
Termination and Cost Analysis of Loops
with Concurrent Interleavings ?

Elvira Albert1, Antonio Flores-Montoya2, Samir Genaim1, and
Enrique Martin-Martin1

1 Complutense University of Madrid (UCM), Spain
2 Technische Universität Darmstadt (TUD), Germany

Abstract. By following a rely-guarantee style of reasoning, we present
a novel termination analysis for concurrent programs that, in order to
prove termination of a considered loop, makes the assumption that the
“shared-data that is involved in the termination proof of the loop is mod-
ified a finite number of times”. In a subsequent step, it proves that this
assumption holds in all code whose execution might interleave with such
loop. At the core of the analysis, we use a may-happen-in-parallel anal-
ysis to restrict the set of program points whose execution can interleave
with the considered loop. Interestingly, the same kind of reasoning can
be applied to infer upper bounds on the number of iterations of loops
with concurrent interleavings. To the best of our knowledge, this is the
first method to automatically bound the cost of such kind of loops.

1 Introduction

We develop new techniques for cost and termination analyses of concurrent ob-
jects. The actor -based paradigm [1] on which concurrent objects are based has
evolved as a powerful computational model for defining distributed and concur-
rent systems. In this paradigm, actors are the universal primitives of concurrent
computation: in response to a message, an actor can make local decisions, create
more actors, send more messages, and determine how to respond to the next
message received. Concurrent objects (a.k.a. active objects) [18,19] are actors
which communicate via asynchronous method calls. Each concurrent object is a
monitor and allows at most one active task to execute within the object. Schedul-
ing among the tasks of an object is cooperative (or non-preemptive) such that
a task has to release the object lock explicitly. Each object has an unbounded
set of pending tasks. When the lock of an object is free, any task in the set
of pending tasks can grab the lock and start to execute. The synchronization
between the caller and the callee methods can be performed when the result is
necessary by means of future variables [11]. The underlying concurrency model
of actor languages forms the basis of the programming languages Erlang [7] and
Scala [14] that have gained in popularity, in part due to their support for scalable
concurrency. There are also implementations of actor libraries for Java.

? This work was funded partially by the projects FP7-ICT-610582, TIN2008-05624,
TIN2012-38137, PRI-AIBDE-2011-0900 and S2009TIC-1465.

Termination analysis of concurrent and distributed systems is receiving con-
siderable attention [17,2,9]. The main challenge is in handling shared-memory
concurrent programs. This is because, when execution interleaves from one task
to another, the shared-memory may be modified by the interleaved task. The
modifications will affect the behavior of the program and, in particular, can
change its termination behavior and its resource consumption. Inspired by the
rely-guarantee style of reasoning used for compositional verification [12] and
analysis [9] of thread-based concurrent programs, we present a novel termina-
tion analysis for concurrent objects which assumes a property on the global state
in order to prove termination of a loop and, then, proves that this property holds.
The property we propose to prove is the finiteness of the shared-data involved in
the termination proof, i.e., proving that such shared-memory is updated a finite
number of times. Our method is based on a circular style of reasoning since the
finiteness assumptions are proved by proving termination of the loops in which
that shared-memory is modified. Crucial for accuracy is the use of the informa-
tion inferred by a may-happen-in-parallel (MHP) analysis [4], which allows us
to restrict the set of program points on which the property has to be proved to
those that may actually interleave its execution with the considered loop.

Besides termination, we also are able to apply this style of reasoning in order
to infer the resource consumption (or cost) of executing the concurrent program.
The results of our termination analysis already provide useful information for
cost: if the program is terminating, we know that the size of all data is bounded.
Thus, we can give cost bounds in terms of the maximum and/or minimum values
that the involved data can reach. Still, we need novel techniques to infer upper
bounds on the number of iterations of loops whose execution might interleave
with instructions that update the shared memory. We provide a novel approach
which is based on the combination of local ranking functions (i.e., ranking func-
tions obtained by ignoring the concurrent interleaving behaviors) with upper
bounds on the number of visits to the instructions which update the shared
memory. As in the case of the termination analysis, an auxiliary MHP analysis
is used to restrict the set of points whose visits have to be counted to those that
indeed may interleave. To the best of our knowledge this is the first approach to
infer the cost of loops with concurrent interleavings.

Our analysis has been implemented, and its termination component is al-
ready fully integrated in COSTABS [2], a COSt and Termination analyzer for
concurrent objects. Experimental evaluation of the termination analysis has been
performed on a case study developed by Fredhopper R© and several other smaller
applications. Preliminary results are promising in both the accuracy and effi-
ciency of the analysis.

The rest of the paper is organized as follows. Sec. 2 contains preliminar-
ies about the language, termination and cost. Sec. 3 and 4 explains the rely-
guarantee termination and cost analysis, respectively. Sec. 5 contains the pre-
liminary evaluation of the analyses. Finally, Sec. 6 presents the conclusions and
related work.

