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ABSTRACT
Dynamic Partial Order Reduction (DPOR) algorithms are used in

stateless model checking to avoid the exploration of equivalent

execution sequences. DPOR relies on the notion of independence
between execution steps to detect equivalence. Recent progress in

the area has introduced more accurate ways to detect independence:

Context-Sensitive DPOR considers two stepsp and t independent in
the current state if the states obtained by executing p · t and t ·p are

the same; Optimal DPOR with Observers makes their dependency

conditional to the existence of future events that observe their op-

erations. We introduce a new algorithm, Optimal Context-Sensitive

DPOR with Observers, that combines these two notions of con-

ditional independence, and goes beyond them by exploiting their

synergies. Experimental evaluation shows that our gains increase

exponentially with the size of the considered inputs.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.
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1 INTRODUCTION
Partial Order Reduction (POR) considers two execution sequences

equivalent if one can be obtained from the other by swapping ad-

jacent, independent execution steps. Each such equivalence class

is called a Mazurkiewicz [16] trace, and POR guarantees that ex-

ploring one sequence per equivalence class is sufficient to cover all.

Early POR algorithms [9, 11, 19] relied on static approximations

of independence. The Dynamic-POR (DPOR) algorithm [10] was

a breakthrough because it uses the information witnessed during

the actual execution of the sequence to decide dynamically what

to explore. Thus, it often explores less sequences than approaches

based on static approximations. As a result, DPOR is considered

one of the most scalable techniques for software verification.

The cornerstone of DPOR is the notion of (in)dependence, which
is used to decide if two concurrent execution steps p and t (do
not) interfere with each other and, thus, both p · t and t · p se-

quences must (not) be explored. To guarantee soundness, DPOR

approximates independence and, thus, can lose precision if it treats

execution steps as interfering when they are not. Optimal DPOR

(ODPOR) [2] ensures optimality (never explores equivalent execu-

tion sequences), but only w.r.t. unconditional independence, which
requires execution steps to be independent in any possible state.

In practice, syntactic approximations are used to detect uncondi-

tional independence: typically, two execution steps are considered

dependent if both access the same variable and at least one modifies

it.

Any DPOR algorithm can thus improve its efficiency by using a

more accurate independence notion [12]. Two recent approaches

– DPORcs (Context-Sensitive DPOR) [3] and ODPOR
ob

(Optimal-

DPOR with Observers) [7] – have achieved this by integrating

orthogonal notions of conditional independence into DPOR:

• DPORcs : introduced the notion of context-sensitive indepen-
dence, which only requires execution steps p and t be inde-
pendent in the state S where they appear. This is determined

by executing sequences p · t and t · p in S , and checking if

the two states reached are equal. Consider, for example, the

three concurrent processes p, q and r below, and the execu-

tion tree in Fig. 2(a), which will be explained throughout the

paper.
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int x = 0;
p: x = 1;
q: x = 2;
r : assert (x < 3);

Assume p is scheduled first and we reach state 1, where

x==1. Executing either q · r or r ·q in state 1 yields the same

final state: x==2 and the assertion holds. Therefore, DPORcs
considers r and q independent in the context of state 1.

• ODPORob : introduced the notion of observability, where de-
pendencies between execution steps p and t are conditional
to the existence of future steps, called observers, which read

the values modified by p and t . Consider again the three

concurrent processes p, q and r above, and the execution

tree in Fig. 2(a). Assume r is scheduled first reaching state 9,

where x==0 and the assertion holds. ODPOR
ob

considers q
and p independent since, while their interleaved execution

leads to different final states, variable x is not observed later.

DPORcs and ODPOR
ob

modified the DPOR algorithm to exploit

their notions of independence. We present a further modification

of DPOR, called Optimal Context-Sensitive DPOR with Observers

(ODPOR
ob
cs ), that not only combines and exploits these two powerful

notions, but also takes advantage of their synergy to gain further

pruning. Let us consider the leftmost branch of the execution tree

in Fig. 2(a). DPORcs does not consider p and q independent, as they

give different values to variable x . ODPORob does not consider

them independent either, as r observes the different values they

give to x . However, ODPORobcs does consider them as independent,

as the assertion of observer r evaluates to true after executing either
p · q or q · p. Two major contributions are needed for this:

(1) DPORcs was formulated over Source-DPOR [1]. Thus, it did

not include the extension of wakeup trees used by ODPOR

to ensure optimality, and later used to handle observers. Our

first contribution is the formulation of DPORcs over ODPOR,

which we name Optimal Context-Sensitive DPOR (ODPORcs ).

(2) Our second contribution is to integrate observability into

ODPORcs , obtaining ODPOR
ob
cs . For this, we modify context-

sensitive independence to be modulo observability, which
only requires equivalence for variables affected by future

observers.

We have implemented ODPOR
ob
cs and experimentally evaluated it

with benchmarks from [3], [6] and [7]. Our experimental results

show ODPOR
ob
cs can explore exponentially less sequences than

either DPORcs or ODPOR
ob
.

2 PRELIMINARIES
2.1 Basics of DPOR and ODPOR
An event (p, i) of execution sequence E represents the i-th occur-

rence of process p in E. We use e <E e ′ to denote that event e
occurs before event e ′ in sequence E, s.t. <E establishes a total

order between events in E.
The core concept in ODPOR is that of the happens-before partial

order among the events in execution sequence E, denoted by →E .

This relation is used to define a subset of the <E total order, such

that any two sequences with the same happens-before order are

equivalent. Let dom(E) denote the set of events in E. Any lineariza-

tion E ′ of→E on dom(E) is an execution sequence with the same

happens-before relation →E′ as →E . Thus, →E induces a set of

equivalent execution sequences, all with the same happens-before

relation. We use E ≃ E ′ to denote that E and E ′ are equivalent.
The happens-before relation is also used for defining the notion

of race. Event e is said to be in race with event e ′ in execution E,
written e⋖Ee

′
, if the events belong to different processes, e happens-

before e ′ in E (e →E e ′), and the two events are “concurrent” (∃E ′
s.t. E ′ ≃ E and the two events are adjacent in E ′). We write e ≾E e ′

to denote that e is in a reversible race with e ′, i.e., e is in a race

with e ′ and the two can be reversed (∀E ′ s.t. E ′ ≃ E and e appears
immediately before e ′, e ′ is not blocked).

Optimality in ODPOR is achieved through the use of wakeup
trees. A wakeup tree is an ordered tree ⟨B,≺ ⟩, where the set of nodes

B is a finite prefix-closed set of sequences of processes, with the

empty sequence ϵ at the root. The children of nodew , of formw .p
for some set of processes p, are ordered by ≺. Intuitively, a wakeup

tree of sequence E, writtenwut(E), is composed of partial execution

sequences that must be explored from E, as they (a) reverse the

order of detected races, and (b) are provably not equivalent. As

a result, ODPOR does not even initiate equivalent explorations,

achieving exponential reductions over earlier DPOR algorithms.

