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Cost analysis aims at determining the amount of resources required to run a program in terms of its input

data sizes. The most challenging step is to infer the cost of executing the loops in the program. This

requires bounding the number of iterations of each loop and finding tight bounds for the cost of each of
its iterations. This article presents a novel approach to infer upper and lower bounds from cost relations.

These relations are an extended form of standard recurrence equations which can be non-deterministic,
contain inexact size constraints and have multiple arguments that increase and/or decrease. We propose

novel techniques to automatically transform cost relations into worst-case and best-case deterministic one-

argument recurrence relations. The solution of each recursive relation provides a precise upper-bound and
lower-bound for executing a corresponding loop in the program. Importantly, since the approach is developed

at the level of the cost equations, our techniques are programming language independent.

Categories and Subject Descriptors: D.4.8 [Software Engineering]: Metrics —Complexity measures; Per-
formance measures ; H.4.0 [Theory of Computation]: Semantics of Programming Languages —Program
analysis

Additional Key Words and Phrases: Upper Bounds, Lower Bounds, Static Cost Analysis

1. INTRODUCTION
Having available information about the computational cost of programs execution, i.e.,
the amount of resources that the execution will require, is clearly useful for many
different purposes, like for performance debugging, resource usage verification/certifi-
cation and for program optimization (see, e.g., Albert et al. [2012] and its references).
In general, reasoning about execution cost is difficult and error-prone. This is specially
the case when programs contain loops (either as iterative constructs or recursions),
since one needs to reason about the number of iterations that loops will perform and
the cost of each of them.

Static cost analysis [Wegbreit 1975], a.k.a. resource usage analysis, aims at automat-
ically inferring the resource consumption (or cost) of executing a program as a function
of its input data sizes. The classical approach to cost analysis by Wegbreit dates back
to 1975 [Wegbreit 1975]. It consists of two phases. In the first phase, given a program
and a cost model, the analysis produces cost relations (CRs), i.e., a system of recur-
sive equations which capture the cost of the program in terms of the size of its input
data. The cost model states the resource we are measuring. Cost analyzers are usually
parametric on the cost model, e.g., cost models widely used are the number of executed
instructions, number of calls to methods, amount of memory allocated, etc.
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A:2 Elvira Albert et al.

void f ( i n t q ) {
L i s t l = nul l ;
i n t i =0;
while ( i<q ) {

i n t j =0;
while ( j< i ) {

for ( i n t k =0;k<q+ j ; k++)
l =new L i s t ( i ∗k∗ j , l ) ;

j = j +random ( ) ? 1 : 3 ;
}
i = i +random ( ) ? 2 : 4 ;

}
}

(a) Running Example

F (q) = A(0, q) {}

A(i, q) = 0 {i ≥ q}
A(i, q) = B(0, i, q)+A(i′, q) {i+1 ≤ q, i+2 ≤ i′ ≤ i+4}

B(j, i, q) = 0 {j ≥ i}
B(j, i, q) = C(0, j, q)+B(j′, i, q) {j+1 ≤ i, j+1 ≤ j′ ≤ j+3}

C(k, j, q)= 0 {k ≥ q+j}
C(k, j, q)= 1+C(k′, j, q) {k′ = k+1, k+1 ≤ q+j}

(b) CRs for Memory Consumption

Fig. 1: Running Example and its Cost Relations

Example 1.1 (running example). Let us motivate our work on the contrived ex-
ample depicted in Figure 1a. The example is sufficiently simple to explain the main
technical parts of the paper, but still interesting to understand the challenges and
precision gains. For this program and the memory consumption cost model, the cost
analysis of Albert et al. [2012] generates the CR which appears in Figure 1b. This cost
model estimates the number of objects allocated in the memory. Note that in this paper
we ignore the effect that compiler optimizations might have on the resource consump-
tion, handling this is out of the scope of this paper. Observe that the structure of the
Java program and its corresponding CR match. The equations for C correspond to the
for loop, those of B to the inner while loop and those of A to the outer while loop. The
recursive equation for C states that the memory consumption of executing the inner
loop with 〈k, j, q〉 such that k+ 1 ≤ q+ j is 1 (one object) plus that of executing the loop
with 〈k′, j, q〉 where k′ = k + 1. The recursive equation for B states that executing the
loop with 〈j, i, q〉 costs as executing C(0, j, q) plus executing the same loop with 〈j′, i, q〉
where j + 1 ≤ j′ ≤ j + 3. While, in the Java program, j′ can be either j + 1 or j + 3, due
to the use of static analysis, the case for j + 2 is added in order to over approximate
j′ = j+ 1∨ j′ = j+ 3 by the polyhedron j+ 1 ≤ j′ ≤ j+ 3 [Cousot and Halbwachs 1978].

In general, the first phase of cost analysis (i.e., the process of generating CRs from
the program) heavily depends on the programming language in which the program
is written. Multiple analysis have been developed for different paradigms including
for functional [Wegbreit 1975; Le Metayer 1988; Rosendahl 1989; Wadler 1988; Sands
1995; Benzinger 2004; Luca et al. 2006; Hoffmann et al. 2011], logic [Debray and Lin
1993; Navas et al. 2007], and imperative [Adachi et al. 1979; Albert et al. 2012] pro-
gramming languages. Importantly, the resulting CRs are a common target of cost an-
alyzers, i.e., they abstract away the particular features of the original programming
language and (at least conceptually) have the same form.

Though CRs are simpler than the programs they originate from, since all variables
are of integer type, in several respects they are not as static as one would expect from
the result of a static analysis. One reason is that they are recursive and thus we may
need to iterate for computing their value for a given concrete input. Another reason
is that even for deterministic programs, it is well known that the loss of precision
introduced by the size abstraction may result in CRs which are non-deterministic. This
happens in the above example, e.g., because j′ can be either j + 1, j + 2 or j + 3, and
they become non-deterministic choices when applying the second equation defining B.
In general, for finding the worst-case and best-case cost we may need to compute and
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compare (infinitely) many results. For both reasons, it is clear that it is interesting to
compute closed-form bounds for the CR, whenever this is possible, i.e., bounds which
are not in recursive form. Our work focuses on such second phase of cost analysis: once
CRs are generated, analyzers try to compute closed-forms bounds for them. Two main
approaches exist:

(1) Since CRs are syntactically quite close to recurrence relations (RRs), most cost
analysis frameworks rely on existing Computer Algebra Systems (CAS ) for finding
closed-forms. The main problem of this approach is that CAS only accept as input
a small subset of CRs, namely they require that the equations have a single ar-
gument, one base-case and one recursive case. Thus, CAS are very precise when
applicable, but handle only a restricted class of CRs, namely only some of those
which have an exact solution. In practice, this seldom happens.

(2) Instead, specific upper-bound solvers developed for CRs try to reason on the worst-
case cost and obtain sound upper-bounds (UBs) of the resource consumption.
As regards lower-bounds (LBs), due in part to the difficulty of inferring under-
approximations, general solvers for CRs which are able to obtain useful approxi-
mations of the best-case cost have not yet been developed.

Example 1.2. Let us see the application of the above approaches to our running
example. As regards 1, we cannot use a CAS since an exact solution does not exist.
Recall that, in the cost relation B, variable j′ can increase by one, by two or by three
at each iteration. Therefore, an exact cost function which captures the cost of any
possible execution does not exist. As regards 2, we now try to obtain UBs and LBs for
the relation. As regards the number of iterations, for B, the worst-case (resp. best-case)
cost must assume that j′ increases by one (resp. three) at each iteration. Besides, there
is the problem of bounding the cost of each of the iterations. For UBs, the approach
of Albert et al. [2011b] assumes the worst-case cost for all loop iterations. For instance,
an UB on the cost of any iteration of B is q0 + i0−1, where q0 and i0 are respectively the
initial values for q and i. This corresponds to the memory allocation (number of objects)
of the last iteration of the corresponding while loop. This approximation, though often
imprecise, makes it possible to obtain UBs for most CRs (and thus programs). However,
approximating the cost of iterations by the best-case cost is not useful in order to obtain
LBs since it leads to a trivial (useless) result, namely the obtained LB would be in most
cases zero.

Needless to say, precision is fundamental for most applications of cost analysis. For
instance, UBs are widely used to estimate the space and time requirements of pro-
grams execution and provide resource guarantees [Crary and Weirich 2000]. Lack of
precision can make the system fail to prove the resource usage requirements imposed
by the software client. For example, it makes much difference the precision we gain by
inferring 1

2 i
2 instead of i2 for a given method. With the latter UB, an execution with

i=10 will be rejected if we have only memory for 50 objects, while with the former one it
is accepted. LBs are used for scheduling the distribution of tasks in parallel execution
in such a way that it is not worth parallelizing a task unless its (lower-bound) resource
consumption is sufficiently large. Precision is essential here to achieve a satisfactory
scheduling.

1.1. Summary of Contributions
The main achievement in this paper is the seamless integration of both approaches
described above, so that we get the best of both worlds: precision as (1), whenever pos-
sible, while applicability as close to (2) as possible. For UBs, intuitively, the precision
gain stems from the fact that, instead of assuming the worst-case cost for all iterations,
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Worst-Case Recurrence Relation
PA(N) = 1

2
∗ (‖i0−1‖+(‖ q0−i0

2
‖−N+1) ∗ 2) ∗ (2 ∗ ‖q0−1‖+‖i0−1‖+(‖ q0−i0

2
‖

−N + 1) ∗ 2 + 1)+PA(N−1)
PB(N) = ‖q0 + j0−1‖+ (‖i0−j0‖−N+1)∗1 + PB(N−1)
PC(N) = 1 + PC(N − 1)

Best-Case Recurrence Relation
PA(N) = 1

2
∗ (‖ i0

3
‖+ (‖ q0−i0

4
‖−N) ∗ 2

3
) ∗ (‖ i0

3
‖+(‖ q0−i0

4
‖−N) ∗ 2

3
+2 ∗ ‖q0 − 1

2
‖)

+PA(N−1)
PB(N)=‖q0 + j0‖+ (‖ i0−j0

3
‖−N)∗1 + PB(N−1)

PC(N) = 1 + PC(N − 1)

Fig. 2: RRs automatically obtained from CRs in Fig. 1b. PA, PB and PC are the RRs that
correspond to CRs A,B and C. Here, ‖l‖ = max(l, 0). The parameter N corresponds to
the number of iterations of the corresponding loop, the rest (such as i0, j0 and q0) are
constants symbols.

we infer tighter bounds on each of them in an automatic way and then approximate
the summation of a corresponding sequence. We do so by generating a novel form of
worst-case and best-case RRs which can be solved by CAS . For example, we will demon-
strate along the paper that the worst-case and best-case RRs shown in Figure 2 can be
systematically generated from the CRs of the running example in Figure 1b. The ex-
act solution of such RR is guaranteed to be a precise UB and LB respectively of the
original CR. Technically, the main contributions of this article are:

— We propose an automatic transformation from a CR with multiple arguments and
a single recursive equation, which possibly accumulates a non-constant cost at each
application, into a worst-case/best-case single-argument RR that can be solved us-
ing CAS . Soundness of the transformation requires that we are able to infer the
so-called progression parameters, which describe the relation between the contribu-
tions (to the total cost) of two consecutive applications of the recursive equations.

— As a further step, we consider CRs in which we have several recursive equations
defining the same relation. We propose an automatic transformation into a worst-
case/best-case RR that can be solved using CAS .

— As another contribution, we present a new technique for inferring LBs on the num-
ber of iterations. Then, the problem of inferring LBs on the cost becomes dual to the
UBs, with some additional conditions for soundness.

— We report on a prototype implementation within the COSTA system [Albert et al.
2009]. Preliminary experiments on Java (bytecode) programs confirm the good bal-
ance between the accuracy and applicability of our analysis.

To the best of our knowledge, this is the first general approach to inferring LBs from
CRs and, as regards UBs, the one that achieves a better precision vs. applicability
balance.

1.2. Organization
The rest of the article is organized as follows. Section 2 recalls some preliminary no-
tions and introduces some notations. It formalizes the notion of cost relation and single-
argument recurrence relation. Section 3 informally explains the approximation that
our analysis aims at achieving.

In Section 4, we present the main technical part of the article, which describes how
to transform a CR into a RR for the sake of inferring UBs. We split the presenta-
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tion in three parts. In Section 4.1, we first consider the simplest possible form of CR,
i.e., CRs with a single recursive equation that accumulates constant costs. This allows
us to focus on the non-trivial problem of transforming equations that have multiple
arguments to single-argument ones. In a next step, Section 4.2 considers that the ac-
cumulated cost might be non-constant, and it proposes an automatic way to achieve
a single-argument RR for this more complex case. The constant case becomes an in-
stance of it. Finally, in Section 4.3, we handle CRs with multiple recursive equations.
Once the transformation is performed, we can rely on accurate CAS to obtain UBs
from the corresponding RR.

Section 5 presents the dual problem of inferring LBs from the CRs. While the prob-
lem of inferring UBs on the number of iterations of loops had been already solved in
the literature and we have just adopted the solutions, the problem of inferring LBs on
the number of iterations is new. The main focus of this section is then on obtaining
such LBs on loop iterations. Given such bounds, the techniques proposed in Section 4
dually apply to the automatic inference of LBs from CRs.

Section 6 describes the implementation of our approach and evaluates it on a series
of benchmarks programs that contain loops whose cost is not constant, e.g., sorting
algorithms. In these cases, the fact that we accurately approximate the cost of each
loop iteration is reflected in the more precise UB that we can obtain. Finally, Section 7
compares our approach to existing work and Section 8 concludes. Proofs of all the
theorems described in this paper are provided in Appendix A.