2

2 Concurrency Model, Termination and Cost

This section presents the syntax and concurrency model of the concurrent objects
language, which is basically the same as [15,2]. A program consists of a set
of classes, each of them can define a set of fields, and a set of methods. The
notation T̄ is used as a shorthand for T1, ...Tn, and similarly for other names.
The set of types includes the classes and the set of future variable types fut(T).
Pure expressions pu (i.e., functional expressions that do not access the shared
memory) and primitive types are standard and omitted. The abstract syntax
of class declarations CL, method declarations M , types T , variables V , and
statements s is:

CL ::=class C {T̄ f̄ ; M̄} M ::=T m(T̄ x̄){s; return p; } V ::=x | this.f
s ::=s; s | x = e | V = x | await V ? | if p then s else s | while p do s
e ::=new C(V̄) | V !m(V̄) | pu T ::=C | fut(T)

As in the actor-model, the main idea is that control and data are encapsulated
within the notion of concurrent object. Thus each object encapsulates a local heap
which stores the data that is shared within the object. Fields are always accessed
using the this object, and any other object can only access such fields through
method calls. We assume that every method ends with a return instruction. The
concurrency model is as follows. Each object has a lock that is shared by all tasks
that belong to the object. Data synchronization is by means of future variables:
An await y? instruction is used to synchronize with the result of executing task
y=x!m(z̄) such that await y? is executed only when the future variable y is
available (i.e., the task is finished). In the meantime, the object’s lock can be
released and some other pending task on that object can take it. W.l.o.g, we
assume that all methods in a program have different names.

A program state St is a set St = Ob ∪ T where Ob is the set of all created
objects, and T is the set of all created tasks. An object is a term ob(o, a, lk)
where o is the object identifier, a is a mapping from the object fields to their
values, and lk the identifier of the active task that holds the object’s lock or ⊥
if the object’s lock is free. Only one task can be active (running) in each object
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(t ,m, o, l, s) where t is a
unique task identifier, m is the method name executing in the task, o identifies
the object to which the task belongs, l is a mapping from local (possibly future)
variables to their values, and s is the sequence of instructions to be executed or
s = ε(v) if the task has terminated and the return value v is available. Created
objects and tasks never disappear from the state. Complete semantic rules can
be found in the extended version of this paper [5].

Example 1. Figure 1 shows some simple examples which will illustrate different
aspects of our analysis. We have an interface Task, and a class TaskQueue which
implements a queue of tasks to which one can add a single task using method
AddTask or a list of tasks using method AddTasks. The loop that adds the tasks
invokes asynchronously method AddTask and then awaits for its termination at
Line 11 (L11 for short). We use the predefined generic type List<E> with the

3

1 Class TaskQueue{
2 List<Task> pending=Nil;
3 void AddTask(Task tk){
4 pending= appendright(pending,tk);
5 }
6 void AddTasks(List<Task> list){
7 while (list != Nil) {
8 Task tk = head(list);
9 pending = tail(list);

10 Fut f=this!AddTask(tk);
11 await f?;}
12 }
13 void ConsumeAsync(){
14 while (pending != Nil) {
15 Task tk = head(pending);
16 pending = tail(pending);
17 Fut f=tk!start();}
18 }
19 void ConsumeSync(){
20 while (pending != Nil) {
21 Task tk = head(pending);
22 pending = tail(pending);
23 Fut f=tk!start();
24 await f?;}
25 }} //end class TaskQueue
26 Interface Task {void start();}

27 //implementations of main methods
28 main1(List<Task> l){
29 TaskQueue q=new TaskQueue();
30 q!AddTasks(l);
31 q!ConsumeAsync();
32 }
33 main2(List<Task> l){
34 TaskQueue q= new TaskQueue();
35 Fut f=q!AddTasks(l);
36 await f?;
37 q!ConsumeSync();
38 }
39 main3(List<Task> l){
40 TaskQueue q= new TaskQueue();
41 q!AddTasks(l);
42 q!ConsumeSync();
43 }
44 main4(List<Task> l){
45 TaskQueue q= new TaskQueue();
46 while (true){
47 Fut x=q!AddTasks(l);
48 Fut y=q!ConsumeSync();
49 await x?;
50 await y?;}
51 }

Fig. 1. Simple examples for termination and cost

usual operations appendright to add an element of type <E> to the end of the
list, head to get the element in the head of the list and tail to get the remaining
elements. These operations are performed on pure data (i.e., data that possibly
contains references but does not access the shared memory) and are executed
sequentially. The class has two other methods, ConsumeAsync and ConsumeSync,
to consume the tasks inside the queue. The former method starts all tasks (L17)
concurrently. Instead, method ConsumeSync executes each task synchronously. It
releases the processor and waits until the task is finished at L24. In the right-
most column, there are four implementations of main methods which are defined
outside the classes. Here we show some execution steps from main3:

St1 ≡ {obj(0, f, 0) tsk(0,main3, 0, l, q=new TaskQueue();...)} new−−→
St2 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, q!AddTasks(l);...)} async−call−−−−−−−→
St3 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, q!ConsumeSync(1);...)

tsk(1,AddTasks, 1, l′′,while(list!= Nil);...)} async−call−−−−−−−→
St4 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, return;) tsk(1,AddTasks, 1, l′′, ...)

tsk(2,ConsumeSync, 1, l′′′,while(pending!= Nil);...)} return−−−−→ activate−−−−−→
St5 ≡ {obj(0, f,⊥) obj(1, f1, 2) tsk(0..) tsk(1..) tsk(2..)}
Observe that the execution of new at St1 creates the object identified by 1. Then,
the executions of the asynchronous calls at St2 and St3 spawn new tasks on ob-

4

ject 1 identified by 1 and 2, respectively. In St4, we perform two steps, first the
execution of task 0 terminates (executes return) and object 0 becomes idle, next
object 1 (which was idle) selects task 2 for execution. Note that as scheduling is
non-deterministic any of both pending tasks (1 or 2) could have been selected.

