
A Transformational Approach to Resource
Analysis with Typed-Norms ?

Elvira Albert1, Samir Genaim1, and Raúl Gutiérrez2

1 Complutense University of Madrid, Spain
2 DSIC, Universitat Politècnica de València,
Camino de Vera S/N, 46022 Valencia, Spain

Abstract. In order to automatically infer the resource consumption of
programs, analyzers track how data sizes change along a program’s exe-
cution. Typically, analyzers measure the sizes of data by applying norms
which are mappings from data to natural numbers that represent the
sizes of the corresponding data. When norms are defined by taking type
information into account, they are named typed-norms. The main contri-
bution of this paper is a transformational approach to resource analysis
with typed-norms. The analysis is based on a transformation of the pro-
gram into an intermediate abstract program in which each variable is
abstracted with respect to all considered norms which are valid for its
type. We also sketch a simple analysis that can be used to automatically
infer the required, useful, typed-norms from programs.

1 Introduction

Automated resource analysis [17] needs to infer how the sizes of data are modified
along a program’s execution. Size is measured using so-called norms [5] which
define how the size of a term is computed. Examples of norms are list-length
which counts the number of elements of a list, tree-depth which counts the depth
of a tree, term-size which counts the number of constructors, etc. Basically, in
order to infer the resource consumption of executing a loop that traverses a data-
structure, the analyzer tries to infer how the size of such data-structure decreases
at each iteration w.r.t. the chosen norm. Given a tree t, using a term-size norm,
we infer that a function like “def Int foo(Tree t)= case t {Leaf 7→0; Node(l,r) 7→
1+foo(r);}” performs at most nodes(t) iterations, where function nodes returns
the number of nodes in the tree. This is because size analysis infers that at each
recursive call nodes(t) decreases. However, by using the tree-depth norm, we will
infer that depth(t) is an upper bound on the number of iterations. The latter is
obviously more precise than the former bound as depth(t)≤nodes(t).
? This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE: En-

gineering Virtualized Services (http://www.envisage-project.eu) and by the Spanish
projects TIN2008-05624 and TIN2012-38137. Raúl Gutiérrez is also partially sup-
ported by a Juan de la Cierva Fellowship from the Spanish MINECO, ref. JCI-2012-
13528.

The last two decades have witnessed a wealth of research on using norms
in termination analysis, especially in the context of logic programming [5, 6, 9].
Early work pointed out that the choice of norm affects the precision such that
the analyzer may only succeed to prove termination if a certain norm is used,
while it cannot prove it with others. Later on, there has been further investi-
gation on applying multiple norms, i.e., using two or more norms by applying
them simultaneously [5]. This means that the same data in the original program
is replaced by two or more abstract data each one specifying its size informa-
tion w.r.t. the corresponding norm. Even a further step has been taken on using
typed-norms which allow defining norms based on type information (namely on
recursive types) [6]. Inferring norms from type information makes sense as recur-
sive types represent recursive data-structures and thus, in termination analysis,
they identify some potential sources of infinite recursion and, in resource analysis,
they might influence the number of iterations that the loops perform. Besides,
typed-norms allow that the same term can be measured differently depending on
its type. As pointed out in [9], this is particularly useful when the same function
symbol may occur in different type contexts.

In the context of resource analysis, we found early work that already pointed
out that the combination of norms affects the precision of lower-bound time
analysis [11]. Sized-types provide a way to consider more than one norm for
each type. They have been used in the context of functional [15, 16] and recently
in logic programming [12]. In the former case, they are inferred by a type analysis
and in the latter via abstract interpretation. In contrast, we propose a transfor-
mational approach which provides a simple and accurate way to use multiple
typed-norms in resource analysis as follows: (1) we first transform the program
into an intermediate abstract program in which each variable is abstracted with
respect to all considered norms valid for its type, (2) such intermediate program
is then analyzed to obtain upper and lower resource bounds automatically. Im-
portantly, this second phase is done using existing techniques that do not need
to be modified. Thus, formalizing our framework focuses only on the first step.

While allowing multiple norms might lead to more accurate bounds than
adopting one norm, the efficiency of the analysis can be degraded considerably.
This is because the process of finding resource bounds from abstractions that
have more arguments (due to the use of multiple norms) is more costly. Thus, an
essential aspect for the practical applicability of our method is to eliminate those
abstractions that will not lead to further precision. As our second contribution,
we outline an algorithm for the inference of typed-norms which, by inspecting
the program, can detect which norms are useful to later infer the resource con-
sumption, and discard norms that are useless for this purpose. This analysis
is applied as a pre-process, such that once the relevant norms are inferred, the
transformation into the abstract program is carried out w.r.t. the inferred norms.

