
Quantified Abstractions of Distributed Systems

Elvira Albert1, Jesús Correas1, Germán Puebla2 and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. When reasoning about distributed systems, it is essential to have infor-
mation about the different kinds of nodes which compose the system, how many
instances of each kind exist, and how nodes communicate with other nodes. In
this paper we present a static-analysis-based approach which is able to provide in-
formation about the questions above. In order to cope with an unbounded number
of nodes and an unbounded number of calls among them, the analysis performs
an abstraction of the system producing a graph whose nodes may represent (in-
finitely) many concrete nodes and arcs represent any number of (infinitely) many
calls among nodes. The crux of our approach is that the abstraction is enriched
with upper bounds inferred by a resource analysis which limit the number of
concrete instances which the nodes and arcs represent. The combined informa-
tion provided by our approach has interesting applications such as debugging,
optimizing and dimensioning distributed systems.

1 Introduction

When reasoning about distributed systems, it is essential to have information about their
configuration, i.e., the sorts and quantities of nodes which compose the system, and their
communication, i.e., with whom and how often the different nodes interact. Whereas
configurations may be straightforward in simple applications, the tendency is to have
rather complex and dynamically changing configurations. Cloud computing [5] is an
example of this. In this paper, we introduce the notion of Quantified Abstraction (QA for
short) of a distributed system which abstracts both its configuration and communication
by means of static analysis. QAs are abstract in the sense that a single abstract node
may represent (infinitely) many nodes and a single abstract interaction may represent
(infinitely) many interactions. QAs are quantified in that we provide an upper bound
on the (possibly infinite) number of actual nodes which each abstract node represents,
and an upper bound on the (possibly infinite) number of actual interactions which each
abstract interaction represents. Note that abstraction allows dealing with an unbounded
number of elements in the system, whereas the upper bounds allow regaining accuracy
by bounding the number of elements which each abstraction represents.

Actors form a well established model for distributed systems [14,4,6,12]. We ap-
ply our analysis to an Actor-like language [10] for distributed concurrent systems based
on asynchronous communication. The distribution model is based on (possibly interact-
ing) objects which are grouped into distributed nodes, called coboxes. Objects belong to
their corresponding cobox for their entire lifetime. To realize concurrency, each cobox
supports multiple, possibly interleaved, processes which we refer to as tasks. Tasks are

created when methods are asynchronously called on objects, e.g., o!m() starts a new
task. The callee object o is responsible for executing the method call. The communica-
tion can be observed by tracking the calls between each pair of objects (e.g., we have
a communication between the this object and o due to the invocation of m). Informally,
given an execution, its configuration consists of the set of coboxes which have been cre-
ated along such execution and which are the nodes of the distributed system, together
with the set of objects created within each cobox. Similarly, the communication of an
execution is defined as the set of calls between each pair of objects in the system; from
which we can later obtain the communication for pairs of coboxes.

Statically inferring QAs is a challenging problem, since it requires (1) keeping track
of the relations between the coboxes and the objects, (2) bounding the number of ele-
ments which are created, (3) bounding the number of interactions between objects, and
(4) doing so in the context of distributed concurrent programming. The main contribu-
tions of this paper are:

1. Abstract configurations. The abstraction of objects and coboxes we rely on is based
on allocation sequences [11] (i.e., the sequence of allocation sites where the objects
that led to the creation of the current one were created). We use a points-to analysis
to infer the allocation sequences which allow us to infer the ownership relations
between the coboxes and the objects created.

2. Quantified nodes. We define a new cost model which can be plugged in the generic
resource analyzer COSTABS [2] (without requiring any change to the analysis en-
gine) in order to infer upper bounds on the number of coboxes and of objects that
each element of an abstract configuration represents.

3. Quantified edges. We propose a cost model which can be also plugged in COSTABS
to infer upper bounds on the number of calls among nodes.

4. Implementation. We have implemented our analysis in COSTABS and applied it
on a case study developed by Fredhopper R©. A notable result of our experiments is
that COSTABS was able to spot an excessive number of connections between two
distributed nodes that should be better allocated together.

QAs have many applications for optimizing, debugging and dimensioning distributed
applications which include among others: (1) QAs provide a global view of the dis-
tributed application, which may help to detect errors related to the creation of the topol-
ogy or task distribution. (2) They allow us to identify nodes that execute a too large
number of processes while other siblings execute only a few of them. (3) They are
required to perform meaningful resource analysis of distributed systems, since they al-
low determining to which node the computation of the different processes should be
associated. (4) They allow us to detect components that have many interactions and
that would benefit from being deployed in the same machine or at least have a very
fast communication channel. (5) They provide a further step towards static bandwidth
analysis.