To ensure an execution sequence v does not lead to equivalent

explorations if inserted in wut(E), sleep and weak initials sets [1]
are used. The sleep set of execution E, Sleep(E), contains the pro-
cesses that should not be explored from E, as they lead to equivalent
executions. The weak initials set of sequencew from execution E,
WI[E](w), contains any process with no “happens-before” predeces-

sors in dom[E](w), where dom[E](w) denotes the subset of events

in execution sequence E.w that are in w , i.e., dom(E.w)\dom(E).
Then, v is known to lead to equivalent explorations from E if

Sleep(E) ∩WI[E](v) , ∅.

Other notation we use includes: ê , denoting the process of event

e; s[E], the state after executing sequence E; enabled(s), the set of
processes that can perform an execution step from state s ;pre+(E, e)
and pre(E, e), the prefix of sequence E up to, including and not in-

cluding e , respectively; insert[E](v,wut(E)), the extension ofwut(E)
with new sequencev ; and subtree(⟨B,≺ ⟩,p), the subtree of wakeup
tree ⟨B,≺ ⟩ rooted at process p ∈ B, i.e., the tree ⟨B′,≺′ ⟩, where

B′ = {w |p.w ∈ B} and ≺′
is the restriction of ≺ to B′

.

2.2 ODPOR with Observers
The notion of dependency we use in this paper extends the tradi-

tional one by using the concept of observer introduced in [7].

Definition 2.1 (observers(e, e ′,E)[7]). Given an execution sequence
E, for all events e, e ′ ∈ dom(E) where e ⋖E e ′, there exists a set

O = observers(e, e ′,E) ⊆ dom(E) such that:

(1) For all o ∈ O , it holds that e →E o, o , e ′, and o ↛E e ′.
(2) For all o,o′ ∈ O , it holds that o ↛E o′.
(3) If E ′ ≃ E, then observers(e, e ′,E ′) = O .
(4) For every prefix E ′ of E such that e, e ′ ∈ dom(E ′):

• If O is empty, then e →E′ e ′.
• If O is nonempty, then e →E′ e ′ iff dom(E ′) ∩O , ∅.

(5) If e≾Ee
′
, for all sequencesw s.t. E.w is a sequence, and all

events e ′′∈dom(E):
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1: procedure RaceDetection(E)
2: for all e, e ′ ∈ dom(E) such that e ≾E e ′ do
3: let E ′ = pre(E, e);
4: if observers(e, e ′,E) , ∅ then
5: let o =maxE (observers(e, e

′,E));
6: let v = notdep∗(e, e ′,E). ˆe ′.ê .(notobs∗(e, e ′,E)\ ˆe ′).ô;
7: else
8: let v = notdep∗(e, e ′,E). ˆe ′;
9: if v < redundant(E ′,done) then
10: wut(E ′) := insert[E′](v,wut(E

′));

Figure 1: RaceDetection of ODPORob [7]

• If e ↛E e ′′, then e�⋖E .we
′′
.

• If e ′′ ↛E e ′, then e ′′�⋖E .we
′
.

(6) For all e ′′∈dom(E) such that e ′ →E e ′′, it holds that O ∩

observers(e ′, e ′′,E)=∅.
(7) If O = {o} and E = E ′.ô for some o and E ′, then for any

E ′′ ≃ E ′, either e →E′′ .ô e ′ or e ′ →E′′ .ô e .

Intuitively, in the usual particular case, observers(e, e ′,E) is the
set of other events in E, independent of each other (by Property 2),

that read the value written by e (e ′) for any variable also written by

e ′ (e) (by Property 4). By an abuse of notation, we will sometimes

treat this set as a sequence.

Thus, the happens-before relation used in this paper is the one

defined in [7], based on the notion of observability discussed previ-

ously (except from Sec. 3, which uses the relation in [2]). Intuitively,

two processes p and q are dependent modulo observability in execu-

tion E if either enables the other (i.e., executing E.p introduces q,
or vice versa), or (ii) s[E′ .p .q] , s[E′ .q .p], where E

′ < E, and there

exists in E at least one observer reading the variable written by

both of them.

The code in black of procedure Explore of Algorithm 1 (lines

11-33, excluding underlined blue parts) and the code of procedure

RaceDetection of Fig. 1, corresponds to the ODPOR
ob

algorithm [7],

which extends the original ODPOR [2] with the notion of observers,

and is our starting point. ODPOR
ob

carries out a depth-first explo-

ration of the execution tree from execution sequence E (initially

empty) using DPOR. Essentially, it dynamically finds reversible

races and is able to backtrack at the appropriate scheduling points

to reverse them. For this purpose, it keeps two sets at every prefix E ′

of E: the usual wakeup treewut(E ′), with the execution sequences

that must be explored from E ′, and the set done(E ′) of processes
that have already been explored from E ′.

ODPOR
ob

starts by selecting (line 24) the leftmost process p in

the wakeup tree, according to its order ≺, that is enabled by state

s[E] (due to line 14). If there is such a process, it setsWuT ′
as the

subtree of wut(E) with root p (line 28), and recursively explores

every sequence inWuT ′
from E.p (line 31). Note thatwut(E)might

grow as this recursion progresses, due to later executions of line 10.

After the recursion finishes, it adds p to done(E), removes from

wut(E) all sequences that start from p, and iterates selecting a new

p. Once a complete sequence E has been explored (E is said to be

complete if enabled(s[E]) = ∅), the algorithm performs the race

detection phase (line 14). This starts by finding all pairs of events e

Algorithm 1 ODPORcs algorithm

11: procedure explore(E ,WuT ,DnD)

12: dnd (E) := DnD ;

13: done(E) := ∅;

14: if enabled (s[E]) = ∅ then RaceDetection(E);
15: else ifWuT , ⟨{ϵ }, ∅⟩ then
16: wut (E) :=WuT ;
17: else if enabled (s[E])\dnd (E) = ∅ then
18: for each p ∈ dnd (E) such that |p | = 1 :
19: RaceDetection(E .p);
20: else
21: choose p ∈ enabled (s[E])\dnd (E);
22: wut (E) := ⟨{ϵ, p }, {(p, ϵ )}⟩;
23: while ∃p ∈ wut (E) do
24: let p =min≺ {p ∈ wut (E)};
25: if p ∈ dnd (E) then
26: RaceDetection(E .p);
27: else
28: letWuT ′ = subtree(wut (E), p);
29: let DnD′ = {v | v ∈ dnd (E), p < v, E |= p ⋄v }

30: ∪ {v | (p .v) ∈ dnd (E)};
31: Explore(E .p,WuT ′, DnD′);

32: add p to done(E);
33: remove all sequences of form p .w from wut (E);
34: procedure RaceDetection(E)
35: for all e, e′ ∈ dom(E) such that e ≾E e′ do
36: let E′ = pre(E, e); let dont = ϵ ;
37: let v = notdep∗(e, e′, E).ê′; v := v .I

fut
(E′, v, E);

38: if s[pre+(E,e′)] = s[E′ .(v .suc (e,E))
≤e

′

E
] then

39: dont := v .ê ;

40: if v < r edundant (E′, done) then
41: wut (E′) := inser t[E′](v, wut (E′));

42: add dont to dnd (E′);

and e ′ in dom(E) such that e ≾E e ′. For each such pair, it sets E ′ to
pre(E, e) and checks if the race between e and e ′ is observed (line 4).

