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Abstract
The accurate prediction of program’s memory requirements is a
critical component in software development. Existing heap space
analyses either do not take deallocation into account or adopt spe-
cific models of garbage collectors which do not necessarily corre-
spond to the actual memory usage. We present a novel approach to
inferring upper bounds on memory requirements of Java-like pro-
grams which isparametricon the notion ofobject lifetime, i.e., on
when objects become collectible. If objects lifetimes are inferred
by a reachability analysis, then our analysis infers accurate up-
per bounds on the memory consumption for a reachability-based
garbage collector. Interestingly, if objects lifetimes are inferred by
a heap livenessanalysis, then we approximate the program mini-
mal memory requirement, i.e., the peak memory usage when using
an optimal garbage collector which frees objects as soon as they
become dead. The key idea is to integrate information on objects
lifetimes into the process of generating therecurrence equations
which capture the memory usage at the different program states.
If the heap size limit is set to the memory requirement inferred by
our analysis, it is ensured that execution will not exceed the mem-
ory limit with the only assumption that garbage collection works
when the limit is reached. Experiments on Java bytecode programs
provide evidence of the feasibility and accuracy of our analysis.

Categories and Subject Descriptors F3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; F2.0 [Analysis of Al-
gorithms and Problem Complexity]: General; D3.0 [Programming
Languages]: General

General Terms Languages, Theory, Verification, Reliability

Keywords Live Heap Space Analysis, Peak Memory Consump-
tion, Low-level Languages, Java Bytecode, Garbage Collection

1. Introduction
Accurately estimating thememory requirementof programs is cru-
cial in contexts in which memory remains a scarce commodity and
also when a system failure due to insufficient memory might have
severe consequences. Due in part to the difficulty of predicting the
space usage of programs that use dynamic memory allocation, real-
time and embedded software typically uses only statically allocated
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data, which is known to have disadvantages [22]. Existingheap
space analysesaim at predicting the memory usage of programs
and can be classified into the following categories:

(1) do not take garbage collection (GC) into account (e.g., [2, 7]),

(2) assume specific models of GC (e.g., scope-based GC [3, 6, 22]),

(3) are restricted to simple complexity bounds (e.g., linear [11]),

(4) are not fully automatic (e.g., [16]).

EXAMPLE 1.1. Let us motivate our work on a contrived example
which is depicted in Fig. 1 (to the left). Because it has simple (con-
stant) memory requirements, it is useful to describe intuitively the
differences among the different heap space analyses and, later, to
explain the main technical parts of the paper. In Fig. 1 (to the right)
we also provide several approximations of the memory requirement
of executing methodm1 by using different approaches, where the
notations(X) means the memory required for an instance of class
X.

A first safe approximation is to infer the total memory allocation
T [2, 7] which accumulates the sizes ofall objects created along
the execution. By assuming a specific behavior of GC, recent ap-
proaches try to approximate the peak amount ofreachabledata on
the heap, i.e., data to which some variable in the program environ-
ment points. Obviously, this approximation is tight and sound only
when executing the program using the assumed GC. Inscope-based
GC, deallocation of unreachable objects takes place on method’s
return and only those objects created during the method’s execu-
tion can be freed. By assuming this GC, [3, 6] take advantage of the
knowledge that at4© (i.e., upon exit fromm2) the object to which
“c” refers can be freed, i.e., it does notescapefrom the method.
Hence, the upper boundS is obtained. The important point is that
s(A) ands(B) are always accumulated, plus the largest of the con-
sumption ofm2 (i.e., s(C) + s(E)) and the memoryescapedfrom
m2 (i.e.,s(E)) plus the continuation (i.e.,s(D)). The scope assump-
tion is motivated by the notion of stack reference liveness [21] in
Java-like languages, according to which some objects which the
local variables (and operand stack elements) point to, become un-
reachable upon exit from methods, i.e., when the corresponding call
stack frames are removed.

A recognized difficulty of inferring the memory requirement of
a program is that the behavior of GC is unpredictable, i.e., an object
which becomes eligible for GC will usually be cleaned up eventu-
ally, but there is no guarantee when (or even if) that will happen.
Therefore, making any assumption during analysis (e.g., scope-
based) on when objects are garbage collected might not correspond
to the actual memory usage and, even worse, might not be sound
if GC works less often. Different garbage collectors use different
techniques for deciding on: (1)whenGC is performed; and (2)what
can be collected, i.e., thelifetimeof objects. Instead of adopting a



void m1() {
A a=new A(); 1©
a.f=new B(); 2©
a=m2(a); 4©
D d=new D();
}

A m2(A a) {
C c=new C();
int i=a.f.m3()+c.m3();
a.f = null; 3©
return new E(i);
}

int m3() {
return this.data;
}

classE is supposed
to extendA

T = s(A)+s(B)+s(C)+s(D)+s(E)
S = s(A)+s(B)+max(s(C)+s(E), s(E)+s(D))
R = max(s(A)+s(B)+s(C), s(A)+s(C)+s(E), s(E)+s(D))
L = max(s(A)+s(B)+s(C), s(E), s(D))

Figure 1. A Java Program and its memory requirements:T=total-allocation;S=scope-based;R=reachability-based;L=liveness-based.

particular garbage collector, we present a novel approach to accu-
rately estimating the memory requirements of object-oriented im-
perative programs which is parametric w.r.t. (2), i.e., when objects
are eligible for GC, and sound for the following scenarios of (1):

(i) GC collects objects as soon as they become eligible for collec-
tion or, at most, before the next heap allocation instruction.

(ii) The heap size limit has been fixed to the obtained upper bound
and GC is activated when new memory is to be allocated and
the limit is reached.

In any of the above scenarios, it is guaranteed that execution will
not exceed the upper bounds that we infer. While scenario (i) is
of theoretical interest, (ii) is practical and realistic, since the least
that one can expect from GC (i.e., the less restrictive assumption) is
that it frees memory when no more memory is available. Similarly
to [3, 6, 22], the basic techniques we use are based on the generation
of recurrence relationswhich are then solved into closed-form
upper bounds (i.e., expressions without recurrences). The main
challenge is to integrate into them objects lifetime information
where heap data might be garbage collected at any program state.
This is non-trivial since we need to generate recurrence relations
which capture the memory requirements at aprogram pointlevel,
rather than at a method level as all previous approaches do. As
our main contribution, we propose a novel combination of the
information gathered by a previous analysis onobjects lifetime
together with the generation of recurrence relations and the use
of the technique ofpartial evaluationwhich, as our experimental
results on Java bytecode programs show, allows us to accurately
infer the memory requirements at the different program states.

