = 10}

In order to solve while2 , we obtain that an upper bound on the number of it-
erations is #iter = nat(10−j) (point 1). In while2 , mexp is simply the cost
of executing one iteration of the loop, that is, 5, resulting in UBwhile2 (j) =
5∗nat(10−j). Let us continue with the UB of while1 . The maximum number of
iterations of while1 is determined by nat(i). Regarding point 5, while1 has only
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one recursive call, thus mexp = mexp′. Now, so as to obtain mexp′ we have the
cost executed by while1 in one iteration plus the worst case of calling while2 ,
i.e., UBwhile1 (i) = nat(i) ∗ (3 + ubwhile2 ). This maximization is done by using
the size relations ϕ = {i′ > 0, i ≥ i′ + 1, i = j} and the invariant ψ = {i0 ≥ i}
(i0 represents the value of i before entering the loop) to maximize the expression
5∗nat(10−j) with respect to i (points 2, 3, 4). The worst possible case for this
expression is obtained when while2 is called with i = 0, thus ubwhile2 can be
replaced by 5∗10, resulting in UBwhile1 (i) = nat(i) ∗ (3 + 50).

Intuitively, given a recursive cost relation defined by several equations, a safe
upper bound is obtained by inferring an upper bound on the number of iterations
#iter (point 1 above) and then taking the maximal cost of all possible executions
of the equations mexp (point 5). Clearly, #iter ∗ mexp is a sound upper bound.
We use the techniques in [2] to infer #iter automatically. Such approach in
complete when #iter is a linear expression and it is based on inferring a ranking
function for each loop which bounds its number of iterations. Other techniques
can adapted for non-linear polynomials [14]. The maximal cost mexp is the
maximum of the worst-case cost of executing each of the equations that define
the relation in isolation (point 4). Observe that the process of obtaining such
worst-case cost requires an invariant (ψ) generation phase (point 2) and then a
maximization of expressions (point 3). We cannot make any incrementalization
of these two parts because they are already locally obtained from the CRs, see
the details of the techniques used in [2]. This step is again not complete (as
inferring cost is undecidable) and thus it is not always computable (see [2]).

Example 6.3 (UB). Let us apply the Definition 6.1 to solve the CR mod in
Example 5.4 which has been obtained before applying the delta of Figure 1. The
standalone CRs Mover.forward and get are already solved since they are not
recursive. Next, we solve while(l′) which is required in order to solve dup. The
CR while contains one call to Mover.forward with constant cost. Its UB can be
computed by multiplying the cost of one iteration by the maximum number of
iterations. The cost of one iteration is 3 plus the cost of the call to get, 2. An
UB of #iter for while is nat(l′/2). Function nat(v)= max({v, 0}) is used by the
UB solver to avoid negative evaluations. Thus, the UB of the CR while is

UBwhile(l
′)=3+2∗nat(l′/2).

The UB for dup is directly obtained from UBwhile resulting in the UB

UBdup(l
′)=1+(3+2)∗nat(l′/2).

Finally, mod is not a recursive CR, so we do not need to infer number of itera-
tions. The CR for mod calls dup. Thus, when computing an UB for mod(l), the
UB for dup has to be maximized w.r.t. the entry variable l, ϕ = {l ≥ l′+2, l′ ≥ 0}
and the invariant ψ = {l0=l, l0≥2}. This results in

UBmod(l)=6+(1+5∗nat(l/2−1)),
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where we can observe that the maximum cost of dup within mod occurs when
l′ = l − 2. Finally, the cost of the main method is computed by adding UBmod

and UBlen(l) = 2+3∗nat(l) and its own cost, resulting in the expression:

UBmain(l) = 5+2+3 ∗ nat(l)+7+5∗nat(l/2− 1)

In the above example, it can be seen that an UB is a global expression which
includes the UBs of the relations it calls. If the CR associated to one method m
changes, it is not possible to distinguish within an UB which part of the cost is
associated to m. Thus, the whole expression must be recomputed. This affects
the UBs of all methods from which m is reachable and often forces recomputa-
tion of all cost functions upwards in the program call graph until reaching the
main method. In order to support incremental inference of UBs, we propose to
annotate each cost subexpression with the name of the relation it comes from.
If, additionally, we keep the invariants and the size relations, given an annotated
UB for a method m, it is possible to replace the cost subexpressions associated
to those methods invoked from m whose UB has changed by the new (maxi-
mized) UBs, without having to recompute the whole UB for m. Thus, instead
of using the UBs in Definition 6.1, we introduce the notion of UB summary.

Definition 6.4 (upper bound summary). In the same conditions of Defi-
nition 6.1, an UB summary for C(x) is a tuple UBS

C(x) = 〈#iter · aexp, ψ, ϕ〉,
where aexp = maximize(exp, ψ, ϕ, x)+

∑k
i=1[maximize(remove annot(aubi), ψ, ϕ, x)]Yi

s.t.:

• aubi is the annotated cost expression in the upper bound summary of Yi,

• function remove annot removes the annotations of an expression, and

• [e]Y is an annotation of e with the name of the relation Y .

The notation aexp.set expr([e]m,exp) is used to rewrite in aexp the annotated
subexpression e with exp keeping the same annotations.

An important observation in the above definition is that the annotations
refer only to direct calls from the relations, all nested annotations are deleted
by function remove annot.