2 The Language

We apply our analysis to the language ABS [10,12]. ABS extends the basic concurrent
objects model [14,4,6,12] with the abstraction of object groups, named coboxes. Each

cobox conceptually has a dedicated processor and a number of objects can live inside
the cobox and share its processor. Communication is based on asynchronous method
calls with standard objects as targets. Consider an asynchronous method call m on object
o, written as f = o!m(). The objects this and o communicate by means of the invocation
m. Here, f is a future variable which allows synchronizing with the completion of task
m by means of the await f ? instruction which behaves as follows. If m has finished,
execution of the current task proceeds. Otherwise, the current task releases the processor
to allow other available tasks (possibly a task of another object in the cobox) to take it.
The language syntax is as follows. A program consists of a set of classes class C1

(t1 fn1,...,tn fnn) {M1 ... Mk} where each ti fni declares a field fni of type ti, and each
Mi is a method definition t m(t1 w1,...,tn wn) {tn+1 wn+1;...;tn+p wn+p; s} where t is
the type of the return value; w1, ...,wn are the formal parameters with types t1, ..., tn;
wn+1, ...,wn+p are local variables with types tn+1, ..., tn+p; s is a sequence of instructions
which adhere to the following grammar, where x and z denote standard variables, and y
a future variable whose declaration includes the type of the returned value:

s ::= in | in; s b ::=e>e | e==e | b∧b | b∨b | !b e ::=null | this. f | x | e+e | e∗e | e−e
in ::= x=new C(x̄) | x=newcog C(x̄) | x=e | this. f =e | y = x!m(z) | if b then s1 else s2 |

return x | while b do s | await y?
There is an implicit local variable called this that refers to the current object. Observe

that the only fields which can be accessed are those of the current object, i.e., this. Thus,
the language is data-race free [10], since no two tasks for the same object can be active
at the same time. The instruction newcog (i.e., “new component object group”) creates a
new object, but instead of within the current cobox, the new object becomes the root of a
brand new cobox. It is the root since all other objects which are transitively created using
new belong to such new cobox, until other newcog instructions are executed, which
introduce other coboxes with their respective roots. We assume all programs include a
method called main, which does not belong to any class and has no fields, from which
the execution starts in an implicitly created initial cobox, called ε.

Program execution is non-deterministic, i.e., given a state there may be different
execution steps that can be taken, depending on the cobox selected and, when proces-
sors are released, it is also non-deterministic on the particular task within each cobox
selected for further execution. We refer to [10] for a precise definition of the language
semantics. For our purposes, we only need to know that a program state is formed by a
set of coboxes, a set of objects and a set of futures. Each cobox simply contains a unique
identifier and the identifier of the currently active object in the cobox (or ∅ if all objects
are idle). Each object contains a unique identifier, the value of its fields, the method
name of the active task, and a pool of suspended tasks. Each task in turn contains the
values of the local variables and the list of instructions to execute. Execution steps are
denoted S {b

l S ′, indicating that we move from state S to state S ′ by executing in-
struction b on the object identified by l. Traces take the form t ≡ S 0 {

b0
ε · · · {

bn−1
ln−1

S n

where S 0 is an initial state in which only the main method is available.

Example 1. Our running example sketches an implementation of a distributed applica-
tion to store and retrieve data from a database. The main method creates a new server and
initializes it using two arguments, n, the number of handlers (i.e., objects that perform
requests to the database), and m, the number of requests performed by each handler.

void main (Int n, Int m) {
1© Server s = newcog Server(null);

s!start (n,m);
}

class Server (DAO dao) {
void start (Int n, Int m) {

Fut f<void> = this!initDAO();
await f?;
while(n > 0) {

2© H h = new Handler(this.dao);
h!run(m);
n = n − 1;
}

}

void initDAO () {
3© this. dao = new DAO(null);

Fut f<void> = this.dao!initDB();
await f?;
}

}

class Handler (DAO dao) {
void run (Int m) {

while(m>0) {
this. dao.query(m);
m = m − 1;
}

}

}

class DAO (DB db) {
void initDB () {

4© this. db = new DB();
}

boolean query(Int m) {
String s = . . .//query m
this. db!exec(s);
}

}

class DB () {
boolean exec(String s) {. . .}
}

Method start initializes a data access object (DAO) that is used by Handler objects to re-
quest the database. Then, it creates n Handler objects at program point (p.p. for short) 2©

and starts their execution via the run method. The DAO object creates a fresh DB ob-
ject at p.p. 4©, that will actually execute queries from handlers. When executing run,
each handler performs m requests to the DAO object by invoking method query. The use
of Fut<void> variables and await instructions allow method synchronization. Regarding
distribution, observe that the configuration contains a single distributed component (the
Server cobox at 1©), as all other objects are created using new. �

3 Background: Points-to and Resource Analysis

In this paper, we make use of the techniques of points-to analysis [11,13] and resource
analysis [1,3] to infer quantified abstract configurations. We will try to use them as
black boxes along the paper as much as possible. Still, we need to review the basic
components that have to be used and/or adapted for our purposes.

3.1 Cost Centers and Points-to Analysis

An essential concept of the resource analysis framework for distributed systems in [1,3]
is the notion of cost center. A cost center represents a distributed component (or node)
of the system such that the cost performed on such component can be attributed to its
cost center. Since in our language coboxes are the distributed components of the system,
finding out the cost centers amounts to inferring the set of coboxes in the program. This
can be done by means of points-to analysis [3]. The aim of points-to analysis is to

approximate the set of objects (or coboxes) which each reference variable may point
to during program execution. Following [11,13], the abstraction of each object created
in the program is a syntactic construction of the form oi j...pq, where all elements in
i j . . . pq are allocation sites, which represents all run-time objects that were created at
q when the enclosing instance method was invoked on an object represented by oi j...p,
which in turn was created at allocation site p. Let S be the set of all allocation sites
in a program. Given a constant k ≥ 1, the analysis considers a finite set of object
names, denoted N , which is defined as: N = {ε} ∪ S ∪ S 2 . . . S k. Note that k defines
the maximum size of sequences of allocations, and it allows controlling the precision
of the analysis. Allocation sequences have in principle unbounded length and thus it is
sometimes necessary to lose precision during analysis. This is done by just keeping the
k rightmost positions in sequences whose length is greater than k. We use |s| to denote
the length of a sequence s. We define the operation 〈i, j, . . . , p〉 ⊕ q for referring to the
following object name: oi j...pq if |〈i, j, . . . , p, q〉| ≤ k, or o j...pq otherwise. In addition, a
variable can be assigned objects with different object names. In order to represent all
possible objects pointed to by a variable, sets of object names are used. We will use the
results of the points-to analysis by using pt(q, x) which refers to the set of object names
at p.p. q for a given reference variable x.

