
Generation of Initial Contexts for Effective
Deadlock Detection?

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel

elvira@fdi.ucm.es, mzamalloa@fdi.ucm.es, miguelis@ucm.es

Complutense University of Madrid (UCM), Spain

Abstract. It has been recently proposed that testing based on sym-
bolic execution can be used in conjunction with static deadlock analysis
to define a deadlock detection framework that: (i) can show deadlock
presence, in that case a concrete test-case and trace are obtained, and
(ii) can also prove deadlock freedom. Such symbolic execution starts from
an initial distributed context, i.e., a set of locations and their initial tasks.
Considering all possibilities results in a combinatorial explosion on the
different distributed contexts that must be considered. This paper pro-
poses a technique to effectively generate initial contexts that can lead
to deadlock, using the possible conflicting task interactions identified by
static analysis, discarding other distributed contexts that cannot lead
to deadlock. The proposed technique has been integrated in the above-
mentioned deadlock detection framework hence enabling it to analyze
systems without the need of any user supplied initial context.

1 Motivation

Deadlocks are one of the most common programming errors and they are there-
fore one of the main targets of verification and testing tools. We consider a
distributed programming model with explicit locations (or distributed nodes)
and asynchronous tasks that may be spawned and awaited among locations.
Each location represents a processor with a procedure stack and an unordered
queue of pending tasks. Initially all processors are idle. When an idle processor’s
task queue is non-empty, some task is selected for execution, this selection is
non-deterministic. Let us see now our motivating example in Figure 1 which
simulates a simple communication protocol between a database location and
a worker location. Our implementation has the main method, and two classes
Worker and DB implementing the worker and the database, respectively. The
main method creates two distributed locations: the database and the worker,
and (asynchronously) invokes methods register and work on each of them, re-
spectively. The work method of a worker simply accesses the database (invoking
asynchronously method getData) and then blocks until it gets the result, which is

? This work was funded partially by the Spanish MINECO project TIN2015-69175-
C4-2-R, by the Spanish MECD FPU Grant FPU15/04313 and by the CM project
S2013/ICE-3006.

1 main(){
2 DB db = new DB();
3 Worker w = new Worker();
4 db!register(w);
5 w!work(db);}
6

7 class Worker{
8 Data data;
9 int work(DB db){

10 Future〈Data〉 f;
11 f = db!getData(this);
12 data = f.get;
13 return 0;
14 }
15 int ping(int n){return n;}
16 }// end of class Worker
17

18 class DB{
19 Data data = ...;
20 Worker client = null;
21 int connected = 1;

22 int connect(){
23 connected = 3;
24 return connected;
25 }
26 int register(Worker w){
27 connected = 5;
28 Future〈Data〉 g;
29 g = this!getData(w);
30 await g?;
31 if (connected > 0){
32 connected = connected − 1;
33 Future〈int〉 f = w!ping(5);
34 if (f.get == 5) client = w;
35 }
36 return 0;
37 }
38 Data getData(Worker w){
39 if (client == w) return data;
40 else return null;
41 }
42 }// end of class DB

Fig. 1. Working example. Communication protocol between a DB and a worker

assigned to its data field. The instruction get blocks the execution in the current
location until the awaited task has terminated. We use future variables [7,8] to
detect the termination of asynchronous tasks. The register method of the database
makes a call to getData and waits for its execution. Once it has finished, it checks
if the number of possible connections is bigger than 0. In that case connected is
decreased by one, and the database makes sure that the worker is online. This is
done by invoking asynchronously method ping with a concrete value and block-
ing until it gets the result with the same value. Then, the database registers
the provided worker reference storing it in its client field. Method getData of the
database returns its data field if the caller worker is registered, otherwise it re-
turns null. Finally, method connect sets the field connected to 3. Depending on the
sequence of interleavings, the execution of this program can finish: (1) as one
would expect, i.e., with worker.data = db.data, (2) with w.data = null if getData is
executed before the assignment at line 34, or, (3) in a deadlock.

We have recently proposed a deadlock detection framework [3,2] that com-
bines static analysis and symbolic execution based testing [1,3,6,14]. The dead-
lock analysis (for example, [9]) is first used to obtain descriptions of potential
deadlock cycles which are then used to guide the testing process. The resulting
deadlock detection framework hence can: (i) show deadlock presence, in which
case a concrete test-case and trace are obtained, and (ii) prove deadlock free-
dom (up to the symbolic execution exploration limit). However, the symbolic

2

execution phase needs to start from a concrete initial distributed context, i.e.,
a set of locations and their initial tasks. In our example, such an initial context
is provided by the main method, which creates a Database and a Worker location,
and schedules a work task on the worker with the database as parameter, and,
a register task on the database with the worker as parameter. This is however
only one out of the possible contexts, and, of course, it could be the case that it
does not expose an error that occurs in other contexts (for example, it does not
manifest any deadlock). This clearly limits the framework potential.