2. PRELIMINARIES
In this section, we fix some notation and recall preliminary definitions. The sets of
integer, rational, non-negative integer, and non-negative rational values are denoted
respectively by Z, Q, Z+, and Q+. A linear expression over Z has the form v0 + v1x1 +
. . . + vnxn, where vi ∈ Q, and x1, . . . , xn are variables that range over Z. A linear
constraint over Z has the form l1 ≤ l2, where l1 and l2 are linear expressions. We
use l1 = l2 as an abbreviation for l1 ≤ l2 ∧ l2 ≤ l1. We use t̄ to denote a sequence of
entities t1, . . . , tn, and vars(t) to refer to the set of variables that appear syntactically
in an entity t. We use ϕ,ψ and Ψ (possibly subscripted and/or superscripted) to denote
(conjunctions of) linear constraints. A set of linear constraints {ϕ1, . . . , ϕn} denotes the
conjunction ϕ1 ∧ · · · ∧ ϕn. A solution for ϕ is an assignment σ : vars(ϕ) 7→ Z for which
ϕ is satisfiable. The set of all solutions (assignments) of ϕ is denoted by JϕK. We use
ϕ1 |= ϕ2 to indicate that Jϕ1K ⊆ Jϕ2K. We use σ(t) or tσ to bind each x ∈ vars(t) to
σ(x), ∃x̄.ϕ for the elimination of the variables x̄ from ϕ, and ∃̄x̄.ϕ for the elimination
of all variables but x̄ from ϕ. We use t[X/Y ] to replace all occurrences of X by Y in a
syntactic object t.

2.1. Cost Relations: The Common Target of Cost Analyzers
Let us now recall the general notion of CRs as defined by Albert et al. [2011b]. The
basic building blocks of CRs are the so-called cost expressions which are generated
using this grammar:

e ::= r | ‖l‖ | e+ e | e ∗ e | er | log(‖l‖+ 1) | n‖l‖ | max(S)

where r ∈ Q+, n ∈ Q+ and n ≥ 1, l is a linear expression over Z. S is a nonempty
set of cost expressions and ‖.‖ : Q→ Q+ is defined as ‖l‖= max({l, 0}). Note that ‖.‖ is
read as “nat” (for natural numbers) and ‖l‖ as “nat of l”. Importantly, linear expressions
are always wrapped by ‖.‖ in order to avoid negative evaluations. For instance, as we
will see later, an UB for C(k, j, q) in Figure 1b is ‖q0 + j0 − k0‖. Without the use of
‖.‖, the evaluation of C(5, 5, 11) results in the negative cost −1 which must be lifted
to zero, since it corresponds to an execution in which the for loop is not entered (i.e.,
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k ≥ q + j). Moreover, ‖.‖ expressions provide a compact representation for piecewise
functions, in which each ‖l‖ is represented by two cases for l ≥ 0 and l < 0. Observe
that cost expressions are monotonic in their ‖.‖ sub-expressions, i.e., replacing ‖l‖ ∈ e
by ‖l′‖ such that l′ ≥ l results in a cost expression e′ such that e′ ≥ e. This property is
fundamental for the correctness of our approach.

Definition 2.1 (Cost Relation). A CR C is defined by a set of equations of the form
E ≡ 〈C(x̄) = e +

∑m
i=1Di(ȳi) +

∑n
j=1 C(z̄j), ϕ〉 where m ≥ 0; n ≥ 0; C and Di are

cost relation symbols with Di 6= C; all variables x̄, ȳi and z̄j are distinct; e is a cost
expression; and ϕ is a set of linear constraints over vars(E).

W.l.o.g., in what follows we formalize our method by making two assumptions on the
CR defined above:

(1) Direct recursion: all recursions are direct (i.e., cycles in the call graph are of length
one). Direct recursion can be automatically achieved by applying partial evalua-
tion [Albert et al. 2011b]; and

(2) Standalone cost relations: CRs do not depend on any other CR, i.e., the equations
do not contain external calls, and thus have the form 〈C(x̄) = e+

∑n
j=1 C(z̄j), ϕ〉.

The second assumption can be made because our approach is compositional. We start
by computing bounds for the CRs which do not depend on any other CRs, e.g., C in
Figure 1b is solved to the UB ‖q0 + j0 − k0‖. Then, we continue by substituting the
computed bounds in the equations which call such relation, which in turn become
standalone. For instance, substituting the above UB in the relation B results in the
equation 〈B(j, i, q) = ‖q + j‖+B(j′, i, q), {j < i, j+1 ≤ j′ ≤ j+3}〉. This operation is re-
peated until no more CRs need to be solved. In what follows, CR refers to a standalone
CR in direct recursive form, unless we explicitly state otherwise.

The evaluation of a CR C for a given valuation v̄ (integer values), denoted C(v̄), is
based on the notion of evaluation trees [Albert et al. 2011b], which is similar to SLD
trees in the context of Logic Programming [Kowalski 1974]. The set of evaluation trees
for C(v̄) is defined as follows

T (C(v̄)) =

Tree(σ(e), [T1, . . . , Tn])

∥∥∥∥∥∥
(1) 〈C(x̄) = e+

∑n
j=1 C(z̄j), ϕ〉 ∈ C

(2) σ ∈ Jv̄ = x̄ ∧ ϕK
(3) Tj ∈ T (C(σ(z̄j)))


A possible evaluation tree for C(v̄) is generated as follows: In (1) we chose a match-
ing equation from those defining the CR C; In (2) we chose a solution σ for v̄ = x̄ ∧ ϕ,
which indicates that the chosen equation is applicable; In (3) we let Tj be an evaluation
tree for C(σ(z̄j)); and then we construct an evaluation tree Tree(σ(e), [T1, . . . , Tn]) for
C(v̄), which has σ(e) as the root and T1, . . . , Tn as sub-trees. Note that due to the non-
deterministic choices in (1) and (2) we might have several evaluation trees for C(v̄).
Note also that trees might be infinite. The sum of all nodes of T ∈ T (C(v̄)) is denoted
by sum(T ), and the set of answers for C(v̄) is defined as answ(C(v̄)) = {sum(T ) | T ∈
T (C(v̄))}. A closed-form function C∗(x̄0) = e is an UB (resp. LB) for C, if for any val-
uation v̄ it holds that C∗(v̄) ≥ max(answ(C(v̄))) (resp. C∗(v̄) ≤ min(answ(C(v̄)))). Note
that even if the original program is deterministic, due to the abstractions performed
during the generation of the CR, it might happen that several results can be obtained
for a given C(v̄). Correctness of the underlying analysis used to obtain the CR must
ensure that the actual cost is one of such solutions. This makes it possible to use CR
to infer both UBs and LBs.
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Example 2.2. Let us evaluate B(0, 3, 3). The only matching equation is the second
one for B. We choose an assignment σ. Here we have a non-deterministic choice for
selecting the value of j′ which can be 1, 2 or 3. We evaluate the cost of C(0, 0, 3). Finally,
one of the recursive calls of B(1, 3, 3), B(2, 3, 3) or B(3, 3, 3) will be made, depending on
the chosen value for j′. If we continue executing all possible derivations until reaching
the base-cases, the final result for B(0, 3, 3) is any of {9, 10, 13, 14, 15, 18}. The actual
cost is guaranteed to be one of such values.

Our approach for inferring UBs (resp. LBs) for a CR C heavily relies on over (resp.
under) approximating the lengths of paths in the corresponding evaluation trees. The
length of a path is defined as the number of edges from the root to a leaf. Note that a
path in an evaluation tree is associated with a chain of calls from which its nodes have
been generated, and thus, bounding the length of such chains also bounds the length
of the corresponding paths. Intuitively, the length of a path indicates how many times
we have applied a recursive equation.

2.2. Single-Argument Recurrence Relations
It is fundamental for this paper to understand the differences between CRs and RRs.
The following have been identified as the main differences [Albert et al. 2011b], which
in turn justify the need to develop specific solvers to bound CRs:

(1) CRs often have multiple arguments that increase or decrease over the relation.
The number of evaluation steps (i.e., recursive calls performed) is often a function
of such several arguments (e.g., in A it depends on i and q).

(2) CRs often contain inexact size relations, e.g., variables range over an interval [a, b]
(e.g., variable j′ in B). Thus, for a given input, we might have several solutions
which perform a different number of evaluation steps.

(3) Even if the original programs are deterministic, due to the loss of precision in
the first stage of the static analysis, CRs often involve several not mutually ex-
clusive equations (and thus non-deterministic). This will be further explained in
Section. 4.3.

As a consequence of point (2) and (3) above, an exact solution often does not exist and
hence CAS just cannot be used in such cases. But, even if a solution exists, CAS do not
accept all CRs as a valid input. Below, we define a class of RRs that CAS can handle.

Definition 2.3 (Single-argument RR). A single-argument RR P is defined by at
most one recursive equation 〈P (N) = E + n ∗ P (N − 1)〉 where E is a function on
N (and might have constant symbols) and n ∈ Z+ refers to the number of recursive
calls, and a base-case equation 〈P (0) = λ〉 where λ is a constant symbol representing
the value of the base-case.

A closed-form solution for P (N), if exists, is an arithmetic expression that depends
only on the variable N , the base-case constant symbol λ, and might include constant
symbols that appear in E. Depending on the number of recursive calls n in the recur-
sive equation and the expression E, such solution can be of different complexity classes
(exponential, polynomial, etc.). Note that the notion of evaluation trees for CRs can be
easily adapted for RRs. The only difference is that for RRs, the call P (v) has only one
evaluation tree which is also complete (i.e., all levels are complete), while for CRs, the
call C(v̄) might have multiple trees with any shape.

3. AN INFORMAL ACCOUNT OF OUR APPROACH
This section informally explains the approximation we want to achieve and compares
it to the actual cost and the approximation of Albert et al. [2011b] with an example.
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Consider a CR in its simplest form with one base-case equation and one recursive
equation with a single recursive call:

〈C(x) = 0, {x < 0}〉
〈C(x) = ‖x‖+ C(x′), {x− 3 ≤ x′ ≤ x− 1, x ≥ 0}〉

Any evaluation tree for C(x0), where x0 denotes the initial value of x, consists of a
single path, where the leaf node has value 0 (for the base-case), and the internal nodes,
that correspond to applying the recursive equation, have values 〈e1, . . . , eκ〉. Note that
the value of each ei is determined by ‖x‖. Clearly, C(x0) has many evaluation trees,
depending on the choice of x′ in each recursive call. Moreover, the depth κ of each tree,
and the value of each ei might be different from one tree to another. Our challenge is
to accurately estimate the cost of C for any input, i.e., to infer a function Cub(x0) (resp.
Clb(x0)) such that Cub(x0) is larger (resp. Clb(x0) is smaller) than the cost e1 + · · ·+ eκ
associated to each evaluation tree.
CAS aim at obtaining the exact cost function, and thus it is not possible to apply

it to the above example since C(x0) has multiple solutions. Instead, the goal of static
cost analysis is to infer approximations in terms of closed-form UBs/LBs for C. Our
starting point is the general approximation for UBs proposed by Albert et al. [2011b]
which has two dimensions:

(1) Number of applications of the recursive case: the first dimension is to infer an UB
κ̂ on the number of times the recursive equations can be applied (which, for loops,
corresponds to the number of iterations). This bounds the depth of the tree; and

(2) Cost of applications: the second dimension is to infer an UB ê on the cost of all loop
iterations, i.e., ê ≥ ei for all i.

For the above example it infers κ̂ = ‖x0 + 1‖ and ê = ‖x0‖. Then, Cub(x0) = κ̂ ∗ ê =
‖x0‖∗‖x0 + 1‖ is guaranteed to be an UB for C. If the relation C had two recursive calls,
then the UB would be an exponential function of the form 2κ̂ ∗ ê. The most important
point to notice is that the cost of all iterations ei is approximated by the same worst-
case cost ê, which is the source of imprecision of this approach that we will improve
on. Technically, the above two dimensions are solved as follows:

(1) The first dimension is solved by inferring a ranking function f̂C , such that for
any recursive equation 〈C(x̄) = e + C(x̄1) + · · · + C(x̄m), ϕ〉 in the CR, it satisfies
ϕ |= f̂C(x̄) ≥ f̂C(x̄i) + 1 ∧ f̂C(x̄) ≥ 0 for all 1 ≤ i ≤ m. This guarantees that when
evaluating C(x̄0), the length of any chain of calls to C cannot exceed f̂C(x̄0). Thus,
f̂C bounds the length of such chains.

(2) The second dimension is solved by first inferring an invariant 〈C(x̄0) ; C(x̄),Ψ〉,
where Ψ is a set of linear constraints, which describes the relation between the
values that x̄ can take in any call to C and the initial values x̄0. Then, it generates
ê as follows: each ‖l‖ ∈ e is replaced by ‖l̂‖ where l̂ is a linear expression (over x̄0)
that satisfies l̂ ≥ l. The expression l̂ is computed using parametric integer linear
programming [Feautrier 1988], i.e., maximizing l w.r.t. Ψ∧ϕ and the parameters x̄0.
Alternatively, l̂ can be computed by syntactically looking for an expression ξ ≤ l̂ in
∃̄x̄0∪{ξ}.Ψ∧ϕ∧ξ = l where ξ is a new variable. The advantage of the later approach
is that it can be used with any library for manipulating linear constraints.

The use of the above automated techniques is what makes the corresponding approach
widely applicable. In the rest of this paper, we let f̂C denote a ranking function for a
given CR C, and ê denote the maximization of a cost expression e in some context. We
assume that they are computed as above.
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〈C(x̄) = 0, ϕ0〉
〈C(x̄) = e+ C(x̄1) + · · ·+ C(x̄m), ϕ1〉

Fig. 3: CR with single recursive equation.

Our challenge is to improve the precision of the above approach for solving CRs
while still keeping a similar applicability for UBs and, besides, be able to apply it for
inferring useful LBs. The fundamental idea is to generate a sequence of non-negative
elements 〈u1, . . . , uκ̂〉, with κ̂ ≥ κ, such that for any concrete evaluation 〈e1, . . . , eκ〉,
each ei has a corresponding different uj satisfying uj ≥ ei (observe that the subindexes
might not match as κ̂ ≥ κ). This guarantees soundness since then u1 + · · ·+uκ̂ is an UB
of e1 + · · ·+eκ. Moreover, it is potentially more precise since the ui’s are not required to
be all equal. For the above example, we generate the sequence 〈‖x0‖, ‖x0 − 1‖, . . . , 0〉.
This allows inferring the UB ‖x0‖∗‖x0+1‖

2 which is more precise than ‖x0‖∗‖x0 + 1‖ that
we have obtained before.