Syntactic categories.
T in Ground Type
B in Basic Type
D in Data type
x in Variable
e in Expression
t in Ground Term
br in Branch
p in Pattern
n in Integer

Definitions.
T ::= B | D
B ::= Int | String

Dd ::= data D = Cons[| Cons];
Cons ::= Co[(T)]

F ::= def T fn(T x) = e;

e ::= x | t | Co[(e)] | fn(e) | case e {br}
t ::= n | Co[(t)]
br ::= p⇒ e;
p ::= | x | t | Co[(p)]

Fig. 1. Syntax for the functional level. Terms T and e denote possibly empty lists over
the corresponding syntactic categories, and square brackets [] optional elements.

2 The Language

We present the simple functional language on which our framework is defined. It
corresponds to the functional sublanguage of ABS [10], a modeling language for
concurrent distributed systems which has been used to implement two industrial
case studies (both of them of more than 1,000 lines of code). The functional
sublanguage of ABS is used to define and manipulate the data structures used in
the program, while the imperative sublanguage is used to handle its concurrency
and distribution aspects. The reason why we chose ABS is double: first, because
the funcional part of the language is appropriate to present our results in a clear
and simple manner; and second, because our final goal is to integrate typed-
norms in the complexity analysis of concurrent and distributed systems modeled
in ABS. Sec. 2.1 defines the syntax of our functional language, and Sec. 2.2
introduces the intermediate form to which the programs are translated to define
the analysis later.

2.1 A Simple Functional Language

The language defines data types and functions, as shown in Fig. 1. Ground
types T consist of basic types B as well as names D for data types. In data type
declarations Dd , a data type D has at least one constructor Cons, which has a
name Co and a list of ground types T for its arguments. Function declarations F
consist of a return type T , a function name fn, a list of variable declarations x of
types T , and an expression e. Expressions e include variables x, (ground) terms
t, constructor expressions Co(e), function expressions fn(e) and case expressions
case e {br}. Ground terms t are integer numbers and constructors applied to
ground terms Co(t). Case expressions have a list of branches p ⇒ e, where p is
a pattern. The branches are evaluated in the listed order. Patterns include wild
cards , variables x, terms t, and constructor patterns Co(p). Abusing notation,
f n in e can be a function name or a built-in function (+,−, >,=,≥). We assume
that the considered programs are well-typed and unambiguous.

1 module Library;
2 type Author = String ;
3 type Title = String ;
4 data Authors = Nil
5 | Cons(Author,Authors);
6 data Titles = Nil
7 | Cons(Title,Titles);
8 data Book=Pair(Title,Authors);
9 data Books = EmptyMap

10 | InsertAssoc(Book,Books);
11 data Ref = Pair(Author,Titles);
12 data Refs = EmptyMap
13 | InsertAssoc(Ref,Refs);

14 def Int is coauthor(Author a,Authors as)
15 = case as {
16 Nil => 0;
17 Cons(a,as‘) => 1;
18 Cons(a‘,as‘)=> is coauthor(a, as‘); };
19

20 def Titles written by(String a,Books bs)
21 = case bs {
22 EmptyMap => Nil;
23 InsertAssoc(b,bs‘)
24 => case b {
25 Pair(t,as)
26 => case is coauthor(a, as) {
27 1 => Cons(t,written by(a,bs‘));
28 0 => written by(a,bs‘); }; }; };

29 def Refs sort books by author(Authors as,Books bs)
30 = case as {
31 Nil => EmptyMap;
32 Cons(a,as‘)
33 => InsertAssoc(Pair(a,written by(a,bs)),sort books by author(as‘, bs)); };

Fig. 2. Motivating example (data type declarations and three functions)

Example 1. Our running example is showed in Fig. 2. It defines a function
sort books by author (and several auxiliary functions) for sorting books by author
given a list of authors and a list of books.

2.2 Intermediate Form

From now on, we develop our analysis on a typed intermediate representation
(IR) similar to those defined in [2, 8, 13, 14]. The translation from our simple
functional language to the IR is straightforward and follows exactly the same
steps as the one formalized in [2]. Essentially, the IR of each function is obtained
by translating each basic block in its control flow graph (CFG) into a procedure,
defined by means of rules that adhere to the following grammar:

r ::= m(x̄, y) 7→ g, b1, . . . , bn.
b ::= x:=t | m(x̄, y)
g ::= true | g ∧ g | e op e | match(x, t) | nonmatch(x, t)
t ::= e | Co(t̄)
e ::= x | n | e+e | e−e

where op ∈ {>,=,≥}, m(x̄, ȳ) is the head of the rule, g specifies the conditions
for the rule to be applicable and b1, . . . , bn is the rule’s body. Calls are of the
form m(x̄, y) where the variables x̄ are the properly typed formal parameters
and the variable y is the properly typed return value. Guards match(x, t) and
nonmatch(x, t) simulate case-expressions and x and t are of the same type. We

assume x 6∈ vars(t). Terms are constructed using Co(t̄), where Co is a data
symbol and t̄ are the arguments (e.g., Cons(x, y)), variables x, integer numbers
n and arithmetic expressions (e + e and e − e). A function is thus defined by a
(global) set of rules. The dynamics of the data-structures are preserved by using
the guard match, which fixes the shape of the input variables in the rules.