A fundamental challenge for a symbolic execution framework of distributed
programs is to automatically and systematically generate relevant distributed
contexts for the type of error that it aims at detecting. This would allow for
instance applying symbolic execution for system and integration testing. The
generation of relevant contexts involves two challenging aspects: (1) A first chal-
lenge is related to the elimination of redundant (useless) contexts. Observe that
there is a combinatorial explosion on the different possible distributed contexts
that can be generated when one considers all possible types and number of dis-
tributed locations and tasks within them. Therefore, it is crucial to provide the
minimal set of initial contexts that contains only one representative of equiva-
lent contexts. (2) For the particular type of error that one aims at detecting, an
additional challenge is to be able to only generate initial contexts in which the
error can occur. In the case of generating initial contexts for deadlock detection
in our working example, this would mean generating for instance, a context with
a database location and some worker location with a scheduled work task and a
register task on the database for it, i.e., the context created by the main method.
For instance, contexts that do not include both tasks would be useless for dead-
lock detection. Let us observe that if the assignment at Line 23 is changed to
assign 0, then the initial contexts must also include a connect task, otherwise
no deadlock will be produced. Interestingly, deadlock analyses provide [9,11,12]
potential deadlock cycles which contain the possibly conflicting task interactions
that can lead to deadlock. This information will be used to help our framework
anticipate this information and discard initial distributed contexts that cannot
lead to deadlock from the beginning. Briefly, the main contributions of this paper
are the following:

– We introduce the concept of minimal set of initial contexts and extend a
static testing framework to automatically and systematically generate them.

– We present a deadlock-guided approach to effectively generate initial con-
texts for deadlock detection and prove its soundness.

– We have implemented our proposal within the aPET/SYCO system [4] and
performed an experimental evaluation to show its efficiency and effectiveness.

2 Asynchronous Programs

A program consists of a set of classes that define the types of locations, each
of them defines a set of fields and methods of the form M ::=T m(T̄ x̄){s},
where statements s take the form s::=s; s | x=e | if e then s else s | while e do s |

3

return x; | b=new T(z̄) | f = x ! m(z̄) | await f? | x = f.get. Syntactically, a location
will therefore be similar to a concurrent object that can be dynamically created
using the instruction new T(z̄). The declaration of a future variable is as follows
Future〈T〉 f, where T is the type of the result r, it adds a new future variable to
the state. Instruction f = x ! m(z̄) spawns a new task (instance of method m)
and it is set to the future f in the state. Instruction await f? allows non-blocking
synchronization. If the future variable f we are awaiting for points to a finished
task, then the await can be completed. Otherwise the task yields the lock so that
any other task of the same location can take it. On the other hand, instruction
f.get allows blocking synchronization. It waits for the future variable without
yielding the lock, i.e., it blocks the execution of the location until the task that
is awaiting is finished. Then, when the future is ready, it retrieves the result and
allows continuing the execution. This instruction introduces possible deadlocks
in the program, as two tasks can be awaiting for termination of tasks on each
other’s locations. Finally, instruction return x; releases the lock that will never be
taken again by that task. Consequently, that task is finished and removed from
the task queue. All statements of a task takes place serially (without interleaving
with any other task) until it gets to a return or await f? instruction. Then, the
processor becomes idle again, chooses non-deterministically the next pending
task, and so on.

A program state or configuration is a set of locations {loc0, ..., locn}. A loca-
tion is a term loc(o, tk , h,Q) where o is the location identifier, tk is the identi-
fier of the active task that holds the location’s lock or ⊥ if the location’s lock
is free, h is its local heap, and Q is the set of tasks in the location. A task
is a term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method
name executing in the task, l is a mapping from local variables to their val-
ues, and s is the sequence of instructions to be executed. We assume that the
execution starts from a main method without parameters. The initial state is
S={loc(0, 0,⊥, {tsk(0,main, l, body(main))} with an initial location with iden-
tifier 0 executing task 0, maps local variables to their initial values, and body(m)
is the sequence of instructions in method m and ini(main) is the initial program
point in method m. From now on, we represent the state as a Prolog list, and
we write [x 7→ v] to denote h(x) = v (resp. l(x) = v), that is, field x in the heap
h (resp. local variable x in the mapping l) takes the value v.

In what follows, a derivation or execution [20] is a sequence of states S0
o1.t1−→

...
on.tn−→ Sn, where Si

oi.ti−→ Si+1 denotes the execution of task ti in location oi ∈ Si.
The derivation is complete if S0 is the initial state and @ loc(o, , , {tk}∪Q) ∈ Sn

such that Sn
o.tk−→ Sn+1 and Sn 6= Sn+1. Given a state S, exec(S) denotes the set

of all possible complete executions starting at S.

3 Specifying and Generating Initial Contexts

In our asynchronous programs, the most general initial contexts consist of sets
of locations with free variables in their fields, and initial tasks in each location

4

queue with free variables as parameters, i.e., neither the fields nor the param-
eters have concrete values. A first approach to systematically generate initial
contexts could consist in generating, on backtracking, all possible multisets of
initial tasks (method names), and for each one, generate all aliasing combina-
tions with the locations of the tasks belonging to the same type of location.
They are multisets because there can be multiple occurrences of the same task.
To guarantee termination of this process we need to impose some limit in the
generation of the multisets. For this, we could simply set a limit on the multiset
global size. However it would be more reasonable and useful to set a limit on the
maximum cardinality of each element in the multiset. To allow further flexibility,
let us also set a limit on the minimum cardinality of each element. For instance,
if we have a program with just one location type A with just one method m, and
we set 1 and 2 as the minimum and maximum cardinalities respectively, then
there are two possible multisets, namely, {m} and {m,m}. The first one leads
to one initial context with one location of type A with an instance of task m in
its queue. The second one leads to two contexts, one with one location of type A
with two instances of task m in its queue, and the other one with two different
locations, each with an instance of task m in its queue.