Example 6.5 (UB summary). The UB summaries for the CRs of Exam-
ple 5.5 are:

UBS
while(l) = 〈(3 + [2]Mover.forward(l′)) ∗ nat(l/2), {l0 ≥ l + 2, l ≥ 0}, {l = l′}〉

UBS
dup(l) = 〈1 + [(3 + 2) ∗ nat(l/2)]while(l′), {l0 = l, l0 ≥ 0}, {l = l′, l ≥ 0}〉

UBS
mod(l) = 〈3+[1]get(l′)+[2]forward(l′′)+[(1+5∗nat(l/2−1))]dup(l′′′),

{l0 = l, l0 ≥ 2}, {l = l′, l = l′′, l ≥ l′′′ + 2, l′′′ ≥ 0}〉

UBS
main(l)= 〈5 + [2 + 3 ∗ nat(l)]len(l′) + [7 + 5 ∗ nat(l/2− 1)]mod(l′′),

{l0 = l}, {l = l′, l = l′′, l ≥ 2}〉
Observe that the only difference with the UB of Example 6.3 is in the annota-
tions.
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6.2. Incremental Inference of Summaries

The input to the algorithm for reconstructing UB summaries is the table of
summaries, named U , which were previously computed, and the list of methods
that have been reanalyzed along the execution of Algorithm 2, named C. The
first important point to notice is that (1) the summaries for all methods in C
must be recomputed, as well as (2) those fragments of the summaries of the an-
cestors of methods in C that correspond to the cost of the reanalyzed methods.
However, the actions to perform in each case are different: (1) while the sum-
maries of C must be fully recomputed, as a change in the size relations might
affect all components of an UB (#iter, invariants, size relations and maximized
expressions can be different), (2) in the summaries of the ancestors of a method
m in C, we just need to replace those subexpressions annotated with m by the
new maximized UB for m. Similarly to Algorithm 2, we use a flag in the sum-
maries table U to indicate whether the content of an entry is valid or not. The
intuitive idea is to first process all methods in C and, since full summaries for
them might not be yet produced (as information about relations invoked from
them might not be valid), generate only UB skeletons.

Definition 6.6 (upper bound skeleton). In the same conditions of Defini-
tion 6.1, an upper bound skeleton for C(x) is a tuple SKC(x) = 〈#iter · sexp, ψ, ϕ〉,
where sexp is the annotated expression exp+

∑k
i=1[ ]Di

and denotes any value.
In what follows, function do skeleton(C(x)) generates the upper bound skeleton
for C.

The difference between summaries and skeletons is that the UBs of the in-
voked relations are not filled (we write ) and maximization is not yet performed.
Once the skeletons have been computed for all summaries in C, the algorithm
can treat in the same way C and their ancestors (i.e., actions 1 and 2 above
must not be distinguished anymore). In particular, given a relation m, all we
need to do is replacing the UBs of the relations invoked from m by their new
maximized expressions (when needed). This is done by function do summary of
Algorithm 3.

Example 6.7 (skeleton). The application of the delta in Figure 1 leads to the
following skeletons for mod and dup:

SKwhile(l) = 〈(3 +max([ ]Mover.forward(l′), [ ]Mover2.forward(l′))) ∗ nat(l),
{l0 ≥ l + 1, l ≥ 0}, {l = l′}〉

SKdup(l) = 〈1 + [ ]while(l′), {l = l0, l0 ≥ 0}, {l = l′, l ≥ 0}〉
SKmod(l) = 〈3+[ ]get(l′) +max([ ]Mover.forward(l′′), [ ]Mover2.forward(l′′)) + [ ]dup(l′′′),

{l0 = l, l0 ≥ 2}, {l = l′, l = l′′, l ≥ l′′′ + 1, l′′′ ≥ 0}〉
Note that the skeleton of dup differs from the initial one because of the new
implementation of forward. This leads to a different number of iterations of the
loop (named #iter in Definition 6.1) which now is nat(l) instead of nat(l/2).
Also we have introduced the max expression in the skeletons for while and mod
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1: proc reconstruct summaries()
2: P = ∅
3: for all m(x) in C do
4: 〈aexpm, ψ, ϕ〉=do skeleton(m(x))
5: U .update(m,〈aexpm, ψ, ϕ〉)
6: U .invalidate(m(x) ∪ ancestors(m))
7: P.add(m(x) ∪ ancestors(m))
8: for all m(x) in P do
9: do summary(m(x))

10: U .validate all()

11: function do summary(m(x))
12: 〈aexpm, ψ, ϕ〉 = U .get(m)
13: if m 6∈ P then
14: return remove annot(aexpm)
15: for all [ ]p(y) in aexpm do
16: if (m∈ C) ∨ U .is invalid(p) then
17: expp = do summary(p(y))
18: expp = maximize(expp,x,ψ,ϕ)
19: aexpm.set expr([ ]p,expp)
20: P.remove(m);
21: U .update(m,〈aexpm, ψ, ϕ〉)
22: return remove annot(aexpm)

Algorithm 3: Incremental Upper Bounds Algorithm

which accounts for the worst-case costs of both implementations of forward. As
main has not been reanalyzed, its skeleton will not be computed again.