If the race is not observed, v is set to notdep∗(e, e ′,E). ˆe ′ (line 8),

where notdep∗(e, e ′,E)1 is the subsequence of processes
ˆe ′′ of E

such that events e ′′ hold e <E e ′′ and e ↛E e ′′. If it is observed,
the race must be reversed and observed by the same observers.

Thus, the last (maxE ) observer o executed in E is selected (line 5)

and used to compute v (line 6), where notobs∗(e, e ′,E)1 denotes the

subsequence of E containing any process
ˆe ′′ such that e →E e ′′,

but e ′′ does not observe the race e ≾E e ′, and o′ ↛E e ′′ for any
observer o′ of the race. There is a small change in line 5 with respect

to [7]: we select o as the last (rather than an arbitrary) observer

from observers(e, e ′,E). The reason for this will be clear in Sec. 4.1.

Finally, ifv is not redundant for E ′ (line 9), it is inserted intowut(E ′)

(line 10). To detect if v is redundant from E ′, ODPORob cannot use

sleep sets because they are not sufficiently precise, in the presence

of observers, for avoiding redundant explorations without missing

non-redundant ones [7]. Instead, ODPOR
ob

uses the set done: v ∈

1
The mark

∗
in functions notdep∗ and notobs∗ indicates they will be redefined later.

Function notdep∗(e, e ′, E) does not use parameter e ′, it will be used once redefined.
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redundant(E ′,done) iff E ′.v is an execution sequence and there is

a partitioning E ′ = w .w ′
such that done(w) ∩WI[w ](w

′.v) , ∅.

Example 2.2. Consider again the processes p, q and r in Fig. 2(a).

Since they all have a single event, by abuse of notation, we will refer

to events by their process name. The algorithm starts at state 0 in

Fig. 2(a), with both E andWuT empty. The execution first chooses

p, and explores sequence p with an empty done set to state 1. The

execution then chooses q and explores sequence p.q with an empty

done set to state 2. Since now only r can be chosen, the execution

explores sequence p.q.r to state 3. Now, the race detection phase

detects an observed race for p and q, as they both write variable x
and are observed by r (line 4). It then creates sequence q.p.r in line

6, which will later lead to sequence q.p and will thus make r observe
the value written by p. The created sequence is added towut(ϵ) of
state 0 in line 10. A race between q and r is also detected and r is
added towut(p). Execution then backtracks to state 1, adding q to

done(p) on the way. Next, it chooses r and continues, exploring the

first five executions in Fig. 2(a). Once the fifth one is completed, it

checks if p is in an observed race with q. Since it is not, as there
is no observer after them, the sixth execution is not even started.

Thus, ODPOR
ob

explores one sequence less than ODPOR.

3 OPTIMAL CONTEXT-SENSITIVE DPOR
The happens-before relation used in this section is the one in [2],

which does not consider observability. Essentially, DPORcs works

as follows: when a reversible race e ≾E e ′ is detected, it not only
updates the appropriate structures to ensure the race is reversed on

backtracking, but also checks whether events e and e ′ are indepen-
dent in the current context E, that is, whether s

[E .ê .ê ′] = s[E .ê ′ .ê].

If they are, it stores a sequence in a new don’t-do set (in the origi-

nal DPORcs it was stored in the sleep set) at every prefix E ′ of E,
indicating that this sequence must not be explored in full when

backtracking to E ′. Consider theworking example of Fig. 2(a).When

DPORcs reaches state 3 (execution sequence p.q.r ), it realizes q and

r can be regarded as independent in context p, as s[p .q .r ] = s[p .r .q]
even though they are dependent according to the happens-before

relation in [2] with the usual syntactic approximation, sinceq writes
global variable x and r reads it. Hence, it adds r .q to the don’t-do

set of state 1. Once r is explored, q is not executed because it is in

the don’t-do set of state 4, which prevents the full exploration of

p.r .q.
As mentioned before, our first contribution is the reformulation

of DPORcs as an extension of ODPOR, rather than of Source-DPOR.

This yields an optimal DPORcs algorithm (see below), referred

to as ODPORcs , which makes it easier to integrate the notion of

observers (as done in Sec. 4). Reformulating DPORcs in terms of

ODPOR is challenging due to two main problems:

• Problem I: While Source-DPOR performs race detection at

every state, ODPOR must delay race detections until the

sequence being explored is complete.

• Problem II: As shown in [3], the effectiveness of DPORcs is

highly dependent on exploring don’t-do sequences as soon

as possible. Indeed, DPORcs uses these sequences to guide

the selection of the next process to be explored. However, the

wakeup trees of ODPOR fix part of these decisions, which

can affect guidance.

The ODPORcs algorithm corresponds to the code of Algorithm 1.

It is discussed in detail in Secs. 3.1 and 3.2, which explain how

problems I and II, respectively, have been overcome. Finally, Sec. 3.3

discusses its correctness and optimality.

3.1 Overcoming Problem I
Delaying race detections until the entire sequence is explored, com-

plicates the implementation of the context-sensitive checks, as they

need access to intermediate states. One could recover these states

by, for example, re-executing the sequence of events to reach them,

or storing them, either in full or by means of incremental state

updates, to be undone on backtracking. One could also perform

(part of) the checks on the fly during the exploration, instead of at

the end, thus reducing the number of intermediate states needed.

The preferred strategy will depend on the available memory and

the concrete language features. In any case, the following assumes

access to all states of the current sequence.

The new context-sensitive check corresponds to the underlined

blue code in line 38 of Algorithm 1 (for now, we use the black code

for v in line 37; it will be redefined in Sec. 3.2). Recall that the black

code of Algorithm 1 is common to both ODPOR and ODPOR
ob
, and

was explained in Sec. 2.2. Intuitively, given a reversible race e ≾E e ′

for events e and e ′, the check succeeds if the state right after the

race, s[pre+(E,e ′)], is the same as that obtained when the race is

reversed, s[E′ .(v .suc(e,E))
≤e

′

E
], where suc(e,E) is the subsequencew

of E that starts with ê and contains all ˆe ′′ s.t. e →E e ′′, andw
≤e

′

E
is

the subsequence ofw in E of processes that execute events up to,

and including, e ′ (i.e., keeps ˆe ′′ only if e ′′ ≤E e ′). As a result, the
sequence E ′.(v .suc(e,E))

≤e
′

E
executes the same events aspre+(E, e ′)

but with the race reversed. Assuming we have access to s[pre+(E,e)]
and s[E′], we only need to compute the state after the sequence

(v .suc(e,E))
≤e

′

E
from s[E′]. If the check succeeds, sequence v .ê is

added to the don’t-do set dnd(E ′) (line 42). Note that, unlike in the

original DPORcs , v contains the processes of events executed after

e ′ in E, that are independent of e and, thus, also independent of e ′.
This issue is further discussed in Sec. 3.2.