2.1 Termination and Cost

Traces take the form t ≡ St0 →b0 · · · →bn−1 Stn, where St0 is an initial state
in which only the main method is available and the superscript bi is the instruc-
tion that is executed in the step. A trace is complete if it cannot continue from
Stn(not taking into account spurious cycles of take-release an object’s lock).
A trace is finished if every task in the configuration tsk(t ,m, o, l, s) ∈ T is
finished s = ε(v)). If a trace is complete but not finished, the trace must be
deadlocked. Deadlocks happen when several tasks are awaiting for each other to
terminate and remain blocked. Deadlock is different from non-termination, as
non-terminating traces keep on consuming instructions. As we have seen, since
we have no assumptions on scheduling, from a given state there may be several
possible non-deterministic execution steps that can be taken. We say that a
program is terminating if all possible traces from the initial state are complete.

When measuring the cost, different metrics can be considered. A cost model
is a function M : Ins 7→ R+ which maps instructions built using the grammar
above to positive real numbers and, in this way, it defines the considered metrics.
The cost of an execution step is defined asM(St→b St′) =M(b), i.e., the cost
of the instruction applied in the step. The cost of a trace is the sum of the costs
of all its execution steps. The cost of executing a program is the maximum of the
costs of all possible traces from the initial state. We aim at inferring an upper
bound on the cost of executing a program P for the defined cost model, denoted
UBP , which is larger than or equal to that maximum.

Example 2. A cost model that counts the number of instructions is defined as
Minst(b) = 1 where b is any instruction of the grammar. A cost model that
counts the number of visits to a method m is defined as Mvisits m(b) = 1 if
b = x!m(z̄) and 0 otherwise. Consider the partial trace of Ex. 1. By applying
Minst we get 4 executed instructions (as the application of Activate does not
involve any instruction) and if we count Mvisits ConsumSync we obtain 1.

3 Termination Analysis

This section gives first in Sec. 3.1 the intuition behind our method, then it
presents the termination algorithm in Sec. 3.2, and finally it provides the results
that we need for its application in cost analysis in Sec. 3.3.

3.1 Basic Reasoning

Our starting point is an analysis [2] that infers the termination (and resource
consumption) of concurrent programs by losing all information on the shared-
memory at “processor release points” (i.e., at the points in which the processor
can switch the execution to another task because of an await instruction or a
method return). Alternatively, instead of losing all information, it can also use

5

monitor invariants (provided by the user) to force some assumptions on the
shared-memory. In the latter alternative, the correctness of the analysis depends
on the correctness of the provided invariants (the analysis does not infer nor
prove them correct). Let us show the kind of problems that [2] can and cannot
solve. Consider the first three implementations of main methods:

– main1 creates a TaskQueue q, adds the list of tasks received as input parameter
to it, and executes ConsumeAsync. It is not guaranteed that the tasks are
added to the queue when ConsumeAsync starts to execute because, as the
call at L30 is not synchronized, the processor can be released at L11 and
the call at L31 can start to execute. This is not a problem for termination,
since ConsumeAsync is executed without releasing the processor. Hence, the
method of [2] can prove all methods terminating.

– in main2 the addition of tasks (i.e., the call to AddTasks at L35) is guaranteed
to be terminated when ConsumeSync starts to execute due to the use of await
at L36. However, the difficulty is that ConsumeSync contains a release point.
The method of [2] fails to prove termination because at this release point
pending is lost. The key is to detect that there are no concurrent interleavings
at L24 in this loop by means of an auxiliary MHP analysis.

– main3 has a loop with concurrent interleavings since ConsumeSync is called
without waiting for completion of AddTasks. Thus, some tasks can be added
to the list of pending tasks in the middle of the execution of ConsumeSync,
resulting in a different ordering in which tasks are executed, or even can be
added when ConsumeSync has finished and hence start will not be executed
at all on them. Proving termination requires developing novel techniques.

Our reasoning is at the level of the strongly connected components (SCCs), de-
noted 〈S1, . . . , Sn〉, in which the code to be analyzed is split. For each method
m, we have an SCC named Sm and for each loop (in the methods) starting
at Lx we have an SCC named Sx. The analysis starting from main2 must con-
sider the SCCs: 〈Smain2, SAddTasks, S7, SAddTask, SConsumeSync, S20〉. For simplifying
the presentation, we assume that each recursive SCC has a single cut-point (in
the corresponding CFG). Moreover, the cut-point is assumed to be the entry of
the SCC. In such case, an SCC can be viewed as a simple while loop (i.e., without
nested loops) with several possible paths in its body. Nested loops can be trans-
formed into this form, by viewing the inner loops as separate procedures that are
called from the outer ones. This, however, cannot be done for complex mutual
recursions which are rare in our context. The purpose of this assumption is to
simplify the way we count the number of visits to a given program point in Sec. 4.