Example 2. Fig. 3 shows the IR of function is coauthor. For each function defini-
tion, we have a rule with the same number of arguments plus a new argument
at the end that represents the output of the function call. The case expression
is split into three new rules, one rule for each possible matching alternative.

def Int is coauthor(Author a,
Authors as)

= case as {
Nil => 0;
Cons(a,as′) => 1;
Cons(a′,as′)
=> is coauthor(a, as′);
};

is coauthor(a,as,y) 7→ case0(a,as,y).
case0(a,as,y) 7→ match(as,Nil),

y := 0.
case0(a,as,y) 7→ nonmatch(as,Nil),

match(as,Cons(a,as′)),
y := 1.

case0(a,as,y) 7→ nonmatch(as,Nil),
nonmatch(as,Cons(a,as′)),
match(as,Cons(a′,as′)),
is coauthor(a,as′,y).

Fig. 3. IR of function is coauthor from the example in Fig. 2

3 Size Abstraction Using Typed-Norms

The cost analysis framework that we rely on [2] is performed in two steps: (1) the
program is first transformed into an abstract version that is used to track how
the sizes of the different data-structures change, when moving from one control
point to another; and (2) the abstract program is then analyzed to infer lower
and upper bounds on the resource consumption. As the second step remains
unchanged, we focus only on the first step.

Abstract programs are obtained from the source program (in the intermediate
form) as follows: (1) the program variables are replaced by numerical variables
that represent their corresponding sizes; and (2) the instructions are replaced by
linear constraints, over the new variables, to simulate the effect of their execution
on the sizes of the corresponding data-structures. When data refer to numerical
values, their sizes are defined as their values, and when they refer to data-
structures then size functions, commonly known as norms, are used to measure
their sizes. Note that our goal is not to obtain the real size of data-structures,
but to use the data-size information to obtain a more accurate complexity of the
recursions in the program.

3.1 Preliminaries on Typed-Norms

Among all norms in the literature, the term-size norm is probably the most
well-known one. It has been introduced, and intensively used, in the context of
termination analysis of logic programs. Intuitively, it counts the number of data
constructors in a given data-structure, and can be defined as follows:

‖t‖ts =

{
1 +

∑n
i=1 ‖ti‖ts if t = Co(t1, . . . , tn)

1 otherwise
. (1)

The main shortcoming of the term-size norm is that it considers all data types
equal, which leads to imprecision when used in the context of cost analysis.

Example 3. The recursive function written by in the example traverses Authors
and Books recursive data-structures. Using term-size norm, a static analysis ob-
tains that the complexity is O(n2), because each recursion in the data-structure
is abstracted to n. However, it is more accurate if we can say that the complexity
is O(bs×as) where bs refers to the number of books and as the maximum length
of the lists Authors for each of the books in bs, because recursions are applied to
different data-types.

To overcome the imprecision issues discussed above we use typed-norms, which
are designed to distinguish data constructors according to their types. For exam-
ple, they can measure the length of a list, and the size of its elements separately.
Such norms have been used before in the context of termination analysis (see [6]
and its references), and can be defined as follows:

‖t‖σ =

t σ = Int and t is an integer
length(t) σ = String and t is a string
1 +

∑n
i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) = σ∑n

i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) 6= σ

. (2)

Intuitively, ‖t‖σ counts the number of data-constructs of type σ in t. Basic types
are treated in a special way: integers keep their values, and strings are abstracted
to their lengths. This means that ‖t‖Int equals to the sum of all integer values in
the data-structure t. We modify the above typed-norm scheme to the following
one

‖t‖σ =

t σ = Int and t is an integer
length(t) σ = String and t is an string
1 +

∑n
i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) = σ

maxni=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) 6= σ

. (3)

The difference from (2) is that, instead of summing the sizes of the inner ele-
ments, it just keeps the maximal one. For instance, consider the recursive func-
tion written by. By using (3), we will be able to infer that the cost is bounded by
O(bs×as) where bs denotes the length of the recursive data-structure Books and
as is the maximal length of the recursive data-structure Authors for each book.

This is because when abstracting the list using the Authors norm, the fourth case
applies and the maximum value of all elements of the list is taken as worst case
cost. Using (2), we add the length of Authors as many times as Books we have (at
most bs books). Thus, obtaining the less accurate bound O(bs2 × as). We argue
that scheme (3) is more suitable than (2) for the cost analysis framework we
rely on. This is because this framework is based on compositional reasoning that
assumes worst-case for each iteration (i.e., when processing the inner elements
of a data-structure), and then multiplies it by the number of iterations (which
usually depends on the size of the skeleton). Note that one could also define in
an analogous way a norm that estimates the minimum value, by replacing max
with min in (3). This is in particular useful for inferring lower-bounds [12]. A
variation of (3) is implicitly used in works on sized types [15, 12] (see Sec. 6 for
more details).