On the other hand, it makes sense to allow specifying which tasks should be
considered as initial tasks and which should not. A typical scenario is that the
user knows which are the main tasks of the application and does not want to
consider auxiliary or internal tasks as initial tasks. Another scenario is in the
context of integration testing, where the tester might want to try out together
different groups of tasks to observe how they interfere with each other. Also,
the use of static analysis can help determine a subset of tasks of interest to
detect some specific property. This is the case of our deadlock-guided approach
of Section 4. With all this, the input to our automatic generation of initial
contexts is: a set of tuples (C.M,Cmin, Cmax), where C.M is an abstract task, i.e.,
a task name, being C and M the class and method name resp., and, Cmin resp.
Cmax is the associated minimum resp. maximum cardinality. Note that this does
not limit the approach in any way since one could just include in Tini all methods
in the program and set Cmin = 0 and a sufficiently large Cmax.

Example 1. Let us consider the set Tini = {(DB.register, 1, 1), (DB.connect, 0, 1)}.
The corresponding multisets are {register} and {register, connect}. All contexts
must contain exactly one instance of task register and at most one instance of
task connect. This leads to three possible contexts: (1) a DB location instance
with a task register in its queue, (2) a DB location instance with tasks register
and connect in its queue, and, (3) two different DB location instances, one of
them with an instance of task register and the other one with an instance of task
connect. For instance, the state corresponding to the latter context would be:

S =[loc(DB1, bot, [data 7→ D1, clients 7→ Cl1, checkOn 7→ B1],
[tsk(1, register, [this 7→ r(DB1), m 7→ W1], body(register))])

loc(DB2, bot, [data 7→ D2, clients 7→ Cl2, checkOn 7→ B2],
[tsk(2, connect, [this 7→ r(DB2)], body(connect))])],

5

where D1,Cl1, and B1 (resp. D2,Cl2, and B2) are the fields data, clients, and
checkOn of location DB1 (resp. DB2), and W1 resp. W2 the parameter of the task
register resp. connect, and body(m) is the sequence of instructions in method m.
Note that both fields and task parameters are fresh variables so that the context
is the most general possible. Note that the first parameter of a task is always
the location this and it is therefore fixed. 2

In the following, we formally define the contexts that must be produced from
a set of abstract tasks Tini with associated cardinalities.We use the notation
{[m1, ...,mn]oi} for an initial context where there exists a location loc(oi,⊥, h,
{tk(tk1,m1, l1, body(m1))} ∪ ...∪ {tk(tkn,mn, ln, body(mn))}). Note that we can
have mi = mj with i 6= j. For instance, the three contexts in Example 1 are
written as {[register]db1}, {[register, connect]db1} and {[register]db1 , [connect]db2},
respectively. Let us first define the set of initial contexts from a given Tini when
all tasks belong to the same class.

Definition 1 (Superset of initial contexts (same class Ci)). Let Tini =
{(Ci.m1, C

min
1 , Cmax

1), . . . , (Ci.mn, C
min
n , Cmax

n)} be the set of abstract tasks with

associated cardinalities. Let us have
n∑

i=1

Cmax
i different identifiers: o1,1, . . . , o1,Cmax

1
,

. . . , on,1, . . . , on,Cmax
n

. We can find at most
n∑

i=1

Cmax
i instances of class Ci, that

is, each abstract task mi (i ∈ [1, n]) has at most Cmax
i instances and each of

them can be inside a different instance of class Ci. Let umk
i,j be an integer vari-

able that denotes the number of instances of task mk inside the location oi,j and
let us consider the following integer system:

Cmin
1 ≤ um1

1,1 + . . . + um1

1,Cmax
1

+ . . . + um1
n,1 + . . . + um1

n,Cmax
n
≤ Cmax

1

. . .

Cmin
n ≤ umn

1,1 + . . . + umn

1,Cmax
1

+ . . . + umn
n,1 + . . . + umn

n,Cmax
n
≤ Cmax

n

Each formula requires at least Cmin
k and at most Cmax

k instances of task mk.
Each solution to this system corresponds to an initial context.
Let (dm1

1,1 , . . . , d
m1

n,Cmax
n

, . . . , dmn
1,1 , . . . , d

mn

n,Cmax
n

) be a solution, then the correspond-
ing initial context contains:

– loc(oi,j ,⊥, h,Q), that is, a location oi,j whose lock is free, the fields in h
are mapped to fresh variables, and the queue Q contains: dm1

i,j instances of
abstract task m1,. . . , and dmn

i,j instances of mn, if i ∈ [1, n], j ∈ [1, Cmax
i]

and ∃dmk
i,j > 0, k ∈ [1, n], where each instance of mi is tsk(tk ,mi, l, body(mi))

and every argument in l is mapped to a fresh variable.