Intuitively, Algorithm 3 works as follows. Procedure reconstruct summaries
updates the entries for all methods in C with their skeletons and activates the
invalid flag for all relations that require reprocessing (i.e., C and their ancestors).
It also builds the list P made up of such relations. Function do summary takes
care of replacing the affected components by the new maximized UBs. The
base case of the recursion (L13) is when the relation is not in P (either because
its recomputation was not needed or because it has already been recomputed).
We remove its annotations because U only keeps the outer level of annotations,
as seen in Definition 6.4. If it is not a base case (L15-19), we need to obtain
new maximized expressions for those subexpressions of aexpm when (i) the
expression is in C (this is because its size relations might have changed and we
need to maximize again all components) or (ii) because the invoked relation is
invalid. We use aexp to refer to #iter ·sexp. Lines 17-19 take care of recursively
obtaining the summary for the subexpression, maximizing it and placing it
inside the summary. Once all components of aexpm have been treated (L20),
the relation m is removed from the list of pending relations to process P and
its summary is updated (L21). The result is returned without annotations in
order to use it from the calling site.

Example 6.8 (algorithm 3). The application of the delta in Figure 1 forces
the execution of do skeleton for all methods in C = {mod, dup, get,Mover2.forward}.
All those methods and their ancestors (main) are added to P. Let us assume
that mod is the first summary computed. Since mod is in C, it needs the sum-
mary of dup. Hence, do summary(dup) is invoked and a new summary of dup
is produced by using its skeleton (see Example 6.7). Then, dup is removed from
P and we obtain:
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UBS
while(l) = 〈(3 +max([2]Mover.forward(l′), [1]Mover2.forward(l′))) ∗ nat(l),

{l0 ≥ l + 1, l ≥ 0}, {l = l′}〉

UBS
dup(l) = 〈1 + [(3 + 2) ∗ nat(l)]while(l′), {l = l0, l0 ≥ 0}, {l = l′, l ≥ 0}〉

UBS
Mover2.forward(l) = 〈1, {l = l0, l0 ≥ 1}, {}〉

UBS
get(l) = 〈3, {}, {}〉

In order to obtain UBmod, we need to maximize UBdup, which leads to:

UBS
mod(l)=〈3+[3]get(l′)+max([2]Mover.forward(l′′), [1]Mover2.forward(l′′)))+

[1+5∗nat(l−1)]dup(l′′′),

{l0=l, l0≥2}, {l = l′, l = l′′, l ≥ l′′′ + 1, l′′′ ≥ 0}〉
Next, the summary of main is recomputed. Since main was invalidated but not
reanalyzed, its summary can be reused as a skeleton, maximizing again only its
invalidated subexpressions. Only UBmod must be maximized, and UBlen can be
reused:

UBS
main(l) = 〈5 + [2 + 3 ∗ nat(l)]len(l′) + [9 + 5 ∗ nat(l − 1)]mod(l′′),

{l = l0}, {l = l′, l = l′′, l ≥ 2}〉
All in all, the incremental recomputation has avoided computing the skeleton
(#iter, invariant) and one maximization for main, and the summaries of len
and Mover.forward remain the same.

Theorem 6.9 (correctness). Given a set of relations C whose CRs have changed
and a table of upper bounds summaries U , reconstruct summaries terminates
and correctly updates the upper bound summaries for all entries in U .

Proof (sketch). Correctness follows from the next two facts. Firstly, it is trivial
to prove that Algorithm 3 adds all reanalyzed methods and their ancestors to
P. Observe that in L7, not only is m added to P, but also the ancestors of all
reanalyzed methods (ancestors(C)). Secondly, CRs relations can be represented
as a directed acyclic graph where the nodes are the cost relations and the edges
the dependencies between the cost relations. Using this graph, we can formally
prove by induction on the depth of the graph, that all methods in P are processed
and, at the end of Algorithm 3, all invalidated upper bounds are computed.
Details of this proof can be found in the online version. 2

7. Experiments

We have integrated our techniques within the costa system [3], a resource
usage analyzer for Java bytecode. costa implements all global analyses de-
scribed in the paper and, in addition, it performs non-nullness and sign analyses.
The incremental multi-domain algorithm has been implemented and applied to
all domains. We have taken the design and implementation decisions proposed
along the paper, namely: (1) the granularity of the analysis is at the level of
methods, so that we add, modify or delete methods (and not rules); (2) we
use validity flags to invalidate information which must be recomputed; (3) we
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prioritize efficiency over accuracy such that incremental analysis does not try to
improve the analysis information already inferred by non-incremental analysis.

Our experimental evaluation has been performed on slightly modified ver-
sions of programs Voronoi, Health, TSP, and MST, from the JOlden benchmark
suite [36], available at http://costa.ls.fi.upm.es. The modifications (de-
scribed in [6] in detail) are performed in order to overcome some limitations
inherent to the size analysis and the UB solver of costa and are not related
to the incremental algorithm presented in this paper. Furthermore, we have
used as benchmarks the following programs borrowed from the Apache-Commons
Project [28]: StringEncrypt and ParseTarHeader from Apache-Commons-Compress,
and TestOrthogonal and TestDistance from Apache-Commons-Math. The source
code of all of them is available at the Apache-Commons web site. The cost
model used in our experiments is the number of bytecode instructions required
for executing the corresponding programs.