3.2 Our Transformational Approach

Next we describe our abstraction procedure based on typed-norms. Our ap-
proach allows maintaining several abstractions even for the same variable at the
same time as in [6]. Thus, it allows estimating the size of a variable using differ-
ent measures. This is important since two different parts of the program might
traverse two different parts of the same data-structure. Having both measures al-
lows us to provide tighter bounds. Note that although we are interested in using
typed-norms following scheme (3), our techniques are also valid for scheme (2).

b bα

g1 ∧ g2 gα1 ∧ gα2
match(x, t) ∧{Xσ = ‖t‖σ | σ ∈ typed norms(x)}
nonmatch(x, t) true

e1 op e2 (e1 op e2)[y/YInt] if Int ∈ typed norms(x); otherwise true

p(x̄, ȳ) p(X̄, Ȳ)

x := t ∧{Xσ = ‖t‖σ | σ ∈ typed norms(x)}
true true

Fig. 4. Size abstraction for the instructions

We first introduce some concepts. Given two types σ1 and σ2, we write σ1 �
σ2 if the definition of type σ2 uses (either directly or transitively) type σ1. If
σ � σ we say that the type is recursive. For simplicity, we assume that recursive
types are in direct recursive form (thus, its form can be checked by just inspecting
its definition). We use type(x) to refer to the type of x, and typed norms(x) to
refer to the set of types w.r.t. which we want to measure the size of x. In Sec. 4
we explain how to automatically infer typed norms(x). For typed norms to be
valid, we require that σ′ � σ if type(x) = σ and σ′ ∈ typed norms(x). For

instance, typed norms(x) = {Authors,String} is a valid typed-norm for x with
type(x) = Authors. Given a type σ ∈ typed norms(x), we let Xσ be an integer
valued variable representing the size of (the value of) x w.r.t the typed-norm
‖.‖σ. If σ 6= Int, then we implicitly assume Xσ ≥ 0. For a sequence of variables
x̄, we let X̄ be a sequence that results from replacing each xi by Xσ1

, . . . , Xσn
,

where typed norms(xi) = {σ1, . . . , σn}. Given an arithmetic expression e, we
abstract e as e[y/YInt], where we use e[y/YInt] to denote the expression that
results from replacing each variable y in e by YInt.

Given a typed-norm as in scheme (2) or (3), its symbolic version is an ex-
tension to handle terms that include variables, e.g., Cons(x, xs) where x and xs
are variables. It is obtained from the corresponding typed-norms definition by
adding the following extra cases: when t is a variable of type σ1, then ‖t‖σ = Tσ
if σ � σ1 and ‖t‖σ = 0 otherwise. In what follows, we abuse notation and use
‖t‖σ to refer to this symbolic version of typed-norm.

For the sake of simplifying the presentation, we assume that the input pro-
gram is in single static assignment form. A size abstraction is a conjunction of
linear constraints that describe the effect of the corresponding instruction. Given
an instruction b, its abstract version bα is defined as in Fig. 4. Let us explain
the abstraction for the different instructions: conjunctions are abstracted by re-
cursively abstracting each of their conjuncts; a match guard on x adds as many
constraints as typed-norms apply to the variable x, each constraint assigns to
the abstract variable the abstraction of the matched term w.r.t. the considered
norm; as we do not keep inequality constraints, nonmatch guards are abstracted
to true; in the expressions involving arithmetic operations, each variable y is
replaced by an abstract variable YInt; the arguments in the calls are replaced by
their corresponding abstract names; assignments are abstracted analogously to
match guards.

Definition 1. Given a program P , its size abstraction Pα is a program obtained
by replacing each rule p(x̄, ȳ) 7→ g, b1, . . . , bn ∈ P by p(X̄, Ȳ) 7→ gα, bα1 , . . . , b

α
n.

When using the typed-norm scheme (3), then Pα might include constraints of
the form Xσ = E where E is an arithmetic expression that involves max. Such
non-linear constraints can be approximated by linear ones as follows: replace
the sub-expression max(B1, . . . , Bn) by a new auxiliary variable A, and add the
constraints A ≥ B1 ∧ · · · ∧ A ≥ Bn; this might be applied repeatedly in case
of nested or multiple occurrences of max. When the max has zero operands, it
can be safely replaced by 0. Note also that if non-linear arithmetic is allowed in
our language, then Pα might include non-linear constraints. These can also be
approximated by linear ones as in [4].