Technically, we compute the approximation by transforming the CR into a (worst-
case) RR (as in Definition 2.3) whose exact closed-form solution is u1 + · · ·+ uκ̂. When
e is a simple linear expression such as e ≡ ‖l‖, the novel idea is to view u1, . . . , uκ̂ as
an arithmetic sequence that starts from uκ̂ ≡ ê and each time decreases by ď where
ď is an under-approximation of all di = ei+1 − ei, i.e., ui = ui−1 + ď. When e is a
complex nonlinear expression, e.g., ‖l‖∗‖l′‖, it cannot be precisely approximated using
sequences. For such cases, our novel contribution is a method for approximating e by
approximating its ‖.‖ sub-expressions (which are linear) separately.

An important advantage of our approach w.r.t. previous ones [Albert et al. 2011b;
Gulwani et al. 2009; Hoffmann et al. 2011], is that the problem of inferring LBs is
dual. In particular, we can infer a LB κ̌ on the length of chains of recursive calls, the
minimum value ě to which e can be evaluated, and then sum the sequence 〈`1, . . . , `κ̌〉
where `i = `i−1 + ď and `1 = ě. For the above example, we have ě = 0, ď = 1 and
κ̌ = ‖x0+1

3 ‖ and thus the LB we infer is: Clb(x0) = 1
2 ∗ ‖

x0+1
3 ‖ ∗ (‖x0+1

3 ‖+ 1).
In addition, our techniques can be applied to cost expressions with any progression

behavior that can be modeled using sequences, and not only a linear progression be-
havior. Indeed, in this paper we develop our techniques also for geometric progression.

4. INFERENCE OF PRECISE UPPER BOUNDS
In this section, we present our approach to accurately infer UBs on the resource con-
sumption in the following steps:

(1) In Section 4.1, we handle a subclass of CRs which are defined by a single recursive
equation and accumulate a constant cost.

(2) In Section 4.2, we handle CRs which are still defined by a single recursive equation
but accumulate non-constant costs.

(3) In Section 4.3, we treat CRs with multiple overlapping equations.
(4) In sections 4.1, 4.2 and 4.3 we assume that base-case equations always contribute

cost zero, and in Section 4.4 we explain how to handle non-zero base-case equa-
tions.

(5) Finally, in Section 4.5, we finish with some concluding remarks.

4.1. Cost Relations with Constant Cost
We consider CRs defined by a single recursive equation as depicted in Figure 3, where
e contributes a constant cost, i.e., it is a constant number. As explained in Section 3,
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any chain of calls in C when starting from C(x̄0) is at most of length f̂C(x̄0). We aim
at obtaining an UB for C by solving a corresponding RR PC in which all chains of calls
are of length f̂C(x̄0). Intuitively, PC can be seen as a special case of a RR such that
its recursive equation has m recursive calls (as in C), where all chains of calls are of
length N , and each application accumulates the constant cost e. Its solution can be
then instantiated for the case of C by replacing N by f̂C(x̄0).

Definition 4.1. The worst-case RR of the CR C of Figure 3, when e is constant cost,
is 〈PC(N)=e+m ∗ PC(N − 1)〉.

The main achievement of the above transformation is that, for CRs with constant cost
expressions, we get rid of their problematic features (1) and (2) described in Section 2.2
which prevented us from relying on CAS to obtain a precise solution. The following
theorem explains how the closed-form solution of the RR PC can be transformed into
an UB for the CR C.

THEOREM 4.2. Let E be a solution for PC(N) of Definition 4.1. Then, Cub(x̄0) =

E[N/f̂C(x̄0)] is an UB for its corresponding CR C.

Example 4.3. The worst-case RR of the CR C of Figure 1b is 〈PC(N)=1+PC(N−1)〉,
which is solved using CAS to PC(N)=N for any N ≥ 0. The UB for C is obtained by
replacing N by the corresponding ranking function f̂C(k0, j0, q0) = ‖j0 + q0 − k0‖ which
results in Cub(k0, j0, q0) = ‖j0 + q0 − k0‖.

4.2. Cost Relations with Non-Constant Cost
During cost analysis, in many cases we obtain CRs like the one of Figure 3, but with
a non-constant expression e which is evaluated to different values ei in different ap-
plications of the recursive equation. The transformation in Definition 4.1 would not
be correct since in these cases e must be appropriately related to N . In particular,
the main difficulty is to simulate the accumulation of the non-constant expressions ei
at the level of the RR. In this section we formalize the ideas intuitively explained in
Section 3 which are based on using sequences to simulate the behavior of e.

We distinguish two cases: CRs with linear (a.k.a., arithmetic) and CRs with geo-
metric progression behavior. In general, the cost expression e has a complex form
(e.g., exponential, polynomial, etc.). Therefore, even a simple cost expression like
‖x+ y‖ ∗ ‖x+ y‖ does not increase arithmetically or geometrically even if the sub-
expression x+ y does. Therefore, limiting our approach to cases in which e has a linear
or geometric progression behavior would narrow its applicability. Instead, a key ob-
servation in our approach is that, it is enough to reason on the behavior of its ‖.‖
sub-expressions, i.e., we only need to understand how each ‖l‖ ∈ e changes along a se-
quence of calls to C, which very often have a linear or geometric progression behavior
since l is a linear expression.

4.2.1. Linear Progression Behavior. This section describes how to obtain an UB for the
CR of Figure 3, when e includes ‖.‖ sub-expressions with linear progression behavior,
using a RR that simulates the behavior of each ‖.‖ sub-expression separately. We first
characterize the notion of linear progression behavior of a ‖.‖ expression.

Definition 4.4 (‖.‖ with linear progression behavior). Consider the CR C of Fig-
ure 3. We say that ‖l‖ ∈ e has an increasing (resp. decreasing) linear progression
behavior, if there exists a progression parameter ď > 0, such that for any two consecu-
tive contributions of e during the evaluation of C(x̄0), denoted e′ and e′′, it holds that
l′′ − l′ ≥ ď (resp. l′ − l′′ ≥ ď) where ‖l′‖ ∈ e′ and ‖l′′‖ ∈ e′′ are the instances of ‖l‖.
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For the case of the CR of Figure 3, the two consecutive instances e′ and e′′ in the above
definition refer to two consecutive nodes in the corresponding evaluation tree (a node
e′, and one of its children e′′). Note that there might be several values for ď that satisfy
the conditions of the above definition. For example, if a ‖.‖ expression decreases at
least by 2, then it also decreases at least by 1, and therefore both ď = 1 and ď = 2
satisfy the conditions of the above definition. Although taking ď = 1 is sound, it leads
to inferring less precise bounds. Therefore, our interest is in finding the maximum ď
that satisfies the above definition. It is important to note that this maximum value for
(the minimum decrease/increase) ď is different from the maximum decrease/increase.
In practice, we compute such ď for a given ‖l‖ ∈ e with an increasing (resp. decreasing)
behavior as follows: let 〈C(ȳ) = e′+C(ȳ1)+· · ·+C(ȳm), ϕ′1〉 be a renamed apart instance
of the recursive equation of C such that l′ is the renaming of l, and for each 1 ≤ i ≤ m
let ďi be the result of minimizing the objective function l′ − l (resp. l − l′) with respect
to ϕ1 ∧ ϕ′1 ∧ x̄i = ȳ using integer programming, then ď = min(ď1, . . . , ďm).

Example 4.5. Consider again the cost relation B of Figure 1b. Replacing the call
C(0, j, q) by the UB ‖q + j‖ computed in Example 4.3 results in 〈B(j, i, q) = ‖q + j‖ +
B(j′, i, q), ϕ1〉 where ϕ1 = {j < i, j + 1 ≤ j′ ≤ j + 3}. A renamed apart instance of
this equation is 〈B(jr, ir, qr) = ‖qr + jr‖ + B(j′r, ir, qr), ϕ

′
1〉 where ϕ′1 = {jr < ir, jr +

1 ≤ j′r ≤ jr + 3}. Minimizing the objective function (qr + jr) − (q + j) with respect to
ϕ1 ∧ ϕ1 ∧ {j′ = jr, i = ir, q = qr} results in ď1 = 1. Therefore, ‖q + j‖ has an increasing
linear progression behavior with a progression parameter ď = 1.

As explained in Section 3, the goal is to use a linear sequence that starts from the
maximum value that a given ‖l‖ ∈ e can take, i.e., ‖l̂‖, and in each step decreases by
the minimum distance ď between two consecutive instances of ‖l‖. Let us intuitively
explain how our method works by focusing on a single ‖l‖ ∈ e within the relation C,
assuming that it has a decreasing linear progress behavior with a progression parame-
ter ď. Recall that during the evaluation of an initial query C(x̄0), any chain of calls has
a length κ ≤ f̂C(x̄0). Let ‖l1‖, . . . , ‖lκ‖ be the instances of ‖l‖ contributed in each call.
Our aim is to generate a sequence of elements u1, . . . , uκ such that ui ≥ ‖li‖. Then, each
ui will be used instead of ‖li‖ in order to over-approximate the total cost contributed
by the i-th call.

Since li − li+1 ≥ ď, for the first κ elements of the sequence {u1 = ‖l̂‖, ui = ui−1 − ď}
it holds that u1 ≥ l1, . . . , uκ ≥ lκ. However, this does not imply yet ui ≥ ‖li‖ since
when li < 0 we have ‖li‖ = 0 but the corresponding ui might be negative. This mainly
happens when κ is an over-approximation of the actual length of the chain of calls.
Therefore, an imprecise (too large) f̂C would lead to a large decrease and the smallest
element ‖l̂‖ − ď ∗ (f̂C(x̄0) − 1), and possibly other subsequent ones, could be negative
and would provide an incorrect result.

We avoid this problem by viewing this sequence in a dual way: we start from the
smallest value and in each step increase it by ď. Since still the smallest values could be
negative, assuming that f̂C(x̄0) = ‖l′‖, we start from ‖l̂ − ď ∗ l′‖+ďwhich is guaranteed
to be positive and greater than or equal to the smallest value ‖l̂‖ − ď ∗ (f̂C(x̄0) − 1).
This mean that when the smallest value is negative, we shift the sequence and start
from a positive smallest value ď until the biggest value ‖l′‖ ∗ ď ≥ ‖l̂‖. Therefore, using
ui = ‖l̂ − ď ∗ l′‖+ (‖l′‖− i+ 1) ∗ ď, it is guaranteed that u1 ≥ ‖l1‖, . . . , uκ ≥ ‖lκ‖. Similar
reasoning can be done when for the case in which ‖l‖ ∈ e is linearly increasing by ď.
The next definition, that generalizes Definition 4.1, uses this intuition to replace each
‖.‖ by an expression that generates its corresponding sequence at the level of RR.
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Definition 4.6. Consider the CR C of Figure 3, and let f̂C(x̄0) = ‖l′‖. Its associated
worst-case RR is 〈PC(N) = Êe+m∗PC(N−1)〉where Êe is obtained from e by replacing
each ‖l‖ ∈ e by lRR such that lRR ≡ ‖l̂ − ď ∗ l′‖+(‖l′‖−N+1)∗ď (resp. lRR ≡ ‖l̂ − ď ∗ l′‖+
N ∗ ď) if ‖l‖ is linearly increasing (resp. decreasing) with a progression parameter ď;
otherwise lRR ≡ ‖l̂‖.

Example 4.7. Let us see how a given ‖l‖ ∈ e, which is linearly decreasing by ď, is
simulated in PC . If we apply PC on N = f̂C(x̄0) = ‖l′‖, i.e., on the maximum depth
of the evaluation tree, then the part that corresponds to ‖l‖ in Êe is evaluated to
‖l̂ − ď ∗ l′‖ + ‖l′‖ ∗ ď. Then, in the following iteration, when applying PC on N − 1,
the same part is evaluated to ‖l̂ − ď ∗ l′‖+ (‖l′‖ − 1) ∗ ď which is smaller than the first
one, and so forth. If ‖l‖ is linearly increasing by ď, then in the first application of PC
we get ‖l̂ − ď ∗ l′‖+ ď, in the second one we get ‖l̂ − ď ∗ l′‖+ 2 ∗ ď, and so forth.

Note that, in Definition 4.6, if ‖l‖ ∈ e does not have a linear progression behavior
then it is replaced by ‖l̂‖, exactly as in the approach of Albert et al. [2011b]. Note also
that the distinction between the decreasing and increasing cases is of great importance
when the CR has more than one recursive call. This affects the number of times the
largest element of the sequence is contributed: one time (in the root of the evaluation
tree) in the decreasing case, and 2(N−1) times (the last level of internal nodes in the
evaluation tree) in the increasing case. The following theorem explains how the closed-
form solution of the RR PC can be transformed into an UB for the CR C.

THEOREM 4.8. Let E be a solution for PC(N) of Definition 4.6. Then Cub(x̄0) =

E[N/f̂C(x̄0)] is an UB for its corresponding CR C.