Program Info. Analysis Times

Experiment #BY #RU #EQ TCRs TUB TT

MST 250 120 82 9870 570 10440
TSP 189 78 55 760 10940 11700

Health 209 73 47 4020 240 4260
Voronoi 202 66 40 460 140 600

StringEncrypt 204 136 101 419 750 1169
ParseTarHeader 341 164 115 1200 2590 3790
TestOrthogonal 221 88 56 500 180 680

TestDistance 150 93 62 550 90 640

Table 1: Benchmarks information

Table 1 shows some information about the size and complexity of the bench-
mark programs. For each program, the column #BY shows the number of
bytecode instructions, #RU indicates the number of RBR rules, and #EQ the
number of relations in the CR. The table also contains information about the
analysis times (in ms) taken by the non-incremental analysis. The total analysis
time (TT) is split into the time taken to build the CRs (TCRs) and the time to
obtain a closed-form UB from the CRs (TUB).

Our experiments are based on making a series of systematic modifications
to the benchmark programs and comparing the time taken by the incremental
approach with the time taken by the non-incremental one. We use the notation
Pi−1 → Pi to represent a program change, where Pi−1 and Pi correspond to
the versions of the program before and after the change, respectively. We refer
to the non-incremental analysis of a program P starting from method m as
A(P,m), while A∆(Pi,mi) is used to represent the incremental analysis of Pi

starting from mi with respect to the information computed and stored in Gi−1

and Ui−1 in the previous analysis. In what follows, as abbreviation, we use Ti to
denote both Gi and its associated Ui. Given a sequence of changes in a program,
P0 → P1 → · · · → Pi, the successive incremental analyses can be denoted as:
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A(P0,m0)
T0−→ A∆(P1,m1)

T1−→ . . .
Ti−1−−−→ A∆(Pi,mi)

We have performed a series of experiments which aim at evaluating the
benefits of using our proposed incremental approach. The first two experiments
capture a classical SPLE scenario where the core module is available and the
generation of a specialized product requires a series of changes. It also simulates
a common development scenario where the programmer makes relatively small
changes to fix a bug, overrides a method or develops a program in top-down
order. Depending on the case, the change can be minimal (for example, after
refactoring the code) or larger when the analysis results for the new version of the
method drastically differ from the previous ones and they have to be propagated
to its calling methods. This first extreme case is captured by our first experiment
(Touch experiment), where we simply replace the code of a method with a new
version which is identical to the previous one. In this case, the incremental
analysis will reanalyze the updated method, but no other method is reanalyzed.
This case simulates the typical change that fixes a minor bug, adapts a method
to a concrete environment or prints extra debugging information. The second
extreme case is captured by our second experiment (Adding experiment), where
we replace a missing implementation of a method, which simply returns the
default value of the return type3, with the final implementation. Finally, the
last scenario simulates a top-down development process, where the programmer
starts from the main method and develops the program in descendant order.

We use the term unweighted speedup (S) to denote the ratio between the
time required to perform the non-incremental analysis of a program, and the
time required by the incremental analysis. In addition to S, experiments tables
also contain the weighted speedup (W), weighting formula S with respect to the
number of bytecode instructions of the modified method. Larger methods are
more likely to be changed, thus W provides a more realistic estimate.

(1) Touch experiment. In this experiment we just have one version of the pro-
gram, P0, on which the incremental and non-incremental analyses are performed.
The incremental analysis is systematically performed by starting from each
method mi in P0 and using the previously computed T 0:

A(P0,m0)
T0−→ A∆(P0,mi)

The speedup (S) is computed as the ratio between n times the time taken
by the non-incremental analysis of P0, and the addition of the times of the
incremental analysis starting the analysis from different methods in P (mi):

S =
n× time(A(P0,m0))
n∑

i=1

time(A∆(P0,mi))

3Methods that return a non-void type keep a default return statement: return null for
methods that return an object type, return 0 for methods that return an integer, etc.
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Unweighted Speedup Weighted Speedup

Benchmark SCRs SUB ST WCRs WUB WT

MST 29.05 6.97 24.77 18.89 4.10 15.78
TSP 2.72 3.97 3.85 1.77 2.09 2.07
Health 7.39 2.35 6.59 5.35 1.61 4.73
Voronoi 4.18 6.22 4.53 2.45 2.49 2.46
StringEncrypt 10.90 7.09 8.11 7.56 3.92 4.74
ParseTarHeader 5.52 2.03 2.54 8.09 3.31 4.07
TestOrthogonal 3.25 10.00 3.96 2.64 4.27 2.94
TestDistance 3.09 4.95 3.26 4.05 6.09 4.25

Arith. Mean 8.26 5.45 7.20 6.35 3.49 5.13

Table 2: Touch experiment results
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Figure 3: Adding experiment scheme

The above results (Table 2) clearly show that the incremental approach is
much more efficient than the non-incremental one when handling small changes
in the program, with a weighted speedup of over 5.

(2) Adding experiment. This experiment captures the second extreme case in
which we replace a missing implementation of a method with its final code. In
this situation, the analysis of the new version will require to trigger analysis of
possibly multiple (transitively) calling methods.

In this case, the experiment considers different initial versions of the program
P i

0, each one missing the implementation of one method. Each P i
0 is then

analyzed using the non-incremental algorithm, A(P i
0,m0). Subsequently, the

code ofmi is restored producing the version P1 (the final version of the program),
and incrementally reanalyzed, A∆(P1,mi), using T i

0:

A(P i
0 ,m0)

T i
0−−→ A∆(P1,mi)

This procedure is illustrated in Figure 3, using as example a small call graph
composed by four methods. Shaded nodes represent empty methods, and white
nodes represent implemented methods. The speedup of the incremental ap-
proach is calculated as follows:
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S =
n× time(A(P1,m0))
n∑

i=1

time(A∆(P1,mi))

Experimental results (Table 3) clearly show that the incremental approach
efficiently handles method modifications in a program. It is efficient in both
parts of the resource usage analysis, in the generation of CRs and the UB solving.
Altogether it achieves a significant improvement over non-incremental analysis,
being almost two times faster.