Example 4. Fig. 5 shows, in the right column, the abstraction of the instructions
which appear in the corresponding left column for function is coauthor. We use
underlining to denote abstractions that are useless, as it will be explained in the
next section. The typed norms that we use in is coauthor is: typed norms(x) =
{String} if type(x) = String; typed norms(x) = {String,Authors} if type(x) =
Authors; and typed norms(x) = {Int} if type(x) = Int. Observe that the first

is coauthor(a,as,y) 7→
case0(a,as,y).

is coauthor(a1,as1,as2,y1) 7→
case0(a1,as1,as2,y1).

case0(a,as,y) 7→
match(as,Nil), y := 0.

case0(a1,as1,as2,y1) 7→
{as1 = 0, as2 = 1}, {y1 = 0}.

case0(a,as,y) 7→
nonmatch(as,Nil),
match(as,Cons(a,as′)),

y := 1.

case0(a1,as1,as2,y1) 7→
{},
{as1 ≥ a1, a1 ≥ 0, as1 ≥ as′1,
as′1 ≥ 0, as2 = as′2 + 1, as′2 ≥ 1},
{y1 = 1}.

case0(a,as,y) 7→
nonmatch(as,Nil),nonmatch(as,Cons(a,as′)),
match(as,Cons(a′,as′)),

is coauthor(a,as′,y).

case0(a1,as1,as2,y1) 7→
{}, {},
{as1 ≥ a′1, a′1 ≥ 0, as1 ≥ as′1,
as′1 ≥ 0, as2 = as′2 + 1, as′2 ≥ 1},

is coauthor(a1,as
′
1,as

′
2,y1).

Fig. 5. Abstraction of function is coauthor

argument a of is coauthor is abstracted by the variable a1 using the type String
and the second argument as is abstracted in variables as1 and as2, one for each
element of typed norms(as). It is interesting to see that the abstraction of the
guard match(as,Cons(a′,as′)) on the third case0 rule uses as1 to denote the
maximum length of a String in the recursive data-structure as, so we have to
add the constraints as1 ≥ a′1 (a′1 represents the abstraction of the first argument
of Cons) and as1 ≥ as′1. Note that if we use (2) in Sec. 3.1 then as1 corresponds
to the length of the concatenation of every String in as, i.e., as1 = a′1 + as′1.
Since a′1 and as′1 represent String lengths, their value cannot be lower than 0
and we add constraints for that. Also, as′2 represents the length of Authors (and
Nil corresponds to size 1), then as′2 must be at least of size 1. In order to assess
the impact of our approach, we show in Fig. 6 the exact upper bounds obtained
from an abstraction using only the term-size norm (left) and the abstraction
using typed-norms (right) for our three functions. The upper bounds are given
as functions of the sizes of the input parameters w.r.t. the different abstractions
(hence the output parameter is not included). As explained in Ex. 3, the upper
bounds obtained for written by are more accurate using typed-norms. The largest
gain is obtained for sort books by authors as it uses the upper bounds of the two
other functions, namely we achieve O(n×m× l), where n represents the number
of authors in as, m represents the number of books in bs and l represents the
maximum length of Authors for each book in bs.

Intuitively, the analyzer obtains this upper bound following this reasoning.
As function sort books by authors has a recursive call that decreases the number of
authors of as, we have that the maximum number of recursive calls is bound by
n (number of authors in as), thus its cost is O(n ∗ cost body1) where cost body1
is the cost of each application of the body of the function. Now, in order to
compute cost body1, we have to analyze the cost of function written by as it is
called in the body. In this case, we also have recursive calls that decrease the size
of the second argument bs (i.e., the number of books denoted as m). By applying

term-size norm typed-norms

is coauthor(a, as) is coauthor(a1, as1, as2)
= 4+ 5× (as

2
− 1

2
) = 4+ 5× (as2 − 1)

written by(a, bs) written by(a1, bs1, bs2, bs3)
= 3+ (bs

4
− 1

4
)× (14 + 5× (bs

2
− 5

2
)) = 3+ (bs2 − 1)× (14 + 5× (bs3 − 1))

sort books by author(as, bs) sort books by author(as1, as2, bs1, bs2, bs3)
= 3+ (as

2
− 1

2
)× (10 + (bs

4
− 1

4
) = 3+ (as2 − 1)× (10 + (bs3 − 1)

×(14 + 5× (bs
2
− 5

2
))) ×(14 + 5× (bs2 − 1)))

Fig. 6. Upper bounds comparison term-size vs. typed-norms (a1, as1 and bs1 represent
String-norms, as2 and bs2 represent Authors-norms and bs3 represents Books-norm)

a similar reasoning, the cost of written by is bound by O(m ∗ cost body2). Again,
we need to compute the cost of the call to is coauthor, as it determines the cost
of the body of written by. Finally, we have a recursive call in is coauthor that
decreases the size of l (maximum size of Authors). By replacing each cost body
by the computed cost, we get the cubic cost above as upper bound. By using
term-size, we obtain O(n ∗m2) where n is the size of as and m the size of bs.
The difference is that the whole data structure is abstracted by m, thus the cost
of method is coauthor is bound by the whole m, instead of by the length of the
author’s lists (denoted l above) which are a subterm of m. This might lead to
an important loss of precision when the data structure m is large.

