
SYCO: A Systematic Testing Tool for Concurrent Objects

Elvira Albert
Complutense University of Madrid

elvira@fdi.ucm.es

Miguel Gómez-Zamalloa
Complutense University of Madrid

mzamalloa@fdi.ucm.es

Miguel Isabel
Complutense University of Madrid

miguelis@ucm.es

Abstract
We present the concepts, usage and prototypical implementation of
SYCO: a SYstematic testing tool for Concurrent Objects. The sys-
tem receives as input a program, a selection of method to be tested,
and a set of initial values for its parameters. SYCO offers a visual
web interface to carry out the testing process and visualize the re-
sults of the different executions as well as the sequences of tasks
scheduled as a sequence diagram. Its kernel includes state-of-the-
art partial-order reduction techniques to avoid redundant computa-
tions during testing. Besides, SYCO incorporates an option to ef-
fectively catch deadlock errors. In particular, it uses advanced tech-
niques which guide the execution towards potential deadlock paths
and discard paths that are guaranteed to be deadlock free.

Categories and Subject Descriptors D1.3 [Programming Tech-
niques]: Concurrent Programming; D2.5 [Testing and Debug-
ging]: [testing tools, systematic execution]

Keywords systematic testing, concurrency, concurrent objects,
software testing, partial-order reduction

1. Motivation
Testing is the most widely-used methodology for software valida-
tion in industry. Several studies point out that it requires at least
half of the total cost of a software project. Software testing tools
urge especially in the context of concurrent programming. This is
because writing correct concurrent programs is more difficult than
writing sequential ones as with concurrency come additional haz-
ards not present in sequential programs such as race conditions,
deadlocks, and livelocks. In order to catch such errors, the testing
tool must consider the non-determinism caused by the fact that an
execution can lead to different solutions depending on the way that
the involved tasks interleave, and, ideally, all possible interleavings
must be considered. A systematic exploration of the state space is
usually not feasible. A lot of research has been done in the con-
text of testing and model checking with the aim of avoiding redun-
dant state exploration as much as possible [1, 2, 5, 10]. SYCO is
a testing tool that targets the ABS concurrent objects language [8]
and that incorporates state-of-the-art partial-order-reduction (POR)
techniques to avoid redundant exploration.

Essentially, a concurrent object is a monitor that allows at most
one active task to execute within the object. Task scheduling is

non-preemptive, i.e., the active task has to release the object lock
explicitly (using the await or return instructions). Each object has
an unbounded set of pending tasks. When the lock of an object
is free, any task in the set of pending tasks can grab the lock and
start executing. Each object has a local heap or memory (set of
fields) which can only be accessed from the owner object. The
instruction f = ob!m() creates an asynchronous task to execute
method m on object ob. Synchronization can be performed using
the future variable f, namely the instruction await f? checks if the
execution of the asynchronous task has finished. It not, the object
lock is released and the task suspends until the value of f is ready.
In contrast, the instruction v = f.get blocks the task until f is ready
retaining the object lock. Once the execution of the task finishes, it
assigns the obtained value to v.

Running Example. The following example simulates a sim-
ple communication protocol between a database and a worker.

1 {\\main block
2 DB db = new DB();
3 Worker w = new Worker();
4 db!register(w);
5 w!work(db);
6 }
7 class DB{
8 Data data = ...;
9 Worker cl = null;

10 void register(Worker w){
11 Fut〈Int〉 f = w!ping(5);
12 if (f.get == 5) cl = w;
13 }

14 Int getD(Worker w){
15 if (cl == w) return data;
16 else return null;
17 }
18 }// end class DB
19 class Worker{
20 Data data;
21 void work(DB db){
22 Fut〈Data〉 f = db!getD(this);
23 data = f.get;
24 }
25 Int ping(Int n){return n;}
26 }// end of class Worker

The main method creates the two objects and invokes methods
register and work resp. The work method of the worker simply
accesses the database (invoking asynchronously method getD) and
then blocks until it gets the result, which is assigned to its data field.
The register method of the database, first checks that the worker is
online (invoking asynchronously method ping), then blocks until
it gets the result, and finally it registers the worker by storing its
reference in its cl field. Method getD of the database returns its
data field if the caller worker is registered, otherwise it returns null.

Depending on the sequence of interleavings, the execution of
this program can finish: (i) as expected, i.e., with w.data = db.data
, (ii) with w.data = null, or, (iii) in a deadlock. (i) happens when
the worker is registered in the database (assignment in L12) before
getD is executed. (ii) happens when getD is executed before the
assignment at L12. A deadlock is produced if both register and work
start executing before getD and ping.

2. The SYCO Tool
The figure above shows the main architecture of SYCO. Boxes
with dash lines are internal components of SYCO whereas boxes
with regular lines are external components. The user interacts with
SYCO through its web interface which is provided by EasyInter-



face [7]. Basically EasyInterface provides a generic IDE which can
be instantiated to different languages and compilers and where ex-
ternal plugins can be easily added. The SYCO engine receives an
ABS program and a selection of parameters. The ABS compiler
compiles the program into an abstract-syntax-tree (AST) which is
then transformed into the SYCO intermediate representation (IR).
The DPOR engine carries out the actual systematic testing process.
It comprises the ABS semantics, the DPOR algorithm of [2] and
the stability and dependencies analyses of [2]. The output manager
then generates the output in the format which is required by Easy-
Interface, including an XML file containing all the EasyInterface
commands and actions and the SVG diagrams. In case a deadlock-
guided testing is requested (see the corresponding parameter be-
low), the DECO deadlock analyzer [6] is invoked, whose output
is used by the DPOR engine to guide the testing process (discard-
ing non-deadlock executions) [4]. Let us note that other actor-based
languages with similar features could be handled by SYCO just by
providing a compiler to the SYCO IR.