As in the original DPORcs , if a sequencew is added to the don’t-

do set of state s , w can be inherited down once we backtrack to

s , possibly being reduced until it eventually becomes a unitary

sequence and the exploration stops. In that case, race detection

must be forced explicitly. This is the task of the new if statement

in lines 25 and 26. Similarly, if every process enabled in s[E] is also
in dnd(E) for sequence E, then the exploration of E stops and race

detection is forced explicitly, in this case for every unitary sequence

indnd(E) (lines 17, 18 and 19). The support to inherit down don’t-do
sequences is the same as in the original DPORcs , corresponding

to lines 29 and 30. Essentially, E.p inherits each sequence v where

p.v ∈ dnd(E) (line 30), and where every process in v (line 29) is

independent of p in E (denoted as E |= p ⋄v), i.e, where the event
in dom[E](p) does not happen-before any event in dom[E .p](v).

Example 3.1. Let us explain the exploration performed byODPORcs
on our running example in Fig. 2(a). The algorithm first explores

sequence p.q.r and then performs race detection. For the reversible

race between q and r , the check (line 38) s[p .q .r ] = s[p .r .q] suc-
ceeds and, hence, r .q is added to dnd(p). The algorithm also finds a
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Figure 2: Execution trees computed by DPOR algorithms for our running example starting from x==0

reversible race between p and q, but this time s[p .q] , s[q .p] and,
thus, nothing is added to dnd(ϵ). After backtracking to state 1 with

r , sequence r .q is inherited down to state 4 as q (line 30). Hence,

this exploration is stopped at state 4 and race-detection is explicitly

invoked (lines 25 and 26). For the reversible race between p and

r , the check s[p .r ] = s[r .p] also succeeds adding r .p to dnd(ϵ). At
this point wut(ϵ) contains q and r . After backtracking to state 0

with q, p and r can be executed. Let us suppose that q.p.r is fully
explored. This exploration is analogous to that of p.q.r . Therefore,
r .p will be added to dnd(q), stopping the exploration at state 8 in

Fig. 2(a). Due to the reversible race between q and r , the algorithm
checks s[q .r ] = s[r .q], which succeeds adding r .q to dnd(ϵ). Finally,
after backtracking to state 0 with r , sequences r .p and r .q are in-

herited down to state 9, as p and q, respectively (line 30). Hence,

the exploration stops at state 9.

3.2 Overcoming Problem II
Consider the processes p and q from our running example, and

the initial exploration E1 = t .t ′.p.q, where t is a process defined
as t : y = 1; and t ′ is another instance of the same process t . Let
us assume, for now, that ODPORcs uses the original definition

of sequence v (line 37), that is, v = notdep∗(e, e ′,E). ˆe ′. For the
reversible race between p and q, ODPORcs adds q to wut(t .t ′).
Hence, upon backtracking to t .t ′, it will explore E2 = t .t ′.q.p. For
the reversible race between t and t ′, ODPORcs sets v to p.q.t ′

and adds it towut(ϵ). Also, since s[t .t ′] = s[t ′ .t ], it adds p.q.t
′.t to

dnd(ϵ). Later, when backtracking to ϵ and exploringp.q.t ′, sequence
t ′.t is inherited down to dnd(p.q). Hence, t is inherited down to

dnd(p.q.t ′), causing the exploration to stop and the race-detection

phase to start (line 26) for p.q.t ′.t . This detects a race between p
and q, causing the exploration of t ′.t .q.p, which is redundant to E2
(as s[t .t ′] = s[t ′ .t ]).

Such a redundant tracewould not have been explored byDPORcs .

This is because DPORcs (as well as Source-DPOR and the original

DPOR) does not record the sequence to be explored upon backtrack-

ing but, rather, an initial event to explore plus the sequences that

should not be selected (by means of the so called backtrack-set and
sleep set). This allows using don’t-do sequences to guide DPORcs
decisions regarding what to explore, achieving earlier and more

effective context-sensitive prunings. However, wakeup trees are

essential for ODPOR to achieve optimality. Therefore, the challenge

is to determine whether it is possible to keep optimality, while at

the same time being able to exploit don’t-do sequences at least as

effectively as DPORcs .

In order to reverse race e ≾E e ′, it suffices to have all ancestors of

e ′ before it. Let us then re-define notdep∗(e, e ′,E) as ance(e, e ′,E),
the subsequence of E containing the processes whose events oc-

curs after e and happen-before
ˆe ′ (and thus, independent with e).

This solves the problem in the above example: for the race be-

tween t and t ′ in E1, the sequences added to wut(ϵ) and dnd(ϵ)
would be t ′ and t ′.t , respectively. This is however not enough
since, in order to achieve optimality, v needs to include part of

the processes of E whose corresponding events are independent

with the ones in v , thus being detected as redundant in line 38.

Let us define the set of future initials, written I
fut
(E ′,v,E), that

contains any process with no “happens-before” predecessors in

dom[E′ .v](w) (i.e.,WI[E′](w) \ v), where E = E ′.w . Intuitively, ev-

ery event executed in w is dependent with one in v .I
fut
(E ′,v,E)

(i.e., ∀ê ∈ w,∃ ˆe ′ ∈ v .I
fut
(E ′,v,E) such that e ′ →E e). Indeed,

the future initials are also required in sequence v , so that when

an exploration is stopped by a don’t-do sequence (line 26), the

corresponding race detection phase has enough information to

build the appropriate sequences for each detected new race. As a

result, we redefine v as notdep∗(e ′, e ′,E). ˆe ′.I
fut
(E ′,v,E) (line 37)

with notdep∗(e, e ′,E) = ance(e, e ′,E). In the example above, for the

race between t and t ′ in E1, the new sequences added to wut(ϵ)
and dnd(ϵ) are t .p and t .p.t ′, respectively.

3.3 Correctness, Optimality and Final Remarks
The correctness of the ODPORcs algorithm follows from the correct-

ness of ODPOR, and the fact that context-sensitive checks only re-

move equivalent Mazurkiewicz traces. The optimality of ODPORcs

356



ISSTA ’19, July 15–19, 2019, Beijing, China Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey

with respect to theMazurkiewicz traces based on any conditional in-

dependence is not guaranteed, since it only detects certain cases of

context-sensitive independence. However, it has similar optimality

results as [2] (i.e., for the Mazurkiewicz traces based on uncon-

ditional independence): if ODPORcs explores a sleep set blocked

execution E, then ODPOR explores completely an execution with

the same happens-before relation than E. We do not compute sleep

sets but they can be obtained from the dnd and done sets. Further-
more, ODPORcs never explores more traces than ODPOR.

Definition 3.2 (Sleep set and Sleep set blocked execution [2]). Given
an execution sequence E and dnd(E) set and a done(E ′) set for
each prefix E ′ ≤ E, we define Sleep(E) as the set of processes

{p | p ∈ dnd(E) such that ∃E ′ ≤ E,p ∈ done(E ′)}. A call to

Explore(E,WuT ,DnD) is sleep set blocked during the execution of

Algorithm 1 if enabled(s[E]) ⊆ Sleep(E).

Note that this section focuses on the correctness and optimality

theorems of ODPORcs and, thus, the original check [2] is used

(sleep(E ′) ∩WI[E′](v) , ∅). However, a similar reasoning can be

done for the check in [7]: v ∈ redundant(E,done). Proofs for the
theorems in the paper can be found online in a technical report at

costa.fdi.ucm.es/papers/costa/issta19-proofs.pdf.