Unweighted Speedup Weighted Speedup

Benchmark SCRs SUB ST WCRs WUB WT

MST 2.17 1.14 2.07 2.03 1.31 1.97
TSP 1.08 1.33 1.31 1.14 1.46 1.43
Health 2.57 1.17 2.41 1.75 1.23 1.71
Voronoi 1.55 2.07 1.64 1.31 1.86 1.40
StringEncrypt 1.26 1.30 1.28 2.04 2.40 2.26
ParseTarHeader 1.54 1.30 1.37 2.46 2.35 2.39
TestOrthogonal 1.14 1.79 1.26 1.22 1.55 1.30
TestDistance 1.38 1.80 1.43 1.90 2.44 1.96

Arith. Mean 1.59 1.49 1.60 1.73 1.82 1.80

Table 3: Adding experiment results

(3) Top-down development experiment. A question which remains to be an-
swered is whether the incremental approach can be less efficient than analyzing
the whole program. This question is important since there is no formal guaran-
tee that the incremental analysis will be more efficient than the analysis from
scratch. In fact, it is possible to find situations where global analysis can be
more efficient. To assess this situation, our third experiment tries to perform a
stress test of the worst possible situation that can arise. This occurs when we
analyze in an incremental fashion a program, by adding a method at a time,
following a top-down order in the call graph. In the experiment, we start with
empty implementations that lack the content of the method for all methods.
We progressively add the implementations one by one starting from the root of
the call graph. It will thus require the largest possible number of reanalysis.

m0

m2
m1

m3

→

m0

m2
m1

m3

→

m0

m2
m1

m3

→

m0

m2
m1

m3

A(P0,m0)
T0−→ A∆(P1,m1)

T1−→ A∆(P2,m2)
T2−→ A∆(P3,m3)

Figure 4: Top-down development experiment scheme
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The scenario is illustrated in Figure 4. The experiment starts from the
analysis of an initial version A(P0,m0) where all methods except the main
method m0 are empty. In the second step, the code of a method m1, directly
invoked by m0, is added generating a new version of the program P1, and the
incremental analysis A∆(P1,m1) is applied by using T 0. In the following steps,
the contents of the remaining methods are added one by one (mi), producing
different versions of the program (Pi). The speedup (S) of the incremental
analysis is computed as

S =

n∑
i=1

time(A(Pi,mi))

n∑
i=1

time(A∆(Pi,mi))

Unweighted Speedup Weighted Speedup

Benchmark SCRs SUB ST WCRs WUB WT

MST 3.42 1.43 2.96 3.42 1.48 2.94
TSP 1.04 1.34 1.32 1.05 1.40 1.38
Health 1.18 1.09 1.17 1.05 0.96 1.04
Voronoi 1.33 1.74 1.40 1.10 1.52 1.17
StringEncrypt 1.35 1.31 1.32 1.51 1.63 1.58
ParseTarHeader 1.29 1.26 1.27 1.29 1.41 1.37
TestOrthogonal 1.09 1.85 1.23 0.84 1.16 0.91
TestDistance 1.36 2.26 1.44 1.39 2.16 1.46

Arith. Mean 1.51 1.53 1.51 1.46 1.46 1.48

Table 4: Top-down development experiments results

Table 4 shows that, even in the extreme case of having the reanalyze a large
number of methods, the use of our incremental analysis is not worse than the
global one. Only in one example (TestOrthogonal) there is a small slowdown in
the total weighted speedup, while there is an overall gain of 1.48. This, together
with the first two experiments, indicates that incremental analysis will provide
important gains in the most common and realistic scenarios while not introduce
overhead in the less optimal scenarios.

Finally, let us explain in more detail the results obtained for TestOrthogo-
nal as it presents some peculiarities with respect to the rest of the examples.
Firstly, in scenarios (1) and (2), it is the most noteworthy example for which
WCRs <WUB. It happens because the UB computation for this example is much
more expensive in one method which is located at the bottom of the callgraph.
Therefore, the upper bound of this method is only recomputed when this is
the modified method. This results in significant speedups in the UB recom-
putation. Besides, in (3), TestOrthogonal has WCRs < 1. In this example, all
modified methods propagate new information to their ancestors, and this propa-
gation also forces the reanalysis of some descendants of the reanalyzed methods,
even multiple times. In general, this behaviour could end up in a slowdown of
the incremental approach in comparison with the non incremental approach.
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8. Related Work

The most related approach to ours is that in [20], which develops a generic
incremental analysis algorithm for static analysis of constraint logic programs
(CLP). In addition to the language differences, their incremental algorithm does
not handle domain dependencies like ours, which is fundamental for an applica-
tion such as resource usage analysis which relies on multiple pre-analyses with
dependencies among them. Besides, our work provides novel definitions for
upper bound summaries which enable the incremental reconstruction of cost
functions, a problem that has not been considered before. Another difference
is that the granularity of the analysis in our case is at the level of methods,
whereas [20] considers modifications at the level of rules. Rather than methods,
CLP programs are structured into procedures (a.k.a. predicates), and are not
object oriented. In turn, each procedure is defined as a non-empty sequence of
rules. Therefore, incrementality is defined at a finer-grained level in [20]. This
finer-grained modularity does not fit well in the object oriented or imperative
settings since usually the smallest program parts which are easily identifiable at
the level of program editors, compilers, etc. are methods.