Example 2. Let us show (part of) the result of applying the points-to analysis to each
program point. Since ε is the first element of all allocation sequences, we omit it.

void start (Int n, Int m) {
Fut f<void> = this!initDAO();
await f?;
while(n > 0) {

2© H h = new Handler(this.dao);
h!run(m);
n = n - 1; } }

void initDAO () {
3© this.dao = new DAO(null);

Fut f<void> = this.dao!initDB();
await f?;

void initDB () {
4© this.db = new DB();}

{this 7→ {o1}}

{this 7→ {o1}, o1.dao 7→ {o13}}

{this 7→ {o1}, o1.dao 7→ {o13}}

{this 7→ {o1}, o1.dao 7→ {o13}}

{this 7→ {o1}, o1.dao 7→ {o13}, h 7→ {o12}}

{this 7→ {o1}, o1.dao 7→ {o13}, h 7→ {o12}}

{this 7→ {o1}, o1.dao 7→ {o13}, h 7→ {o12}}

{this 7→ {o1}}

{this 7→ {o1}, o1.dao 7→ {o13}}

{this 7→ {o1}, o1.dao 7→ {o13}}

{this 7→ {o1}, o1.dao 7→ {o13}}

{this 7→ {o13}}

{this 7→ {o13}, o13.db 7→ {o134}}

All object creations use the object name(s) pointed to by this to generate new object
names by adding the current allocation site. E.g., at p.p. 2©, this 7→ {o1}; the new object
name created is o12. The set of possible values for this within a method comes from
the object name(s) for the variable used to call the method. In what follows, we use O
to refer to the set of object names generated by the points-to analysis. In our example
O={oε , o1, o12, o13, o134}. �

3.2 Cost Models

Cost models determine the type of resource we are measuring. Traditionally, a cost
modelM is a functionM : Instr 7→ N which for each instruction in the set of instruc-
tions Instr returns a natural number which represents its cost. As an example, if we are

interested in counting the number of instructions executed by a program, we define a
cost model that counts one unit for any instruction, i.e.,M(b) = 1.

In the context of distributed programs, the main difference is that the cost model
not only accounts for the cost consumed by the instruction, but it also needs to attribute
it to the corresponding cost center. In order to do so, we add an additional parame-
ter to the previous model which corresponds to the allocation site of the cost center:
MI(b, o)=c(o)·1. As before, we count “1” instruction but now we attribute it to the cost
center of the provided object, named c(o). Technically, the way to assign the cost to its
corresponding center is by using symbolic cost expressions that contain the cost centers
such that, if we are interested in knowing how many instructions have been executed
by the cost center c(o), we replace c(o) by 1 and c(o′) by 0 for all other o′,o. In the
following sections, we will define the cost models that we need for our analysis.

3.3 Upper Bounds

Given a set of cost centers O, a definition of cost modelM, and a program P(x), where
x are the input values for the arguments of the main method, resource analysis obtains
an upper bound UBMP (x) which is an expression of the form c(o1)·e1 + . . . + c(on)·en

where oi ∈ O and ei is a cost expression (e.g., polynomials, exponential functions, etc.)
with i = 1, . . . , n.

The analysis [1] is object-sensitive in that, given an object x at a program point p,
it considers the cost for all different possible abstract values in O that x can take. Tech-
nically, this is done by generating cost equations for each possible abstract value and
taking the maximum. To allow this object-sensitive extension, the cost model receives
the particular allocation site which is being considered by the analysis. The analysis
guarantees that UBMP is an upper bound on the worst-case cost (for the type of resource
defined byM) of the execution of P w.r.t. any input data; and in particular, that each ei

is an upper bound on the execution cost performed within the objects that oi represents.
Formally, the following theorem states the soundness result of the analysis. Since

the length of object names is limited to a length k, allocation sequences of length greater
than k do not appear as such in the results of points-to analysis. Instead, they are repre-
sented by object names which cover them. Therefore, we need some means for relating
allocation sequences to the object name which best approximate them. We now define
such notion. Given an allocation sequence l and a set of object names O, the best ap-
proximation of l inO is the longest object name inOwhich covers l. I.e., an object name
ol′ ∈ O is the best approximation of l inO iff ol ≤ ol′ and ∀ol′′ ∈ O . ol ≤ ol′′ → |l′′| < |l′|
or l′′ = l′. We use UBMP (x)|N to denote the result of replacing c(ol) by 1 if ol ∈ N and
by 0 otherwise in the resulting UB expression.

Theorem 1 (soundness [1,3]). Let P be a program and l an allocation sequence. Let
O be the object names computed by a points-to analysis of P. Let l′ be the best approx-
imation of l in O. Then, ∀x, cost(l, P, x) ≤ UBMP (xs)|{ol′ }.