Example 4.9. Consider the standalone CR B of Example 4.5, and recall that
‖q + j‖ increases linearly with a progression parameter ď = 1. Function f̂B(j0, i0, q0) =
‖i0 − j0‖ is a ranking function for CR B. Maximizing ‖q + j‖ results in ‖q0 + i0 − 1‖.
Then, using Definition 4.6 we generate the worst-case RR PB(N) depicted in Figure 2
whose solution (computed by CAS ) is:

PB(N) = ‖q0 + j0 − 1‖ ∗N + ‖i0 − j0‖ ∗N +
N

2
− N2

2

By Theorem 4.8, replacing N by f̂B(j0, i0, q0) results in:

Bub(j0, i0, q0) = ‖q0 + j0 − 1‖ ∗ ‖i0 − j0‖+
‖i0 − j0‖

2
∗ (‖i0 − j0‖+ 1)

Substituting this UB in the cost relation A of Figure 1b results in the CR:

〈A(i, q) = ‖q − 1‖ ∗ ‖i‖+
‖i‖
2
∗ (‖i‖+ 1) +A(i′, q), {i+ 1 ≤ q, i+ 2 ≤ i′ ≤ i+ 4}〉

Note that in this CR the expression ‖q − 1‖ always evaluates to the same value, while
‖i‖ has an increasing linear progression behavior with progression parameter ď = 2.
Given that: (1) f̂A(i0, q0) = ‖ q0−i02 ‖; (2) the maximization of ‖q − 1‖ is ‖q0 − 1‖; and (3)
the maximization of ‖i‖ is ‖q0 − 1‖, by applying Definition 4.6, we generate the worst-
case RR PA(N) depicted in Figure 2, which is solved by CAS to:

PA(N) = N
6 ∗ [4 ∗N2 + 3 ∗ ‖i0 − 1‖ ∗ (2 ∗N + ‖i0 − 1‖+ 3)+

6 ∗ ‖q0 − 1‖ ∗ (‖i0 − 1‖+N + 1) + 9 ∗N + 5]
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By Theorem 4.8, replacing N by f̂A(i0, q0) results in:

Aub(i0, q0) = 1
6
∗ ‖ q0−i0

2
‖ ∗ (4 ∗ ‖ q0−i0

2
‖ ∗ ‖ q0−i0

2
‖+ 3 ∗ ‖i0 − 1‖ ∗ (2 ∗ ‖ q0−i0

2
‖

+‖i0 − 1‖+ 3) + 6 ∗ ‖q0 − 1‖ ∗ (‖i0 − 1‖+ ‖ q0−i0
2
‖+ 1) + 9 ∗ ‖ q0−i0

2
‖+ 5)

Finally, substituting Aub(0, q0) in the CR F , we obtain the UB:

Fub(q0) =
1

6
∗ ‖q0

2
‖ ∗ (4 ∗ ‖q0

2
‖ ∗ ‖q0

2
‖+ 6 ∗ ‖q0 − 1‖ ∗ (‖q0

2
‖+ 1) + 9 ∗ ‖q0

2
‖+ 5)

whereas the approach of Albert et al. [2011b] obtains 2 ∗ ‖ q0+1
2 ‖ ∗ ‖q0 − 1‖2, which is

less precise.

4.2.2. Geometric Progression Behavior. The techniques of Section 4.2.1 can solve a wide
range of CRs. However, in practice, we find also CRs that do not have constant or linear
progression behavior, but rather a geometric progression behavior. This is typical in
programs that implement divide and conquer algorithms, where the problem (i.e., the
input) is divided into sub-problems which are solved recursively.

Example 4.10. Consider the following implementation of the merge-sort algorithm:

void msort ( i n t a [ ] , i n t low , i n t h i ) {
i f ( h i > low ) {

i n t mid =( h i +low ) / 2 ;
msort ( a , low , mid ) ;
msort ( a , mid+1 , h i ) ;
merge ( a , low , mid , h i ) ;

}
}

where, for simplicity, we omit the code of merge and assume that its cost, for example,
is 10 ∗ ‖hi− low + 1‖, when counting the number of executed (bytecode) instructions.
Using this UB, COSTA automatically generates the following CR for msort:

〈msort(a, low, hi) = 0, ϕ1〉
〈msort(a, low, hi) = 20+10 ∗ ‖hi− low + 1‖+msort(a, low,mid)+msort(a,mid′, hi), ϕ2〉

where
ϕ1 = {hi ≥ 0, low ≥ 0, hi ≤ low}
ϕ2 = {hi ≥ 0, low ≥ 0, hi ≥ low + 1,mid′ = mid+ 1, low + hi− 1 ≤ 2 ∗mid ≤ low + hi}

The constant 20 corresponds to the cost of executing the comparison, the sum and
division, and invoking the methods. The constraint low + hi − 1 ≤ 2 ∗mid ≤ low + hi
in ϕ2 is used to model the behavior of the integer division mid=(low+hi)/2 with linear
constraints. The progression behavior of ‖hi− low + 1‖ is geometric, i.e., if ‖li‖ and
‖li+1‖ are two instances of ‖hi− low + 1‖ in two consecutive calls, then li ≥ 2 ∗ li+1 − 1
holds, which means that the value of ‖hi− low + 1‖ is reduced almost by half at each
iteration. It is not reduced exactly by half since li ≥ 2 ∗ li+1 does not hold when the
input array is of odd size, in such case it is divided into two sub-problems with different
(integer) sizes.

The above example demonstrates that: (1) there is a practical need for handling CRs
with geometric progression behavior; and (2) the geometric progression in programs
that manipulate integers does not comply the standard definition ui = c ∗ ri of geo-
metric series, but rather it should consider small shifts around those values in order
to account for examples like divide-and-conquer algorithms. The following definition
specifies when a ‖.‖ expression has a geometric progression behavior.
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Definition 4.11 (‖.‖ with geometric progression behavior). Consider the CR C of
Figure 3. We say that ‖l‖ ∈ e has an increasing (resp. decreasing) geometric progres-
sion behavior, if there exist progression parameters ř > 1 and p̌ ∈ Q, such that for any
two consecutive contributions of e during the evaluation of C(x̄0), denoted e′ and e′′,
it holds that l′′ ≥ ř ∗ l′ + p̌ (resp. l′ ≥ ř ∗ l′′ + p̌) where ‖l′‖ ∈ e′ and ‖l′′‖ ∈ e′′ are the
instances of ‖l‖.
Note that the above increasing and decreasing conditions could be equivalently written
as l′′

ř + p̌ ≥ l′ and l′′ ≤ l′

ř + p̌ respectively. This might be more common in the literature,
however, it does not lead to a simpler formalism. Thus, we prefer to use those of the
above definition to keep the notation simpler.

As in the case of ď in the linear progression behavior, we are interested in values for ř
and p̌ that are as close as possible to the minimal progression of ‖l‖. This happens when
ř is maximal, and for that maximal ř, the value of |p̌| is minimal. In practice, computing
such ř and p̌ for a given ‖l‖ ∈ e with an increasing (resp. decreasing) behavior is done
as follows: let 〈C(ȳ) = e′ + C(ȳ1) + · · · + C(ȳm), ϕ′1〉 be a renamed apart instance of
the recursive equation of C such that l′ is the renaming of l, then we look for ř and
p̌ such that for each 1 ≤ i ≤ m it holds that ϕ1 ∧ ϕ′1 ∧ x̄i = ȳ |= l′ ≥ ř ∗ l + p̌ (resp.
ϕ1 ∧ ϕ′1 ∧ x̄i = ȳ |= l ≥ ř ∗ l′ + p̌). This can be done using Farkas’ Lemma [Schrijver
1986], which provides a systematic way to derive all implied inequalities of a given
set of linear constraints. However, systematically checking the conditions taking the
coefficients and the constants that appear in ϕ1 as candidates for ř and p̌, respectively,
works well in practice.

Example 4.12. For the CR of Example 4.10, we have that ‖hi− low + 1‖ is decreas-
ing geometrically, with progression parameters ř = 2 and p̌ = −1. Note that 2 and −1
explicitly appear as coefficient and constant, respectively, in ϕ1.

Similarly to the case of linear progression behavior in Section 4.2.1, the progression
parameters 〈ř, p̌〉 are used in order to over-approximate the contributions of a given
‖l‖ ∈ e expression along a chain of calls. For example, if ‖l‖ ∈ e has a decreasing
geometric progression behavior, and ‖l1‖, . . . , ‖lκ‖ are instances of ‖l‖ along any chain
of calls where κ ≤ f̂C(x̄0), then first κ elements of the sequence

ui =
‖l̂‖
ři−1

+ ‖−p̌‖∗
i−1∑
j=1

1

řj

satisfy ui ≥ ‖li‖. We use ‖−p̌‖ in order to lift the negative value −p̌ (when p̌ > 0)
to zero and avoid that ui goes into negative values. The following definition extends
Definition 4.6, by handling the translation of ‖.‖ expression with geometric behavior.
First, to simplify the notation, let us denote the sum

∑i
j=1

1
řj by Ŝ(i), which is also

equal to 1
ři ∗

1
1−ř −

1
1−ř .

Definition 4.13. We extend Definition 4.6 for the geometric progression case as fol-
low: if ‖l‖ ∈ e has an increasing (resp. decreasing) geometric progression behavior,
then its corresponding lRR is defined as

lRR ≡
‖l̂‖

ř(N−1)
+ ‖−p̌‖ ∗ Ŝ(N − 1)

[
resp. lRR ≡

‖l̂‖
ř(f̂C(x̄0)−N)

+ ‖−p̌‖ ∗ Ŝ(fC(x̄0)−N)

]

Note that value of ‖l̂‖
ř(N−1) + ‖−p̌‖ ∗ Ŝ(N − 1) decreases along the iterations of PC , i.e.,

when N decreases. Similarly, the value of ‖l̂‖
ř(f̂C (x̄0)−N)

+ ‖−p̌‖ ∗ Ŝ(fC(x̄0)−N) increases.
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Algorithm 1: compute UB
Input: Standalone CR C, as in Figure 3
Output: Closed-form UB Cub(x̄0) for C

1 Compute a loop bound f̂C(x̄0);
2 Compute an invariant 〈C(x̄0) ; C(x̄),Ψ〉;
3 Êe = e;
4 foreach ‖l‖ ∈ e do
5 Let l̂ be the result of maximizing l w.r.t Ψ ∧ ϕ1 and the parameter x̄0;
6 Compute the progression parameters ď or 〈ř, p̌〉 for l;
7 Compute lRR as in definitions 4.6 and 4.13;
8 Êe = Êe[‖l‖/lRR];
9 end

10 Solve 〈PC(N) = Êe +m ∗ PC(N − 1)〉 into a closed-form expression E using CAS ;
11 Cub(x̄0) = E[N/f̂C(x̄0)];

Note also that the distinction between the decreasing and the increasing cases is fun-
damental, and it is for the same reasons as in Definition 4.6. The following theorem
explains how the closed-form solution of the RR PC can be transformed into an UB for
the CR C.

THEOREM 4.14. Let E be a solution for PC(N) of Definition 4.6, together with the
extension of Definition 4.13. Then, Cub(x̄0) = E[N/f̂C(x̄0)] is an UB for its correspond-
ing CR C.

Example 4.15. Consider the CR of Example 4.10, and recall that ‖hi− low + 1‖
decreases geometrically with progression parameters ř = 2 and p̌ = −1 (see Exam-
ple 4.12). Moreover, the ranking function for the CR msort is f̂msort(a0, low0, hi0) =
log2(‖hi0 − low0‖ + 1) + 1, and maximization of ‖hi− low + 1‖ results in ‖hi0 + 1‖. Ac-
cording to Definition 4.13, the associated worst-case RR (after simplifying Êe for clar-
ity) is:

Pmsort(N) = 30 + 10 ∗ ‖hi0 + 1‖ − 1

2(log2(‖hi0−low0‖+1)+1−N)
+ 2 ∗ Pmsort(N − 1)

Obtaining a closed-form solution for Pmsort(N) using CAS , and then replacing N by
f̂msort(a0, hi0, low0) results in the following UB for the CR msort:

msortub(a0, low0, hi0)=30+60∗‖hi0−low0‖+10∗(log2(‖hi0−low0‖+1)+1)∗(‖hi0 + 1‖−1) .

Algorithm 1 summarizes the process of solving a given standalone CR as that of
Figure 3, as described in sections 4.1 and 4.2. As we have explained in Section 2.1,
non-standalone CRs are solved in a modular way: we first apply Algorithm 1 to the
CRs that do not call any other CRs (i.e., standalone), then we continue by substituting
the computed bounds in the equations that call such CRs, which in turn become stan-
dalone, and thus can be solved using Algorithm 1. This process is applied until all CRs
are solved.

4.3. Non-constant Cost Relations with Multiple Equations
Any approach for solving CRs that aims at being practical has to consider CRs with
several recursive equations as the one depicted in Figure 4. This kind of CRs is
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〈C(x̄) = 0, ϕ0〉
〈C(x̄) = e1 + C(x̄1) + · · ·+ C(x̄m1), ϕ1〉

...
〈C(x̄) = eh + C(x̄1) + · · ·+ C(x̄mh), ϕh〉

Fig. 4: CRs with multiple recursive equations

very common during cost analysis, and they mainly originate from conditional state-
ments inside loops. For instance, the instruction “ if (x[ i ]>0) A else B” may lead to non-
deterministic equations which accumulate the costs of A and B. This is because ar-
rays are typically abstracted to their length and, hence, the condition x[ i ]>0 is ab-
stracted to true, i.e., we do not keep this information in the corresponding CR. Hence,
ϕ1, . . . , ϕh are not necessarily mutually exclusive. In what follows, w.l.o.g., we assume
that m1 ≥ · · · ≥ mh, i.e., the first (resp. last) recursive equation has the maximum
(resp. minimum) number of recursive calls among all equations.

As a first solution to the problem of inferring an UB for the CR of Figure 4, we
simulate its worst-case behavior, whenever possible, using another CR Ĉ with a single
recursive equation. We refer to Ĉ as the worst-case CR of C. Namely, we generate the
following CR

〈Ĉ(x̄) = e+ Ĉ(x̄1) + . . .+ Ĉ(x̄m1), ϕ〉

such that the evaluation trees of Ĉ(x̄0) up to depth f̂C(x̄0) over-approximate the eval-
uation trees of C(x̄0). Then, we will infer an UB on the evaluation trees of Ĉ(x̄0) up to
such depth, by generating a corresponding RR, which is then guaranteed to be an UB
for C(x̄0). The process of constructing Ĉ will be discussed later in this section, let us
start by formalizing the conditions that Ĉ should satisfy, and how we approximate its
evaluation trees up to a given depth.

Definition 4.16. We say that 〈Ĉ(x̄) = e+ Ĉ(x̄1)+ · · ·+ Ĉ(x̄m1), ϕ〉 is a worst-case CR
for the CR C of Figure 4, if for any valuation v̄ it holds that

max({sum(T, f̂C(v̄)) | T ∈ T (Ĉ(v̄))}) ≥ max(answ(C(v̄)))

where sum(T, f̂C(v̄)) denotes the sum of all nodes in T up to depth f̂C(v̄).