Example 2. Let us consider the example Tini={(DB.register, 0, 1), (DB.connect, 1, 1)}.
The identifiers are o1,1 and o2,1, and the variables of the system are ureg

1,1 , ureg
2,1 ,

uget
1,1 and uget

2,1 . Finally, we obtain the next system:{
0 ≤ ureg

1,1 + ureg
2,1 ≤ 1

1 ≤ uget
1,1 + uget

2,1 ≤ 1

6

We obtain 6 solutions: (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0) and
(0, 1, 0, 1). Then, the superset of initial contexts is

{{[connect]o1,1}, {[connect]o2,1}, {[register, connect]o1,1}, {[register, connect]o2,1},

{[register]o2,1 , [connect]o1,1}, {[register]o1,1 , [connect]o2,1}}

2

Let us observe that the two last contexts are equivalent since they are both
composed of two instances of DB with tasks register and connect respectively.
Therefore, we only need to consider one of these two contexts for symbolic exe-
cution. Considering both would lead to redundancy. The notion of minimal set
of initial contexts below eliminates redundant contexts, hence avoiding useless
executions.

Definition 2 (Equivalence relation ∼). Two contexts C1 and C2 are equiv-
alent, written C1 ∼ C2, if C1 = C2 = ∅ or C1 = {loc(o1,⊥, h1,Q1)} ∪ C ′1, and
∃ o2 ∈ C2 such that:

1. C2 = {loc(o2,⊥, h2,Q2)} ∪ C ′2,
2. Q1 and Q2 contain the same number of instances of each task, and
3. C ′1 ∼ C ′2 .

Example 3. The superset in Example 2 contains 3 equivalence classes induced by
the relation ∼: (1) the class {{[connect]o1,1}, {[connect]o2,1}}, where both contexts
are composed of a location with a task connect, (2) the class {{[register, connect]o1,1},
{[register, connect]o2,1}}, whose locations have two tasks register and connect. and,
finally, (3) the class {{[register]o2,1 , [connect]o1,1}, {[register]o1,1 , [connect]o2,1}}, where
both contexts have two locations with a task register and a task connect, respec-
tively. 2

Definition 3 (Minimal set of initial contexts ICi (same class Cli)). Let
Tini be the set of abstract tasks, then the minimal set of initial contexts ICli is
composed of a representative of each equivalence class induced by the relation ∼
over the superset of initial contexts for the input Tini.

Example 4. As we have seen in the previous example, there are three different
equivalence classes. So, the minimal set of initial contexts is composed of a
representative of each class (we have renamed the identifiers for the sake of
clarity):

IDB = {{[connect]db1}, {[register, connect]db1}, {[register]db1 , [connect]db2}}

2

Let us now define the set of initial contexts I when the input set Tini contains
tasks of different types of locations.

7

Definition 4 (Minimal set of initial contexts I (Different classes)).
Let Tini = {(C1.m1, C

min
1 , Cmax

1), . . . , (Cn.mn, C
min
n , Cmax

n)} be the set of ab-
stract tasks with associated cardinalities, and let us consider a partition of this
set where every equivalence class is composed of abstract tasks of the same class.
Hence, we have: T C1

ini = {C1.m
′
1, . . ., C1.m

′
j1
}, . . . , T Cn

ini = {Cn.m
′′
1, . . . , Cn.m

′′
jn}

where Ci 6= Cj ,∀i, j ∈ [1, n], i 6= j.

Then, let ICi be the minimal set of initial contexts for the input T Ci
ini , i ∈ [1, n]

and U : IC1 × . . .× ICn → I , defined by U(s1, . . . , sn) = s1 ∪ . . . ∪ sn. The set
I is defined by the image set of application U .

Example 5. Let us consider the set Tini = {(DB.register, 1, 1), (DB.connect, 1, 1),
(Worker.work, 1, 1)} from which we get the initial contexts IWorker = {{[work]w1}}
and IDB = {{[register, connect]db,1}, {[register]db1 , [connect]db2}}. Then, by Def. 4,

I ={{[register, connect]db1 , [work]w1}, {[register]db1 , [connect]db2 , [work]w1}}

2

It is straightforward to implement a function that generates the minimal set
of initial contexts from a provided set of initial tasks (for instance [5]). Such
a function is denoted as generate contexts(Tini). The main complication is to
avoid the generation of equivalent contexts (Definition 2) as soon as possible
during the process. For this aim one can rely on the definition of a normal form
according to the number of tasks inside each location.

4 On Automatically Inferring Deadlock-Interfering Tasks

The systematic generation of initial contexts produces a combinatorial explosion
and therefore it should be used with small sets of abstract tasks (and low cardi-
nalities). However, in the context of deadlock detection, in order not to miss any
deadlock situation, one has to consider in principle all methods in the program,
hence producing scalability problems. Interestingly, it can happen that many of
the tasks in the generated initial contexts do not affect in any way deadlock exe-
cutions. Our challenge is to only generate initial contexts from which a deadlock
can show up. For this, the deadlock analysis provides the possibly conflicting
task interactions that can lead to deadlock. We propose to use this information
to help our framework discard initial contexts that cannot lead to deadlock from
the beginning. Section 4.1 summarizes the concepts of the deadlock analysis used
to obtain the deadlock cycles, and Section 4.2 presents the algorithm to generate
the set of initial tasks Tini.