Other approaches to incremental analysis are developed for other purposes,
e.g., [38] proposes an efficient incremental parser for general context-free gram-
mars which allows generating incremental tools. The work in [19] develops an
approach to incremental static semantic analysis for object-oriented languages
using door attribute grammars as a way to maintain incremental information,
while our work is mostly focused on the reconstruction of the analysis infor-
mation and the upper bound summaries. An incremental analysis based on
incremental specifications such as those found in formal models is presented
in [15], while we do not rely on specifications. The notion of summary has been
previously used in other contexts [29, 13] different from incremental analysis. It
is also worth mentioning recent work on incremental analysis [16] which defines
an incremental analysis via domain specific solvers, for declarative modeling
language based on first-order logic with sets and relations. The latter work is
also related to directed incremental symbolic execution (DiSE) [27], a technique
which in principle is more related to testing than to static analysis. However,
the novelty of DiSE is to combine the efficiencies of static analysis techniques to
compute program difference information with the precision of symbolic execu-
tion to explore program execution paths and generate path conditions affected
by the differences. We believe that a combined approach like this one could also
be adopted for the inference of resource consumption information.

Another related technique is that of modular analysis [12, 25]. There, the
main aim is to improve the scalability of analysis by reducing the memory con-
sumption, which is a common bottle-neck of global analysis. However, modular
analysis may be less time-efficient than global analysis. In modular analysis,
rather than analyzing the whole program at once, the program is split into
smaller parts and each part is analyzed separately. For this, the analysis results
of each part is stored, either automatically or by using user-provided summaries.
Our technique has in common with modular analysis that it automatically stores
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summaries. However, the main focus in incremental analysis is time-efficiency
rather than memory-efficiency and all program parts affected by changes are
analyzed at once, not separately. Finally, modularity per se does not handle the
efficient recomputation of analysis results after a program change.

9. Conclusions and Future Work

The traditional global analysis scheme in which all the program code is
analyzed from scratch and no previous analysis information is available is un-
satisfactory in many situations. This paper shows that incremental analysis of a
complex property –the resource consumption of executing a program– is feasible
and much more efficient in certain contexts than traditional (non-incremental)
global analysis. Our experimental results empirically demonstrate that the tech-
niques pays off in practice.

In future work, we plan to extend our generic incremental analysis frame-
work to the concurrent setting. We want to consider first a simple concurrency
model and study how our analysis has to be adapted to produce efficiently sound
results in the presence of concurrency. A non-incremental cost analysis frame-
work has been recently defined in [1] for a language based on the concurrent
objects paradigm [23]. After considering incremental resource analysis for con-
current objects, the final goal will be to devise a framework for thread-based
concurrency.
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To appear in an electronic appendix

Appendix A. Proofs of Section 4

Appendix A.1. Proof for Proposition 4.14

Proposition 4.14:. The loop in L4-18 of Algorithm 2 obtains correct analysis
information for affected methods.

Proof. First, let us prove that one iteration of the loop in L4-18 of the in-
cremental analysis (Algorithm 2) correctly propagates its new information to
other nodes. We consider a global answer table, G0, the results from the anal-
ysis of method m, extracted from P, and with entry m : CPm 7→ APm ∈ G0.
The analysis of m starts by calling noincr:analysis, which consecutively calls
process analysis. During the analysis of m, we distinguish the following two
cases:

• Descendants: the reanalysis of a method may find calls to another
method m′ with calling pattern CP ′ (L32 of Algorithm 1). Let CP ′0
represent the call pattern of the corresponding entry for m′ in G0, if it
exists. One of the following possibilities may occur:

(a) m calls m′, which has no entry in G0. As before, we will consider
w.l.o.g. that m′ : ⊥ 7→ ⊥ exists in G0. Method m′ must be rean-
alyzed for the calling pattern CP ′. Algorithm 2 covers this case by
evaluating in L21 if the method exists in G0 and forcing its reanalysis
by calling noincr:get proc answer with call pattern CP ′ in L30.

(b) m calls m′ with a call pattern CP ′ that is not contained in the
call pattern CP ′0 stored in G0, that is, (m′, D) : CP ′0 7→ AP ′0 ∈
G0 and CP ′ 6v CP ′0 . In this case, m′ must be reanalyzed taking
into account the new information. This condition is evaluated in
incr:get proc answer (L24) which compares the new call pattern with
the one stored in G0. Since the condition in L24 does not hold, m′

is scheduled for reanalysis by calling noincr:get proc answer (L31)
with CP ′0 t CP ′ as calling pattern. m′ will be reanalized because it
is added to Q in L17 of Algorithm 1 and this reanalysis will transi-
tively handle all methods that have a call pattern not contained in
G0.

(c) m calls m′ with a call pattern CP ′ that is contained in the one CP ′0
stored in G0, that is, CP ′ v CP ′0 . The information stored in G0 is
valid for m′ in this iteration, so we can reuse the information stored
in G0. This is evaluated by Algorithm 2 in L24 and the information
stored in G0 is returned in L25.