Intuitively, we require that when evaluating Ĉ(v̄) until the maximum depth of the
trees of C(v̄), i.e., until depth f̂C(v̄), we already get a larger cost than when evaluating
C(v̄). Note that we do not require the evaluation trees of Ĉ(v̄) to be finite, and indeed
in some cases they are not, i.e., the loops of Ĉ are possibly non-terminating. This is
because, when generating Ĉ, we usually generalize ϕ1, . . . , ϕh into ϕwhich might affect
the termination behavior. The following definition explains how to construct a worst-
case RR for Ĉ, that we use to approximate its cost up to depth f̂C(v̄).

Definition 4.17. Given the CR C of Figure 4, a corresponding worst-case CR Ĉ as in
Definition 4.16, and a ranking function f̂C(x̄0) for C. The worst-case RR of Ĉ is defined
as 〈PĈ(N) = Êe+m1 ∗PĈ(N−1)〉, where Êe is generated as in definitions 4.6 and 4.13,
with the only difference of using f̂C(x̄0) instead of f̂Ĉ(x̄0).

Let us clarify how we compute Êe from e in the above definition. In principle, it is
computed as in definitions 4.6 and 4.13 but using f̂C(x̄0) = ‖l′‖, and not f̂Ĉ(x̄0) = ‖l′‖,
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in order to account only for paths of at most length f̂C(x̄0). Apart from this difference,
it is important to note that when computing lRR for ‖l‖ ∈ e: (1) the progression param-
eters are computed using Ĉ (i.e., using the constraints ϕ); and (2) ‖l̂‖ is computed by
considering an invariant of Ĉ, i.e., 〈Ĉ(x̄0) ; Ĉ(x̄),Ψ〉.

THEOREM 4.18. Let E be a solution for PĈ(N) of Definition 4.17. Then, Cub(x̄0) =

E[N/f̂C(x̄0)] is an UB for the CR C.

In what follows, we describe how to construct a worst-case CR Ĉ. The set of con-
straints ϕ is simply constructed as the convex-hull of ϕ1, . . . , ϕh, taking into account
that each ϕi might include local variables that do not occur in other ϕj . Next we de-
scribe how to compute e. Observe that any cost expression (that does not include max)
can be normalized to the form Σni=1Πni

j=1bij (i.e., sum of multiplications) where each
bij is a basic cost expression of the form {r, ‖l‖,m‖l‖, log(‖l‖+ 1)}. This normal form al-
lows constructing e by considering the basic components of e1, . . . , eh. For simplicity, we
assume that e1, . . . , eh are given in this normal form, otherwise they could be normal-
ized first. The following definition introduces the notion of a generalization operator
for basic cost expressions. W.l.o.g., we consider that e1, . . . , eh have the same number
of multiplicands n, and that all multiplicands have the same number of basic cost ex-
pressions m. This is not a restriction since otherwise, we just add 1 in multiplication
and 0 in sum to achieve this form.

Definition 4.19 (generalization of cost expressions). A generalization operator t is
a mapping from pairs of basic cost expressions to cost expressions such that it satisfies
a t b ≥ a and a t b ≥ b. The t-generalization of two cost expressions e1 = Σni=1Πm

j=1aij
and e2 = Σni=1Πm

j=1bij is defined as e1 t e2 = Σni=1Πm
j=1(aij t bij).

The above definition does not provide an algorithm for generalizing two cost expres-
sions, but rather a general method which is parametrized in: (1) the actual generaliza-
tion operator t; and (2) the order of the multiplicands and the order of their basic cost
expressions (since we generalize basic cost expressions with the same indexes). It is
important to notice that there is no best-solution for these points, and that in practice
heuristic-based solutions should be used. Below we describe such a solution.

As regards (1), any generalization operator should try first to prove that aij ≥ bij
or aij ≤ bij , and take the bigger one as the result. Such comparison is feasible due
to the simple forms of the basic cost expressions, which are also known a priori. This
means that one could generate a set of rules that specify conditions under which it
is guaranteed that one cost expression is bigger than another one. E.g., ‖l1‖ ≥ ‖l2‖ if
l1 ≥ l2. Albert et al. [2010] defined such rules for comparing cost expressions in general.
When the comparison fails, a possible sound solution is to take aij + bij . However, this
might often results in too imprecise generalization. Again, the simple structure of such
expressions makes it possible to build a set of generalization rules that obtain precise
results. E.g., ‖2 ∗ y0 + z0‖ and ‖y0 + 2 ∗ z0‖ can be generalized into ‖2 ∗ y0 + 2 ∗ z0‖, by
taking the maximum of the coefficients that correspond to the same variables.

Algorithms 2 summarizes the approach that we have discussed so far for solving
CRs with multiple equations. Let us now apply it to a concrete example.

Example 4.20. Let us add the following equation to the CR B of Example 4.5:

B(j, i, q) = ‖j‖2 +B(j′, i, q) {j + 1 ≤ i, j′ = j + 1}

Now B has multiple equations, that impose a non-deterministic choice for accumulat-
ing either e1 = ‖q + j‖ or e2 = ‖j‖2. Next, we compute e = e1 t e2 = ‖q + j‖ ∗ ‖j‖, and
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Algorithm 2: compute UB MulEqn 1
Input: CR C with multiple equations, as in Figure 4
Output: closed-form UB Cub(x̄0)

1 Compute a loop bound f̂C(x̄0);
2 Compute e = e1 t · · · t eh;
3 Generalize ϕ1, · · · , ϕh into ϕ;
4 Let 〈Ĉ(x̄) = e+ Ĉ(x̄1) + . . .+ Ĉ(x̄m1), ϕ〉 be a worst-case CR for C;
5 Compute an invariant 〈Ĉ(x̄0) ; Ĉ(x̄),Ψ〉;
6 Êe = e;
7 foreach ‖l‖ ∈ e do
8 Let l̂ be the result of maximizing l w.r.t Ψ ∧ ϕ and the parameter x̄0;
9 Compute the progression parameters ď or 〈ř, p̌〉 for l using Ĉ;

10 Compute lRR as in definitions 4.6 and 4.6, using f̂C(x̄0);
11 Êe = Êe[‖l‖/lRR];
12 end
13 Solve 〈PĈ(N) = Êe +m1 ∗ PĈ(N − 1)〉 into a closed-form expression E using CAS ;
14 Cub(x̄0) = E[N/f̂C(x̄0)];

generalize the corresponding constraints into {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}. Then we
construct the worst-case CR B̂ as

B̂(j, i, q) = ‖q + j‖ ∗ ‖j‖+ B̂(j′, i, q) {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}

Both ‖q + j‖ and ‖j‖ are increasing linearly with ď = 1. Next we compute

Êe = (‖q0 + j0 − 1‖+ (‖i0 − j0‖ −N + 1)) ∗ ((‖j0 − 1‖+ (‖i0 − j0‖ −N + 1)))

and generate the corresponding worst-case RR

〈PB̂(N) = (‖q0 + j0 − 1‖+ ‖i0 − j0‖−N + 1) ∗ (‖j0 − 1‖+ ‖i0 − j0‖−N + 1) +PB̂(N − 1)〉
which is solved by CAS to

PB̂(N) = N
6
∗ (2 ∗N2 + 6 ∗ ‖i0 − j0‖2 − 6 ∗N ∗ ‖i0 − j0‖+ 3 ∗ ‖j0 − 1‖+ 6 ∗ ‖i0 − j0‖

∗(‖j0 − 1‖+ 1) + 3 ∗ ‖q0 + j0 − 1‖ ∗ (2 ∗ ‖j0 − 1‖+ 2 ∗ ‖i0 − j0‖+ 1)− 3∗
N ∗ (‖j0 − 1‖+ ‖q0 + j0 − 1‖+ 1) + 1)

Instantiating N with f̂B(j0, i0, q0) = ‖i0 − j0‖ gives (after simplification for clarity):
Bub(j0, i0, q0) = 1

6
∗ ‖i0 − j0‖ ∗ [2 ∗ ‖i0 − j0‖ ∗ ‖i0 − j0‖+ 3 ∗ ‖i0 − j0‖ ∗ ‖j0 − 1‖

+3 ∗ ‖i0 − j0‖ ∗ ‖q0 + j0 − 1‖+ 3 ∗ ‖i0 − j0‖+ 3 ∗ ‖q0 + j0 − 1‖
+6 ∗ ‖q0 + j0 − 1‖ ∗ ‖j0 − 1‖+ 3 ∗ ‖j0 − 1‖+ 1]

The above approach works well in practice, since in many cases the cost expressions
contributed by the different equations have very similar structure, and they differ
only in constant expressions. However, there are some cases where this approach fails
to precisely generalize expressions e1, . . . , eh, and thus might infer imprecise UBs.

Example 4.21. Consider the following CR

C(z, y) = 0 {z < 1, y < 1}
C(z, y) = ‖z‖+ C(z′, y) {z′ = z − 1, z > 0}
C(z, y) = ‖y‖+ C(z, y′) {y′ = y − 1, y > 0}

We Generalize ‖z‖ and ‖y‖ to ‖z + y‖, and then infer Cub(z0, y0) = ‖z0 + y0‖ ∗ ‖z0 + y0‖.
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In what follows we present an alternative approach for solving (some cases of) CRs
with multiple equations, which is able to handle the one of the above example. The
main idea is to concentrate on the contribution of each equation, independently from
the rest. We start by defining the projection of a CR C on its i-th equation, which is
used later to compute an UB on the contributions of the i-th equation.

Definition 4.22. Given the CR C of Figure 4, we denote by Ci the CR obtained by
replacing each ej when j 6= i by 0.

Clearly, if Cubi (x̄0) is an UB for CR Ci, then Cub(x̄0) =
∑h
i=1 C

ub
i (x̄0) is an UB for CR

C. The challenge is to compute a precise UB for each Ci. Of course one can use the
generalization-based approach to solve each Ci, however this does not lead to precise
UB. E.g, for the CR of Example 4.21 we obtain ‖y0‖ ∗ ‖z0 + y0‖+ ‖z0‖ ∗ ‖z0 + y0‖. This
is because 0 and ‖z0‖, for example, are generalized to ‖z‖0, and thus all corresponding
0 contributions (there are ‖y0‖ of them in this case) will be changed to ‖z0‖.

Let us consider a path in an arbitrary evaluation tree of Ci(x̄0), and concentrate
on the contributions of a single ‖l‖ ∈ ei in this path. As we have done so far, we
aim at simulating these contributions using a corresponding arithmetic or geometric
sequence, and then use this sequence to generate a corresponding RR whose solution
can be transformed into an UB for Ci. There are two important issues that should be
taken into account: (1) a ranking function for C (which is also valid for Ci) does not
precisely bound the number of instances of ‖l‖ ∈ ei, since it also accounts for visits to
other equations; and (2) when computing the progression parameters of ‖l‖ ∈ ei, it is
not safe to consider only consecutive applications of the i-th equation, since between
two applications of the i-th equation we might apply any other equations.

The above two issues can be solved as follows: (1) instead of using the ranking func-
tion f̂C(x̄0), we use a function f̂Ci(x̄0) which approximates the number of applications
of the i-th equation only. Inferring such function can be done by instrumenting the CR
with a counter that counts the number of visits to the i-th equation, and then infer an
invariant that relates this counter to x̄0; and (2) when inferring the progression pa-
rameters ď or 〈r̂, p̂〉, we consider the increase/decrease in two subsequent applications
of the i-th equation (rather than of two consecutive ones). Again, this can be inferred
by means of an appropriate invariant.

Now let us see how to use f̂Ci(x̄0) and the progression parameters (computed as in
(2) above) in order to compute a precise UB for Ci, assuming that it has at most one re-
cursive call, i.e., m1 = 1 (later we discuss this restriction): (i) we generate a worst-case
RR PCi(N) = Eei + PCi(N − 1) where Eei is computed as in definitions 4.6 and 4.13,
but using f̂Ci(x̄0) instead of f̂C(x̄0), and by computing the progression parameters as
in point (2) above; (ii) we solve PCi(N) into a closed-form solution E using CAS ; and
(iii) Cubi (x̄0) = E[N/f̂Ci(x̄0)] is guaranteed to be a correct UB for Ci. Algorithm 3 sum-
marizes this approach, let us apply it to the CR of Example 4.21.