4.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [9] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

8

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location ab-
stractions or task abstractions. The abstractions for tasks and locations can be
performed at different levels of accuracy during the analysis: the simple abstrac-
tion that we will use for our formalization abstracts each concrete location o
by the program point at which it is created opp, and each task by the method
name executing (as in Section 3). They are abstractions since there could be
many locations created at the same program point and many tasks executing
the same method. Points-to analysis [18,9] can be used to infer such abstrac-
tions with more precision, for instance, by distinguishing the actions performed

by different location abstractions. Each arrow e
p:tk−−→ e′ should be interpreted

like “abstract location or task e is waiting for the termination of abstract lo-
cation or task e′ due to the synchronization instruction at program point p of
abstract task tk”. Three kinds of arrows can be distinguished, namely, task-task
(an abstract task is awaiting for the termination of another one), task-location
(an abstract task is awaiting for an abstract location to be idle) and location-task
(the abstract location is blocked due the abstract task). Location-location arrows
cannot happen.

Example 6. In our working example there are two abstract locations, o2, cor-
responding to location database created at line 2 and o3, corresponding to the
n locations worker, created inside the loop at line 3; and four abstract tasks,
register, getD, work and ping. The following cycle is inferred by the deadlock

analysis: o2
34:register−−−−−−−→ ping

15:ping−−−−−→ o3
12:work−−−−−→ getD

38:getD−−−−−→ o2. The first arrow
captures that the location created at Line 2 is blocked waiting for the termina-
tion of task ping because of the synchronization at L34 of task register. Also, a
dependency between a task and a location (for instance, ping and o3) captures
that the task is trying to execute on that (possibly) blocked location. Abstract
deadlock cycles can be provided by the analyzer to the user. But, as it can be
observed, it is complex to figure out from them why these dependencies arise,
and more importantly the interleavings scheduled to lead to this situation. 2

4.2 Generation of initial tasks

The underlying idea is as follows: we select an abstract cycle detected by the
deadlock analysis, and extract a set of potential abstract tasks which can be
involved in a deadlock. In a naive approximation, we could take those abstract
tasks that are inside the cycle and contain a blocking instruction. We also need
to set the maximum cardinality for each task to ensure finiteness (by default 1)
and require at least one instance for each task (minimum cardinality).

This approach is valid as long as we only have blocking synchronization prim-
itives, i.e., when the location state stays unchanged until the resumption of a
suspended execution. However, this kind of concurrent/distributed languages
usually include some sort of non-blocking synchronization primitive. When a lo-
cation stops its execution due to an await instruction, another task can interleave
its execution with it, i.e., start to execute and, thus, modify the location state
(i.e., the location fields). Then, if a call or a blocking instruction involved in a

9

deadlock depends on the value of one of these fields, and we do not consider all
the possible values, a deadlock could be missed. As a consequence, we need to
consider at release points, all possible interleavings with tasks that modify the
fields in order to capture all deadlocks.

Let us consider now a simple modification of our working example. Line
27 is replaced by connected = 0. Now it is easy to see that if we only consider
register and work as input, deadlocks are lost: once register is executed and the
instruction at line 30 is reached, the location’s queue only contains task getData

but no connect and, therefore, when task register is resumed, field connected stays
unchanged and the body of the condition is not executed, so we cannot have a
deadlock situation.

In the following we define the deadlock-interfering tasks for a given abstract
deadlock cycle, i.e., an over-approximation of the set of tasks that need to be
considered in initial contexts so that we cannot miss a representative of the given
deadlock cycle. In our extended example, those would be, register and work but
also connect.

Definition 5 (initialTasks(C)). Let C an abstract deadlock cycle. Then,

initialTasks(C) :=
⋃

icall∈t∈C

initialTasks(t, icall, C) ∪
⋃

isync∈t∈C

initialTasks(t, isync, C)

where:

– initialTasks(t, i, C) = ∅ if o
t−→ t2 6∈ C and i 6= imod and 6 ∃ iawait ∈[t0, i]

– initialTasks(t, i, C) = {t} if (o
t−→ t2 ∈ C or i = imod) and 6 ∃ iawait ∈[t0, i]

– initialTasks(t, i, C) = {t} ∪
⋃

f∈fields(i)

(⋃
(imod,tmod)∈mods(f)

initialTasks(tmod, imod, C)

)
if ∃ iawait ∈ [t0, i]

The definition relies on function fields(I) which, given an instruction I, re-
turns the set of class fields that have been read or written until the execution of
instruction I. Let mods(f) be the set of pairs (instruction,task) that modify field
f. We can observe that initialTasks(C) is the union of the initial tasks for each
relevant instruction inside the cycle C, i.e., asynchronous calls and synchroniza-
tion primitives. We can also observe in the auxiliary function initialTasks(t,i,C)
that: (1) if the instruction i is not producing a location-task edge and it is not
an instruction modifying a field, then t does not need to be added as initial task,
(2) if i produces a location-task edge or is modifying a field, and we do not have
any await instruction between the beginning of the task and i, then i is going
to be executed under the most general context, so we do not need to add more
initial tasks but t, and (3) on the other hand, if there exists an await instruction
between the beginning of task t, namely t0, and instruction i, each field f inside
the set fields(i) could be changed before the resumption of the await by any task
modifying f . Thus, tasks containing any of the possible f -modifying instructions
must be considered and, recursively, their initial tasks.