In order to use the techniques of [2] as a black-box, in what follows, we assume
that seq termin(S, F) is a basic termination analysis procedure that receives an
SCC S and a set of fields F , and works as follows: (1) given a function fields that
returns the set of fields accessed in the given scope, for any f ∈ fields(S) \ F ,
it adds the instruction f = ∗ at each release point of S; (2) it tries to proves
termination of the instrumented code using an off-the-shelf termination analyzer
for sequential code; and (3) it returns the result. We assume that seq termin

ignores calls to SCCs transitively invoked from the considered scope S, assumes
nothing about their return values, and ignores the instruction await.

6

Algorithm 1 MHP-based Termination Analysis

1: function terminates(S,SSet)
2: if S ∈ SSet then return false

3: if seq termin(S, ∅) then return true

4: F = select fields(S)
5: if (not seq termin(S, F)) then return false

6: RP = release points(S)
7: MP = MHP pairs(RP)
8: I = field updates(MP , F)
9: DepSet = extract sccs(I)

10: for each S′ ∈ DepSet do
11: if (not terminates(S′,SSet ∪ {S}) then return false

12: return true

Observation 1 (finiteness assumption) If S terminates under the assump-
tion that a set of fields F are not modified at the release points of S, then S also
terminates if they are modified a finite number of times.

The intuition behind our observation is as follows. Since the fields are modified
finitely, then we will eventually reach a state from which that state on they are
not modified. From that state, we cannot have non-termination since we know
that S terminates if the fields are not modified. Moreover, one can construct a
lexicographical ranking function [8] that witnesses the termination of S.

Example 3. Consider the following two loops:

S1

52 while (f > 0) {
53 x = g();
54 await x?;
55 f−−; }
56

S2

57 while (m > 0) {
58 x = g();
59 await x?;
60 f=∗;
61 m−−; }

and assume that S1 and S2 are the only running processes. Their execution
might interleave since both loops have a release point. We let f be a shared
variable, m a local variable, and we ignore the behavior of method g. It is easy
to see that (a) S1 terminates under the assumption that f does not change at
the release point (L54), and that RF 1(m, f) = f is a ranking function that
witnesses its termination; and (b) S2 terminates without any assumption and
RF 2(m, f) = m is a ranking function that witnesses its termination. Since S2

terminates, we know that f is modified a finite number of times at the release
point of S1 and thus, according to Observation 1, S1 terminates when running
in parallel with S2. The lexicographical ranking function RF 3(f,m) = 〈m, f〉 is
a witness of the termination of S1.

3.2 Termination Algorithm

Algorithm 1 presents the main components of our termination algorithm, defined
by means of function TERMINATES. The first parameter S is an SCC that we
want to prove terminating, and the second one SSet includes the SCCs whose

7

termination requires the termination of S. The role of the second parameter is
to detect circular dependencies. In order to prove that a program P terminates,
we prove that all its SCCs terminate by calling terminates(S, ∅) on each one
of them. Let us explain the different lines of the algorithm:

1. At Line 2, if S is in the set SSet , then a circular dependency has been
detected, i.e., the termination of S depends on the termination of S itself. In
such case the algorithm returns false (since we cannot handle such cases).

2. At Line 3, it first tries to prove termination of S without any assumption
on the fields, i.e., assuming that their values are lost at release points. If
it succeeds, then it returns true. Otherwise, in the next lines it will try to
prove termination w.r.t. some finiteness assumptions on the fields.

3. At Line 4, it selects a set of fields F and, at Line 5, it tries to prove that
S terminates when assuming that fields from F keep their values at the
release points. If it fails, then it returns false. Otherwise, in the next lines
it will try to prove that these fields are modified finitely in order to apply
Observation 1. The simplest strategy for constructing F (which is the one
implemented in our system) is to include all fields used in S. This can also
be refined to select only those that might affect the termination of S (using
some dependency analysis or heuristics).

4. At this point the algorithm identifies all instructions that might modify a
field from F while S is waiting at a release point. This is done as follows:
at Line 6 it constructs the set RP of all release points in S; at Line 7 it
constructs the set MP of all program points that may run in parallel with
program points in RP (this is provided by an auxiliary MHP analysis [4]);
and at Line 8 it remains with I ⊆ MP that actually update a field in F .

5. At Line 9, it constructs a set DepSet of all SCCs that can reach a program
point in I, i.e., those SCCs that include a program point from I or can reach
one by (transitively) calling a method that includes one. Proving termination
of these SCCs guarantees that each instruction in I is executed finitely, and
thus the fields in F are updated finitely and the finiteness assumption holds.

6. The loop at Line 10 tries to prove that each SCC in DepSet terminates. If it
finds one that might not terminate, it returns false. In the recursive call S
is added to the second parameter in order to detect circular dependencies.