Example 4.23. Consider the CR of Example 4.21. We generate C1 and C2

C1(z, y) = 0 {z < 1, y < 1}
C1(z, y) = ‖z‖+ C1(z′, y) {z′ = z − 1, z > 0}
C1(z, y) = 0 + C1(z, y′) {y′ = y − 1, y > 0}

C2(z, y) = 0 {z < 1, y < 1}
C2(z, y) = 0 + C2(z′, y) {z′ = z − 1, z > 0}
C2(z, y) = ‖y‖+ C2(z, y′) {y′ = y − 1, y > 0}
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Algorithm 3: compute UB MulEqn 2
Input: CR C of Figure 4 with m1 = 1
Output: Close-form upper bound Cub(x̄0)

1 Compute an invariant 〈C(x̄0) ; C(x̄),Ψ〉;
2 for i = 1→ h do
3 Generate CR Ci as in Definition. 4.22;
4 Compute a bound f̂Ci(x̄0) on the number of visits to the i-the equation;
5 Eei = ei;
6 foreach ‖l‖ ∈ ei do
7 Let l̂ be the result of maximizing l w.r.t Ψ ∧ ϕi and the parameter x̄0;
8 Compute ď or 〈ř, p̌〉 for l (considering subsequent visits to the i-th equation);
9 Compute lRR as in definitions 4.6 and 4.6, using f̂Ci(x̄0);

10 Êei = Êei [‖l‖/lRR];
11 end
12 Solve 〈PĈi(N) = Êei + PĈi(N − 1)〉 into a closed-form expression Ei using CAS ;
13 Cubi (x̄0) = Ei[N/f̂Ci(x̄0)] ;
14 end
15 Cub(x̄0) = Cub1 (x̄0) + · · ·+ Cubh (x̄0) ;

Observe that (1) ‖z‖ and ‖y‖ are linearly decreasing with a progression parameter
ď = 1 when considering subsequent visit to the corresponding equations; (2) the maxi-
mization of ‖z‖ and ‖y‖ are ‖z0‖ and ‖y0‖ respectively; and (3) the number of applica-
tions of the first (resp. second) recursive equations of C1 (resp. C2) is f̂C1(z0, y0) = ‖z0‖
(resp. f̂C2

(z0, y0) = ‖y0‖). We generate the worst-case RR for C1 as follows:

〈PC1
(N) = ‖z0 − z0 ∗ 1‖+N + PC1

(N − 1)〉
Note that ‖z0 − z0 ∗ 1‖ = 0, we just keep it for clarity. The solution of PC1

(N) obtained
by CAS is PC1

(N) = 1
2 ∗ N

2 + 1
2 ∗ N , and replacing N by f̂C1

(z0, y0) = ‖z0‖ we get the
following UB for C1

C1
ub(z0, y0) =

1

2
∗ ‖z0‖ ∗ ‖z0‖+

1

2
∗ ‖z0‖

Similarly, We generate the worst-case RR for C2 as follows:

〈PC2(N) = ‖y0 − y0 ∗ 1‖+N + PC2(N − 1)〉
The solution of PC2

(N) obtained from CAS is PC2
(N) = 1

2 ∗N
2 + 1

2 ∗N and, replacing
N by f̂C2

(z0, y0) = ‖y0‖ we get the following UB for C2

C2
ub(z0, y0) =

1

2
∗ ‖y0‖ ∗ ‖y0‖+

1

2
∗ ‖y0‖

Then, computing Cub(z0, y0) as C1
ub(z0, y0) + C2

ub(z0, y0) results in:

Cub(z0, y0) =
1

2
∗ ‖z0‖ ∗ ‖z0‖+

1

2
∗ ‖z0‖+

1

2
∗ ‖y0‖ ∗ ‖y0‖+

1

2
∗ ‖y0‖

which is more precise than ‖z0 + y0‖ ∗ ‖z0 + y0‖.
It is important to note that this last approach is correct only when m1 = 1, it might

infer incorrect UBs if m1 > 1. Let us intuitively see why. Suppose we change the RR
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PCi such that it has m1 > 1 recursive calls, then an evaluation tree for PCi(f̂Ci(v̄0))
might include less nodes than those contributed by the i-th equation in a correspond-
ing evaluation tree for C(v̄0). This is because deeper levels in an evaluation tree has
more nodes, and since we have shortened the depth, by using f̂Ci(x̄0) instead of f̂C(x̄0),
we might also reduce the number of such nodes. However, this approach is still prac-
tical since with m1 = 1 we can handle all programs with (possibly nested) iterative
constructs and/or a single recursive call (per method).

4.4. Non-zero Base-case Cost
So far, we have considered CRs with only one base-case equation, and moreover, we
have assumed that its contributed cost is always 0. In practice, many CRs that origi-
nate from real programs have several non-zero base-case equations and, besides, the
cost contributed by such equations is not necessarily constant. In this section, we de-
scribe how to handle such CRs.

Consider the CR C of Figure 4 and assume that, instead of one base-case equation,
it has n base-case equations, where the i-th base-case equation is defined by 〈C(x̄) =
e′i, ϕ

i
0〉. In order to account for these base-case equations, we first extend the worst-

case RR PC of definitions 4.1, 4.6 and 4.13 to include a generic base-case equation
〈PC(0) = λ〉. Due to this extension, any solution E for PC must involve the base-case
symbol λ to account for all applications of the base-case equation.

In a second step, the base-case symbol λ in E is replaced by a cost expression eλ that
involves only x̄0 (i.e., it does not involve the parameter of PC), and is greater than or
equal to any instance of ê′i during the evaluation of C(x̄0). The cost expression eλ is
simply defined as eλ = ê′1 t . . . ,tê′n, where ê′i is the maximization of e′i as defined in
Section 3, and t is a generalization operator of cost expressions.

Example 4.24. Let us replace the base-case equation 〈B(j, i, q) = 0, {j ≥ i}〉 of
Figure 1b by the equations 〈B(j, i, q) = ‖j‖, {j ≥ i}〉 and 〈B(j, i, q) = ‖i‖, {j ≥ i}〉.
Maximizations of such base-case costs are, respectively, ê′1 = ‖i0 + 2‖, ê′2 = ‖i0‖ and
thus their generalization is eλ = ‖i0 + 2‖. Solving PB of Example 4.9, together with a
base-case equation PB(0) = λ, results in:

PB(N) = ‖q0 + j0 − 1‖ ∗N + ‖i0 − j0‖ ∗N +
N

2
− N2

2
+ λ

Then, replacing N by the ranking function ‖i0 − j0‖ and λ by eλ we get

Bub(j0, i0, q0) = ‖q0+j0−1‖ ∗ ‖i0−j0‖+
‖i0−j0‖

2
∗ (‖i0−j0‖+1)+‖i0+2‖ .

4.5. Concluding Remarks
We have presented a practical and precise approach for inferring UBs on CRs. When
considering CRs with a single recursive equation, in practice, our approach achieves
an optimal precision. As regards CRs with multiple recursive equations, we have pre-
sented a solution which is effective in practice. Note that, although we have concen-
trated on arithmetic and geometric behavior of ‖.‖ expression, our techniques can be
adapted to any behavior that can be modeled with sequences.

It is important to point out that in some cases the output of CAS , when solving a
RR, might not comply with the grammar of cost expressions as specified in Section 2.
Concretely, after normalization, it might include sub-expressions of the form −e where
e is a multiplication of basic cost expression. Converting them to valid cost expressions
can be simply done by removing such negative parts and obviously still have a sound
UB. In practice, these negative parts are asymptotically negligible when compared to
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the other parts of the UB, and thus, removing them does not significantly affect the
precision. In addition, the negative parts can be rewritten in order to push the minus
sign inside a ‖.‖ expression, e.g., ‖l1‖ − ‖l2‖ is over-approximated by ‖l1 − l2‖.

5. THE DUAL PROBLEM: INFERENCE OF LOWER BOUNDS
We now aim at applying the approach from Section 4 in order to infer lower bounds,
i.e., under-approximations of the best-case cost. In addition to the traditional applica-
tions for performance debugging, program optimization and verification, such LBs are
useful in granularity analysis to decide if tasks should be executed in parallel. This is
because the parallel execution of a task incurs various overheads, and therefore the
LB cost of the task can be useful to decide if it is worth executing it concurrently as a
separate task. Due in part to the difficulty of inferring under-approximations, a gen-
eral framework for inferring LBs from CR does not exist. When trying to adapt the
UB framework of Albert et al. [2011b] to LB, we only obtain trivial bounds. This is
because the minimization of the cost expression accumulated along the execution is in
most cases zero and, hence, by assuming it for all executions we would obtain a trivial
(zero) LB. In our framework, even if the minimal cost could be zero, since we do not
assume it for all iterations, but rather only for the first one, the resulting LB is precise.
In what follows, in Section 5.1 we develop our method for inferring LBs for CRs with
single recursive equation as the one of Figure 3, and, in Section 5.2 we handle CRs
with multiple recursive equations as the one of Figure 4. Section 5.3 concludes.

5.1. Cost Relations with Single Recursive Equation
As explained in Section 3, the basic ideas for inferring LBs are dual to those described
in Section 4 for inferring UBs, i.e., they are based on simulating the behavior of ‖.‖
expressions with corresponding linear or geometric sequences. For example, if a given
‖l‖ ∈ e is linearly increasing with a progression parameter ď ≥ 0, then it is simulated
with an arithmetic sequence that starts from the minimum value to which ‖l‖ can be
evaluated, and increases in each step by ď. In addition, the number of elements that
we consider in such sequence is an under-approximation of the length of any chain of
calls when evaluating C(x̄0). In what follows, we develop our approach for inferring
LBs on the CR of Figure 3 as follows: we first describe how to infer a lower-bound on
the length of any chain of calls; then we describe how to infer the minimum value to
which an expression ‖l‖ can be evaluated; and finally we use this information in order
to build a best-case RR that under-approximates the best-case cost of the CR C.

The following definition provides a practical algorithm for inferring an under-
approximation on the length of any chain of calls when evaluating C(x̄0) using the
CR of Figure 4, which is also applicable for the CR of Figure 3.

Definition 5.1. Given the CR of Figure 4, a lower-bound on the length of any chain
of calls during the evaluation of C(x̄0) denoted as f̌C(x̄0) is computed as follows:

(1) Instrumentation: Replace each head C(x̄) by C(x̄, lb), each recursive call C(x̄j) by
C(x̄j , lb

′), and add {lb′ = lb+ 1} to each ϕi;
(2) Invariant: Infer an invariant 〈C(x̄0, 0) ; C(x̄, lb),Ψ〉 for the new CR, such that the

linear constraints Ψ hold between (the variables of) the initial call C(x̄0, 0) and any
recursive call C(x̄, lb); and

(3) Synthesis: compute l as the result of minimizing lb w.r.t Ψ∧ϕ0 and the parameters
x̄0, using parametric integer programming; or alternatively, compute l by syntacti-
cally looking for lb ≥ l in ∃̄x̄0 ∪ {lb}. Ψ ∧ ϕ0.

Then, f̌C(x̄0) = ‖l‖.
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Let us explain intuitively the different steps of the above definition. In step 1, the
CR C is instrumented with an extra argument lb which computes the length of the
corresponding chain of calls, when starting the evaluation from C(x̄0, 0). This instru-
mentation reduces the problem of finding a lower-bound on the length of any chain of
calls to the problem of finding a (symbolic) minimum value for lb for which the base-
case equation is applicable (i.e., the chain of calls terminates). This is exactly what
steps 2 and 3 do. In 2, we infer an invariant Ψ on the arguments of any call C(x̄, lb)
encountered during the evaluation of C(x̄0, 0). This is done exactly as for the invari-
ant described in Section 3 when maximizing cost expressions. In 3, from all states
described by Ψ, we are interested only in those in which the base-case equation is ap-
plicable, i.e., in Ψ ∧ ϕ0. Then, within this set of states, we take the minimum value l
(in terms x̄0) of lb. Such l is the lower-bound we are interested in.

COROLLARY 5.2. Function f̌C(x̄0) of Definition 5.1 is a lower-bound on the length
of any chain of calls during the evaluation of C(x̄0).

Example 5.3. Applying step 1 of Definition 5.1 on the CR B of Example 4.5 we get

〈B(j, i, q, lb) = 0 {j ≥ i}〉
〈B(j, i, q, lb) = ‖q + j‖+B(j′, i, q, lb′) {j < i, j + 1 ≤ j′ ≤ j + 3, lb′ = lb+ 1}〉

The invariant for this CR is Ψ = {j − j0 − lb ≥ 0, j0 + 3 ∗ lb − j ≥ 0, i = i0, q = q0}.
Projecting Ψ∧{j ≥ i} on 〈j0, i0, q0, lb〉 results in {j0 + 3 ∗ lb − i0 ≥ 0} which implies
lb ≥ (i0−j0)

3 , from which we can synthesize f̌B(j0, i0, q0) = ‖ i0−j03 ‖. Similarly, for CRs C

and A of Figure 1b we obtain f̌C(k0, j0, q0) = ‖q0 + j0 − k0‖ and f̌A(i0, q0) = ‖ q0−i04 ‖.

Inferring the minimum value to which ‖l‖ ∈ e can be evaluated is done in a dual way
to that of inferring the maximum value to which it can be evaluated (see Section 3).
Namely, using the invariant Ψ of Definition 5.1, we syntactically look for an expression
ξ ≥ ľ in ∃̄x̄0 ∪ {ξ}. Ψ ∧ ϕ1 ∧ ξ = l where ξ is a new variable. As in the case of maximiza-
tion, the advantage of this approach is that it can be implemented using any tool for
manipulation of linear constraints (e.g., PPL [Bagnara et al. 2008]). Alternatively, we
can also use parametric integer programming [Feautrier 1988] in order to minimize l
w.r.t. Ψ ∧ ϕ1 and the parameters x̄0.

Now that we have all ingredients for under-approximating the behavior of a given
‖l‖ ∈ e. In the following definition, we generate the best-case RR PC of CR C. Let
us first explain the idea intuitively. Let ‖l1‖, . . . , ‖lκ‖ be the first κ ≤ f̌C(x̄0) elements
contributed by a given ‖l‖ ∈ e along a chain of calls, and assume that li ≥ 0 for all
1 ≤ i ≤ κ. If ‖l‖ is linearly increasing (resp. decreasing) with a progression parameter
ď > 0, then the elements of the sequence {`1 = ‖ľ‖, `i = `i−1 + ď} satisfy `i ≤ ‖li‖
(resp. `i ≤ ‖lκ−i+1‖). Similarly, if ‖l‖ is geometrically increasing (resp. decreasing)
with progression parameters ř and p̌, then the elements of the sequence {`1 = ‖ľ‖, `i =
ř ∗ `i−1 + p̌} satisfy `i ≤ ‖li‖ (resp. `i ≤ ‖lκ−i+1‖). The following definition uses these
sequences in order to under-approximate the behavior of ‖l‖. Note that the condition
li ≥ 0 is essential, otherwise, the sequence `i is not a sound under-approximation.

Definition 5.4. Let C be the CR of Figure 3, and f̌C(x̄0) a lower-bound function on
the length of any chain of calls generated during the evaluation of C(x̄0). Then, the
best-case RR of C is PC(N) = Ěe + m ∗ PC(N − 1) where Ěe is obtained from e by
replacing each ‖l‖ ∈ e by lRR where:

(1) lRR ≡ ‖ľ‖+ (f̌C(x̄0)−N) ∗ ď, if it is linearly increasing and ľ ≥ 0;
(2) lRR ≡ ‖ľ‖+ (N − 1) ∗ ď, if it is linearly decreasing and ľ ≥ 0;
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(3) lRR ≡ ř(f̌C(x̄0)−N) ∗‖ľ‖+ p̌∗ Š(f̌C(x̄0)−N), if it is geometrically increasing and ľ ≥ 0;
(4) lRR ≡ ř(N−1) ∗ ‖ľ‖+ p̌ ∗ Š(N − 1), if it is geometrically decreasing and ľ ≥ 0;
(5) lRR ≡ ‖ľ‖, otherwise.

where Š(i) = ři−1
ř−1

THEOREM 5.5. Let E is a solution for PC(N) of Definition 5.4. Then, Clb(x̄0) =
E[N/f̌C(x̄0)] is a LB for C(x̄0).