• Ancestors: the reanalysis of a method produces a resulting AP ′ for the
reanalyzed method m. AP0 represents the answer pattern of the corre-
sponding entry for m in G0. Let m′ represent a caller of method m. One
of the following possibilities may occur:
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(a) Method m′ has not been reanalyzed during the execution of pro-
cess analysis for method m. In this case we can have two possibili-
ties.

∗ If AP ′ v AP , no new information is generated and, thus, no
new analysis is required. This case is handled by Algorithm 2 in
L14, checking if the new AP, stored in L, is greater than the one
stored in G0, that is, if APLn v APGn . In that case, the algorithm
does not generate any new event.

∗ If AP ′ 6v AP , new information must be propagated to m′. This
case is handled by Algorithm 2 in L14, checking if the new AP,
stored in L, is greater than the one stored in G0, that is, if
APLn 6v APGn . In that case, the algorithm adds m′ to P, forcing
its reanalysis in subsequent iterations.

(b) Methodm′ has been reanalyzed during the execution of process analysis
for method m. This is because m′ has a new calling pattern found
during the non-incremental analysis. In this case we can have two
possibilities.

∗ If AP ′ v AP , no new information is generated and, thus, no
new analysis is required. This case is handled by the incremen-
tal algorithm (Algorithm 2) in L14 and by the non-incremental
algorithm (Algorithm 1) in L39, not generating any new event if
AP ′ v AP .

∗ If AP ′ 6v AP , we have to propagate new information to m′.
This case is handled by Algorithm 1 in L39-40 by calling inval-
idate callers, if the new answer pattern is greater than the one
stored in L (L39: AP 6v APL). Procedure invalidate callers of
Algorithm 1 checks if L has an entry for m′, if true, L24 schedules
a new event to be processed for m′, forcing its reanalysis.

Once the execution of the reanalysis is completed, G0 must be updated with
the new information to continue the analysis of the rest of remaining methods
that are pending to be analyzed with the up-to-date information. This is done
by the incremental algorithm in the loop in L11-16, that takes the information
from L and copies it to G.

Now let us prove that when the loop L4-18 terminates G contains correct in-
formation for all affected methods. The incremental algorithm starts by execut-
ing incremental fixpoint from the modified method m using the calling pattern
information taken from G (L9) and propagates its new information to its neigh-
bours, generating a sequence of global answer tables, G1 ; G2 ; G3 . . .Gn, one
G for each iteration of the loop in L4-18. As it is proved in Proposition 4.13,
all affected methods are reachable starting from m, and the incremental algo-
rithm starts the propagation of new information from m. Note that m is the
only method that has been modified, the rest of the methods only propagate
the updated information received from affected edges. Thus, when a fixpoint is
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reached, that is, when no new information is propagated, the global answer ta-
ble for the final iteration, Gn, contains all the information propagated from the
modified method through the whole program and consequently, Gn will contain
correct information for all methods.

2

Appendix A.2. Proof for Theorem 4.17

Theorem 4.17:. Incremental fixpoint(m) terminates and returns a correct G
for all methods.

Proof. Correctness is an inmediate consequence of Propositions 4.13 and 4.16.
Termination is guaranteed by the ascending chain condition (ACC) of the ab-
stract domains and the t domain operator. For proving termination of the
incremental algorithm (Algorithm 2), we define the pair (Λ, L) where:

• Λ is a measure of the distance to > of the elements in L, defined as

Λ =
∑

CPi 7→APi∈G
(δ(CPi) + δ(APi)) (A.1)

where δ(ST ) is the number of abstract states from the abstract substitu-
tion ST to >. The ascending chain condition (ACC) of the abstract do-
mains guarantees that this distance is finite from any state (using widening
when needed).

• L is the length of P.

Let >Λ,L be the lexicographical ordering induced by >N over N2:

(Λ1, L1) >Λ,L (Λ2, L2) ⇐⇒ (Λ1 > Λ2) ∨ (Λ1 = Λ2 ∧ L1 > L2)

Since >Λ,L is a well-founded ordering, termination of Algorithm 2 can be
concluded if we show that for each iteration i of Algorithm 2, (Λi−1, Li−1) >Λ,L

(Λi, Li).
We will assume that if in G there is no entry for method p, it contains

p : ⊥ 7→ ⊥ for every rule p that is required by the analysis. At each iteration i
of the while loop in L4-17 of Algorithm 2, Λ and L may change in the following
cases:

• G is updated by incremental fixpoint in L16. Regarding the calling pattern
information, CPLn stored in G in L16 comes from the information contained
in L (L13). We will show that δ(CPLn ) ≤ δ(CPGn ) for any (n,D) ∈ R.

The analyses of pending methods in P are launched in the loop at L7-10.
These analyses use as calling patterns the information already existing
in G (L9). Therefore, noincr:process analysis will analyze the pending
methods using the calling pattern in G.
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During the execution of noincr:process analysis there may be calls to other
methods which are handled by incr:get proc answer (L32 of Algorithm 1).
In incr:get proc answer there are three possibilities:

– If there is a valid entry in G for an invoked method m which is
applicable (L24), the answer pattern in G is used (L25), without
updating L.

– If it is not applicable, the calling pattern for m is lubbed with the
existing calling pattern in G (L29), and then noincr:get proc answer
updates L with this lubbed calling pattern (L18, Algorithm 1).