4 Inference of Typed-Norms

In Sec. 3, we have assumed that each variable x is assigned a set of types, given
by typed norms(x), whose size we want to track. In principle, one could abstract
each variable w.r.t. all norms valid for its type. However, this would threaten the
efficiency of the analysis, as the complexity of the solving procedure for finding
resource bounds from abstractions exponentially grows with the number of vari-
ables. In this section we develop an analysis that eliminates useless abstractions
in two dimensions: (1) As it was observed in [3], one can remove variables that
do not affect the cost. In particular, the cost of a given program (mainly) de-
pends on the number of recursions performed, which in turn is controlled by the
corresponding guards (conditions to stop the recursion). This means that any
variable that does not affect, directly or indirectly, the value of a guard, can be
completely ignored. (2) We push this observation further, and besides eliminat-
ing useless variables (and their abstractions), we also eliminate useless (typed)
size information for those variables that are useful and thus have not been elim-
inated in (1). In some sense we eliminate useless types, and thus typed-norms,
from each variable.

We say that a guard instruction g is cost-significant if it appears in a guard.
In practice, we identify such instructions by examining the (recursive) strongly
connected components of the corresponding control flow graph. The variables

that are involved in the guards are the source for the size information that we
want to track. For example, if a cost-significant guard is of the form match(x, t),
and type(x) = σ where σ is a recursive type, then ‖.‖σ is a norm that we should
use for x (because the corresponding recursion might be traversing this part of
x). Our analysis is done in two steps: (1) first the cost-significant guards are
used to initialize typed norms(x) for the variables involved in these guards, and
(2) this information is propagated to other variables in the program by means
of backwards data-flow analysis. Below we sketch these two steps.

Initialization. This step starts by setting typed norms(x) to ∅ for each variable
x in the program. Then, it identifies the set of cost-significant guards, and uses
each such guard to modify related typed norms(x) as follows:

– If the guard is match(x, t), variable x has a type σ, and σ is a recursive type,
then σ is added to typed norms(x).

– If the guard is of the form e1 op e2, and variable x appears in e1 or e2, then
Int is added to typed norms(x).

Note that in the case of match(x, t), if σ is not recursive then it is simply ig-
nored. This is because non-recursive types cannot directly affect the number of
recursions. However, they might have some inner recursive types that do, those
will be propagated to x (from other guards) in the second step.

Propagation. The initial information computed in the first step must be propa-
gated backwards to other variables in the program. Intuitively, the propagation
step works as follows: suppose we have an instruction x:=Cons(y, ys), and we
know that σ ∈ typed norms(x) (after the instruction). This means that we want
to track the size of x w.r.t. the type σ, but to do so precisely we must track this
information in all parts of x, i.e., in y and ys, thus we add σ to typed norms(y)
and typed norms(ys), if they are valid norms for the corresponding types. The
propagation rules for the different instructions are defined as follows:

– For match(x, t) and nonmatch(x, t), if y ∈ vars(t), and σ ∈ typed norms(y),
then we add σ to typed norms(x).

– For x:=t, if σ ∈ typed norms(x) we add σ to typed norms(y) for each vari-
able y ∈ vars(t) as far as type(y) � σ.

– For m(x1, . . . , xn, y), if there is a rule m(w1, . . . , wn, z) 7→ g, b1, . . . , bm and
σ ∈ typed norms(wi) we add σ to typed norms(xi), for each 1 ≤ i ≤ n.

– For m(x1, . . . , xn, y), if there is a rule m(w1, . . . , wn, z) 7→ g, b1, . . . , bm and
σ ∈ typed norms(y) we add σ to typed norms(z).

– For any pair of rulesm(x1, . . . , xn, y) 7→ g, b1, . . . , bm andm(w1, . . . , wn, z) 7→
g′, b′1, . . . , b

′
k, if σ ∈ typed norms(xi) then σ ∈ typed norms(wi), and if

σ ∈ typed norms(y) then σ ∈ typed norms(z) (this forces rules with the
same name and number of arguments to be abstracted to rules with the
same name and same number of abstracted arguments).

– There are some built-in functions that are treated as built-in instructions,
e.g., length(s, x) which binds x to the length of the string s. In such case, if
Int ∈ typed norms(x) then we add String to typed norms(s).

Function Initialization Propagation

is coauthor {}a,{}as,{}y {}a,{Authors}as,{}y
case0 (1st rule) {}a,{Authors}as,{}y {}a,{Authors}as,{}y
case0 (2nd rule) {}a,{Authors}as,{}y,{}as′ {}a,{Authors}as,{}y,{}as′
case0 (3rd rule) {}a,{Authors}as,{}y,{}a′ ,{}as′ {}a,{Authors}as,{}y,{}a′ ,{Authors}as′

Fig. 7. Inference on is coauthor

– All other instructions do not modify any information.

The propagation step is applied iteratively, using standard backwards data-flow
analysis, until a fix-point is reached, i.e., the values of all typed norms(x) become
stable. Note that this data-flow analysis also propagates information between the
rules (no special treatment is required). Termination is guaranteed because the
number of typed-norms is finite.