The web interface of SYCO is available at costa.ls.fi.
upm.es/syco. Essentially, once the input program is ready, either
selected from the available library of ABS programs or supplied
by the user, a set of parameters are provided (or just left with by-
default values), the SYCO engine is run and the output is obtained.

Parameters. The following parameters can be set:
• Partial-order reduction: It enables/disables POR.
• Dependency over-approximation: In case POR is applied, a cen-

tral operation is the detection of independent tasks, which has to
be over-approximated. SYCO includes the over-approximation
of [10] which considers as dependent tasks those in the same
actor, and, also, the enhancement of [2] for actors with local
memory, which looks at field accesses within the involved tasks
and considers as dependent only tasks belonging to the same
actor and accessing at least a common field.
• Deadlock-guided testing: If this parameter is selected, the test-

ing process is guided with the cycles inferred by DECO towards
deadlocks, discarding non-deadlock executions, with the corre-
sponding state space reduction.

Output. As a result, SYCO outputs a set of executions. For each
one, SYCO shows the output state and the sequence of tasks/in-
terleavings and concrete instructions of the execution (highlight-
ing the source code). Also, it allows showing a sequence diagram
from which it can be observed the task/object executing and the
asynchronous calls made (with arrows from caller to callee) at each
time of the simulation, the waiting and blocking dependencies, the
deadlock cycles, etc. SYCO produces 6 executions for the running
example with POR disabled. That covers all possible task interleav-
ings that may occur. SYCO reports that 2 executions are deadlock
executions corresponding to sequences main→register→work and
main→work→register. Those correspond to scenario (iii) at the end
of Sect. 1. Within the remaining 4 executions, two of them corre-
spond to scenario (i) and the other two to scenario (ii). According

to POR theory [2, 10], the remaining 4 executions can be grouped
in two equivalence classes, therefore 2 executions are redundant
and only two different results are obtained. When POR is enabled,
SYCO produces these 4 executions, the two deadlock executions,
and, the executions corresponding to scenarios (i) and (ii).

3. Discussion and Related Work
We have presented a systematic tester for an actor-based concur-
rency model which incorporates state-of-the-art POR methods. The
tool can be used online through its web interface and provides in-
formation about all possible (non-redundant) behaviors that the in-
put concurrent program may have, including trace highlighting and
detailed sequence diagrams. It also has support for deadlock detec-
tion and debugging, incorporating novel techniques for deadlock-
guided testing [4] in which an external deadlock analyzer [6] is
embedded. We claim that the tool is very useful for testing and de-
bugging models of concurrent systems.

Several related tools exist, being the most relevant Microsoft’s
CHESS [9] for .NET, Concuerror [5] for Erlang and Basset [10]
for ActorFoundry. All of them incorporate state-of-the-art POR
techniques. The most advanced in this sense is Concuerror which is
equipped with the most recent Optimal DPOR algorithm [1]. Also,
Concuerror is the only one providing graphical output similar to our
sequence diagrams. None of them provides a web interface. Many
other related tools exist in the context of model-checking that are
left out of this comparison.

As regards future work, we are currently studying the most
advanced POR techniques of [1] and the possibility of adapting
them to our context. Also, we are in the process of incorporating
the symbolic execution engine of [3] so that SYCO also allows
performing static testing.

Acknowledgments. This work was funded partially by the EU
project FP7-ICT-610582 ENVISAGE: Engineering Virtualized
Services (http://www.envisage-project.eu), by the Spanish MINECO
project TIN2012-38137, and by the CM project S2013/ICE-3006.

References
[1] P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal Dy-

namic Partial Order Reduction. In Proc. POPL’14, pp. 373–384.
ACM, 2014.

[2] E. Albert, P. Arenas, and M. Gómez-Zamalloa. Actor- and Task-
Selection Strategies for Pruning Redundant State-Exploration in Test-
ing. In Proc. FORTE’14, LNCS 8461, pp. 49-65. Springer, 2014.

[3] E. Albert, P. Arenas, M. Gómez-Zamalloa, and P. Y.H. Wong. aPET:
A Test Case Generation Tool for Concurrent Objects. In Proc. ES-
EC/FSE’13, pp. 595–598. ACM, 2013.

[4] E. Albert, M. Gómez-Zamalloa, and M. Isabel. Combining Static
Analysis and Testing for Deadlock Detection. Technical report, 2015.

[5] S. Aronis and K. Sagonas. Concuerror: Systematic concurrency test-
ing of Erlang programs.

[6] A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-
in-Parallel based Deadlock Analysis for Concurrent Objects. In
FORTE’13, LNCS 7892, pages 273–288. Springer, 2013.

[7] S. Genaim and J. Doménech. The EasyInterface Framework, 2015.
http://github.com/abstools/easyinterface.

[8] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS:
A Core Language for Abstract Behavioral Specification. In Proc.
FMCO’10, LNCS 6957, pp. 142-164. Springer, 2012.

[9] M. Musuvathi and S. Qadeer. Concurrency Unit Testing with CHESS.
Tech. Report MSR-TR-2008-04, Microsoft Research, January 2008.

[10] D. Marinov G. Agha S. Lauterburg, R. K. Karmani. Basset: A Tool for
Systematic Testing of Actor Programs. In Proceedings of FSE 2010,
pages 363–364. ACM, 2010.