We develop two interesting instances of our method. In the first
instance, objects lifetimes are inferred by areachability analysis
and without the restriction of being scope-based. Then, our method
is able to obtain the upper boundR in Fig 1. This is due to the fact
that the object to which “a.f” points becomes unreachable at pro-
gram point 3©, the object to which “c” points becomes unreachable
upon exit fromm2, and the object created immediately before1©
becomes unreachable at4©. We can observe that this information
is reflected inR by taking the maximum between: the consumption
up to the first allocation instruction inm2; the consumption up to
the end ofm2 taking into account that the object to which “a.f”
points becomes unreachable, then the consumption until the end of
m1 taking into account that both the object pointed by “a.f” and
the object created immediately before1© become unreachable. As
another instance, we consider a garbage collector which reclaims
objects when they become dead (i.e, will not be used in the future).
Then, we obtain the upper boundL by taking advantage of the fact
that the object created immediately before1© and those to which
“a.f” and “c” point are dead at program point3©, and that the ob-
ject created at the end ofm2 is dead at program point4©. This in-
formation is reflected in the elements of themax similarly to what
we have seen forR. Note that, in theory,L is indeed the minimal
memory requirement for executing the method. This paper makes
the following important contributions:

(1) Our work is the first one that can be used to model accurately
and safely the actual memory usage in Java-like languages
under only the assumption that GC will work before exceeding
the memory limit.

(2) Also, if we base our analysis on the same liveness information,
our approach is the first one to obtain upper bounds on the
memory requirement for:

(2.1) GC schemes (for Java-like languages) that take advantage
of liveness information inferred at compile time [21].

(2.2) Languages with region-based memory management in
which programs are instrumented with explicit region
(de)allocation annotations by relying on a liveness analy-
sis [9].

(3) Provide information for understanding/debugging the memory
usage of programs, which can be a critical resource during
software development.

2. Memory Requirements in Simple Imperative
Bytecode

To formalize our analysis, we consider a simplerule-basedimper-
ative language (in the style of any of [2, 18, 23]). It has been shown
that Java bytecode (and hence Java) can be compiled into this inter-
mediate language [1]. Moreover, the translation preserves theheap
memory requirement of the original program. Arule-based pro-
gramconsists of a set ofproceduresand a set of classes. A proce-
durep with k input arguments̄x = x1, . . . , xk andm output ar-
guments̄y = y1, . . . , ym is defined by one or moreguarded rules.
Rules adhere to this grammar:
rule ::= p(〈x̄〉, 〈ȳ〉) ← g, b1, . . . , bn

g ::= true | exp1 op exp2 | type(x,C)
b ::= x := exp | x := new Ci |x := y.f | x.f := y | q(〈x̄〉, 〈ȳ〉)

exp ::= null | aexp
aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp
op ::= > | < | ≤ | ≥ | = | 6=

wherep(〈x̄〉, 〈ȳ〉) is theheadof the rule;g its guard, which spec-
ifies conditions for the rule to be applicable;b1, . . . , bn the body
of the rule;n an integer;x andy variables;f a field name, and
q(〈x̄〉, 〈ȳ〉) a procedure call. The language supports class defini-
tion and includes instructions for object creation, field manipu-
lation, and type comparison through the instructiontype(x,C),
which succeeds if the runtime class ofx is exactlyC. A classC
is a finite set of typed field names, where the type can be integer or
a class name. The superscripti on a classC is a unique identifier
which associates objects with the program points where they have
been created. The key features of this language which facilitate the
formalization of the analysis are: (1)recursionis the only iterative
mechanism, (2)guardsare the only form of conditional, (3) there
is no operand stack and (4) objects can be regarded as records, and
the behavior induced by dynamic dispatch in the original bytecode
program is compiled intodispatchblocks guarded by atype check.
The translation from (Java) bytecode to the rule-based form is per-



formed in two steps [1]. First, a control flow graph is built. Second,
a procedureis defined for each basic block in the graph and the
operand stack isflattenedby considering its elements as additional
local variables. For simplicity, our language does not include ad-
vanced features of Java such as exceptions, interfaces, static fields,
access control and primitive types besides integers and references,
but our implementation deals with full (sequential) Java bytecode.

EXAMPLE 2.1. Fig. 2 shows the Java source (to the left) of another
example that we will use in the paper (besides the one in Fig. 1) be-
cause it has interesting memory requirements, namely exponential
and polynomial bounds. The source code is shown only for clar-
ity as the analyzer generates the rule-based representation (to the
right) from the corresponding bytecode only. The first two rules cor-
respond to methodm. Each of them is guarded by a corresponding
condition, resp.n > 0 andn ≤ 0. Variable names of the formsi
indicate that they originate from stack positions. For instance, the
“ new Tree1” instruction creates an object of typeTree (the super-
script1 is the unique identifier for this allocation site) and assigns
the corresponding reference to variables0 (which corresponds to
pushing the reference on the stack in the original bytecode). Next,
methodsg and f are invoked. Then, the local variablen is decre-
mented by one and the result is assigned tos2 and a recursive call
is done. A similar recursive invocation follows. In Java bytecode,
constructor methods are namedinit. In both rules, the return value
is r which in the first takes the object reference and in the second
takesnull. In the rule-based representation forf, the important ob-
servation is that loops are extracted in separate procedures which
are treated by the analysis as methods, namely,f1 andf2 are inter-
mediate procedures which correspond, resp., to thewhile and for
loops inf. We refer to each procedure as ascopewhich can be a
method definition or an intermediate block.

2.1 Semantics

The execution of bytecode in rule-based form is exactly like stan-
dard bytecode; a thorough explanation is outside the scope of
this paper (see [20]). Theoperational semanticsfor rule-based
bytecode is shown in Fig. 3. Anactivation recordis of the form
〈p, bc, tv〉, wherep is a procedure name,bc is a sequence of in-
structions andtv a variable mapping. Executions proceed between
configurationsof the formA;h, whereA is a stack of activation
records andh is theheap, which is a partial map from an infinite set
of memory locationsto objects. We useh(r) to denote the object
referred to by the memory locationr in h andh[r 7→ o] to indicate
the result of updating the heaph by makingh(r) = o. An objecto
is a pair consisting of the object class tag and a mapping from field
names to values which is consistent with the type of the fields.

Intuitively, rule (1) accounts for all instructions in the byte-
code semantics which perform arithmetic and assignment opera-
tions. The evaluationeval(exp, tv) returns the evaluation of the
arithmetic or Boolean expressionexp for the values of the corre-
sponding variables fromtv in the standard way, and for reference
variables, it returns the reference. Rules(2), (3) and(4) deal with
objects. We assume thatnewobject(Ci) creates a new object of
classC and initializes its fields to either0 or null, depending on
their types. Rule(5) (resp.,(6)) corresponds to calling (resp., re-
turning from) a procedure. The notationp[ȳ, ȳ′] records the associ-
ation between the formal and actual return variables. It is assumed
thatnewenv creates a new mapping of local variables for the corre-
sponding method, where each variable is initialized asnewobject
does.