Lemma 3.3. If Algorithm 1 discovers that s[pre+(E′,e ′)] =

s[E0 .(v .suc(e,E))
≤e

′

E
], then for any complete sequence E of the form

E = E0.v .ê .u
′.w ′ that contains a race e ′ ≾E e , there is a complete

sequence E ′ = pre+(E ′, e ′).w that defines a different Mazurkiewicz
trace T ′ =→E′ and leads to an identical final state.

Theorem 3.4 (Soundness of ODPORcs ). For each Mazurkiewicz
trace T defined by the happens-before relation,
Explore(ϵ, ⟨{ϵ}, ∅⟩, ∅) of Algorithm 1 explores a complete execution
sequence that either implements T , or reaches an identical state to
one that implements T.

Let us claim now the optimality of Algorithm 1.

Lemma 3.5. Let E ′.v .u be a complete execution sequence such that
v ∈ wut(E), v .u ∈ dnd(E) and v ′ is the sequence created to reverse a
race found in E ′′ < E ′.v .u. For all w , such that E ′.v .u .w , let vw be
the corresponding sequence to reverse the same race in E ′′ < E ′.v .u .w .
Then:

Sleep(E ′′) ∩WI[E′′](v
′) , ∅ ⇔ Sleep(E ′′) ∩WI[E′′](vw ) , ∅

Theorem 3.6 (Optimality of ODPORcs ). Algorithm 1 never
explores two complete execution sequences that are equivalent and
never initiates sleep set blocked executions.

Finally, let us conclude this section by noting that both DPORcs
and ODPORcs are likely to be highly beneficial for programs with

large atomic code sections (e.g., monitors, concurrent objects, and

message-passing systems), where the usual approximation of de-

pendence can be rather imprecise. It is also likely to be beneficial

for programs with assertions, as these only result in two possibly

(local) states: either the assertion holds or it does not. Hence, the

context-sensitive independence check is more likely to succeed.

4 OPTIMAL CONTEXT-SENSITIVE DPOR
WITH OBSERVERS

The ODPOR
ob

and ODPORcs algorithms of Secs. 2.2 and 3 can be

combined simply by joining their codes together. This also requires

using the happens-before relation based on the notion of observ-

ability of [7] throughout the algorithm. The exploration performed

by such a “union” algorithm would be the intersection of the explo-

rations of ODPOR
ob

and ODPORcs , and its prunings the union of

the ODPOR
ob

and ODPORcs prunings.

This section goes beyond the union of the algorithms and pro-

poses in Secs. 4.1 and 4.2 two enhancements that exploit the combi-

nation and the synergy between the notions of context-sensitive

independence and observability. The resulting algorithm ODPOR
ob
cs

is presented in Algorithm 2. Finally, Sec. 4.3 studies the soundness

of ODPOR
ob
cs .

Algorithm 2 ODPOR
ob
cs algorithm

43: procedure explore(E ,WuT ,DnD)

44: dnd (E) := DnD ;

45: done(E) := ∅;

46: if enabled (s[E]) = ∅ then RaceDetection(E);
47: else ifWuT , ⟨{ϵ }, ∅⟩ then
48: wut (E) :=WuT ;
49: else if enabled (s[E])\dnd (E) = ∅ then
50: for each p ∈ dnd (E) such that |p | = 1 :
51: RaceDetection(E .p);
52: else
53: choose p ∈ enabled (s[E])\dnd (E);
54: wut (E) := ⟨{ϵ, p }, {(p, ϵ )}⟩;
55: while ∃p ∈ wut (E) do
56: let p =min≺ {p ∈ wut (E)};
57: if p ∈ dnd (E) then
58: RaceDetection(E .p);
59: else
60: letWuT ′ = subtree(wut (E), p);
61: let DnD′ = {v | v ∈ dnd (E), p < v, E |= p ⋄v }

62: ∪ {(u .v) | (u .p .v) ∈ dnd (E), E |=u .p .v p ⋄u };
63: Explore(E .p,WuT ′, DnD′);

64: add p to done(E);
65: remove all sequences of form p .w from wut (E);
66: procedure RaceDetection(E)
67: for all e, e′ ∈ dom(E) such that e ≾E e′ do
68: let E′ = pre(E, e); let dont = ϵ ;
69: if observers(e, e′, E) , ∅ then
70: let o =maxE (observers(e, e′, E));
71: let v = notdep∗(e, e′, E).ê′.ê .(notobs∗(e, e′, E)\ê′).ô;
72: let os = observers(e, e′, E); v := v .I

fut
(E′, v, E));

73: if
∧

o′∈os
s[pre+(E,o′)]=

e,e′
o′ s[E′ .v≤oE

.(ôs \ô)] then

74: dont := v .(ôs \ô);

75: else
76: let v = notdep∗(e, e′, E).ê′; v := v .I

fut
(E′, v, E);

77: if s[pre+(E,e′)] = s[E′ .(v .suc (e,E))
≤e

′

E
] then

78: dont := v .ê ;
79: if v < r edundant (E′, done) then
80: wut (E′) := inser t[E′](v, wut (E′));

81: add dont to dnd (E′);
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4.1 Refining the Context-Sensitive Check for
Write-Write Races

Consider again the race detection phase on our running example of

Fig. 2(b), after exploring the sequence p.q.r . The “union” algorithm
still finds a reversible race p ≾E q observed by r . After setting v to

q.p.r in line 71, the check s[p .q] = s[q .p] in line 77 fails (recall this

line is temporarily assumed to be out of the else). Hence, nothing is
added todnd(ϵ) andq.p.r is added towut(ϵ). Interestingly, sequence
q.p.r is equivalent to the already explored p.q.r , from the point of

view of the observer, i.e., while the value of variable x is different,

the assert in r holds in both cases.

It thus seems natural to perform a further and different context-

sensitive check that compares the states modulo observability, e.g.,
compares s[p .q .r ] and s[q .p .r ] only considering the observation

performed by r . Since the observed value in both cases makes

the assert hold, q.p.r could be added to dnd(ϵ), thus stopping the
exploration of the third sequence at state 6. More precisely, given

a race e ≾E e ′ observed by o, we say that two states s and s ′ are

equivalent modulo observability, written s =e,e
′

o s ′, if the effect

produced by observing e or e ′ is the same. If o is an assertion, the

effect is the same if after both eventso evaluates to the same Boolean

value. Similarly, if o is an assignment to a variable y, where there is
at least a variable which is read on its right-hand side and modified

by both e and e ′, then the effect is the same if the value of y in s
and s ′ is the same.

The implementation of the refined check corresponds to the un-

derlined red code in lines 72 and 73 of Algorithm 2. First, it sets os to
the subsequence of observer processes observers(e, e ′,E). Then, af-
ter extendingv with the required processes (see explanation below),

it checks that for every observer process o′ in os (this time treated as

a set), the state after executing o′ is equivalent modulo observability

to the state obtained by the alternative sequence E ′.v≤oE
.(ôs \ ô),

which contains the reversed race, followed by observer o and the

remaining observers.