It is important to highlight that this definition could be non-terminating
depending on the program we are working with. For instance, if we apply the

10

Data: An abstract cycle C and a maximum cardinality M
Result: A list with the interfering tasks for C
Q = ∅; L = ∅;
forall t ∈ C do

icall = receiveCall(t,C); enqueue(Q,(icall,t));
iawait = receiveSync(t,C); enqueue(Q,(iawait,t));
iget = receiveSync(t,C); enqueue(Q,(iget,t));

if ∃ ∈ o
t−→ t2 ∈ C then

insert(L,(iget,t));
end

end
while !empty(Q) do

(i,t) = dequeue(Q);
if ∃iawait ∈ t between the beginning of t and i then

forall f ∈ fields(i) do
forall (imod, tmod) ∈ mods(f) do

if !member(L,(imod, tmod)) then
insert(L,(imod, tmod));
enqueue(Q,(imod, tmod));

end

end

end

end

end
return [(m,1,M) : m ∈ set(projecty(L))];

Algorithm 1: Algorithm to infer interfering tasks for a given deadlock cycle

definition to the abstract cycle C in Example 6, initialTasks(db.register, 32, C)
will be evaluated. It fits well with the conditions on the third clause, as there
exists an await instruction, fields(32) = {connected} and then again 32 is a
modifier instruction of field connected, so initialTasks(db.register, 32, C) will be
evaluated again recursively.

Algorithm 1 shows how to finitely infer the interfering-tasks for a given dead-
lock cycle as defined by Def 5. Function receiveCall(t, C) (receiveSync(t, C))
receives the asynchronous call (synchronization instruction) of a task t inside
the cycle C. Q is the queue of pending pairs {instruction, task}, and L is the list
containing all such pairs whose tasks we have to consider. Finiteness is guaran-
teed because each instruction is added to Q and L at most once, and the number
of instructions is finite. For each task in the cycle, we take the call and the cor-
responding synchronization instruction, and we add them to Q. Instructions get

producing a location-task edge, are also added to L, as they have to be inside
the initial context. The other tasks included in the initial context are the ones
which could affect the conditions of the aforementioned instructions.

In the second loop, we take a pending instruction inside Q and we check if
there exists an await instruction where the field values could be changed (third
clause in definition 5). In case it does, we need to include all tasks which contain

11

instructions modifying such field. However, this change could be inside an if-else
body and we also need to consider the fields inside such condition. Therefore, we
add the modifier instruction to the pending instructions queue Q. The algorithm
finishes when Q is empty and L is the list of pairs with all interfering instruc-
tions and their container tasks. Finally, we only take the tasks, i.e., the second
component of each pair (projecty), remove duplicates (set) and set their mini-
mum and maximum cardinalities. From now on, we denote initial tasks(c,M), the
set of initial tasks inferred for the abstract deadlock cycle c and the maximum
cardinality M.

Example 7. Let us show how the algorithm works for our modified example and
the maximum cardinality M = 1. For the sake of clarity, instructions are identi-
fied by their line numbers. After executing the first forall loop, the value of Q and
L is {(33,DB.register), (34,DB.register), (11,Worker.work), (12,Worker.work)} and
[(34,DB.register), (12,Worker.work)], respectively. Let us assume Q uses a LIFO
policy, hence (12,Worker.work) is taken first. Since fields(12) = ∅, L stays un-
changed. The same happens with (11,Worker.work). At the beginning of the third
loop, Q is {(33,DB.register), (34,DB.register)} and (34,DB.register) is taken.
Now, fields(34) = {connected} and ∃instawait (line 30) between lines 26 and
34. We find three pairs modifying the field connected: (23,DB.connect), (27,DB.
register) and (32,DB.register). None of them is a member of L and hence they are
added to both queues. Now, Q is {(33,DB.register), (27,DB.register),
(32,DB.register), (23,DB.connect)} but again fields(32) = fields(23) = ∅ and,
thus, L stays unchanged. Finally, both (33,DB.register) and (27,DB.register) are
taken and fields(33)= fields(27)={connected}, but the modifier instructions have
been previously added to L, hence L remains unchanged. At the end of while,
L is {(34,DB.register), (12,Worker.work), (27,DB.register), (32,DB.register),
(23,DB.connect)}. Finally, the algorithm projects over the second component of
each pair in the list, removes duplicates and returns the set Tini={(DB.register, 1, 1),
(Worker.work, 1, 1), (DB.connect, 1, 1)}. Our generation of initial contexts for this
set (see Example 5) produces

I = { {[register, connect]db1 [work]w1},
{[register]db1 , [connect]db2 , [work]w1}},

where both initial contexts are composed of a worker location with a task work.
However, the former context contains a database location with tasks register and
connect, whereas the latter one contains two locations with a task register and a
task connect, respectively. 2

The next theorem establishes the soundness of our approach. Intuitively,
soundness states that, for a given deadlock cycle c and maximum cardinality M ,
if there is an initial context, fulfilling M , from which a deadlock representative of
c can be obtained, then our approach will generate a context (possibly different
from the above) from which a deadlock representative of c is obtained.

Theorem 1 (Soundness). Given a program P , an abstract deadlock cycle c
and a maximum cardinality M, if there exists a derivation starting at a state

12

Sini and ending at Send such that the cardinality of each task in Sini is less than
M and Send is a representative of the cycle c, then there exists an initial context
St0 ∈ generate contexts(initial tasks(c,M)) such that Send2 ∈ exec(St0) and
Send2 is also a representative of the cycle c.