Example 3. The UB expression obtained by applying resource analysis on the running
example using MI , which counts the number of instructions executed by each object
inferred by the points-to analysis, is UBM

I

main(n,m) = c(o1)·18+c(o13)·6+c(o1)·12·nat(n)+

c(o12)·6·nat(n)+c(o12)·8·nat(n)·nat(m)+c(o13)·2·nat(n)·nat(m)+c(o134)·nat(n)·nat(m), where
nat(x)= max(x, 0) and it is used for avoiding negative evaluations of cost expressions. In
what follows, for readability, nat is omitted from the UB expressions. The number of in-
structions executed by a particular object name, say o12, is obtained as UBM

I

main(n,m)|{o12}=n·
(6 + 8 ·m). Although the resource analysis in [1,3] cannot infer how object identifiers are
grouped in the configuration of the program, it can give us the cost executed by a set of
objects, UBM

I

main(n,m)|{o1 ,o12}=18 + n · (18 + 8 · m).

4 Concrete Definitions in Distributed Systems

This section formalizes the concrete notions of configuration and communication that
we aim at approximating by static analysis in the next section.

4.1 Configuration

Let us introduce some notation. All instructions are labeled. The expression b ≡ q : i
denotes that the instruction b has q as label (program point) and i is the instruction
proper. Similarly to the points-to analysis defined in Sec. 3.1, any object can be assigned
an allocation sequence l = 〈 j, . . . , p, q〉which indicates that such object was allocated at
program point q during the execution of a method invoked on an object whose allocation
sequence is in turn 〈 j, . . . , p〉. We use ol to refer to an object whose allocation sequence
is l. Note that allocation sequences are not identifiers since there may be multiple objects
with the same allocation sequence. Therefore, we sometimes use multisets (denoted {| |}).
Underscores () are used to ignore irrelevant information. Given an allocation sequence
l, we use root(l) to refer to the allocation sequence of the root object of the cobox for l. It
can be defined as the longest prefix of l which ends in an allocation site for coboxes, i.e.,
one site where a newcog instruction is executed. Therefore, if l ends in an allocation site
for coboxes, then root(l) = l. If it ends in an allocation site for objects, i.e., one where a
new instruction is executed, then root(〈 j, . . . , p, q〉) = root(〈 j, . . . , p〉).

Given a trace t (see Section 2), we use steps(t) to denote the set of steps which form
trace t. Since execution is non-deterministic, given a program P(x), multiple (possibly
infinite) fully expanded traces may exist. We use executions(P(x)) to denote the set of
all possible fully expanded traces for P(x). Given a trace t, the multiset of cobox roots
created during t is defined as cobox roots(t) = {|ol | {

q:newcog
〈 j,...,p〉 ∈ steps(t) ∧ l =

〈 j, . . . , p, q〉|}. Also, given a cobox root ol, the multiset of objects it owns in a trace t is
defined as abs in cobox(ol, t) = {|o〈 j,...,p,q〉| {

q:new
〈 j,...,p〉 ∈ steps(t) ∧ root(〈 j, . . . , p〉) = l|}.

Definition 1 (configuration). Given an execution trace t, we define its configuration,
denoted Ct, as Ct = {|〈o, abs in cobox(o, t)〉 | o ∈ cobox roots(t)|}. The configuration of a
program P on input values x, denoted Conf P(x) is defined as {Ct | t ∈ executions(P(x))}.

Example 4. Deliberately, the running example shown in Ex. 1 executes in a single
cobox. It can be configured as a distributed application by creating coboxes instead
of objects, i.e., by replacing selected new instructions by newcog . The following graphs
graphically show three possible settings and the memory allocation instruction (new or
newcog) that have been used at the program points 2©, 3© and 4©.

Setting 1

o1

o13

o134

o12 o121...n

2©: new
3©: new
4©: newcog

Setting 2

o1

o13

o134

o12 o121...n

2©: new
3©: newcog
4©: newcog

Setting 3

o1

o13

o134

o12 o121...n

2©: newcog
3©: newcog
4©: new

The object names in the graph are grouped using dotted rectangles according to the
cobox to which they belong. Cobox roots appear in grey and dashed edges represent the
creation sequence. The annotation 1 . . . n indicates that we have n objects of this form.
In Setting 1, all objects are created in the same cobox, except for the object of type
DB. In Setting 2, also the object of type DAO is in a separate cobox. In Setting 3, each
handler is in a separate cobox, and DAO and DB share a cobox. The configurations for
the different settings are (see Def. 1):

Setting 1:{|〈o1, {| o12, ..., o12︸ ︷︷ ︸
n objects

, o13|}〉, 〈o134, {||}〉|} Setting 2:{|〈o1, {| o12, ..., o12︸ ︷︷ ︸
n objects

|}〉, 〈o13, {||}〉, 〈o134, {||}〉|}

Setting 3:{|〈o1, {||}〉, 〈o12, {||}〉, ..., 〈o12, {||}〉︸ ︷︷ ︸
n coboxes

, 〈o13, {|o134|}〉|}

�

Given input values and an allocation sequence, the definition below counts the
maximum number of instances (objects) created at such allocation sequence. We use
card(x,M) to refer to the number of occurrences of x in a multiset M.