As with the original context sensitive check (see Sec. 3.2), in

order to be effective, it is important not to include in v unnecessary

processes before the reversed race, while at the same time including

at the end those that are necessary to keep optimality. The solution

is analogous to that of Sec. 3.2. First, unnecessary processes are

taken away from sequencev (line 71). In particular,notdep∗ inherits
the redefinition of Sec. 3.2, and notobs∗(e, e ′,E) is redefined as the

subsequence of processes of E, excluding the occurrence e , whose
events happen-before those in observers(e, e ′,E). Finally, to ensure
optimality,v is extended with I

fut
(E ′,v,E) (line 71), to ensure it has

enough information to detect redundancies.

Note that all the predecessors of other observers are in v≤oE
,

thanks to the choice of o as maxE (observers(e, e
′,E)). Thus, we

can execute ôs \ ô (ô is already in v) without problem after E ′.v≤oE
.

Note also that we cannot use s[pre+(E,o)] to perform all the checks

because, after every o′ ∈ os has been executed, there may be an-

other event e ′′ < o ∈ E such that o′ →E e ′′, which would invali-

date the check by modifying the value of the variables used in the

check. That is why we use s[pre+(E,o′)] for each o
′ ∈ os to perform

each check in line 73. Another possibility, which could be more

efficient in certain contexts (and does not require accessing these

intermediate states), would be to perform all the checks with the

state s
[notdep∗(e,e ′,E).ê .ê ′ .(notobs∗(e,e ′,E)\{ê }).ôs ], (where the race

between e and e ′ has not been reversed).

The following provides the intuition behind the need to consider

every observer o′ ∈ observers(e, e ′,E) for the new check, rather

than just the selected oneo. Consider our running example extended

with onemore observer r ′ : assert(x < 2); and an initial exploration

of the sequence E = p.q.r .r ′. For the race between p and q we

have that observers(p,q,E) = {r , r ′}. Let us assume the algorithm

selects o := r . If the new check only considers o (instead of every

o′ ∈ os ), the check succeeds (the assert holds in both cases) and,

hence, q.p.r is added to dnd(ϵ). This prevents the exploration of

sequence q.p.r .r ′(where the assert of r ′ does not hold) which is not

equivalent to any previously explored sequence. In this concrete

example, this does not cause losing any different final result (the

assert of r ′ also fails in other combinations). However, this would

not be the case in an example where the only possibility for the

assert of r ′ to fail would be to execute it after q.p.
Note that this new check is only applied in the case of write-

write races followed by an observer (i.e. when the algorithm enters

the if of line 69) and that it can only be finer than the original

check. That is why in the final algorithm, the blue code of lines 76,

77 and 78 goes within the else scope, hence replacing the original

check for the case of write-write races. For those races that are not

observed, the original check is still applied in line 77.

Example 4.1. Let us extend our running example with a process

r2 := assert(x < 2); which is enabled only after executing

r and let us suppose that E = p.q.r .r2 is the first exploration ex-

plored by Algorithm 2. We detect a race between p and q because

observers(p,q,E) = {r }, so the race is observed by r . Now, the
check in line 69 is true, p.q.r is equivalent modulo observer r to
q.p.r , so q.p.r is added to dnd(ϵ). However, q.p.r .r2 and p.q.r .r2
have a different effect in r2 (let us notice that r2 is not an observer

for these executions). We also detect a race between q and r in E, so
r and r .q are added towut(p) anddnd(p), respectively. Now,p.r .r2.q
is also explored. Let us notice that the effect of r is always true for
any possible execution and the effect of r2 is true (in p.r .r2.q) or
false (in p.q.r .r2) depending on the execution.

4.2 Refining the Inheritance of Don’t-Do
Sequences

One could think that whenever a sequencew is added to a dnd(E ′)
set of sequence E ′ due to the new refined check, then a prefix ofw
is also added towut(E ′). Indeed, if the refined check of line 73 suc-

ceeds, the sequencev .(ôs \ ô) is added to dnd(E
′), and the sequence

v is inserted towut(E ′). However, it is possible for the sequence not
to be added towut(E ′) if it already contains an equivalent sequence

(which had been added before). In such cases, the dnd sequence

might not be propagated successfully during the exploration of

the corresponding sequence inwut(E ′), resulting in unnecessary

exploration.

Example 4.2. Let us consider our running example but replacing

process r by r : o = x ;, and first exploring sequence E1 = p.p
′.q.r ,

where p′ is another instance of the same process p. For the race
between p and q, the refined check builds the alternative sequence
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p′.q.p.r (note that p′ happens-before q in E1). The obtained obser-

vation is o == 1, whereas in the original E1 it was o == 2, hence

p′.q.p.r is added towut(ϵ) but not todnd(ϵ). The algorithm explores

four more sequences before backtracking to the root, including se-

quence E2 = p.q.p′.r . In this case, for the race between p and p′,
the refined check builds the alternative sequence q.p′.p.r (note that
q happens-before p′ in E2). The obtained observation both in E2
and q.p′.p.r is o == 1. Hence, q.p′.p.r is added to dnd(ϵ) but not to
wut(ϵ), since it is equivalent to p′.q.p.r , which was added before.

The propagation of dnd sequences in Algorithm 1 (underlined blue

code of lines 29 and 30) is not able to propagate down q.p′.p.r when
exploring p′.q.p.r , even though they are equivalent sequences.

The refined propagation allows to generalize the previous prop-

agation of dnd sequences, which can be seen in the underlined red

code of line 62 of Algorithm 2. Essentially, a sequence u .p.v will

now be propagated as u .v , if p is independent of all processes in u.
In addition, the new case can take advantage of observability using

the information of the trace E ′.u .p.v . We define E |=u .q .p .v q ⋄p if

E.u |= q ⋄p, (i.e., they are unconditional independent), or ∃ŵ ∈ v ,
such that the set of variables written both by p and q is over-

written by w and ∀r̂ ∈ v that observes any of these variables,

w <E .u .q .p .v r . Intuitively, this refined propagation allows transi-

tively propagating equivalences between the dnd set and theWuT
of a state.

In the case of Example 4.2, when backtracking to the root to

explorep′.q.p.r , the sequenceq.p′.p.r indnd(ϵ) is propagated down
to dnd(p′) as q.p.r . This allows detecting p′.q.p.r as redundant.

Indeed, ϵ |=qp′pr q ⋄ p′ in q.p′.p.r since r is not observing their

effect (it observes the subsequent write p), whereas they would be

dependent with the traditional notion of dependency.

Let us finally point out that this refinement is also applicable to

the ODPORcs algorithm of Sec. 3, and also to the original DPORcs
algorithm of [3], although in these contexts it would be much less

likely to be applied.

4.3 Correctness and Optimality
The theorem for ODPOR

ob
cs is analogous to the one in Sec. 3.3, but

using the definition of equivalence modulo observability, introduced
in Sec. 4.1. As in [7], the optimality used in this theorem (based on

not exploring redundant complete execution sequences) is weaker

than the one in Sec. 3.3 (based on not exploring sleep set blocked

executions). This is because, as we havementioned before, sleeps sets
cannot be used with observers to achieve the stronger optimality.