A complete execution starts from aninitial configurationof the
form 〈⊥, p(〈x̄〉, 〈ȳ〉), tv〉;h and ends in afinal configurationof the
form 〈⊥, ǫ, tv ′〉;h′ wheretv andh are initialized to suitable initial
values,tv ′ andh′ include the final values, and⊥ is a special symbol

indicating an initial state. Complete executions can be regarded as
tracesS0;S1; · · ·;Sn, denotedS0;

∗Sn, whereSn is a final
configuration. Infinite traces correspond to non-terminating execu-
tions. Traces that correspond to complete or infinite executions are
referred to as complete traces.

2.2 The Notion of Memory Requirement

We uses(C) to denote the amount of memory required to hold an
instance object of classC, s(o) denotes the amount of memory
occupied by an objecto, ands(h) denotes the amount of memory
occupied by all objects in the heaph, namelyΣr∈dom(h)s(h(r)).
Since in the semantics of Fig. 3, there is no deallocation, given a
finite complete tracet ≡ S0;

∗Sn, its total memoryallocation is
defined astotal(t) = s(hn) − s(h0). If the derivation is infinite,
thentotal(t) = max({s(hi) | Si = Ai ; hi ∈ t})− s(h0).

Languages with automatic memory management aim at auto-
matically reclaiming memory (freeing it) when its content can no
longer affect future computations. Therefore, in the presence of any
GC, the size of the heap might also decrease. Hence, the mem-
ory requirement of an execution is defined as the maximum size
of all intermediate heaps. More formally, given a complete tracet,
and assuming that the initial heaph0 contains initial data that will
not be deallocated during the execution, thememory requirement
(or peak memory usage) oft in the presence of GC is defined as
peak(t) = max({s(hi) | Si = Ai ; hi ∈ t})− s(h0). This is the
notion that our analysis aims at approximating.

3. Parametric Inference of Memory
Requirements

In practice, when executing a program, there is a maximum heap
size limit, and when it is exceeded the program terminates in an
out of heap memoryerror state. Building over previous work on
heap space analysis [2, 3], we present a novel approach to inferring
accurate memory requirements which can be used in combination
with reachability-based or liveness-based memory managers. From
a practical point of view, our analysis results are sound under only
the assumption that GC will reclaim memory if we are about to ex-
ceed the heap size limit and new memory has to be allocated. This
is to say that, when executing the program by fixing the inferred
memory requirement as heap size limit, it is ensured that the pro-
gram will not run into anout of heap memorystate.1 The analysis
consists of four steps which will be described in the following four
sections:

1. Generation of upper bounds on the total memory consump-
tion ([2, 4]).

2. Inference of information on lifetime of objects.

3. Generation of memory requirement recurrence relations.

4. A partial-evaluation based transformation of the recurrence
equations.

3.1 Total Memory Allocation Upper Bounds

Any heap space analysis aims at approximating the memory usage
of the program as a function of the inputdata sizes. As customary,
the sizeof data is determined by its variable type [1]: the size of
an integer variable is its value; the size of an array is its length;
and the size of a reference variable is the length of the longest path
that can be traversed through the corresponding object (e.g., length
of a list, depth of a tree, etc.). We use the original variable names
(possible primed) to refer to the corresponding size variables; but
we write the size initalic, e.g., if variablel in f1 is a reference to a

1 In Java, the option “-Xmxn” can be used to specify the memory limit.



class Test{
static Tree m(int n) {

if ( n>0 ) return new Tree1(f(n,g(n)), m(n-1),m(n-1));
else return null;
}

static List g(int n){
if ( n<= 0 ) return null
else return new List2(n,g(n-1));
}

static int f(int n, List l) {
int r=0;

while (l != null) {
r += (new Long3(l.data)).intValue();
l = l.next;
} // List2 is not live

for (int i=n; i>0; i--)
r *= (new Integer4(i)).intValue();

return r;
}
}

m(〈n〉, 〈r〉) ←
n > 0, a©
s0 := new Tree1, b©
g(〈n〉, 〈s1〉), c©
f(〈n, s1〉, 〈s1〉),
s2 := n− 1, d©
m(〈s2〉, 〈s2〉),
s3 := n− 1, e©
m(〈s3〉, 〈s3〉),
initTree(〈s0, s1, s2, s3〉, 〈〉),
r = s0.

m(〈n〉, 〈r〉) ←
n ≤ 0,
r := null.

f(〈n, l〉, 〈r〉) ←
r := 0, f©
f1(〈l, r〉, 〈l, r〉),
i := n, g©
f2(〈i, r〉, 〈i, r〉).

f1(〈l, r〉, 〈l, r〉) ←
l 6= null, h©
s0 := new Long3,
s1 := l.data,
initLong(〈s0, s1〉, 〈〉),
intValueLong(〈s0〉, 〈s0〉),
r := r + s0,
l := l.next, i©
f1(〈l, r〉, 〈l, r〉).

f1(〈l, r〉, 〈l, r〉) ←
l = null.

f2(〈i, r〉, 〈i, r〉) ←
i > 0, j©
s0 := new Integer4,
initInt(〈s0, i〉, 〈〉),
intValueInt(〈s0〉, 〈s0〉),
r := r ∗ s0,
i := i− 1, k©
f2(〈i, r〉, 〈i, r〉).

f2(〈i, r〉, 〈i, r〉) ←
i ≤ 0.

Figure 2. Java code of running example and rule-based representation ofm andf

(1)
b ≡ x := exp, v = eval(exp, tv)

〈p, b·bc, tv〉·A;h ; 〈p, bc, tv [x 7→ v]〉·A;h

(2)
b ≡ x := new Ci, o=newobject(Ci), r 6∈dom(h)
〈p, b·bc, tv〉·A;h ; 〈p, bc, tv [x 7→ r]〉·A;h[r 7→ o]

(3)
b ≡ x := y.f, tv(y) 6= null, o = h(tv(y))
〈p, b·bc, tv〉·A;h ; 〈p, bc, tv [x 7→ o.f ]〉·A;h

(4)
b ≡ x.f := y, tv(x) 6= null, o = tv(x)

〈p, b·bc, tv〉·A;h ; 〈p, bc, tv〉·A;h[o.f 7→ tv(y)]

(5)
b ≡ q(〈x̄〉, 〈ȳ〉), there is a program ruleq(〈x̄′〉, 〈ȳ′〉):=g, b1, · · · , bk
such thattv ′=newenv(q), ∀i.tv ′(x′

i) = tv(xi), eval(g, tv
′) = true

〈p, b·bc, tv〉·A;h ; 〈q, b1 · . . . · bk, tv
′〉·〈p[ȳ, ȳ′], bc, tv〉·A;h

(6)
〈q, ǫ, tv〉·〈p[ȳ, ȳ′], bc, tv ′〉·A;h ; 〈p, bc, tv ′[ȳ 7→ tv(ȳ′)]〉·A;h

Figure 3. Operational semantics of bytecode programs in rule-based form

list, thenl represents its length. Note that the size measure of data
structures is unrelated to functions(C) as defined in the previous
section to measure the actual space occupancy. The size measure
is mainly used for estimating the number of iterations of recursive
procedures. When we need to compute the sizesv̄ of a tuple of
variables̄x, we use the notation̄v = α(x̄, tv , h), which means that
the integer valuevi is the size of the variablexi in the context of the
variables tabletv and the heaph. For instance, we need to access
the heaph where the listl is allocated to compute its lengthv. If
x is an integer variable, then its size (value) is obtained from the
variable tabletv .