Definition 2 (number of instances). Given an allocation sequence l, a program P and
input values x, we define the number of instances for l as:

inst(l, P, x) = max
Ct∈Conf P(x)

(
∑

〈c,O〉 ∈ Ct

card(l,O ∪ {|c|}))

Example 5. The number of instances for the allocation sequence 〈1, 2〉 in our running
example with input values x = 〈3, 4〉 (i.e., n=3 and m=4) is the maximum number of
objects with 〈1, 2〉 as allocation sequence, over all possible executions. Such maximum
is 3. In fact, for any execution the maximum coincides with the value of n. �

4.2 Communication

The communication refers to the interactions between objects occurred during the ex-
ecution of a program. As in the above section, objects are represented using allocation
sequences.

Definition 3 (communication). Given an execution trace t, its interactions, denoted
It, are defined as: It = {|〈ol, ok,m〉 | {

: ok!m()
l ∈ steps(t)|}. The communication

performed in the execution of a program P and input values x, denoted CommP(x) is
defined as {It | t ∈ executions(P(x))}.

A global view of the distributed system for a trace execution t can be depicted as a graph
whose nodes are object representations of the form ol, where l is an allocation sequence
which occurs in the trace t, and whose arcs, annotated with the method name, are given
by the elements in the set It.
Example 6. The interactions for any execution of our
running example, and thus, the communication of
the program, is depicted graphically in the following
graph and, according to Def. 3 it is defined as:

{|〈ε, o1, start〉, 〈o1, o1, initDAO〉, 〈o1, o13, initDB〉,
〈o1, o12, run〉, ..., 〈o1, o12, run〉︸ ︷︷ ︸

n interactions

,

〈o12, o13, query〉, ..., 〈o12, o13, query〉︸ ︷︷ ︸
n·m interactions

〈o13, o134, exec〉, ..., 〈o13, o134, exec〉︸ ︷︷ ︸
n·m interactions

|}

start

o1

o13

o134

o12 o121...n

run run

exec

initDB

initDAO

query
query

Observe that the communication of the program comprises all calls to methods, includ-
ing calls within the same object such as 〈o1, o1, initDAO〉. A relevant aspect of commu-
nications is that they are independent from the distributed setting of the program. �

Definition 4 (number of interactions). Given two allocation sequences l and k, a
method m, a program P and its input values x, we define the number of interactions
between l and k for method m in the execution of P on x as: ninter(l, k,m, P, x) =

max
It∈CommP(x)

(card(〈l, k,m〉, It)).

Example 7. In the running example, methods initDAO and initDB are executed only once.
During the execution of start in object o1, method run is called inside the while loop
and it is executed n times by the objects o12. Similarly, for each execution of run in o12,
method query is called m times, resulting in n · m calls to method query in o13. Besides,
each call to query executes exec in o134. �

5 Inference of Quantified Abstractions

This section presents our method to infer quantified abstractions of distributed systems.
The main novelties are: (1) We provide an abstract definition for configuration and
communication that can be automatically inferred by relying on the results computed by
points-to analysis. (2) We enrich the abstraction by integrating quantitative information
inferred by resource analysis. For this, we build on prior work on resource analysis
[1,3] that was primarily used for the estimation of upper bounds on the worst-case cost
performed by each node in the system (see Section 3). To use this analysis, we need to
define new cost models that allow establishing upper bounds for the number of nodes
and communications which the execution of the system requires.

5.1 Quantified Configurations

The points-to analysis results can be presented by means of a points-to graph as follows.
We use alloc(P) to denote the set of allocation sites in program P.

Definition 5 (points-to graph). Given a program P and its points-to analysis results,
we define its points-to graph as a directed graph GP = 〈V, E〉 whose set of nodes is
V = O and set of edges is E = {ol → ol′ | q:y=new or q:y=newcog ∈ alloc(P) ∧ ol ∈

pt(q, this) ∧ ol′ ∈ pt(q, y)}.

Example 8. The following graph shows the points-to graph
for the running example. It contains one node for each object
name inferred by the points-to analysis. Given an allocation
site, edges link object names pointed to by this to the corre-
sponding objects created at that program point, e.g., an edge
from o1 to o13 and o12 and another one from o13 to o134. �

Points-to graphs provide abstractions of the ownership rela-
tions among objects in the program. To extract abstract

o1

o13

o134

o12

configurations from them, it is necessary to identify cobox roots and find the set of ob-
jects which belong to the coboxes associated to such roots. Note that given an object
name 〈 j . . . q〉 it can be decided whether it represents a cobox root, denoted is root(〈 j . . . q〉),
by simply checking whether the allocation site q contains a newcog instruction. We
write a{ b to indicate that there is a non-empty path in a graph from a to b and denote
by interm(a, b) the set of intermediate nodes in the path (excluding a and b).

Definition 6 (abstract configuration). Given a program P and a points-to graph GP =

〈V, E〉 for P, we define its abstract configuration AP as the set of pairs of the form
〈o, abs in cobox(o,GP)〉 s.t. o ∈ V ∧ is root(o) where abs in cobox(o,GP) = {o′ ∈ V s.t.
o{ o′ in GP and ∀o′′ ∈ interm(o, o′) ∧ ¬is root(o′′)}.

Note that, in the above definition, function abs in cobox returns the subset of objects
which are part of the cobox whose root is the parameter o.