Example 5. Fig. 7 shows the obtained typed norms on each variable after ini-
tialization and propagation on is coauthor and case0 rules. We use {}x notation
to represent typed norms(x) in a compact way. The algorithm works in the
following way:

– Initialization sets typed norms(as) = {Author} and typed norms(x) = ∅ for
any other variable x in the program because all the guards in the program
are of the form match(as, t).

– Then, {Author} is propagated in the following way:
1. The second argument of case0 propagates {Authors} to is coauthor

rule, making typed norms(as) = {Author} on is coauthor.
2. The second argument of is coauthor propagates {Authors} to the third

case0 rule, making typed norms(as′) = {Author} on the third case0.
3. Guard match(as, Cons(a′, as′)) on the third case0 rule adds {Authors}

to typed norms(as), but typed norms(as) already contains {Authors},
and the process stops.

When a variable has an empty set of candidate norms, it means that it is not
relevant to obtain the cost expression. In our example, String-norm and Int-norm
are useless to obtain an upper bound. The result of applying our inference of
typed-norms on the running program is the abstraction in Fig. 5 removing all
underlined variables and associated constraints.

5 Experimental Evaluation

We have implemented the resource analysis detailed in this paper in the static
analyzer for ABS programs SACO (http://costa.ls.fi.upm.es/saco). Our analysis
is currently being integrated in the web interface of SACO and will be avail-
able by selecting the typed-norms option within the settings section soon. Our
experiments aim at evaluating both the accuracy and efficiency of our analy-
sis. Experimental evaluation has been carried out on the functional modules of

the Replication System case study (an industrial case study whose source code
is available from the SACO website). A total of 88 functions are used in the
replication system. We have used three different configurations for the analysis
with norms: (1) term-size, (2) typed-norms considering all possible norms, and
(3) significant typed-norms obtained by the inference algorithm as described in
Sec. 4. An upper bound was obtained on 61 out of the 88 functions in config-
uration (1) and in 62 out of the 88 functions on configurations (2) and (3). A
notable result of our experiment is that for one function (’itemMapToSchedule’)
an upper bound has been obtained using configurations (2) and (3) but cannot
be obtained in (1) since it requires a more refined abstraction than term-size.

As regards accuracy, in Fig. 8 we compare the quality of the upper bounds
obtained using term-size and typed-norms (note that in (2) and (3) we infer the
same upper bounds). Since the term-size norm measures the size of the input in
a different way from the typed-norms, a fair comparison of the results can be
done by actually evaluating the corresponding upper bounds on some (random)
concrete input. We used quickCheck [7] to generate 10 random concrete inputs
for each upper bound, so for each case we obtain 10 different quotients.

For each random input, the diagram in Fig. 8 shows the quotient between the
value of the upper bound obtained using term size, and the value of the upper
bound using typed-norms. The x-axis corresponds to the benchmark number,
and to improve readability we have sorted the benchmarks according to the
corresponding values in the y-axis. We have ignored constant upper bounds
since they correspond to functions without any recursion (i.e., the term-size
norm and typed-norm should give the same answer), and thus remained with 32
non-constant upper bounds (the horizontal axe of the diagram corresponds to
these 32 upper bounds). Values below 1 mean the analysis based on the typed-
norms is more precise than the term-size one (the smaller the value, the bigger
is the improvement), which is the case in all 32 cases.

We have also compared the performance of the different configurations. The
run-time of each configuration (for all benchmarks together, using the average
of 5 runs) is depicted in Table 1. We divide the total time into 3 parts: Tsa is
the time for processing the input program in order to define the typed-norms,
for configuration (3) this also includes the typed-norms inference, and for con-
figuration (1) this step does not exist and thus it costs 0; Tac is the time for
generating the abstract program; and Tub is the time for solving the abstract
program into an upper bound. As expected, using all typed-norms introduces
a significant overhead in configuration (2) when compared to (1). Importantly,
by using the typed-norms inference we reduce the number of typed-norms sig-
nificantly and thus the overhead becomes reasonable in configuration (3) when
compared to (1). The experiments have been performed on an Intel Core 2 Duo
at 2.4GHz with 8GB of RAM, running OS X 10.9.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 0 5 10 15 20 25 30 35

Ty
pe

 N
or

m
 /

Te
rm

 S
iz

e

Fig. 8. Upper Bound Comparison

Table 1. Run-Time statistics (in ms.) on 61 functions: (1) using term-size; (2) using
all type-norms; and (3) using only significant typed-norms obtained as in Sec. 4

Configuration Tsa Avg. Tsa Tac Avg. Tac Tub Avg. Tub Tsa+Tac+Tub

(1) 0 0 120 2 3911 65 4031

(2) 1633 27 631 11 14230 234 16494

(3) 2161 36 255 5 4488 74 6904

6 Conclusions, Related and Future Work

We have presented a novel transformational approach to resource analysis with
typed-norms which has the advantage that its formalization can be done by only
adapting the first phase of cost analysis in which the program is transformed
into an intermediate abstract program. Besides its simple formal development,
the implementation has been easily integrated into the previous system as a
pre-phase to the existing analysis.