Proof. (Sketch) Let us define a task t as necessary in Sini for the deadlock

cycle c if and only if @Se′ such that Sini\{t}
∗−→ Se′ and Se′ is a represen-

tative of c, where S\{t} denotes the context S without the task t. Let us de-
fine now an initial context nec(S) as the initial context that only contains the
necessary tasks in S for c. In order to prove soundness, we need to prove that
nec(Sini) ∈ generate contexts(initial tasks(M, c)). We reason by contradiction.
Assume that there exists a necessary task t ∈ nec(Sini), instance of method m,
which is not in any initial context generated. This is equivalent to assume that
method m is not inferred by Algorithm 1. We can distinguish two different roles
which task t plays in the deadlock situation:

– If task t gets blocked, then t contains an instruction pp:get where pp is the
program point, and, by the soundness of the deadlock analysis (Theorem
1 of [9]), pp:get is the tag of an edge inside the deadlock cycle c. So, the
pair (pp,m) is added to L in the first loop of Algorithm 1 and m is finally
inferred. Thus, we have a contradiction.

– If task t modifies a field f at program point pp that appears in a condition
of another task r, then we cannot get a deadlock if t is not executed before
the evaluation of condition in task r (t is necessary). Here, we need to notice
that if task r does not contain any await, symbolic execution explores all
possible execution paths and t would be unnecessary. But we have supposed
that t is necessary, then r contains an await. Then, (pp,m) will be added to L
because of the third forall in Algorithm 1 and m is inferred, what contradicts
our assumption. 2

5 Experimental Evaluation

We have implemented the proposed techniques within the aPET/SYCO tool [4],
a testing tool for the ABS [13] concurrent objects language. The tool is available
for online use at http://costa.ls.fi.upm.es/syco, where the benchmarks below
can also be found. This section summarizes our experimental evaluation whose
objectives are the following:

1. Show the effectiveness of our approach in Section 4 to generate initial con-
texts for deadlock detection w.r.t the full systematic generation of Section 3.

2. Demonstrate the potential of the technique when being applied in practice
within our deadlock detection framework.

The benchmarks we have used include classical concurrency patterns contain-
ing deadlocks, namely: DBProt is an extension of the database communication
protocol of our working example; Barber is an extension of the sleeping barber

13

http://costa.ls.fi.upm.es/syco

M = 1 M = 2 M = 3

Bench. TA/C Syst. G D T Syst. G D T Syst. G D T

DBProt 5/1 30 2 1 35 >12960 57 30 101s* >6308 576 156 974s*
Barber 5/1 8 1 1 35 6859 9 9 57 >8310 36 36 309
Fact 6/2 15 2 2 11 2419 6 6 14 >4771 12 12 16
Loop 20/1 3375 1 1 30 >13433 27 27 495 >4771 216 216 77s*
Pairing 4/2 2 2 2 9 57 12 12 37 576 42 42 162

Table 1. Evaluating generation of initial contexts: Systematic vs. deadlock-guided

problem, Fact is a distributed and recursive implementation of a factorial func-
tion, Loop is a loop that creates asynchronous tasks and locations, and, Pairing
is the pairing problem.

Effectiveness of generation of initial contexts for deadlock detection:
Table 1 shows, for each benchmark: the number of generated initial contexts
using the full systematic generation of contexts of Section 3 (column Syst.), the
number of contexts generated using our deadlock-guided generation of Section 4
(column G), and, the number of contexts among those generated that lead to
a deadlock (column D). This is done for three different values of maximum
cardinality, namely, M = 1, M = 2 and M = 3. The rest of the columns are
explained in the next paragraph. A timeout of 30s is used and, when reached,
we write >X to indicate that we encountered X contexts up to that point. The
reductions of our deadlock guided generation of contexts w.r.t the full systematic
generation are huge. As expected the full systematic generation blows up fast
for most examples. We can also observe that our deadlock guided generation of
contexts is very precise, producing no false positives, i.e., contexts that do not
lead to deadlock, except for DBProt. The reason of the loss of precision in the
DPProt example is that task register only gets blocked if task connect changes
the value of field connected. Therefore, contexts in which these two tasks do not
belong to the same location will not lead to deadlock. This can be observed in
Example 7. Improving our method to capture this situation is left for future
work.

Application within our deadlock detection framework: Our deadlock-
guided generation of initial contexts has been integrated within the deadlock
detection feature of the testing system aPET/SYCO as follows: After running
the static deadlock analysis, and only in case it outputs a non-empty set of
potential abstract cycles (i.e. if the program is not already proven deadlock-free),
we run our deadlock guided generation of initial contexts for each of the cycles
inferred by the analysis. For each generated initial context, we start (possibly
in parallel) a deadlock-guided symbolic execution [3,2] that stops as soon as it
finds a deadlock. As a result, we obtain a concrete test-case with its associated
trace and sequence of interleavings. A local timeout for each symbolic execution
is set so that it does not degrade the overall process in case a blowup is produced

14

before finding a deadlock. This is relatively frequent with false-positive contexts
(see paragraph above). Table 1 shows, for each benchmark, the time of the static
deadlock analysis and the number of generated deadlock cycles (column TA/C),
and, the overall time of the rest of the process (column T), which includes both
the time of the generation of contexts and the symbolic executions. Times are in
milliseconds except where indicated and are obtained on an Intel(R) Core(TM)
i7 CPU at 2.5GHz with 8GB of RAM, running Ubuntu 5.4.0. A timeout of 5s is
set for each symbolic execution and an asterisk in the time indicates the timeout
has been reached at least once.