Example 9 (abstract configuration). The abstract configuration for the concrete Set-
ting 2 is represented graphically in Ex. 8. As before, cobox roots appear in grey and
objects are grouped by cobox. The abstract configurations for the Settings in Ex. 4 are:
Setting 1: 〈o1, {o12, o13}〉, 〈o134, {}〉, Setting 2: 〈o1, {o12}〉, 〈o13, {}〉, 〈o134, {}〉,
Setting 3: 〈o1, {}〉, 〈o12, {}〉, 〈o13, {o134}〉

�

Soundness of the analysis requires that the abstract configuration obtained is a safe
approximation of the configuration of the program for any input values. Given two
object names ol and ol′ , we say that ol′ covers ol, written ol ≤ ol′ if l′ is a suffix of l
modulo ⊕. Given two sets of object names O1 and O2, we write O1 v O2 if all objects
in O1 are covered by some element in O2. Given 〈ol,O〉 and 〈ol′ ,O′〉, we write 〈ol,O〉 v
〈ol′ ,O′〉 if ol ≤ ol′ and O v O′. Given two configurations C and C′, we write C v C′ if
∀〈ol,O〉 ∈ C there exists 〈ol′ ,O′〉 ∈ C′ s.t. 〈ol,O〉 v 〈ol′ ,O′〉.

Theorem 2 (soundness of abstract configurations). Let P be a program and Ap its
abstract configuration. Then ∀x,∀Ct ∈ Conf P(x),Ct v Ap.

The proof is entailed from the soundness proof of the underlying points-to analysis
(our implementation uses an adaptation of [11]). It is easy to see that the theorem holds
for the configuration Conf P in Ex. 4, and any abstract configurationAP of Ex. 9.

(Non-quantified) abstract configurations are already useful when combined with the
resource analysis in Sec. 3, since they allow us to obtain the resource consumption at
the level of cobox names. In what follows, given a points-to graph GP and a cobox root
o, we use cobox(o,GP,) to denote {o} ∪ abs in cobox(o,GP).

Example 10. Using the UB expression inferred in Ex. 3 and the abstract configurations
for all settings in Ex. 9, we can obtain the cost for each cobox name. The following
table shows the results obtained from UBM

I

main(n,m)|cobox(c,Gmain) where c corresponds, in
each case, to the cobox name in the considered abstract configuration:

Setting 1 Setting 2 Setting 3
c UB c UB c UB
o1 24 + 18·n + 10·n·m o1 18 + 18·n + 8·n·m o1 18 + 12·n

o134 n·m o13 6 + 2·n·m o12 6·n + 8·n·m
o134 n·m o13 6 + 3·n·m

As the table shows, in Settings 1 and 2 most of the instructions are executed in cobox(es)
represented by cobox name o1. In Setting 3, the cost is more evenly distributed among
cobox names. However, in order to reason about how loaded actual coboxes are it is
required to have information about how many instances of each cobox name exist. For
example, in Setting 3, o12 represents n Handler coboxes. This essential (and comple-
mentary) information will be provided by the quantified abstraction. �

We now aim at quantifying abstract configurations, i.e., at inferring an over-ap-
proximation of the number of concrete objects (and coboxes) that each abstract object
(or cobox) represents. For this purpose, we define theMC(b, ol) cost model as a func-
tion which returns c(ol⊕q) if b ≡ q:y=new C or b ≡ q:y=newcog C, and 0 otherwise. The
novelty is on how the information computed by the points-to analysis is used in the cost
model: it concatenates the allocation sequence of the object received as parameter (that
corresponds to the considered allocation sequence for this) with the instruction alloca-
tion site q. This allows counting the elements created at this point for each particular
instance of this considered by the points-to analysis.

Example 11. UsingMC , the upper bound obtained for the running example is the ex-
pression UBM

C

main(n,m) = c(o1) + c(o13) + c(o134) + n · c(o12). This expression allows
us to infer an upper bound of the maximum number of instances for any object identi-
fied in the points-to graph. Regarding configurations, we are interested in the number
of instances of those objects that are distributed nodes (coboxes). The following table
shows the results of solving the expression UBM

C

main(n,m)|cobox(c,Gmain) where c as before are
the coboxes for each abstract configuration.
Setting 1 Setting 2 Setting 3

c UB c UB c UB
o1 1 o1 1 o1 1

o134 1 o13 1 o12 n
o134 1 o13 1

2 3 2 + n

Clearly, Setting 1 is the setting that creates fewer
coboxes (only 2 coboxes execute the whole pro-
gram). Thus, the queries requested by handlers can-
not be processed in parallel. If there is more parallel
capacity available, Setting 3 may be more appropri-
ate, since handlers can process requests in parallel.

Theorem 3. Under the assumptions in Th. 1, ∀x, inst(l, P, x) ≤ UBM
C

P (xs)|{ol′ }.

The proof is an instance of Th. 1 forMC and the definition of inst in Def. 2.

5.2 Quantified Communication

From the points-to analysis results, we can generate the interaction graph as follows.

Definition 7 (interaction graph). Given a program P and its points-to analysis results,
we define its interaction graph as a directed graph IP = 〈V, E〉 with a set of nodes V = O

and a set of edges E = {ol
m
−→ ol′ | q:x!m() ∧ ol ∈ pt(q, this) ∧ ol′ ∈ pt(q, x)}.