Lemma 4.3. If Algorithm 2 discovers that s[pre+(E′,o′)] =
e,e ′
o′

s[E0 .v≤oE
.(ôs \ô)] ∀o′ ∈ os , for any complete sequence E of the form

E = E0.v .(ôs\ô).w
′ that contains a race e ′ ≾E e observed by os =

observers(e, e ′,E) and o = maxE (os ), there is a complete sequence
E ′ = pre+(E ′,o).w that defines a differentMazurkiewicz traceT ′ =→E′

and leads to an identical final state modulo observability.

Lemma 4.4 (soundness of new inheritance). Let E ′ be an exe-
cution such thatp.q.u ∈ wut(E ′),q.p.u .v ∈ dnd(E ′), andE ′ |=q .p .u .v
p⋄q. If E = E ′.p.q.u .v and E ′′ = E ′.q.p.u .v , then s[E] = s[E′′] modulo
observability.

Theorem 4.5 (Soundness of ODPOR
ob
cs ). For each Mazurkiewicz

trace T defined by the happens-before relation,

Explore(ϵ, ⟨{ϵ}, ∅⟩,∅) of Algorithm 2 explores a complete execution
sequence that either implements T , or reaches an equivalent state
modulo observability as one that implements T.

Let us claim now the optimality of Algorithm 2.

Theorem 4.6 (Optimality of ODPOR
ob
cs ). Algorithm 2 never

explores two complete execution sequences that are equivalent.

5 EXPERIMENTS
This section reports on an experimental comparison of the perfor-

mance of DPORcs [3], ODPOR
ob

[7] and our proposed ODPOR
ob
cs .

We have implemented and experimentally evaluated our method

within the SYCO tool [4], a systematic testing tool for message-

passing concurrent programs. SYCO can be used online through

its web interface available at http://costa.fdi.ucm.es/syco. We have

used three sets of benchmarks: The first one is a subset of the

synthetic programs used in [7] to compare ODPOR and ODPOR
ob
.

Benchmarks FR, FR-a, LW, and abs are similar to our running exam-

ple, while Lam is a mutual exclusion protocol. We have not included

apr_1, an Apache library written in C, because translating it to our

language is very complex. Similarly, we have excluded the second

set of benchmarks used in [7], because they are written in Erlang

and exploit the notion of observability inherent to a receive syn-

chronization primitive that is not supported by our language [13].

Our second set of benchmarks is a subset of the classical concurrent

programs used in [3] to compare Source-DPOR and DPORcs . They

feature typical distributed and concurrent algorithmic patterns, in

which computations are split into smaller atomic subcomputations

that concurrently interleave their executions, and work on shared

data. Our set includes two concurrent sorting algorithms, QS and

MS, concurrent Fibonacci, Fib, a database protocol, DBP, and a

consumer producer interaction, BB. We excluded Pi, PSort and

Reg, because they were already optimal in DPORcs and behave

as Fib and MS. Our third set of benchmarks include two larger

programs: MapRed, an implementation of a map-reduce model

developed by a company (440 lines of code); and SDN [6], a model

of a software-defined network featuring a safety policy violation

(490 lines).

We have executed each benchmark with 4 size increasing input

parameters and a timeout of 120 seconds. When reached, we write

>X to indicate that, for the corresponding measure, we encountered

X units at timeout (i.e., it is at least X ). Table 1 shows the results
of the executions. An exception for this is Lam, for which we only

show one input (corresponding to two processes trying to access the

critical section), since it is not tractable for more than two processes

in our implementation (in the implementation of [7] it becomes

intractable for more than three processes). Column E shows the

number of execution sequences, S the number of states explored,

and T the time in seconds needed to compute them. Times are

obtained on an Intel(R) Core(TM) i7 CPU at 2.5Ghz with 8GB of

RAM (Linux Kernel 5.4.0). Columns Gcs
T and Gob

T show the time

speedup of ODPOR
ob
cs over DPORcs and ODPOR

ob
, respectively,

computed by dividing their respective times by that of ODPOR
ob
cs .

To measure memory requirements, we compute for each explored

trace, the sum of the cardinality of all its dnd sets, and show inMD
the maximum of these sums. In addition, MS shows the maximum
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Table 1: Experimental evaluation results