Standardsize analysisis used in order to obtain relations be-
tween the sizes of the program variables at different program
points [12]. For instance, associated with the recursive rulef1,
we infer the size relationl > l′ which indicates that the length ofl
decreases when callingf1 recursively wherel′ refers to the size of
l at the program point wheref1 is called recursively. We denote by
ϕr the conjunction of linear constraints that describes the size rela-
tions between the abstract variables of a ruler and refer to [1, 12]
for more information. The rest of our analysis is parametric w.r.t.
the size relations, which are an external component, and can also

admit user-defined size relations as [14]. Given a programP and
the relationsϕ for its rules, a recurrence relation (RR) system for
total memory allocation is generated by applying the following
definition to all rules inP .

DEFINITION 3.1 (total memory allocation equations [2]).Let r
be a rule of the formp(〈x̄〉, 〈ȳ〉)← g, b1, . . . , bn andϕr its corre-
sponding size relations. Then, itstotal memory allocation equation
is defined asp(x̄) = Σn

i=1M(bi), ϕr whereM(x := new Ci) =
s(Ci),M(qi(〈x̄i〉, 〈ȳi〉)) = qi(x̄i); otherwiseM(bi) = 0.

Note that each call in the ruleqi(〈x̄i〉, 〈ȳi〉) has a corresponding
abstract versionqi(x̄i) wherex̄i are the size abstractions ofx̄i at
the corresponding program point. The output variables are ignored
in the RR as the cost is a function of theinput data sizes, but the
relation they impose on other variables is kept inϕr. The same
procedure name is used to define its associated cost relation, but in
italic font. An important point is that the RR must keep the order
of the correspondingsizeconstants and the calls in their right hand
sides (rhs) exactly as they appear in the rule they are generated
from. This was not required by previous memory analyses [2, 3],



but it will be crucial when developing our analysis in order to make
RR capture the heap space usage at a program point level.

EXAMPLE 3.2. The total allocation equations for the rulesm and
f in Fig. 2 are:

m(n) =s(Tree1)+g(n)+f(n, s1)+m(s2)+m(s3)
{n>0, s1=n, s2=n−1, s3=n−1}

m(n) =0 {n=0}
f(n, l)=f1(l, r) + f2(i, r

′) {r=0, i=n}

The first equation corresponds to the first rule of procedurem. It
states that the total memory consumption when executingm with
an input valuen is: the size of an object of typeTree1, plus the
consumption of the corresponding calls tog, f and the recursive
calls to m. Note that the attached constraints describe the size
relations between the local variables and the input variablen. The
total allocation forf is the sum of total allocations of the loopsf1
andf2. 2

Once the RR are generated, a worst-case cost analyzer uses a solver
in order to obtain closed-form upper bounds, i.e., cost expressions
without recurrences. Given a RRp(x̄), we denote bypub(x̄) its
upper bound. The upper bounds that [4] can infer from the above
RR arecost expressionsof the following form:

e ≡ n|s(C)|nat(l)| log(nat(l) + 1)|e ∗ e|e1 + e1|2
nat(l)|

max({e1, . . . , ek})

wheren is an integer,l is a linear expression andC is a class.
Functionnat is defined asnat(v)=max({v, 0}) to avoid negative
values. A cost expression must evaluate to a non-negative value
for any input. The technical details of the process of obtaining a
cost expression from the RR are not explained in the paper as our
analysis does not require any modification to this part. In what
follows, we rely on the RR solver of [4] to obtain upper bounds
for our examples, sometimes simplified by removing constants to
facilitate understanding.

EXAMPLE 3.3. The total memory upper bounds obtained from the
RR of Ex. 3.2 are:

fub(n, l)=nat(l) ∗ s(Long3)+nat(n) ∗ s(Integer4)

mub(n) =(2nat(n)−1)∗(s(Tree1)+nat(n) ∗ (s(List2)+
s(Long3)+s(Integer4)))

Intuitively, for methodf, observe that the first (resp. the second)
loop is executednat(l) (resp.nat(n)) times and at each iteration
a Long3 (resp.Integer4) object is allocated. Form, we have an
exponential number of recursive calls, at each one: an objectTree1

is allocated,g allocatesnat(n) objectsList2 and f contributes
with its allocation. The inferred upper bounds capture exactly this
intuition.

3.2 Inference of Objects Lifetime

A GC strategyclassifies objects in the heap into two categories:
those which are collectible and those which are not. We mean by
applying a GC strategy on a heapthe process of removing all col-
lectible objects from such heap. Most types of garbage collectors
determineunreachableobjects as collectible, i.e., they eliminate
those objects to which there is no variable in the program environ-
ment pointing directly or indirectly. The more precise alternative is
to rely on the notion ofliveness. An object is said to benot live(or
dead) at some state if it is not used from that point on during the
execution. The static inference of both such collectible information
is undecidable and therefore it is usually approximated. A common
approach to approximate it is to provide information for each pro-
gram point on thetypes(i.e., the class name with allocation site)
of collectible objects instead of on the actual objects. This approx-
imation is typically done w.r.t. anentryprocedure (such asmain in

Java). In order to define these notions, we first make all program
points unique. Thek-th program rulep(〈x̄〉, 〈ȳ〉) ← g, bk1 , . . . , b

k
n

hasn+1 program points. The first one,[k, 0], after the execution
of the guardg and before the execution ofb1 until [k, n] after the
execution ofbn.

DEFINITION 3.4 (collectible classes).Let P be a program with
an entry procedurep(〈x̄〉, 〈ȳ〉), Ci a type,[k, j] a program point,
andG a GC strategy. We say thatCi is collectible at[k, j] w.r.t.
G, if for any complete tracet that starts from an initial state
S0=〈⊥, p(〈x̄〉, 〈ȳ〉), tv0〉;h0 and anySn=〈p

k, bkj · bc, tvn〉·A;hn

in t, applyingG onhn results in a heap which does not have any ob-
ject of typeCi (i.e. any object created at statement “new Ci”). The
set of all collectible classes at[k, j] w.r.t.G is denotedC(G, [k, j]).

The set of all collectible classes at a program point[k, j] w.r.t. a
reachability-based GC strategyGr, calledunreachable classes, is
denotedC(Gr, [k, j])). This set can be approximated using points-
to analysis [24]. For simplicity, we assume thatall unreachable
objects are collected wheneverGr is activated. In practice, this can
be adjusted to the actual underlying GC strategy.