7. If the algorithm reaches Line 12, then S is terminating and returns true.

Essentially our approach translates the concurrent program into a sequential set-
ting using the assumptions. To define our proposal, we have focused exclusively
on the finiteness assumption because of its wide applicability for proving termi-
nation of different forms of loops. Being more general requires a more complex
reasoning than when handling other kinds of simpler assumptions. For instance,
simpler assumptions (like checking that a field always increases or decreases its
value when it is updated) can be easily handled by adding a corresponding test,
after Line 8, that checks the assumption holds on the instructions in I.

Example 4. We can now prove termination of both main2 and main3. For main2,
the challenge is to prove termination of ConsumeSync and namely of the loop
that forms S20. This loop depends on the field pending whose size is decreased

8

at each iteration. However, there is a release point in the loop’s body (L24).
Thus, we need to guarantee the finiteness assumption on pending at that point.
The MHP analysis infers that the only other instruction that updates pending

at L4 cannot happen in parallel with the release point. This can be inferred
thanks to the use of await at L11 and L36. Therefore, the set I at Line 8
of Alg. 1 is empty and terminates returns true. In the analysis of main3,
when proving termination of SConsumeSync we have that L4 can happen in par-
allel with L24 so we have to prove the finiteness assumption recursively. In
particular, DepSet = {SAddTask, S7, SAddTasks, Smain3}. Proving termination of S7

is done directly by seq termin as termination of the loop depends only on the
non-shared data list. Also, SAddTask, SAddTasks and Smain3 are proved terminating
by seq termin as they do not contain loops. Thus, pending can only increase up
to a certain limit and the termination of SConsumeSync and all other scopes can be
guaranteed.

We can achieve further precision by replacing extract sccs by a procedure
extract mhp sccs which returns all SCCs that can reach a program point in I
and that can happen in parallel with a release point in RP . A sufficient condition
for an SCC to happen in parallel with a point in RP is that its entry point (entry
point of while rule) might happen in parallel with a point in RP . The correctness
of this enhancement is proved in [5]. The point is that with extract sccs we
could find loops that contain I but cannot iterate at RP . These do not have to
be taken into account because during the execution of S they will be stopped in
a single iteration and therefore cannot cause unboundedness in S. This happens
in the next example.

Example 5. Using extract mhp sccs we can prove that ConsumeSync always ter-
minates in the context of main4. This is true because only one instance of AddTasks
is running in parallel with ConsumeSync (due to the awaits at L49 and L50), and
AddTasks is terminating. Using extract sccs, we would detect that L4 is reached
from S46 and thus, it cannot be proved bounded (due to the while (true)). How-
ever, the MHP analysis tells us that the await in L24 of ConsumeSync can run in
parallel with AddTasks but not with S46. This reduces the number of SCC we
have to consider (removing S46) and thus we can prove ConsumeSync terminating.

Proving termination of the SCCs given by extract mhp sccs guarantees that
each instruction in I is executed finitely during the release points RP , and thus
the fields in F are updated finitely and the finiteness assumption holds. We
assume that extract mhp sccs is used in what follows. The following theorem
ensures the soundness of our approach (the proof is in [5]).

Theorem 1 (soundness). Given a program P and its set of recursive SCCs
SSet. If, ∀S ∈ SSet, terminates(S, ∅) returns true, then P is terminating.

3.3 Inferring Field-Boundedness

The termination procedure in Sec. 3 gives us an automatic technique to infer
field-boundedness, i.e., knowing that field f has upper and lower bounds on the
values that it can take. The upper (resp. lower) bound of a field f is denoted as
f+ (resp. f−), and we use f b to refer to the bounds [f−, f+] for f .

Corollary 1. Consider a field f . If all recursive SCCs that reach a point in
which f is updated are terminating, then f is bounded.

9

4 Cost Analysis

As for termination, the resource consumption (or cost) of executing a fragment
of code can be affected by concurrent interleavings in the loops. Previous work
[2] is not able to estimate the cost in these cases. This section proposes new
techniques to bound the number of iterations of such loops and thus the cost.
This requires to have first proved field-boundedness (Sec. 3.3).

4.1 Cost Analysis of Sequential Programs

Let us first provide an intuitive view of the process of inferring the cost of a
program divided in SCCs S1, . . . , Sn. As an example consider this code:

62 main (int n, int m)
63 { int i=0; while (i<n) { i++; s2; int j=i; while (j<m) {s1; j++; }}}

where s1 and s2 represent a sequence of instructions that do not call any other
SCC and do not modify the counters. This leads to one SCC for the inner loop
S1 and one SCC for the outer loop S2. We first consider the SCC which does
not call any other scope, S1. Given a fragment of sequential code s, we can
apply the cost model M to all instructions in s (see Sec. 2.1) and sum the
result, denoted as M(s). Now, an upper bound on the cost of executing the
SCC S1 is UBS1 = #iter∗M(body(S1)) where #iter is an upper bound on the
number of loop iterations. For sequential programs [3], a ranking function for the
loop soundly approximates #iter and can be automatically inferred. In this case,
UBS1

= nat(m−j+1)∗M(body(S1)), where function nat is defined as nat(n) = n
if n ≥ 0 and 0 otherwise (it is used to avoid having negative costs [3]).