Example 12. The following graph shows the interaction
graph for the example. Edges connect the object that is
executing when a method is called with the object respon-
sible for executing the call, e.g., during the execution of
start, object o1 calls method initDAO using the this refer-
ence and it also interacts with o12 by calling run. Note that
the multiple calls to query from o12 to o13 are abstracted
by one edge. �

o1

o13

o134

o12

exec
query

runinitDB

initDAO

We now integrate quantitative information in the interaction graph. For this purpose,
we define the cost model MK(b, o, p) as a function which returns c(m)·c(o, p) if b ≡
!m(), and 0 otherwise. The key point is that for capturing interactions between objects,

when applying the cost model to an instruction, we pass as parameters the considered
allocation sequences of the caller and callee objects. The resulting upper bounds will
contain cost centers made up of pairs of abstractions c(o, p), where o is the object that is
executing and p is the object responsible for executing the call. Besides, we attach to the
interaction the name of the invoked method c(m) (multiplication is used as an instrument
to attach this information and manipulate it afterwards as we describe below).

From the upper bounds on the interactions, we can obtain a range of useful in-
formation: (1) By replacing c(m) by 1, we obtain an upper bound on the number of
interactions between each pair of objects. (2) We can replace c(m) by (an estimation of)
the amount of data transferred when invoking m (i.e., the size of its arguments). This is
a first approximation of a band-width analysis. (3) Replacing c(o, p) by 1 for selected
objects and the remaining ones by 0, we can see the interactions between the selected
objects. (4) If we are interested in the communications for the whole program, we just
replace all expressions c(o, p) by 1. (5) Furthermore, we can obtain the interactions
between the distributed nodes by replacing by 1 those cost centers in which o and p
belong to different coboxes and by 0 the remaining ones. From this information, we can
detect nodes that have many interactions and that would benefit from being deployed
on the same machine or at least have a fast communication channel.

Example 13. The interaction UB obtained by the resource analysis is as follows:

UBM
K

main(n,m) = c(start)·c(ε, o1) + c(initDAO)·c(o1, o1) + c(initDB)·c(o1, o13)+
n·c(run)·c(o1, o12) + n·m·c(query)·c(o12, o13) + n·m·c(exec)·c(o13, o134)

From this global UB, we obtain the following UBs on the number of interactions be-
tween coboxes for the different settings in Ex. 4:

Setting 1 Setting 2 Setting 3
method coboxes UB method coboxes UB method coboxes UB
exec o1 → o134 n·m query o1 → o13 n·m run o1 → o12 n

exec o13 → o134 n·m initDB o1 → o13 1
query o12 → o13 n·m

n·m n·m + n·m 1 + n + n·m

The last row shows the total number of interactions between coboxes. Clearly, the min-
imum number of inter-cobox interactions happens in Setting 1, where most of the ob-
jects are in the same cobox. Setting 2 has a higher number of interactions, because the
database objects DAO and DB are in different coboxes. In Setting 3 most interactions are
produced between the coboxes created for the handlers which, on the positive side, may
run in parallel. By combining
this information with the quantified
configuration of the system, for set-
ting 3, we generate the quantified
abstraction (shown in the graph).
Each node contains as object iden-
tifier its allocation sequence and the
number of instances (e.g., the num-
ber of instances of o12 is n). Op-
tionally, if it is a cobox, it contains
the number of instructions executed
by it. For instance, the UB on the
number of instructions executed in
cobox o12 is 6·n+8·n·m (see Ex. 10).
The edges represent the interactions

o1

18+12·n

1

o13

6+n·3·m

1 o12

6·n+8·n·m

n

o134

−

1

initDAO [1]

query [n·m]

exec [n·m]

run [n]initDB [1]

UB Total Comm.: 1+n+n·m
UB Total Coboxes: 2+n

and are annotated (in brackets) with the UB on the number of calls (e.g., the objects
represented by o12 call to o13 n·m times calling method query). �

From the example, we can figure out the five applications described in Sec. 1: (1) We
can visualize the topology and view the number of tasks to be executed by the dis-
tributed nodes and possibly spot errors. (2) We detect that node o1 executes only one
process, while o13 executes many. Thus, it probably makes sense to have them sharing
the processor. (3) We can perform meaningful resource analysis by assigning to each
distributed node the number of steps performed by it, rather than giving this number at
the level of objects as in [1,3] (as maybe the objects do not share the processor). (4) We
can see that o13 and o12 have many interactions and would benefit from having a fast
communication channel. (5) From the quantified interactions, if we compute the sizes
of the arguments, we can figure out the size of the data to be transferred (bandwidth

Similarly to abstract configurations, we use UBM
K

main(x)|N,M to denote the result of
replacing in the resulting UB the expression: c(o1, o2) by 1 if o1, o2 ∈ N and by 0
otherwise and c(m) by 1 if m ∈ M and by 0 otherwise. This theorem is also an instance
of Th. 1 for the defined cost model and Def. 4.

Theorem 4 (soundness). Under the assumptions in Theorem 1, ∀ x we have that
ninter(l, k,m, P, x) ≤ UBM

K

P (x)|{ol,ok},{m}.

6 Implementation and Application to Case-Study

We have implemented our analysis in COSTABS [1] and applied it to a realistic case-
study, the Trading System developed by Fredhopper R© and available from http://www.
hats-project.eu. Due to some limitations of the underlying resource analysis which
are not related to our method, we had to slightly modify the program by changing the
structure of some loops, and had to add some size relations that the analysis could
not infer. The simple online interface to our analysis and the modified case-study can
be found at http://costa.ls.fi.upm.es/costabs/QA. This Trading System is a
typical example for a distributed component-based information system. It models a
supermarket sales handling system: it includes the processes at a single cash desk (like
scanning products using a bar code scanner or paying by cash or by credit card); it
also handles bill printing; as well as administrative tasks In the Trading System, a store
consists of an arbitrary number of cash desks. Each of them is connected to the store
server, holding store-local product data such as inventory stock, prices, etc.