Our work is inspired by [9] where the authors introduce the notion of typed-
based norm in the context of termination analysis, and show how types can be
very useful for finding suitable norms even for untyped languages like Prolog.
They also illustrate that typed-based norms sometimes must be combined to
get a termination proof. In [15], Vasconcelos introduces an enriched typing to
get upper bounds and uses it on resource analysis. Unlike our approach, in this

approach one can handle multiple typed-norms on variables only by having para-
metric data-structures. The techniques of Vasconcelos have been extended to the
context of logic programs [12]. When compared to an approach based on abstract
interpretation like [12], our transformational approach is simpler to define and
to implement because we do not need to re-do all the abstract interpretation
theory (defining specific concretization, abstraction functions, etc.). Instead, we
simply have to add explicit arguments for the sizes of data structures and define
a size abstraction which is rather straightforward. The implementation simply
requires a pre-process to add the arguments and properly abstract them. Then,
standard size analysis works on the transformed program. As regards accuracy,
when compared to [12], we define an additional step to infer the required typed-
norms. This allows us to handle accurately examples like our running example
in which the same term requires the use of more than one typed-norm in order
to be as accurate as possible.

With respect to the inference of typed-norms, we extend the results in [1]
to deal with typed-norms in addition to useless arguments. As our experiments
have showed, this analysis is essential to be scalable in practice (the analysis
time is reduced 58.14%) and, to the best of our knowledge, it is the first time
that it is applied on norms.

In future work, we plan to include parametric data types, which pose some
challenges in the definition of the framework. Also, we want to enrich types
with positions so that we can measure differently the same type when it appears
in different type contexts. E.g., the type data t = Pair(Int, Int) is enriched to
data t = Pair(Int1, Int2), and thus we will have the two different norms ‖.‖Int1
and ‖.‖Int2 .

References

1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO programs. In: Proc. of APLAS’11. LNCS, vol. 7078, pp. 238–254.
Springer (Dec 2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java
Bytecode. In: Proc. of ESOP’07. LNCS, vol. 4421, pp. 157–172. Springer (2007)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Removing Useless
Variables in Cost Analysis of Java Bytecode. In: Proc. of SAC’08. pp. 368–375.
ACM (2008)

4. Alonso, D., Arenas, P., Genaim, S.: Handling Non-linear Operations in the Value
Analysis of COSTA. In: Proc. of BYTECODE’11. ENTCS, vol. 279, pp. 3–17.
Elsevier (2011)

5. Bossi, A., Cocco, N., Fabris, M.: Proving Termination of Logic Programs by Ex-
ploiting Term Properties. In: Proc. of TAPSOFT’91. LNCS, vol. 494, pp. 153–180.
Springer (1991)

6. Bruynooghe, M., Codish, M., Gallagher, J., Genaim, S., Vanhoof, W.: Termination
Analysis of Logic Programs through Combination of Type-Based norms. TOPLAS
29(2), Art. 10 (2007)

7. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: Proc. of ICFP’00. pp. 268–279. ACM (2000)

8. Fähndrich, M.: Static Verification for Code Contracts. In: Proc. of SAS’10. LNCS,
vol. 6337, pp. 2–5. Springer (2010)

9. Genaim, S., Codish, M., Gallagher, J., Lagoon, V.: Combining Norms to Prove Ter-
mination. In: Proc. of VMCAI’02. LNCS, vol. 2294, pp. 123–138. Springer (2002)

10. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Proc. of FMCO’10 (Revised
Papers). LNCS, vol. 6957, pp. 142–164. Springer (2012)

11. King, A., Shen, K., Benoy, F.: Lower-bound Time-complexity Analysis of Logic
Programs. In: Proc. of ILPS’97. pp. 261–275. MIT Press (1997)

12. Serrano, A., Lopez-Garcia, P., Bueno, F., Hermenegildo, M.: Sized Type Analysis
for Logic Programs. In: Tech. Comms. of ICLP’13. Cambridge U. Press (2013), to
Appear

13. Spoto, F., Mesnard, F., Payet, É.: A Termination Analyser for Java Bytecode
based on Path-Length. TOPLAS 32(3), Art. 8 (2010)

14. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a
Java Optimization Framework. In: Proc. of CASCON’99. pp. 125–135. IBM (1999)

15. Vasconcelos, P.: Space Cost Analysis using Sized Types. Ph.D. thesis, School of
CS, University of St. Andrews (2008)

16. Vasconcelos, P., Hammond, K.: Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In: Proc. of IFL’03. LNCS, vol. 3145.
Springer (2003)

17. Wegbreit, B.: Mechanical Program Analysis. Communications ACM 18(9), 528–539
(1975)