We consider now the general case in which we need to compose the cost
of different SCCs. The point is that in order to plug the cost that we have
already computed for S1 in its calling SCC S2, we need to maximize it (i.e.,
compute its worst case cost). Intuitively, the worst case cost is when j is 0 and
hence UBS1

becomes nat(m+1)∗M(body(S1)). Intuitively, maximization works
by first inferring an invariant that holds between the arguments at the initial
call (main method) and at each iteration during the execution. For instance, we
infer the invariant 0 ≤ j ≤ m0 which holds in S1 where m0 is the initial value
for m. Maximizing UBS1

using the invariant results in nat(m+1)∗M(body(S1)).
In what follows, we refer as max init(e) to the maximization of an expression
e using such procedure (see [3]) which we simply adopt in this paper. Thus,
the upper bound for S2 is UBS2

= #iter∗(M(body(S2)) +max init(UBS1
)) ≡

nat(n)∗(M(body(S2))+nat(m+1)∗M(body(S1))).

Note that if the considered SCC is not recursive, then we simply apply M
to the sequential instructions and compose the SCCs as above. SCCs with mul-
tiple recursive calls (that lead to an exponential complexity) and loops with
logarithmic complexity are treated analogously, see [3].

4.2 Basic Reasoning

In order to explain the intuition of our approach, let us first consider the se-
quential loop in S1 whose termination behavior has been widely studied by the
termination community (we use ∗ to ignore irrelevant code):

10

S1

64 while (f>0){
65 f−−;
66 if (∗ & m>0)
67 { m−−;
68 f=∗;
69 }}

S2

70 while (f>0){
71 f−−;
72 await ∗?
73 }

S3

74 while (m>0){
75 m−−;
76 f=∗;
77 }

Our method is inspired by the observation that, provided the if statement is
executed a finite number of times, an upper bound on the number of iterations
of S1 can be computed as: the maximum number of iterations of the loop ig-
noring the if statement, but assuming that such if statement updates the field
f with its maximum value, multiplied by the maximum number of times that
the if statement can be executed. Intuitively, we assume that every time the if

statement is executed the field can be put to its maximum value and thus the
loop can be executed the maximum number of times in the next iteration. Hence,
max init(f)∗m is an upper bound for the loop, and max init(f) = f+ results
in the maximum value for field f (see Sec. 3.3).

We propose to apply a similar reasoning to bound the number of iterations of
loops with concurrent interleavings. Assume that S2 and S3 are the only running
processes and that the execution of the instruction at L76 that updates the field
may interleave with the await in S2. We have a similar behavior to the leftmost
loop, though they are obviously not equivalent. Instead of having an interleaving
if, we have an interleaving process that updates the field. Our proposal is to first
bound the number of times that instruction 76 can be executed. A sound and
precise bound is m. Our main observation is that, the upper bound for S2 is
the maximum number of iterations ignoring the await, but assuming that at this
point f can take its maximum value f+, multiplied by the maximum number
of visits to 76. Thus, f+∗m is a sound upper bound. If we have a loop like
while (f<0) {f++; await ∗?}, whose ranking function is −f , then the worst case
cost occurs when f is set to its minimum value f−, i.e., max init(−f) = f−.
Therefore, maximizing a ranking function that involves a field f is done by relying
on its field bound f b, and it may result, depending on the case, in f+ or f−.

Observation 2 (loop bounds) An upper bound on the number of iterations of
a loop l with interleaving instructions that update fields F is niter∗(nvisits+1):
1. where nvisits is the number of visits to the points in which fields in F are

updated and that might interleave their execution with the loop release points;
2. and niter is the number of iterations of the loop ignoring the interleavings

—maximized w.r.t. the bounds for the fields in F ;

Our analysis relies on the assumption that the number of visits (item 1) is
bounded, which has been proved in Corollary 1. Given a bound on the number
of loop iterations, the cost is obtained as in the sequential case, i.e., by applying
the cost model to the instructions in the loop body and multiplying it by our
loop bound. Thus, we only focus now on bounding the number of loop iterations.

4.3 Bounding the Number of Iterations for Loops with Interleavings

Alg. 2 presents two mutually recursive functions which allow us to infer the two
items of the observation above. For each SCC S, we assume that after executing

11

Algorithm 2 Bounding the Number of Iterations for Loops with Interleavings

1: function niter(S,SSet)
2: if S ∈ SSet then return false

3: if S is not recursive then return 1
4: i = 1;
5: for each p ∈ SI do
6: i = i+nvisits(p, SRP ,SSet ∪ S)

7: return max init(SRF)∗i

8: function nvisits(p,RP,SSet)
9: Vp= 0;

10: P= mhp reachable paths(p,RP);
11: for each 〈S1, . . . , Sn〉 in P do
12: Vaux=1;
13: for i = 1 to n do
14: Vaux = Vaux∗niter(Si,SSet)