Overall, our deadlock guided generation of initial contexts hence enables our
deadlock detection framework to analyze systems without the need of any user
supplied initial context. Also, it allows generating concrete test cases that lead
to deadlock for integration and system testing.

6 Conclusions and Related Work

We have proposed a framework for the automatic generation of initial contexts
for deadlock-guided symbolic execution. Such initial contexts are composed of
the interfering tasks which, according to a static deadlock analyzer, might lead
to deadlock. Given the initial contexts, we can drive symbolic execution towards
paths that are more likely to manifest a deadlock, discarding safe contexts. There
is a large body of work on deadlock detection including both dynamic and static
approaches. Much of the existing work, both for asynchronous programs [9,10]
and thread-based programs [17,19], is based on static analysis techniques. Al-
though we have used the static analysis of [9], the information provided by other
deadlock analyzers could be used in an analogous way. Deadlock detection has
been also studied in the context of dynamic testing and model checking [6,15,16],
where sometimes has been combined with static information [1,14]. The initial
contexts generated by our framework are of interest also in these approaches.
As regards the application in a thread-based concurrency model, the funda-
mental difference is that our whole approach is defined at the level of atomic
tasks that execute concurrently using non-preemptive scheduling, unlike thread-
based preemption. However, our approach would be adaptable to thread-based
applications that rely on synchronized blocks of code (such as in monitors or
concurrent objects). As future work, we plan to investigate how our framework
could be adapted to this model.

References

1. R. Agarwal, L. Wang, and S. D. Stoller. Detecting Potential Deadlocks with Static
Analysis and Run-Time Monitoring. In Conf. on Hardware and Software Veri-
fication and Testing, volume 3875 of Lecture Notes in Computer Science, pages
191–207. Springer, 2006.

2. E. Albert, M. Gómez-Zamalloa, and M. Isabel. Deadlock Guided Testing in CLP.
Technical report, 2017. Available at http://costa.ls.fi.upm.es/papers/costa/
AlbertGI17tr.pdf.

15

http://costa.ls.fi.upm.es/papers/costa/AlbertGI17tr.pdf
http://costa.ls.fi.upm.es/papers/costa/AlbertGI17tr.pdf

3. Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. Combining Static Anal-
ysis and Testing for Deadlock Detection. In Proc. of IFM’16, volume 9681 of LNCS,
pages 409–424. Springer, 2016.

4. Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. SYCO: A Systematic
Testing Tool for Concurrent Objects. In Proc. of CC’16. ACM, 2016.

5. Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. On the generation of
initial contexts for effective deadlock detection. Technical report, October 2017.
Available at https://arxiv.org/abs/1709.04255.

6. Maria Christakis, Alkis Gotovos, and Konstantinos F. Sagonas. Systematic Testing
for Detecting Concurrency Errors in Erlang Programs. In Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013, Luxem-
bourg, Luxembourg, March 18-22, 2013. IEEE Computer Society, 2013.

7. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316–330. Springer, 2007.

8. C. Flanagan and M. Felleisen. The semantics of future and its use in program
optimization. In 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1995.

9. A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-in-Parallel based
Deadlock Analysis for Concurrent Objects. In FORTE’13, LNCS 7892, pages 273–
288. Springer, 2013.

10. E. Giachino, C.A. Grazia, C. Laneve, M. Lienhardt, and P. Wong. Deadlock Anal-
ysis of Concurrent Objects – Theory and Practice, 2013.

11. Kobayashi N. Giachino E. and Laneve C. Deadlock analysis of unbounded process
networks. In CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, pages
63–77, 2014.

12. Laneve C. Giachino E. and Lienhardt M. A framework for deadlock detection in
core ABS. Software and System Modeling, 15(4):1013–1048, 2016.

13. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised
Papers), volume 6957 of LNCS. Springer, 2012.

14. P. Joshi, M. Naik, K. Sen, and Gay D. An effective dynamic analysis for detecting
generalized deadlocks. In Proc. of FSE’10. ACM, 2010.

15. P. Joshi, C. Park, K. Sen, and M. Naik. A randomized dynamic program analysis
technique for detecting real deadlocks. In Proc. of PLDI’09. ACM, 2009.

16. A. Kheradmand, B. Kasikci, and G. Candea. Lockout: Efficient Testing for Dead-
lock Bugs. Technical report, 2013. Available at http://dslab.epfl.ch/pubs/

lockout.pdf.
17. S. P. Masticola and B. G. Ryder. A Model of Ada Programs for Static Deadlock

Detection in Polynomial Time. In Parallel and Distributed Debugging, pages 97–
107. ACM, 1991.

18. Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized Object
Sensitivity for Points-to Analysis for Java. ACM Transactions on Software Engi-
neering Methodology, 14:1–41, 2005.

19. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser:
A dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997.

20. Koushik Sen and Gul Agha. Automated Systematic Testing of Open Distributed
Programs. In Luciano Baresi and Reiko Heckel, editors, Fundamental Approaches
to Software Engineering, 9th International Conference, FASE 2006, Vienna, Aus-
tria, March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer
Science, pages 339–356. Springer, 2006.

16

https://arxiv.org/abs/1709.04255
http://dslab.epfl.ch/pubs/lockout.pdf
http://dslab.epfl.ch/pubs/lockout.pdf

	Generation of Initial Contexts for Effective Deadlock Detection