EXAMPLE 3.5. The following reachability information is obtained
for the program points in Fig. 2. Ata©, b© , d© and e©, the set of
reachable classes is{Tree1}; and at c©, f©, g©, h©, i©, j©, and
k© the set of reachable classes is{Tree1,List2}. Likewise, the
reachability information for the program points in Fig. 1 is that
at 1© the set of reachable classes is{A}, at 2© is {A,B}, at
3© is {A,C}, and at 4© is {E}. The complementary sets are the
unreachable classes.

As another instance, we consider a liveness-based GC strategy.
This is interesting because it allows us to approximate the mem-
ory requirement for region-based memory managers and garbage
collectors that make use of compile-time liveness information. Be-
sides, it allows obtaining upper-bounds on the (theoretical) mini-
mal memory requirement for executing a program, which provides
useful information for understanding/debugging the memory usage
of programs. The set of all collectible classes at a program point
[k, j] w.r.t. a liveness-based GC strategyGl, calleddead classes, is
denoted byC(Gl, [k, j])). This set can be approximated by using
points-to analysis and backwards inference similar to [9].

EXAMPLE 3.6. The following liveness information is obtained for
the program points in Fig. 2: ata©, b© , d© , e©, g©, j©, and k©
the set of live classes is{Tree1}; and at c©, f©, h© and i© it is
{Tree1,List2}. The important point is that, atf©, objects of type
List2 are still live since their fielddata still has to be accessed,
but at g© the access has already been performed andList2 is not
live anymore. Similarly, the liveness information obtained for the
program points in Fig. 1 is that at1© the set of live classes is{A}
and at 2© is {A,B}, and at 3© and 4© is ∅. The complementary sets
form the dead classes.

Note that usually context-insensitive points-to analysis is enough in
order to precisely approximate unreachable and dead classes sets.
However, when advanced object oriented patterns are used, such as
factory, context-sensitive points-to analysis might be required.

3.3 Parametric Recurrence Relations

Suppose thatn1 is the actual memory usage at some program point,
and thatn2 is the amount of memory that corresponds to objects
that can be freed by the garbage collector at that point. Then,
obviouslyn1 − n2 is the current memory usage after freeing the
memory that corresponds to those collectible objects. In order to
obtain an upper bound forn1 − n2, one can obtain an upper bound
for n1 and a lower bound forn2. In our context, we have a symbolic



upper bounde1 for n1, but the information about collectible classes
does not provide any lower bound onn2, since it does not include
information on how many objects of each type we have at that
program point. But, since the collectible classes sets in Sec. 3.2,
provide the information thatall instances of specific classes at that
program point can be freed, and sincee1 is a symbolic upper bound,
we can obtain a sound upper bound forn1 − n2 by replacing ine1
all occurrences ofs(C) by0, for eachC that is in the corresponding
set of collectible classes. By relying on this basic idea, we will
estimate the memory requirement at each program point and then
choose the maximum among them.

In what follows, given a cost expressione=e1 + . . . + en, we
denote bye[ei 7→ f ] the replacement of the sub-expressionei by
f .

DEFINITION 3.7 (total memory).Given an expressione = e1 +
. . . + en, where eachei is either of the forms(Ci) or a call q(x̄),
we define its total memory, denotedtotal(e), to the cost expression
obtained ase[ei 7→ qub(x̄)], for eachei which is a call to a
procedure of the formq(x̄).

EXAMPLE 3.8. Assume thatmub
2 = s(C) + s(E). Given the ex-

pressione = s(A) + s(B) + m2 + s(D), we havetotal(e) =
s(A) + s(B) + s(C) + s(E) + s(D).

The interest of having the total memory is that we can approximate
theactive memory(i.e., the memory that cannot be collected by the
GC) at a given program point from it as follows.

DEFINITION 3.9 (active memory).Given an expressione, we de-
fine theactive memoryat a program point[k, j] w.r.t. a GC strat-
egyG, denotedA(e, [k, j],G), as the cost expression obtained as
total(e)[s(Ci) 7→ 0] for all Ci ∈ C(G, [k, j]).

EXAMPLE 3.10. From the expressione in Ex. 3.8, the reachability
information of Ex. 3.5, and the liveness information of Ex. 3.6, for
the program point4© in Fig. 1, we obtainA(e, 4©,Gr) = s(E) and
A(e, 4©,Gl) = 0.

The main idea behind our memory requirements analysis is to
produce disjunctive equations which capture the active memory
at the program points where the memory usage can increase, i.e.,
at the memory allocation instructions. Since the RR generated in
Def. 3.1 allow us to identify exactly these points by means of
their associatedsizeconstants, we generate the parametric memory
requirements equations from them.2

DEFINITION 3.11 (memory requirements equations).Given a to-
tal memory allocation equation “p(x̄) = e1 + · · · + en, ϕ” and
a GC strategyG, the correspondingmemory requirement equa-
tion is defined as: “̂p(x̄) = max(f1, . . . , fn), ϕ”, such that
fi = A(e1 + · · ·+ ei−1, [k, j],G)+ êi where[k, j] is the program
point that corresponds toei and ŝ(Ci) = s(Ci).

An important point in the above definition is that, when computing
the active memory ofe1 + · · ·+ ei−1, procedure calls are replaced
by their total memory upper bounds and hence the result is a
symbolic cost expression. In contrast, we have thatêi, when ei
is a call, will be defined by corresponding memory requirements
equations when applying Def. 3.11 to the equations definingei.
Whenei is a constant, function̂s is justs. As mentioned in Sec. 3.1,
it is crucial for the above definition to maintain the order (and
program point information) in the expressions of the rhs of the total
allocation equations in order to be able to apply the program point
collectible classes information into them.

2 In previous work [2, 3] the equations are generated from the program rules
instead.

EXAMPLE 3.12. The total memory equations for the methods in
Fig. 1 are (for simplicity we ignorem3 since it does not affect the
memory consumption):

m1=s(A) + s(B) + m2 + s(D)
m2=s(C) + s(E)

According to Def. 3.11, the following memory requirements equa-
tions are obtained for a generic GC strategyG:

m̂1=max(s(A),
A(s(A), 1©,G) + s(B),
A(s(A) + s(B), 2©,G) + m̂2,

A(s(A) + s(B) + mub
2 , 4©,G) + s(D))

m̂2=max(s(C),A(s(C), 3©,G) + s(E))

The disjunctive information is handled in the solver by replacing
the max operator by non-deterministic equations and finding an
upper bound using [4]. Below, we show to the left (resp. right) the
non-deterministic equations for a reachability-based strategy be-
fore (resp. after) the elimination of the unreachable classes com-
puted in Ex. 3.5. The notations(C) indicates settings(C) to zero
once collectible classes are eliminated:

m̂1=s(A)
m̂1=A(s(A), 1©,Gr)+s(B) = s(A)+s(B)
m̂1=A(s(A)+s(B), 2©,Gr)+m̂2 = s(A)+s(B)+m̂2

m̂1=A(s(A)+s(B)+mub
2 , 4©,Gr)+s(D)= s(A)+s(B)+s(C)+

s(E)+s(D)
m̂2=s(C)
m̂2=A(s(C), 3©,Gr)+s(E) = s(C)+s(E)

The upper bounds obtained from these equations are

m̂ub
2 = s(C) + s(E)

m̂ub
1 = s(E) + max(s(A) + s(B) + s(C), s(D))

This upper bound improves over the scope-based upper boundS in
Fig. 1 but we still have not succeeded in inferringR. This is because
we need the partial evaluation transformation explained in the next
section.