15: Vp = Vp+Vaux

16: return Vp

Alg. 1 we have the following information: the set RP computed at Line 6, denoted
as SRP ; the set I computed at Line 8, denoted as SI ; and a (linear) ranking
function computed by the seq termin at Lines 3 and 5, denoted as SRF . If S
was proved terminating at Line 3 (i.e., losing the fields), we assume that SI and
SRP are empty. Function niter receives an SCC S whose number of iterations
is to be bounded and a set of SCCs SSet which, as before, is initially empty
and allows us to detect cyclic dependencies (Line 2). As the number of SCCs is
finite, termination is guaranteed. If the SCC S is not recursive, it simply returns
one (Line 3). Otherwise, the number of iterations in the SCC can be bound
by the maximization of the local ranking function, multiplied by the maximum
number of visits to all the points that update the fields (Line 7) and that may
happen in parallel with SRP (to this end we pass SRP as parameter to nvisits).
As mentioned in Sec. 4.1, function max init maximizes the received expression
w.r.t. the input parameters of the entry method (often main), and the field bounds
f b are used for maximizing the fields.

Function nvisits receives a program point p, a set of release points RP , and
infers an upper bound on the number of visits to p while the program is waiting
at a point of RP . We first compute the multiset of reachable paths to p. Each
path is of the form 〈S1, . . . , Sn〉, i.e., it is a sequence of SCCs which reach the
program point p. For each of the paths (Line 11), we traverse all the SCCs in
the path (Line 13) and multiply the number of iterations of the corresponding
SCC by those of the SCCs already traversed if the SCC might happen in parallel
with the release points RP . We assume that mhp reachable paths gives us only
those SCC that may happen in parallel with the release points RP passed as
parameters. The number of visits from each of the paths is accumulated to the
paths that have been already accounted (Line 15).

Example 6. Let us consider method ConsumeSync invoked from main3. We want
to compute niter(S20, ∅). Alg. 1 gives us that the local ranking function is
RF = length(pending) and that the program point 4 may happen in parallel with
the release point 24 and update the field pending. Hence, we need to compute
nvisits(4, {24}, {S20}). We first compute the reachable paths to 4, which gives
us the only element 〈SAddTask, S7, SAddTasks〉. Note that Smain3 is not included in the
path because its entry point cannot happen in parallel with 24. We start by com-

12

puting niter(SAddTask, {S20}), since SAddTask is not recursive, we simply return 1
which is multiplied at Line 14 of Alg. 2 by the initial value for Vaux (which is 1).
The next iteration of the for loop at Line 13 invokes niter(S7, {S20, SAddTask}). In
this case, by Alg. 1, we have the local ranking function length(list) and that the
set of points at which list is updated is empty. The maximization of length(list)
returns it in terms of the initial parameters of main3, i.e., length(l). This value
is multiplied at Line 14 by 1 (previous value of Vaux). Finally, we compute
niter(SAddTasks, {S7, S20, SAddTask}) that, as it is not recursive, simply returns 1.
The execution of the for loop at Line 13 finishes and also the execution of the
for each loop at Line 11 and we have that nvisits(4, {S20})= length(l). Thus,
we can now finish the computation of niter(S20, ∅) returning length(pending+)
∗length(l). The upper bound for ConsumeSync when invoked from main4 can be
obtained in a similar way.

The following theorem ensures the soundness of our approach. The proof can be
found in [5].

Theorem 2 (soundness). Given a recursive SCC S, the execution of niter(S, ∅)
terminates and returns an upper bound on the number of iterations in S.

5 Implementation and Preliminary Evaluation

We have implemented the described cost and termination analyses, although cur-
rently only the termination component is integrated within COSTABS. Our anal-
ysis can be tried online at http://costa.ls.fi.upm.es/costabs by enabling
the option “rely-guarantee termination analysis”. The cost analysis component
will be available for its online use from the same site soon. Given a program and
a selection of an entry method from which the analysis will start, the output of
the analysis is a description of the SCCs (reachable from the entry) which are
terminating. This section aims at performing a preliminary experimental eval-
uation of the accuracy and performance of our implementation, by comparing
our results with those obtained by the previous version of the analyzer which
loses all information on the shared-memory. For this purpose, we have analyzed
a set of small and medium-sized programs, as well as one industrial case study,
the Replication System, developed by Fredhopper R©. The analyzed code for all
examples can be found and tried in the above site.

Regarding the small and medium-sized examples, their number of lines of
code ranges from 20 to 100 and the number of SCCs from 5 to 20. Both versions
of the analyzer need less than 1 sec. to analyze each program. All terminating
loops with concurrent interleavings are reported by our rely-guarantee method,
improving the results of the previous analyzer. Our largest experiment is per-
formed on the Replication System, a case study that provides search and mer-
chandising IT services to e-Commerce companies, developed within the HATS
project (http://www.hats-project.eu/). It has 2100 lines of code and 426
SCCs that need to be analyzed. The previous analyzer needs 2813 sec. and
proves 420 SCCs terminating, whereas the rely-guarantee method proves 423
SCCs terminating in only 41 sec. Times are obtained as the arithmetic mean of

13

http://costa.ls.fi.upm.es/costabs
http://www.hats-project.eu/

five runs on a Ubuntu 12.04 32-bit with Intel Core2 Quad CPU Q9550 2.83GHz
and 3.4GiB of memory. The efficiency of our rely-guarantee method can be ex-
plained because it works modularly at the level the SCCs, instead of analyzing
the program globally as the previous analyzer. An inspection of the three addi-
tional SCCs that have been proved terminating confirms that they indeed corre-
spond to loops with concurrent interleavings. The reason why a simple analysis
that loses the shared-memory could achieve already good results is that the (ex-
perienced) developers of the case study were aware of the risks of having loops
with concurrent interleavings and they were very much avoided.