An algorithm that summarizes the above approach can be derived in a very similar
way to Algorithm 1, simply by considering the dual notions to l̂ and f̂C(x̄0).

Example 5.6. Consider again the LBs on the length of chains of calls as de-
scribed in Example 5.3. Since C(k0, j0, q0) accumulates a constant cost 1, its LB cost is
‖q0 + j0 − k0‖. We now replace the call C(0, j, q) in B by its LB ‖q + j‖ and obtain the
following recursive equation:

〈B(j, i, q) = ‖q + j‖+B(j′, i, q), {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}〉
Notice the need of the soundness requirement in Definition 5.4, i.e., q0 + j0 ≥ 0 where
q0 + j0 is the minimization of q + j for any call to B(j0, i0, q0). For example, when
evaluating B(−5, 5, 0) the first 5 instances of ‖q + j‖ are zero since they correspond to
‖−5‖, . . . , ‖−1‖. Therefore, it would be incorrect to start accumulating from 0 with a
difference 1 at each iteration. However, in the context of the CRs of Figure 1b, it is
guaranteed that q0 + j0 ≥ 0 (since it is always called with j ≥ 0 and q ≥ 0). Using
Definition 5.4, we generate the best-case RR PB depicted in Figure 2 which is solved
by CAS to

PB(N) = ‖q0 + j0‖ ∗N + ‖ i0 − j0
3
‖ ∗N − N2

2
− N

2

Then, according to Theorem 5.5

Blb(j0, i0, q0) =
1

2
∗ ‖ i0 − j0

3
‖ ∗ (‖ i0 − j0

3
‖+ 2 ∗ ‖q0 + j0 −

1

2
‖)

Substituting this LB in the CR A of Figure 1b results in the CR

〈A(i, q) =
1

2
∗ ‖ i

3
‖ ∗ (‖ i

3
‖+ 2 ∗ ‖q − 1

2
‖) +A(i′, q), {i+ 1 ≤ q, i+ 2 ≤ i′ ≤ i+ 4}〉

In this CR, the expression 2 ∗ ‖q − 1
2‖ is constant, while ‖ i3‖ has an increasing linear

progression behavior with ď = 2
3 . According to Definition 5.4, the generated best-case

RR PA is depicted in Figure 2 which is solved using CAS to

PA(N) = N
54 ∗ (4 ∗N2 + 6 ∗N + 18 ∗ ‖ i03 ‖ ∗ (N − 1) + 18 ∗ ‖q0 − 1

2‖ ∗ (N − 1)+

27 ∗ ‖ i03 ‖ ∗ ‖
i0
3 ‖+ 54 ∗ ‖ i03 ‖ ∗ ‖q0 − 1

2‖ − 12 ∗ ‖ q0−i04 ‖+ 2)

Then, according to Theorem 5.5, i.e., substituting N by ‖ q0−i04 ‖, we obtain

Alb(i0, q0) = 1
54 ∗ ‖

q0−i0
4 ‖ ∗ (4 ∗ ‖ q0−i04 ‖ ∗ ‖ q0−i04 ‖+6 ∗ ‖ q0−i04 ‖+18 ∗ ‖ i03 ‖

∗(‖ q0−i04 ‖−1)+18 ∗ ‖q0 − 1
2‖ ∗ (‖ q0−i04 ‖−1)+27 ∗ ‖ i03 ‖ ∗ ‖

i0
3 ‖

+54 ∗ ‖ i03 ‖ ∗ ‖q0 − 1
2‖ − 12 ∗ ‖ q0−i04 ‖+ 2)

Finally, the LB of F (q0) is

F lb(q0) = 1
54 ∗ ‖

q0
4 ‖ ∗ (4 ∗ ‖ q04 ‖ ∗ ‖

q0
4 ‖+ 6 ∗ ‖ q04 ‖+ 18 ∗ ‖q0 − 1

2‖∗
(‖ q04 ‖ − 1)− 12 ∗ ‖ q04 ‖+ 2) .
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5.2. Cost Relations with Multiple Recursive Equations
We infer LBs for CRs with multiple recursive equations in a dual way to the inference
of UBs, namely: we first try to generate a best-case CR Č, for the multiple recursive
CRs C in Figure 4, in a similar way to the worst-case CR Ĉ. If this is not possible (or
not precise enough) and m1 = 1 (i.e. we have at most one recursive call) then we can
use the second approach, in which we compute a LB for each Ci (the projection of C on
the i-th equation), and then sum all these LBs into a sound LB for C.

Definition 5.7. We say that 〈Č(x̄) = e + Č(x̄1) + · · · + Č(x̄m1), ϕ〉 is a best-case CR
for the CR C of Figure 4, if for any valuation v̄ it holds that

min({sum(T, f̌C(v̄)) | T ∈ T (Č(v̄))} ≤ min(answ(C(v̄)))

where sum(T, f̌C(v̄)) denotes the sum of all nodes in T up to depth f̌C(v̄).

CR Č is generated in a similar way to Ĉ. The only difference is that in order to gen-
erate the cost expression e, we use a reduction operator u instead of a generalization
operator. Such operator guarantees that a u b ≤ a and a u b ≤ b. In practice, the reduc-
tion operator u is implemented by syntactically analyzing the input cost expressions,
in a similar way to the case of t.

THEOREM 5.8. Given the CR C of Figure 4, a corresponding f̌C(x̄0) as defined in
Definition 5.1, a best-case CR Č for C, and a solution E for the RR 〈PČ(N) = Ěe +mh ∗
PČ(N − 1)〉. Then Clb(x̄0) = E[N/f̌C(x̄0)] is a LB for the CR C.

Note that in the above theorem the expression Ěe is generated as in Definition 5.4, but
using f̌C(x̄0) instead of f̌Č(x̄0) (since applying Definition 5.4 on Č would use f̌Č(x̄0)).

Example 5.9. Consider the CR B in Example 4.20. We simulate its best-case be-
havior by the following single recursive equation

〈B̌(j, i, q) = ‖j‖+ B̌(j′, i, q), {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}〉
Note that (1) ‖j‖ under-approximates both e1 and e2; and (2) ‖j‖ has an increasing
linear progression behavior with progression parameter ď = 1. Using Definition 5.4,
we generate the following best-case RR PB̌ for B̌

〈PB̌(N) = ‖j0‖+ (‖ i0 − j0
3
‖ −N) ∗ 1 + PB̌(N − 1)〉

which is solved by CAS to

PB̌(N) = N ∗ ‖ i0 − j0
3
‖+N ∗ ‖j0‖ −

1

2
∗N2 − 1

2
∗N

According to Theorem 5.8, replacing N by f̌B(j0, i0, q0) = ‖ i0−j03 ‖ results in (after sim-
plification) the following LB for B

Blb(j0, i0, q0) =
1

2
∗ ‖ i0 − j0

3
‖ ∗ ‖ i0 − j0

3
− 1‖+ ‖ i0 − j0

3
‖ ∗ ‖j0‖

When the best-case CR approach leads to imprecise bounds, which happens when
the reduction operator obtains trivial reductions (i.e., 0), we can apply the alternative
method that is based on analyzing each Ci separately. Namely, we infer a LB Ci

lb(x̄0)

for each CR Ci, and then Clb(x̄0) =
∑h
i=1 Ci

lb(x̄0) is clearly a sound LB for C. The
technical details for solving each Ci

lb(x̄0) are identical to those of the UB case: (1)
instead of using f̌C(x̄0), we should use f̌Ci(x̄0) which under-approximates the number
of applications of the i-th equation. This is done by modifying Definition 5.1 such that
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it counts only the applications of the i-th equation instead of all equations; and (2) the
progression parameter ď is the same as in the case of UB, i.e., we consider subsequent,
rather than consecutive, applications of the i-th equation. It is important to note that
this approach can be applied only when m1 = 1. Algorithms that summarize the above
approaches can be derived in a very similar way to algorithms 2 and 3, simply by
considering the dual notions.

5.3. Concluding Remarks
We have presented a practical and precise approach for inferring LBs on CRs. When
considering CRs with a single recursive equation, in practice, our approach achieves
an optimal precision. As regards CRs with multiple recursive equations, we have pre-
sented a solution which is effective in many cases, however, it is less effective than
its UB counterpart. This is expected, as indeed, the problem of inferring LBs is far
more complicated than inferring UBs. It is important to note that this is the first work
that attempts to automatically infer lower-bounds for CRs that originate from real
programs. Our approach for inferring LBs is not limited to ‖.‖ expressions with linear
and geometric behavior, but can be adapted to any behavior that can be modeled with
sequences. Handling (multiple) base-case equations with non-zero cost can be done as
for the case of UBs, but considering the dual notions.

As in the case of UBs, the output of CAS , when solving a best-case RR, might not
comply with the grammar of cost expressions as specified in Section 2. Concretely,
after normalization, it might include sub-expressions of the form −e where e is a mul-
tiplication of basic cost expressions. Unlike the case of UBs, for LBs it is not sound to
remove such expression as it results in a bigger one. Removing them requires changing
other subexpression in order to compensate on −e. E.g., ‖x‖2 − ‖x‖ can be rewritten to
‖x− 1‖ ∗ ‖x‖.

6. EXPERIMENTS
We have implemented our techniques as a component in PUBS (Practical Upper Bound
Solver) that implements the techniques proposed in Albert et al. [2011b]. PUBS is used
as backend solver in COSTA (a COSt and Termination Analyzer for Java bytecode) [Al-
bert et al. 2011b]. This means that our solver can be used to solve (i) CRs that are
automatically generated by COSTA from Java (bytecode) programs; or (ii) CRs pro-
vided by the user. The obtained RRs are solved using MAXIMA [Maxima 2009]. Our
implementation (and examples) can be tried out at http://costa.ls.fi.upm.es/costa
where the user is expected to provide a Java (bytecode) programs as input, or at
http://costa.ls.fi.upm.es/pubs where the input is given as a CR. In both cases the
option series should be selected. In our experiments we apply our implementation on
Java programs via COSTA.

As benchmarks, we use classical examples from complexity analysis and numerical
methods: DetEval evaluates the determinant of a matrix; LinEqSolve solves a set of
linear equations; MatrixInverse computes the inverse of an input matrix; MatrixSort
sorts the rows in the upper triangle of a matrix; InsertSort, SelectSort, BubbleSort,
and MergeSort implement sorting algorithms; and PascalTriangle computes and prints
Pascal’s Triangle.

Table I illustrates the accuracy and efficiency on the above benchmarks using the
cost model “number of executed (bytecode) instructions”. In the second column, (A) is
the UB obtained using the approach of Albert et al. [2011b], and (B) and (C) are respec-
tively the UB and LB obtained by our solver. In order to facilitate the comparison of
the UBs and LBs of Table I, we also provide the graphical representations in Figure 5.
As regards UBs, we improve the precision over Albert et al. [2011b] in all benchmarks.
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# UBs and LBs T

1
(A) 24 · ‖a−1‖3+36 · ‖a−1‖2+18 · ‖a‖2+30 · ‖a‖ · ‖a−1‖+35 · ‖a−1‖+72 · ‖a‖+54 1.8
(B) 8 · ‖a−1‖3+18 · ‖a‖2+45 · ‖a−1‖2+72 · ‖a‖+102 · ‖a−1‖+54 3.3
(C) 8 · ‖a−1‖3+16 · ‖a‖2+43 · ‖a−1‖2+55 · ‖a‖+96 · ‖a−1‖+54 2.6

2
(A) 24 · ‖c−1‖3+18 · ‖c‖2+36 · ‖c−1‖2+30 · ‖c−1‖ · ‖c‖+35 · ‖c− 1‖+25 · ‖c‖+

48 · ‖b−1‖2+46 · ‖b−1‖+74 1.9
(B) 8 · ‖c−1‖3+18 · ‖c‖2+45 · ‖c−1‖2+25 · ‖c‖+102 · ‖c−1‖+24 · ‖b−1‖2+92 · ‖b−1‖ 3.5

+74
(C) 8 · ‖c−1‖3+16 · ‖c‖2+43 · ‖c−1‖2+25 · ‖c‖+96 · ‖c−1‖+24 · ‖b−1‖2+92 · ‖b−1‖ 2.8

+74

3
(A) 24 · ‖a−1‖3+56 · ‖a‖ · ‖a−1‖2+18 · ‖a‖2+46 · ‖a−1‖2+75 · ‖a‖+68 · ‖a‖ · ‖a−1‖ 3.6

+49 · ‖a−1‖+62

(B) 8 · ‖a−1‖3+28 · ‖a‖ · ‖a−1‖2+18 · ‖a‖2+50 · ‖a−1‖2+92 · ‖a‖ · ‖a−1‖+75 · ‖a‖ 4.6
+121 · ‖a−1‖+62

(C) 8 · ‖a−1‖3+28 · ‖a‖ · ‖a−1‖2+16 · ‖a‖2+48 · ‖a−1‖2+92 · ‖a‖ · ‖a−1‖+75 · ‖a‖ 3.8
+115 · ‖a−1‖+62