– If there is no entry in G, the calling pattern for m is stored in L,
(L18, Algorithm 1).

In all cases, δ(CPLn ) ≤ δ(CPGn ), since CPLn w CPGn in any case.

• Regarding answer patterns, APLn tAPGn stored in G in L16 trivially verifies
APLn tAPGn w APGn , and thus δ(APLn tAPGn ) ≤ δ(APGn ).

In all cases, Λi−1 ≥ Λi. Let Gi be the state of G after iteration i. There are
two cases:

• If Λi−1 > Λi, then (Λi−1, Li−1) >Λ,L (Λi, Li) holds.

• If Λi−1 = Λi, then all entries CP 7→ AP ∈ Gi−1 remain unchanged in Gi.
We now prove that no new element is added to P. Elements are added to
P in L28 and L15.

– L28 is not executed because CP v CPG is true in L23.

– L15 is not executed because APLn 6v APGn is false in L14.

Since no elements are added to P, its size decreases in L6. Thus, if Λi−1 =
Λi and the size of P decreases, then (Λi−1, Li−1)>Λ,L(Λi, Li) holds.

In every case the lexicographical order strictly decreases, thus the termina-
tion of Algorithm 2 is proved. 2

Appendix B. Proofs of Section 6

Theorem 6.9:. Given a set of relations C whose CRs have changed and a table
of upper bounds summaries U , reconstruct summaries terminates and correctly
updates the upper bound summaries for all entries in U .

Proof. For proving the theorem, let us introduce some notation. Given a table
of summaries U , where C and Y are two relations defined in U , we say that
C depends on Y , denoted C 7→ Y , iff there is an upper bound summary such
that UBS

C = 〈#iter · aexp, ψ, ϕ〉, where aexp = exp0 +
∑k

i=1[expi]Yi and expi
denote unannotated expressions. A directed graph G is a pair 〈N,E〉 where N
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is the set of nodes and E ⊆ N × N is the set of edges. We associate to each
table of summaries U a graph GU , which is the directed graph obtained from
U by taking the set of entries in U as N and where (C, Y ) ∈ E iff C 7→ Y . A
relation Y is reachable from a relation C in U iff there is a path from C to Y in
GU .

The resulting graph is a directed acyclic graph, since the entries in U are
in closed-form. Given a node n, ancestors(n) is the set of nodes in the graph
from which n is reachable (i.e., the set of entries whose closed-form upper bound
depends on the expression of n). descendants(n) is the set of nodes in the graph
reachable from n (the set of entries in U which must be computed to obtain the
upper bound of n). ancestors and descendants can also be applied to sets of
nodes. The level of a node n in a directed acyclic graph is the length of the
longest path reachable from n. The depth of a directed acyclic graph is the
longest path in the graph.

It is trivial to prove that Algorithm 3 adds all reanalyzed methods and their
ancestors to P. Observe that in L7, not only is m added to P, but also the
ancestors of all reanalyzed methods (ancestors(C)). Termination of function
do summary is ensured by the fact that GU is a directed acyclic graph. This is
because the entries in U are in closed form. The recursive do summary function
performs a depth traversal of this graph.

As regards correctness, the proof is by induction on the depth of GU .

• Base case: Let GU be a graph of depth 0 and m be a node in GU of level
0. There are no paths starting from m in the graph. In L13 of function
do summary, we distinguish two cases:

– If m 6∈ P, then the summary stored in U is correct.

– Otherwise, since there is no edge from m to any other node, the loop
in L15 does not iterate, and m is removed from P. The skeleton
generated and stored in U (L4-5) is correct.

• Inductive case: Let us suppose that the summaries stored in U are
correct for a graph Gi

U of depth smaller or equal than i.

Let Gi+1
U a graph of depth i + 1 and m be a node of level i + 1 in Gi+1

U .
According to L13, there are two cases:

– If m is not in P, we have two situations:

∗ m was not added to P in L7. This is because m 6∈ C and m 6∈
ancestors(C). The summary for m stored in U is not affected by
the change, and therefore correct.

∗ m was added to P in L7, its entry in U recomputed (L15-19),
updated in U (L21) and removed from P (L20). Therefore, in U
the entry has already been correctly recomputed.

– Otherwise, all relations from which m directly depends on are tra-
versed in L15. They correspond in Gi+1

U to the nodes for which there
is an edge from m to them. Let nj , 1 ≤ j ≤ k be those nodes.
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All relations in P are marked as invalid in U (L6), and are not vali-
dated again until the algorithm finishes (L10).

L16 leads to several cases:

∗ If m ∈ C, then its skeleton was generated in L4 and its sum-
mary is reconstructed (L17-19), updated in U (L21) and removed
from P (L20) avoiding its recomputation. The recursive call to
do summary in L17 is applied to nj , which in Gi+1

U have levels
lj < i+1. The induction hypothesis guarantees that do summary
produces correct results for a graph of depth less than or equal
to i. The subgraph formed by nj and all nodes reachable from nj
is a graph of depth less or equal than i, and thus the hypothesis
holds. Consequently, the summary for m is reconstructed using
correct information from nj .

∗ If m 6∈ C, those nodes nj which are invalid in U are correctly
reconstructed in L17-19 as in the previous case, and the summary
for m is updated in U with the correct maximized subexpressions
for nj (L21).

2
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