6 Conclusions and Related Work

Concurrency adds further difficulty when attempting to prove program termina-
tion and inferring resource consumption. The problem is that the analysis must
consider all possible interactions between concurrently executing objects. This is
challenging because processes interact in subtle ways through fields and future
variables. We have proposed novel techniques to prove termination and inferring
upper bounds on the number of iterations of loops with such concurrent inter-
leavings. Our analysis benefits from an existing MHP analysis to achieve further
precision [4].

Existing methods for proving termination of thread-based programs also ap-
ply a rely-guarantee or assume-guarantee style of reasoning [9,17,10]. These
methods consider every thread in isolation under assumptions on its environ-
ment, thus avoiding to reason about thread interactions directly. Applying this
technique to our concurrent setting could be done by assuming a property of the
second object while proving the property of the first object, and then assum-
ing the recently proved property of the first object when proving the assumed
property of the second object. Although we make assumptions and then prove
them, our assumptions are of a different kind, i.e., namely they are assumptions
on finiteness of data, no matter on which thread (or object) they are executed.
This point makes our work fundamentally different from [9]. We can still apply
our method in the presence of dynamically created objects and the number of
concurrency units does not need to be known a priori as in [9].

As regards the bounds on loop iterations, to the best of our knowledge, there
are no other works that have attempted to infer those bounds for loops with con-
current interleavings before. There are several techniques [13,6,20] for inferring
complex loop bounds for (sequential) transition systems. Our basic termination
component could benefit from these techniques. Moreover, in principle, a con-
current program could be translated to a transition system that simulates all
possible interleavings, which then would allow using these techniques for infer-
ring bounds on loops with concurrent interleaving. However, we expect such
translation to be far more complicated that our techniques.

Finally, as in other kinds of analyses, by making the analysis object-sensitive
(i.e., by distinguishing between different objects of the same class) we can achieve
further precision. For instance, if we add to main3 the following two instructions
TaskQueue q1=new TaskQueue(); q1!ConsumeSync();. The MHP analysis infers

14

that ConsumeSync can run in parallel with itself. When trying to solve the equa-
tions a cyclic dependency is created and both terminates and niter algorithms
terminate returning false.

References
1. G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, MA, 1986.
2. E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla. Cost Anal-

ysis of Concurrent OO programs. In Proc. of APLAS’11, volume 7078 of LNCS,
pages 238–254. Springer, December 2011.

3. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.

4. E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of May-Happen-in-Parallel
in Concurrent Objects. In FORTE’12, LNCS 7273, pages 35–51. Springer, 2012.

5. E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. Termination
and Cost Analysis of Loops with Concurrent Interleavings (Extended Version).
Technical Report SIC 06/13, Univ. Complutense de Madrid, 2013.

6. C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings,
program termination, and complexity bounds of flowchart programs. In Proc. of
SAS’10, volume 6337 of LNCS. Springer, 2010.

7. J. Armstrong, R. Virding, C. Wistrom, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall, 1996.

8. A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability.
volume 3576 of LNCS, pages 491–504. Springer, 2005.

9. B. Cook, A. Podelski, and A. Rybalchenko. Proving Thread Termination. In Proc.
of PLDI’07, pages 320–330. ACM, 2007.

10. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination.
Commun. ACM, 54(5):88–98, 2011.

11. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316–330. Springer, 2007.

12. C. Flanagan, S. N. Freund, and S. Qadeer. Thread-Modular Verification for Shared-
Memory Programs. In ESOP’02, LNCS 2305, pages 262–277. Springer, 2002.

13. Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Ben-
jamin G. Zorn and Alexander Aiken, editors, PLDI, pages 292–304. ACM, 2010.

14. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

15. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised
Papers), volume 6957 of LNCS, pages 142–164. Springer, 2012.

16. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Meth., 14:1–41, January 2005.

17. C. Popeea and A. Rybalchenko. Compositional Termination Proofs for Multi-
Threaded Programs. In Proc. of TACAS’12, LNCS 7214. Springer, 2012.

18. J. Schäfer and A. Poetzsch. Jcobox: Generalizing Active Objects to Concurrent
Components. In Proc. of ECOOP’10, LNCS 6183, pages 275–299. Springer, 2010.

19. S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In Proc. of
ECOOP’08, LNCS 5142, pages 104–128. Springer, 2008.

20. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In SAS, LNCS 6887, pages 280–297.
Springer, 2011.

15

	Termination and Cost Analysis of Loops with Concurrent Interleavings