As another instance, the equations for a liveness-based strategy
Gl (i.e., w.r.t. the dead classes of Ex. 3.6) differ from the above ones
only in the fourth and sixth equations which are as follows:

m̂1=A(s(A)+s(B)+mub
2 , 4©,Gl)+s(D)= s(A)+s(B)+s(C)

+s(E)+s(D)
m̂2=A(s(C), 3©,Gl)+s(E) = s(C)+s(E)

The upper bounds obtained from these equations are

m̂ub
2 =max(s(C), s(E))

m̂ub
1 =max(s(A) + s(B) + max(s(C), s(E)), s(D))

Again, the partial evaluation transformation is needed to obtain
L of Fig. 1. As mentioned in Sec. 1, liveness-based upper bounds
safely and accurately describe the peak memory usage for a mem-
ory manager based on liveness. For example, this is the case of
region-based manager, for the program in Fig. 2 if objects of the
same type are allocated in the same region, and for the program in
Fig. 1 if A,B andC are allocated in one region which is deallo-
cated at program point3©.

THEOREM 3.13 (soundness).Let P be a program,G be the GC
strategy,p(〈x̄〉, 〈ȳ〉) an entry procedure, and̂pub(x̄) an upper
bound for the corresponding memory requirement equations gen-
erated in Def. 3.11. Assuming that we start the execution from an
initial stateS0 = 〈⊥, p(〈x̄〉, 〈ȳ〉), tv0〉;h0 then, for any complete
tracet, it holdsp̂ub(v̄) ≥ peak(t) wherev̄ = α(x̄, tv0, h0) if one
of the conditions hold:

(i) G is applied as soon as objects become collectible;



(ii) the heap size is fixed tôpub(v̄) andG is applied when we reach
this limit.

Informally, the soundness theorem ensures that our analysis cor-
rectly approximates the peak of a procedure’s execution for any
GC schemeG in the two scenarios explained in Sec. 1.

3.4 A Partial Evaluation Transformation of Recurrence
Relations

The technique in Sec. 3.3 obtains precise upper bounds when ob-
jects become collectible in the same rule in which they have been
created. However, if an object becomes collectible in another rule
(e.g., of a called method), the effect of removing it might be de-
layed until it become visible in the same rule, which might result
in a loss of precision. This happens in the program of Fig. 1, the
object to which the variable “a” refers becomes dead inm2 at pro-
gram point 3©, and the object to which “a.f” refers becomes both
dead and unreachable at program point3©. However, the equations
that we generate form1 in Ex. 3.12 (both forGl andGr) do not
take advantage of this information, but rather from the informa-
tion that such objects are dead and unreachable at4©, i.e., only
upon exit fromm2. This prevents us from obtaining the precise up-
per boundsR andL in Fig. 1. The well-known technique of partial
evaluation [17] (PE for short) gives us a leeway. PE is an automatic
program transformation technique whose goal is to specialize pro-
grams by propagating static information by means ofunfolding. In
our context, the notion of unfolding corresponds to the intuition of
replacing a call to a relation by the definition of the correspond-
ing relation, and therefore merging the corresponding rules into the
same equation and making more program points visible.

EXAMPLE 3.14. Consider the total memory equations of Ex. 3.12.
Unfolding the call tom2 into its calling context results in the
following equation:

m1 = s(A) + 1©s(B) + 2©s(C) + 3©s(E) + 4©s(D)

From it, by applying Def. 3.11, we obtain the following equation for
Gr which is clearly more accurate than the one we have obtained
in Ex. 3.12:

m̂1=max(s(A),
A(s(A), 1©,Gr) + s(B),
A(s(A) + s(B), 2©,Gr) + s(C),
A(s(A) + s(B) + s(C), 3©,Gr) + s(E),
A(s(A) + s(B) + s(C) + s(E), 4©,Gr) + s(D))

=max(s(A)+s(B)+s(C), s(A)+s(C)+s(E), s(E)+s(D))

Solving this equation results in the optimal upper boundR. The
key point is to incorporate the reachability information at program
point 3© in the equation ofm1. We could not do it in Ex. 3.12 since
it was in a different rule. Similarly, forGl we get an equation which
has an upper bound that coincides with the upper boundL of Fig. 1.

The unfolding process could be defined on the programming lan-
guage, however, defining it on the RR has the main advantage of
being much simpler. This is because RR are made up only of con-
stantss(C), calls to other equations and linear constraints. This
kind of unfolding is basically the same as that of clauses in con-
straint logic programming [13] and that of the upper bound solver
of [4].

DEFINITION 3.15 (unfolding step).LetE be the recurrence equa-
tion “ p(x̄) = b1 + · · ·+ bi−1 + q(x̄i) + bi+1 + · · ·+ bn, ϕ”, and
E′ a renamed apart equationq(ȳ) = c1 + · · ·+ cm, ϕ′” defining
q such thatvars(E) ∩ vars(E′) = ∅. Then, the unfolding ofE
w.r.t. q(x̄i) andE′ is “ p(x̄) = b1 + · · ·+ bi−1 + c1 + · · ·+ cm +
bi+1 + · · ·+ bn, ϕ ∧ ϕ′ ∧ {x̄i = ȳ}”.

The unfolding step basically generates a new equation by: substitut-
ing the (renamed apart) definition ofq in its calling site, joining the
constraints of bothp andq (ϕ∧ϕ′), and unifying the variables of the
caller and the variables of the renamed apart definition ({x̄i = ȳ}).
When the call we want to unfold is defined by several equations,
the above operation is repeated for each of them possibly generat-
ing several equations. Whenϕ′ ∧ ϕ ∧ {x̄i = ȳ} is unsatisfiable,
no equation is generated since this does not correspond to a valid
execution.