DPORcs ODPORob ODPORobcs Speed-up

Bench. E S T E S T E S T MD MS Gcs
T Gob

T

FR(3) 17 36 0.02 13 29 0.03 8 27 0.04 8 6 0.5x 0.7x

FR(5) 416 865 0.35 81 247 0.17 29 141 0.14 43 8 2.7x 1.3x

FR(7) 21k 42k 34.21 449 2k 2.28 68 456 0.82 128 10 42.1x 2.9x

FR(9) >51k >104k 120.00 3k 12k 29.92 129 2k 5.18 328 12 >23.2x 5.8x

FR-a(4) 24 107 0.05 33 86 0.05 1 40 0.04 17 7 1.3x 1.6x

FR-a(6) 720 4k 2.17 193 680 0.88 1 119 0.25 51 9 9.0x 3.7x

FR-a(8) >20k >88k 120.00 2k 5k 10.79 1 270 1.18 116 11 >101.9x 9.2x

FR-a(10) >18k >79k 120.00 >5k >26k 120.00 1 517 5.09 224 13 >23.6x >23.6x

LW(3) 6 17 0.01 3 10 0.01 1 10 0.01 3 6 0.9x 0.7x

LW(5) 120 327 0.16 5 21 0.02 1 21 0.03 8 8 7.8x 0.9x

LW(7) 6k 14k 8.96 7 36 0.06 1 36 0.07 15 10 137.8x 0.9x

LW(10) >32k >85k 120.00 10 66 0.32 1 66 0.31 29 13 >396.0x 1.1x

abs(2) 4 28 0.02 2 15 0.01 1 12 0.01 6 9 2.0x 1.2x

abs(3) 54 577 0.30 2 26 0.02 1 23 0.02 15 12 19.8x 1.3x

abs(4) 2k 33k 29.34 2 44 0.04 1 40 0.05 25 15 598.6x 0.8x

abs(5) >4k >109k 120.00 2 58 0.09 1 54 0.10 37 18 >1250.0x 0.9x

Lam(2) 37 605 0.30 30 470 0.59 26 456 0.46 12 29 0.7x 1.3x

Fib(3) 1 18 0.01 6 22 0.01 1 18 0.01 2 10 0.8x 1.0x

Fib(4) 1 43 0.02 90 250 0.18 1 43 0.03 5 18 0.7x 8.2x

Fib(5) 1 99 0.04 4k 11k 22.36 1 99 0.09 10 30 0.5x 266.2x

Fib(6) 1 228 0.13 >2k >6k 120.00 1 228 0.63 20 50 0.2x >192.6x

QS(8) 1 763 0.31 4k 12k 23.67 1 309 0.19 7 30 1.7x 130.8x

QS(10) 1 4k 1.47 >6k >31k 120.00 1 607 0.50 9 38 3.0x >243.4x

QS(13) 1 25k 14.83 >2k >15k 120.00 1 2k 1.68 12 50 8.9x >71.6x

QS(15) 1 99k 72.95 >826 >10k 120.00 1 3k 3.56 14 58 20.6x >33.8x

MS(7) 1 70 0.03 2k 4k 5.12 1 68 0.06 6 26 0.5x 91.4x

MS(9) 1 121 0.06 14k 37k 116.75 1 107 0.14 8 34 0.4x 877.8x

MS(11) 1 172 0.09 >4k >13k 120.00 1 166 0.33 15 42 0.3x >372.7x

MS(14) 1 254 0.14 >2k >5k 120.00 1 224 1.08 14 54 0.2x >111.5x

DBP(5) 361 5k 2.89 32 210 0.24 4 65 0.09 5 32 35.2x 2.9x

DBP(6) 2k 21k 66.59 64 451 0.73 4 73 0.14 6 38 479.1x 5.3x

DBP(7) >3k >26k 120.00 128 964 2.23 5 109 0.28 7 44 >431.7x 8.0x

DBP(8) >3k >27k 120.00 256 3k 6.78 5 117 0.44 8 50 >275.9x 15.6x

BB(3) 11 38 0.02 20 49 0.03 5 23 0.02 5 7 1.0x 2.0x

BB(5) 80 326 0.13 252 671 0.56 17 103 0.09 9 11 1.5x 6.7x

BB(7) 580 3k 1.18 4k 10k 18.02 65 459 0.82 13 15 1.5x 22.2x

BB(8) 5k 21k 12.49 >10k >28k 120.00 257 3k 15.87 17 19 0.8x >7.6x

MapRed 9 162 114 118 856 2961 9 162 185 24 26 0.6x 16.0x

SDN 22 242 83 58 287 229 16 83 52 20 14 1.6x 4.4x

number of states stored, which corresponds to the number of states

of the longest explored trace.

The results from the first set of benchmarks show that ODPOR
ob
cs

can explore exponentially less sequences thanDPORcs andODPOR
ob
.

In most cases we obtain speedups with respect to both methods,

although when the reduction in sequences is small, the overhead

of the more complex context-sensitive checks of ODPOR
ob
cs does

not pay off. For FR and FR-a, ODPOR
ob
cs obtains gains over both

algorithms, scaling by several orders of magnitude. For LW(n),

ODPOR
ob

behaves very well, only exploring n sequences. Thus,

ODPOR
ob
cs obtains similar results and the overhead is small. The

same happens for abs. When compared with DPORcs , we achieve

reductions of up to 4 orders of magnitude. Since most examples

reach the timeout, the gains can be bigger than the ones shown.

In the second set of benchmarks DPORcs is already optimal for

Fib andMS. Hence, the addition of observers has no benefit and the

slower context-sensitive checks introduce a slowdown. For DBP,

observers achieve important gains and the combination with con-

text sensitivity gives further benefits. For QS, we obtain significant

gains over both algorithms, although those over ODPOR
ob

do not

scale. In most benchmarks, we have been able to identify which

of the extensions proposed in the paper are leading to the gains.

In particular, the gains in QS are achieved due to the extension of

Sec. 3. The refined context-sensitive check is fundamental for the

gains achieved in FR and FR-a. Finally, the new way of inheriting

the dnd sets leads to the gains of abs and DBP.
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The results from the third set of benchmarks give evidence of

the potential of our algorithm when applied over larger programs.

For MapRed, both ODPOR
ob
cs and DPORcs explore 9 executions in

185 ms. and 114 ms. respectively, while ODPOR
ob

explores 118 ex-

ecutions and takes almost 3 seconds, since there is no gain in using

observers in this case. For SDN, ODPOR
ob
cs explores 16 executions

in 52 ms., whereas DPORcs explores 22 executions in 83 ms. and

ODPOR
ob

58 in 229 ms.

Regarding the memory requirements of ODPOR
ob
cs , the results

show thatMS (i.e., the maximal length of the explored traces) re-

mains low in all examples and grows linearly with the input size.

The same holds forMD except for FR and FR-a, where an exponen-

tial growth can be observed. As already mentioned in Sec. 3 (and

also discussed in [18] for a different algorithm), there are a number

of strategies to reduce the amount of information to be stored.

In summary, our experimental results show the exponential

reduction that can be achieved by ODPOR
ob
cs , as our gains increase

exponentially at least w.r.t. one of the algorithms in all examples

we have considered.

6 CONCLUSIONS AND RELATEDWORK
DPOR is one of the most scalable techniques used in the verifica-

tion of concurrent systems. Recent work has introduced orthogonal

notions of conditional independence into DPOR: DPORcs [3] pro-

poses a context-sensitive check in the current state to detect more

accurately independence among processes, ODPOR
ob

[7] proposes

a finer notion of independence which is conditional to the exis-

tence of observers that read the values written by the processes. We

propose a seamless integration of DPORcs and ODPOR
ob
, via two

major technical extensions to DPORcs : (1) incorporating (and using

effectively) the notion of wakeup tree used by ODPOR
ob
, and (2)

refining the context-sensitive check (and the sequences computed

with it) to take observers into account. As shown in our experimen-

tal evaluation, the resulting algorithm achieves prunings that go

beyond the combination of the individual algorithms.

Other recent approaches have considered alternative ways of

refining the detection of independence. Data-Centric DPOR [8]

focuses on the read-write of variables. It defines two traces to be

observationally equivalent if every read event observes the same

write event in both traces. In contrast, we use the notion of observ-

ability introduced by [7], which is based on observing interference

of operations, not just individual writes. The equivalence relation

used by Data-Centric is proven in [8] to see more traces as equiva-

lent than the one based on Mazurkiewicz traces, which is the one

used in our work and in all other variants of the DPOR algorithm

of [10]. The drawback of Data-Centric is that it is optimal only for

programs with acyclic communication graphs. Instead, our work is

an extension of an optimal algorithm [7].

Another approach is to generate independence constraints (ICs),
which ensure the independence of each pair of processes in the

program. The work in [14, 20] generated for the first time ICs

for processes with a single instruction following some predefined

patterns. Recently, Constrained DPOR [5] proposed to generate ICs

in a pre-phase, using an SMT solver. It later used the generated ICs

within DPOR in a similar way to how our context-sensitive checks

are used. In addition, it can perform another type of pruning using

the notion of transitive uniform conditional independence –which

ensures the ICs hold along the whole execution trace (and ensures

uniformity as defined in [12, 15]). The extension of Constrained

DPOR with observers, to the best of our knowledge, has not been

studied yet. We believe the integration of wakeup trees could be

done similarly to our proposal in Sec. 3, and the enhancements in

Sec. 4 would be applicable also in the Constrained DPOR framework.

Still, the combination of transitive uniformity and observability

remains to be investigated.

An orthogonal approach to increase scalability, introduced in

Quasi-Optimal POR [17], is to approximate the optimal exploration

using a provided constant k . In essence, by using approximation,

alternatives are computed in polynomial time, rather than making

an NP-complete exploration, as in ODPOR. Another orthogonal

improvement is to inspect dependencies over event chains [18].
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