The experiments presented have been performed on an Intel Core 2 Duo at 2.53GHz
with 4GB of RAM, running Ubuntu 12.10. The analyzed source code has 1340 l.o.c.,
with 94 methods and 22 classes. Points-to analysis has been performed with k = 2, i.e.,
the maximum length of object names (see Sec. 3) is two. The inference of the quantified
configuration took 109 seconds and of the quantified communication 410 seconds. The
larger time taken by the communication is justified because there are many more method
invocations than object creations in the program and, thus, the resource analysis has
more equations to solve in the latter case. The analysis identifies 22 different object
names (17 of them are coboxes) and 96 interactions in the communication graph. We
do not show the UBs inferred because the expressions obtained are rather large.

The QA obtained for the system is as follows: we identify two separate parts in the
model, an environment part that creates a handler for each physical device and another
part that represents the physical devices. The configuration of the system is distributed
by creating one cobox for each physical device. The quantified abstraction infers that
the number of instances for each identified cobox is linear on the number of cash desks
installed. Besides, the system also creates one distributed environment object running
on its own cobox for handling each physical device. The interactions of the system
show that each environment cobox communicates with its physical device in order to
perform each task. A notable result of our experiments is that we have detected two
objects with a high number of interactions, namely CashDeskPCImpl and CashBox-
Impl, and which run in separate coboxes. Clearly, the implementation would benefit
from deploying these two coboxes on the same machine since their tasks are highly
cooperative. If this is not possible, it should be at least guaranteed that they have a fast
communication channel. The remaining objects do not show any overloading problem.

7 Conclusions and Future Work

We have shown that distributed systems can be statically approximated, both qualita-
tively and quantitatively. For this, we have proposed the use of powerful techniques
for points-to and resource analysis whose integration results in a novel approach to de-
scribing system configurations. There exist several contributions in the literature about

http://www.hats-project.eu
http://www.hats-project.eu
http://costa.ls.fi.upm.es/costabs/QA

occurrence counting analysis in mobile systems of processes, although they focus on
high-level models, such as the π-calculus and BioAmbients [8,9]. But, to the best of
our knowledge, this paper is the first approach that presents a quantitative abstraction
of a distributed system for a real language and experimentally evaluates on a prototype.
We argue that our work is a first crucial step towards automatically inferring optimal
deployment configurations of distributed systems. In future work, we plan to tackle this
problem and consider objective functions. An objective function should indicate the
cost metrics that we aim at keeping minimal, e.g., by taking into account the actual
features of the deployment platforms.

Acknolegments: This work was funded partially by EU project FP7-ICT-610582 EN-
VISAGE: Engineering Virtualized Services (http://www.envisage-project.eu), by the
Spanish projects TIN2008-05624, TIN2012-38137, PRI-AIBDE-2011-0900 and by the
Madrid Regional Government project S2009TIC-1465.

References

1. E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla. Cost Analysis of
Concurrent OO programs. In APLAS’11, vol. 7078 of LNCS, p.p. 238–254. Springer, 2011.

2. E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla. COSTABS: A Cost
and Termination Analyzer for ABS. In Procs. of PEPM’12, p.p. 151–154. ACM Press, 2012.

3. E. Albert, P. Arenas, J. Correas, M. Gómez-Zamalloa, S. Genaim, G. Puebla, and
G. Román-Dı́ez. Object-sensitive cost analysis for concurrect objects. Technical Report,
http://costa.ls.fi.upm.es/papers/costa/AlbertACGGPRtr.pdf, 2012.

4. P. America. Issues in the design of a parallel object-oriented language. Formal Aspects of
Computing, 1:366–411, 1989.

5. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerg-
ing IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6):599–616, 2009.

6. D. Caromel. Towards a method of object-oriented concurrent programming. Communica-
tions of the ACM, 36(9):90–102, 1993.

7. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among Variables
of a Program. In POPL. ACM Press, 1978.

8. J. Feret. Occurrence counting analysis for the pi-calculus. ENTCS, 39(2):1–18, 2001.
9. R. Gori and F. Levi. A new occurrence counting analysis for bioambients. In APLAS’05,

vol. 3780 of LNCS, p.p. 381–400. Springer, 2005.
10. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core Language for

Abstract Behavioral Specification. In FMCO, vol.6957 LNCS, p.p.142–164. Springer, 2010.
11. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for points-to

analysis for java. ACM Trans. Softw. Eng. Methodol., 14:1–41, 2005.
12. J. Schäfer and A. Poetzsch-Heffter. JCobox: Generalizing Active Objects to Concurrent

Components. In Proc. of ECOOP’10, LNCS 6183, p.p. 275–299. Springer, 2010.
13. Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well: understanding

object-sensitivity. In Procs. of POPL’11, p.p. 17–30. ACM, 2011.
14. A. Yonezawa, J.P. Briot, and E. Shibayama. Object-oriented concurrent programming AB-

CL/1. In Procs. of OOPLSA’86, p.p. 258–268, USA. ACM, 1986.

	Quantified Abstractions of Distributed Systems