Performing an unfolding step solves the problem when the
object is created in a procedurep and becomes collectible in the
unfolded procedureq which is called fromp. However, there are
scenarios where more steps are required. For example, an object
might become collectible not during an immediate call but rather in
a transitive one. Even more, an object can be created and become
collectible in procedures that do not have a caller/callee relation.
In general, unfolding steps should be applied repetitively until the
program points that correspond to the creation and collection of
an object are as close as possible in the equations. This process in
the presence of recursive relations (coming from loops) might be
non-terminating. Fortunately, the problem has been well studied in
the PE field and we can adopt any terminating strategy [19]. For
instance, in [4], the strategy is to leave one relation perrecursive
strongly connected component (SCC) and unfold the remaining
ones. In order to take more advantage of collectible classes, it is
even possible to unfold a recursive SCC into other SCCs, which
corresponds to loop unrolling. In PE terminology, abinding-time
annotation(BTA) is a set of predicates which cannot be unfolded,
either because it could endanger termination or because it would
not be profitable (e.g., it would not make the points of interest
closer in the rules). Our definition of partially evaluated equations
can be used with any BTA which ensures termination.

DEFINITION 3.16 (partially evaluated RR).Given a set of RRs
and a BTA, thepartially evaluated RRsare obtained by iteratively
unfolding (Def. 3.15) all calls in the rhs of the equations which do
not belong to BTA w.r.t. its defining equations.

Once the RR have been partially evaluated, we apply Def. 3.11 to
them in order to generate the corresponding memory requirement
equations.

EXAMPLE 3.17. For the simple example of Fig. 1, if the BTA
includes onlym1, we obtain the RR in Ex. 3.14 and the optimal
R andL upper bounds of Fig. 1.

THEOREM 3.18 (soundness).LetP be a program,G the used GC
technique,p(〈x̄〉, 〈ȳ〉) an entry procedure, and̂pub(x̄) an upper
bound for the corresponding memory requirement equations gen-
erated in Def. 3.11 after PE. Assuming that we start the execution
from an initial stateS0 = 〈⊥, p(〈x̄〉, 〈ȳ〉), tv0〉;h0 then, for any
complete tracet, it holdsp̂ub(v̄) ≥ peak(t) under the same condi-
tions as in Theorem 3.13 wherēv = α(x̄, tv0, h0).

The key difference with the PE of [4] is that we apply PEprevi-
ously to the generation of the memory requirement RR, while [4]
uses PE only to solve them. This is an essential difference since we
would not be able to obtain the propagation of collectible informa-
tion that we need to obtain memory requirements bounds by using
PE like [4]. As other differences, we can apply PE with any termi-
nating BTA while [4] requires checking further conditions on the
associated graph.

3.5 Comparison to Previous Work

Our work improves over scope-based heap space analyses [3, 6] in
both its accuracy and its applicability. Essentially, since we over-
come the scope-based restriction, we are able to infer strictly more



precise upper bounds for reachability-based memory managers, as
the example below will show. Besides, since our equations capture
the memory requirement at a program point level (rather than as a
method level as previous approaches do), we can apply it in com-
bination with a liveness-based memory manager which can deal-
locate objects at any program point. Altogether, our analysis intro-
duces the novel applications pointed out in Sec. 1, which scope-
based analyses do not have. In order to clarify the technical differ-
ences with the analysis in [3], we apply the scope-based method
to our running examples. We obtain the following equation for the
program in Fig. 1:

m̂1 = s(A) + s(B) + max(m̂2, m̌2 + s(D))

wherem̂2 denotes the peak consumption ofm2 andm̌2 its escaped
memory, i.e., the memory created during the execution ofm2 and
still reachable upon return from it. The idea is hence that when
there is a method call, the equation contains a disjunctive max
between the peak consumption of such call (i.e.,m̂2) and the
memory that escapes from it plus the peak of the continuation
(i.e., m̌2 + s(D)). Apart from the different way in generating the
equations, a fundamental difference with our analysis is that, by
relying on a escape analysis, only the objects created in the current
scope and in scopes reached transitively from it can be deallocated.
This is clearly a subset of program point reachability or liveness
as we do. As a consequence, the sizes ofA and B are always
accumulated and, as they become dead (resp. unreachable) inm2

(resp. upon exit fromm2), this memory state is missed in the RR.
This leads to imprecision when inferring memory requirements and
illustrates why we need RR which capture the memory usage at a
program point level, as discussed in Sec. 1.

The optimization sketched in [3] to approximate theideal GC
consists in splitting the rules into smaller scopes in order to apply
GC more often. Unfortunately, it suffers from the same scope
limitation and hence it does not improve the upper bound neither.
Moreover, it is not straightforward, and in many cases it is even
impossible, to generate these smaller scopes, since the scope might
begin in the middle of one rule and end in the middle of another
one. For example, in the program of Fig. 1, a new scope should be
created for the first two instructions ofm1 and the part ofm2 up to
program point3©. Moreover, the partition which is convenient for
one object might not be good for another one. In this example, the
accuracy gain is a constant factor. In more complex programs, the
gain can be much larger as the next example shows.

EXAMPLE 3.19. By applying Def. 3.11, the memory requirement
equation generated form from the equation in Ex. 3.2, the total
upper bounds of Ex. 3.3 and the reachable classes of Ex. 3.5 is:
m̂(n)=
max(s(Tree1), s(Tree1)+ĝ(n), s(Tree1)+nat(n)∗s(List2)+

f̂(n, s1), s(Tree
1)+nat(n)∗s(List2)+nat(s1)∗s(Long

3)+
nat(n)∗s(Integer4)+m̂(s2), s(Tree

1)+nat(n)∗s(List2)
+nat(s1)∗s(Long

3)+nat(n)∗s(Integer4)+
(2nat(s2)−1)∗s(Tree1)+m̂(s3) )

which can be solved (after solvinĝf ) into the following closed form
for the casen>0:

m̂ub(n)=(2nat(n)−1)∗s(Tree1)+max(s(Long3),s(Integer4))+
nat(n)∗s(List2)

The upper bound obtained by [3] (applying the optimization of
ideal GC) is:

(2nat(n)−1)∗(s(Tree1) + nat(n)∗s(List2))+
nat(n)∗max(s(Long3),s(Integer4))

There are two fundamental differences:

(1) For executingf, the approach described in this paper require
only max(s(Long3),s(Integer4)) of memory, while [3] re-
quires nat(n) times ofmax(s(Long3),s(Integer4)). This is
because in a scope-based approach the objects created inf1
(resp.f2) are not garbage collected until we exit fromf1 (resp.
f2), while they become dead/unreachable right after calling
intValue;

(2) The memory required byg is accumulated only once to the
memory requirement ofm, while [3] requires space for allo-
cating g an exponential number of times. This is because the
List2 objects are created ing and become unreachable (resp.
dead) in a different scopem (resp.f).

The above example not only shows the further accuracy of our
approach w.r.t. scope-based ones, but it also illustrates the power
of our method in the kind of upper bounds we infer: we capture
exponential, logarithmic and polynomial memory bounds. This
improves over type-based memory usage analyses [16] which are
often restricted to linear upper bounds.

4. Experimental Evaluation
We have implemented our technique within XYZ3 which can be
tried out through its web interface at: XYZ4 by selecting the cost
models formemory requirement. Our reachability analysis is based
on the points-to analysis of [24], and the heap liveness analysis
is similar to the region-based liveness of [9]. The PE transforma-
tion leaves one relation per SCC as explained in Sec. 3.4. The ex-
perimental evaluation has been performed on theJOlden bench-
mark suite [8] and onGCBench, a typical example from the GC
community [5]. For each benchmark, we infer total allocation up-
per boundsUT and the peak heap usage using the cost models:
US for scope-based GC,UR for reachability-based GC, andUL for
liveness-based GC. As regards theGCBench benchmark, itsmain
method consists of 4 parts that create different data structures. In
this case,UT andUS are the sum of the sizes of these data struc-
tures since they escape to the scope of themain and hence cannot
be collected until execution finishes, whileUR andUL are the max-
imum among their sizes. Besides, in the last part of themain, there
are 3 nested loops and, at each iteration of the inner one, a tree
is created and becomes dead and unreachable at the end of it. For
this part,UT andUS require a quadratic number of trees whileUR

andUL require a single tree (the upper bounds are too large to be
shown).

As regards theJOlden benchmarks, they all create an initial
data structure and then do some post-processing on it. Therefore,
the overall memory requirement is dominated by the size of the
initial data structure and henceUS, UR and UL are almost the
same if we start the analysis frommain. However, during the post-
processing, there are some methods in which temporary objects are
created and, for them,US is significantly larger thanUR andUL.
Table 1 summarizes our experiments by focusing on these methods.
We substitute the symbolic expressionss(C) by the number of
fields C has, and for arrays we consider their sizes, so that the
system can perform mathematical simplifications. As theoretically
expected, in all examplesUT ≥ US ≥ UR ≥ UL. Let us
explain intuitively where the gain in accuracy comes from. In
the first two methods, we found loops that create objects which
become dead at the end of each iteration, but we could not infer
that all of them become unreachable at that point, thereforeUL is
more precise thanUR. ThehackGravity method clones an object
of type MathVector and immediately in the next instruction it
creates an object of typeHG. Our analysis accurately infers that

3 the system name is withheld
4 the actual link is withheld



Bench UT US UR UL RR

mst.MST.computeMST 4*nat(A-1) 4*nat(A-1) 4+2*nat(A-1) 2 2

bh.Tree.vp 28*nat(A)+8 28*nat(A)+8 28*nat(A)+8 30 12*A+24

bh.Body.hackGravity 21 21 21 15 12

bh.MathVector.toString 10 10 10 4 2

em3d.BiGraph.toString4*nat(A-1)+2 4*nat(A-1)+2 4 4 4

voronoi.Vertex.print 4*2nat(A−1) - 2 2*nat(A-1)+2 2 2 2

bisort.Value.inOrder 4*2nat(A−1) - 2 2*nat(A-1)+2 2 2 2

Table 1. Total, Scope, Reachability, Liveness Upper Bounds by COSTA on the JOlden

MathVector becomes dead before creatingHG. Indeed, this has
spotted a possible bug: the clonedMathVector object is not used
but rather the original one. Again, the objects are still reachable
and henceUL > UR. In the last three methods the gain originates
from the creation and manipulation ofStrings. Usually, several
StringBuffer objects are created to hold intermediate strings and
become dead and unreachable as soon as data is printed. When such
a statement occurs inside a linear loop like inem3d.toString,
we are able to infer a constant number ofStringBuffer objects,
while the scope-based peak analysis obtains one proportional to the
number of iterations. Even more, in the last two methods, the total
consumption is exponential due to two recursive calls. The scope-
based peak is linear since the objects created during the execution
do not escape from the method and hence can be garbage collected
before the second call. Importantly, we improve this upper bound
to a constant in the case ofUR andUL.

Finally, in the last column, we aim at evaluating the precision
of our analysis for Java programs by comparing our upper bounds
with the memory consumption of real executions. For this aim, we
have implemented a JVMTI agent5 which, besides tracking object
allocations and deallocations, explicitly invokes the (reachability-
based) JVM garbage collector before any object or array creation.
ColumnRR shows the obtained consumptions, using the same mea-
sure as before (i.e. number of fields and size of arrays) which cor-
respond to thereal minimal memory requirements. The sizes of the
corresponding input are not relevant when the actual memory con-
sumption is constant, which is the case of all benchmarks except
bh.Tree.vp. For this one, we have run the program with a set of
different inputs, and from the obtained results we have derived the
cost expression12*A+24, which characterizes the actual consump-
tion for all values ofA greater than 1. It can be observed thatUR is
safe in all cases and very close toRR in most of them, except for the
first two benchmarks in which the reachability analysis loses preci-
sion, mainly due to the context-insensitive nature of the underlying
points-to analysis. Note that, in spite of the fact thatUL is based on
liveness and hence more precise, it is larger thanRR in some cases.
This is because of the loss of precision in the underlying (static)
liveness analysis. All in all, our experiments reveal that the mem-
ory requirements inferred by our analysis are accurate and close to
the actual consumption.

5. Conclusions
Predicting the memory requirements of a program’s execution is a
critical component in software development. The memory require-
ments typically include both the heap and the frames stack usage.
This paper focuses on the heap space because estimating the max-
imal height of the frames stack from our heap analysis is straight-
forward, as it is done in [3]. Memory usage has been traditionally
measured using profiling which is often insufficient since only cer-
tain inputs are profiled. Building over recent progress in heap space

5 Seehttp://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

analysis, our work presents a novel approach to inferring symbolic
bounds of the memory requirements for imperative object-oriented
languages. It improves over recent work in that it is not tied to a
particular GC model (unlike [3, 6]), it computes accurate bounds
for exponential, logarithmic, etc. complexities (unlike [6, 11]) and
it is fully automatic (unlike [16]). Other approaches to resource
usage analysis are developed to measure other types of resources,
namely [14] predicts number of instructions, [1] is generic in the
definition of cost model but neither of them supports memory re-
quirements, since the underlying techniques are developed to mea-
sure accumulative resources, while memory usage is a resource that
increases and decreases along the execution. The problem is differ-
ent from memory prediction in functional languages [15, 22] since,
due to the absence of mutable data structures, GC can be mod-
eled in a scoped-based fashion where the scopes are determined
by the corresponding function definitions. While in imperative lan-
guages, objects can be collected outside the scope in which they
have been created, which makes the static prediction more difficult.
Other work, such as [10], provides a framework for checking that
the memory usage conforms to user-supplied specifications. User-
supplied specifications may be hard to provide and are likely to be
impractical for bytecode programs.
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ysis, 15th International Symposium, SAS 2008, Valencia, Spain, July



15-17, 2008, Proceedings, volume 5079 ofLecture Notes in Computer
Science, pages 221–237. Springer-Verlag, July 2008.

[5] H. Boehm. An artificial garbage collection benchmark.http://www.
hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html.
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