4
(A) 25 · ‖b‖2 · ‖b− 1‖+30 · ‖b‖2+16 · ‖b‖+6 0.1
(B) 25

3
· ‖b‖3+15 · ‖b‖2+ 68

3
· ‖b‖+6 0.2

(C) 21
2
· ‖b‖2+ 53

2
· ‖b‖+6 0.0

5 (A) 19 · ‖b−1‖2 + 25 · ‖b−1‖+ 7 0.1
(B) 19

2
· ‖b−1‖2 + 69

2
· ‖b−1‖+ 7 0.1

(C) 18 · ‖b−1‖+ 7 0.1

6 (A) 37 · ‖b + 1‖ · ‖2b−1‖+ 53 · ‖2b−1‖+ 11 1.2
(B) 37 · ‖b+1‖ · log2(‖2b−1‖+1) + 53 · ‖2b−1‖+ 11 2.0
(C) 4 1.2

7 (A) 27 · ‖a−1‖2 + 16 · ‖a−1‖+ 9 0.1
(B) 27

2
· ‖a−1‖2 + 59

2
· ‖a−1‖+ 9 0.2

(C) 13
2
· ‖a−1‖2 + 45

2
· ‖a−1‖+ 9 0.2

8 (A) 30 · ‖a‖2 + 27 · ‖a−1‖2 + 33 · ‖a‖+ 10 · ‖a−1‖+ 25 0.7
(B) 41

2
· ‖a‖2 + 27 · ‖a−1‖2 + 10 · ‖a−1‖+ 85

2
· ‖a‖+ 25 0.9

(C) 41
2
· ‖a‖2 + 27 · ‖a−1‖2 + 10 · ‖a−1‖+ 85

2
· ‖a‖+ 25 0.9

9 (A) 34 · ‖c‖2 + 12 · ‖c‖+ 8 0.1
(B) 17 · ‖c‖2 + 29 · ‖c‖+ 8 0.3
(C) 8 · ‖c‖2 + 20 · ‖c‖+ 8 0.2

Table I: 1. DetEval(a) 2. LinEqSolve(a,b,c) 3. MatrixInv(a) 4. MatrixSort(a,b) 5. Insert-
Sort(a,b) 6. MergeSort(a,b) 7. SelectSort(a) 8. PascalTriangle(a) 9. BubbleSort(a,b,c)

This improvement, in all benchmarks except MergeSort, is due to nested loops where
the inner loops bounds depend on the outer loops counters. In these cases, we accu-
rately bound the cost of each iteration of the inner loops, rather than assuming the
worst-case cost. Moreover, our UBs are very close to the real cost (the difference is only
in some constants). In Figure 5, it can be seen that the precision gain is greater for
larger values of the inputs.

For MergeSort, we obtain a tight bound in the order of b ∗ log2(b). Note that Albert
et al. [2011b] could obtain b ∗ log2(b) only for simple cost models that count the visits to
a specific program point but not for number of instructions, while ours works with any
cost model. As regards LBs, it can be observed from row C of each benchmark that we
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ub(a)
pubs(a)

lb(a)

DetEval

ub(b,c)
pubs(b,c)

lb(b,c)

LinEqSolve

ub(a)
pubs(a)

lb(a)

MatrixInv

ub(b)
pubs(b)

lb(b)

MatrixSort

ub(b)
pubs(b)

lb(b)

InsertSort

ub(b)
pubs(b)

lb(b)

MergeSort

ub(a)
pubs(a)

lb(a)

SelectSort

ub(a)
pubs(a)

lb(a)

PascalTriangle

ub(c)
pubs(c)

lb(c)

BubbleSort

Fig. 5: Graphs for UBs and LBs of Table I. The plot pubs is the UB obtained by Albert
et al. [2011b], the plots ub and lb are our UB and LB, respectively.

obtain non-trivial LBs in all cases, except in MergeSort. For MergeSort, the LB on loop
iterations is logarithmic which cannot be inferred by our linear invariant generation
tool and hence we get the trivial bound 4. Note that for InsertSort we infer a linear
LB which happens when the array is sorted. In the last column of each benchmark,
T shows the time (in seconds) to compute the bounds of (A),(B) and (C) from the gen-
erated CR. Our approach is slightly slower mainly due to the overhead of connecting
PUBS to MAXIMA.

We have also compared experimentally our approach to the analysis of Hoffmann
et al. [2011], which was developed in parallel to our work. The comparison is made on
their examples, which are available at http://raml.tcs.ifi.lmu.de. These examples
are written in a first-order functional languages (RAML). In order to perform a fair
comparison, we have done the following: (i) RAML programs are first translated into
equivalent CRs; and (ii) we used a cost model that counts the number of visits to a
specific point (functions entries) as this can be easily defined in RAML. The detailed
results are available at http://costa.ls.fi.upm.es/pubs in the examples section. The
main conclusions drawn from the comparison are: (1) in most cases we are as precise as
their analysis, and sometimes the results differ only in the constants; (2) for QuickSort
our analysis fails to infer the precise bound, this is because the input list is divided
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into two lists of different length; and (3) for MergeSort, our analysis is more precise
since they cannot infer bounds with logarithmic expressions.

7. RELATED WORK
In this section we discus the most related approaches on automatic inference of sym-
bolic UBs [Wegbreit 1975; Albert et al. 2011b; Hofmann and Jost 2003; Hoffmann and
Hofmann 2010; Hoffmann et al. 2011; Gulwani et al. 2009].

Automatic resource bound analysis dates back to the pioneer work of Wegbreit [Weg-
breit 1975], where an automatic analysis for simple LISP programs were developed
and implemented in a tool called Metric. Given a program and a cost model, Metric
generates difference equations in several phases that capture the cost (with respect
to the cost model) of the program. Then several methods were provided to solve these
equations into closed-form expressions. Metric mostly deals with programs that ma-
nipulate data structures, such as lists, where termination depends on the length of
such data structures. Our approach is more general, since it uses a more general set-
ting in which variables have integer values (which can refer to sizes of data struc-
tures), and moreover allows the relations between variables to be expressed as linear
constraints.

When comparing to the work of Albert et al. [2011b], although experimentally our
approach is more precise (as we have seen in Section 6), we cannot prove theoretically
that it is always more precise. However, for the case of CRs with a single recursive
equation as described in sections 4.1 and 4.2, if we use the same ranking functions
and maximization procedures as they do, then it is guaranteed that our approach is
more precise. For the case of CRs with multiple recursive equations, it is not possi-
ble to formally compare them. Indeed, one could handcraft examples for which their
approach infers more precise UBs. This is because for solving such cases: (1) our first
alternative, which generalizes cost expression, is based on heuristics and thus might
be imprecise in some cases; and (2) our second alternative, which analyzes each recur-
sive equation separately, requires inferring the number of visits to a single equation
which can be less precise than inferring ranking functions. As regards applicability,
first note that when it is not possible to infer the progression parameters (in Defini-
tion 4.6 and 4.13), we basically use the approach of Albert et al. [2011b], i.e., replacing
the corresponding ‖l‖ by ‖l̂‖. Assuming that CAS is able to handle the corresponding
RRs we achieve a similar applicability.

There are several techniques that are centered on the static inference of resource
usage of first-order functional programs [Hofmann and Jost 2003; Hoffmann and Hof-
mann 2010; Hoffmann et al. 2011]. The techniques of Hofmann and Jost [2003] can
infer only linear UBs, and, they have been extended by Hoffmann and Hofmann [2010]
for univariate polynomial UBs. However, such polynomial cannot express bounds of the
form m∗n, and thus they are over-approximated by n2 +m2. Hoffmann et al. [2011] de-
veloped techniques for handling multivariate polynomial UBs, such as m ∗ n. All these
approaches cannot handle programs whose resource usage depend on integer variables
(mainly because of negative values). While these techniques can be adapted to handle
CRs with simple integer linear constraints, it is not clear how it can be extended to
handle CRs with unrestricted form of integer linear constraints. It is also important to
note that currently these techniques cannot compute logarithmic or exponential UBs.
For example, Hoffmann et al. [2011] computes O(n2) as UB for the mergesort program
whereas we compute O(n ∗ log(n)). On the other hand, these techniques are superior
for examples that exhibit amortized cost behavior, but such examples are out of the
scope of this paper since they cannot be modeled precisely with CRs [Alonso-Blas and
Genaim 2012]. It is also important to note that these techniques fail to infer an UB if
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the cost cannot be expressed using a polynomial with degree less than a given integer
k (the user has to provide this k). Our analysis does not have such restriction. Overall,
we believe that our approach is more generic, in the sense that it handles CRs with
arbitrary integer linear constraints, which might be the output of cost analysis of any
programming language, and, in addition, it is not restricted to any complexity class.

The work of Gulwani et al. [2009] in the SPEED project computes worst-case sym-
bolic bounds for C++ code containing loops and recursion. The loops in the input code
are instrumented with counters and a linear invariant generation tool is used to com-
pute the bound of those counters. The computed bounds for the individual loops are
then composed using a counter-optimal proof structure to compute the total bound
which can be nonlinear or disjoint. Since the underlying cost analysis framework is
fundamentally different from ours, it is not possible to formally compare the result-
ing upper bounds in all cases. However, by looking at small examples, we can see why
our approach can be more precise. For instance, in their work the sum

∑n
i=1 i is over-

approximated by n2, while our approach is able to obtain the precise solution n2

2 −
n
2 .

There are some works related on solving recurrence relations [Cohen and Katcoff
1977; Bagnara et al. 2003; Gosper 1978; Everest et al. 2003]. Cohen and Katcoff [1977]
developed interactive techniques based on guessing solutions and generating functions
that solve linear recurrence relations. However, their method does not always admit
closed-form expressions. Decision procedures have been developed by Gosper [1978]
and Everest et al. [2003] which admits closed-form expression for a subset of linear
recurrence relations. Bagnara et al. [2003] extended the previous techniques to re-
currence relations with multiple arguments and some nonlinear recurrences of finite
order. However, in spite of this extension, still the form of the recurrence relations that
can be solved are very limited, when compared to our CRs.

8. CONCLUSIONS AND FUTURE WORK
We have proposed a novel approach to infer precise UBs and LBs of CRs which, as our
experiments show, achieves a very good balance between the accuracy of our analysis
and its applicability. The main idea is to automatically transform CRs into a sim-
ple form of worst-case (resp. best-case) RRs that CAS can accurately solve to obtain
UBs (resp. LBs) on the resource consumption. The required transformation is far from
trivial since it requires transforming multiple recursive non-deterministic equations
involving multiple increasing and decreasing arguments into a single deterministic
equation with a single decreasing argument.

Importantly, since CRs are universal output of cost analysis for any programming
language, our approach to infer closed-form UBs and LBs is completely independent of
the programming language from which CRs are obtained. Currently, we have applied
it to CRs obtained from Java bytecode programs, from X10 programs [Albert et al.
2011c] and from actor-based programs [Albert et al. 2011a]. In the latter two cases,
the languages have concurrency primitives to spawn asynchronous tasks and to wait
for termination of tasks. In spite of being concurrent languages, the first phase of
cost analysis handles the concurrency primitives and the generated CRs can be solved
directly using our approach.

As future work, we plan to assess the scalability of our approach by analyzing larger
programs, up to now the main concern has been the accuracy of the results obtained.
Also, we plan to study new techniques to infer more precise lower/upper bounds on
the number of iterations that loops perform. As this is an independent component, our
approach will directly be benefited from any improvement in this regard.
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A. PROOFS OF THEOREMS
A.1. Theorem 4.2
For any initial values x̄0, the evaluation tree T1 of PC(f̂C(x̄0)) is a complete tree such
that any path (from the root to a leaf) has exactly f̂C(x̄0) internal nodes (i.e., all nodes
but the leaf) with cost e. Any evaluation tree T2 ∈ T (C(x̄0)) is a (possibly not complete)
tree such that any path (from the root to a leaf) has at most f̂C(x̄0) internal nodes, and
each internal node has cost e. Thus, since the recursive equations of PC and C have
m recursive calls each, it holds that sum(T1) ≥ sum(T2) and therefore PC(f̂C(x̄0)) ≥
C(x̄0).

A.2. Theorem 4.8
We prove the theorem for the case when e is linearly decreasing. The case of linearly
increasing is dual. Let T1 ∈ T (C(x̄0)), and T2 be the evaluation tree of PC(f̂C(x̄0)).
Observe that: (1) The leaves have cost 0; (2) The number of internal nodes in any path
from the root to a leaf in T1 is at most f̂C(x̄0), and in T2 is exactly f̂C(x̄0); (3) The RR
PC and the CR C have the same number of recursive calls in their recursive equation;
and (4) Êe and e are identical up to their ‖.‖ components since Êe is obtained from e by
replacing each ‖l‖ ∈ e by ‖l̂ − l′ ∗ ď‖+N ∗ ď. These observations, together with the fact
that cost expressions are monotonic, implies that in order to prove the theorem, it is
enough to prove that for any ‖l‖ ∈ e and its corresponding L = ‖l̂ − l′ ∗ ď‖+N ∗ ď in Êe,
if ‖l1‖, . . . , ‖lκ‖ are instances of ‖l‖ in a given path in T1, and L1, . . . , Lf̂C(x̄0) are those
of L in T2, then Li ≥ ‖li‖ for any 1 ≤ i ≤ κ. Recall that κ ≤ f̂C(x̄0).

Base Case:. L1 is obtained when N = f̂C(x̄0), therefore L1 = ‖l̂ − l′ ∗ ď‖+ f̂C(x̄0)∗ ď ≥
‖l̂‖ − ‖l′‖ ∗ ď+ f̂C(x̄0) ∗ ď = ‖l̂‖ ≥ ‖l1‖. Ra call that ‖l′‖ = f̂C(x̄0).

Inductive Case:. First, we assume that Li ≥ ‖li‖. Next, we consider two cases: (1) if
li ≥ d̂, then ‖li+1‖ ≤ ‖li‖−ď ≤ Li−ď = ‖l̂ − l′ ∗ ď‖+(f̂C(x̄0)−(i−1))∗ď−ď = ‖l̂ − l′ ∗ ď‖+
(f̂C(x̄0)− i) ∗ ď = Li+1; and (2) if li < d̂, then ‖li+1‖ = 0 ≤ ‖l̂ − l′ ∗ ď‖+ (f̂C(x̄0)− i) ∗ ď =
Li+1.

A.3. Theorem 4.14
The proof is similar to the one of Theorem 4.8. We prove the theorem for the case
when e is geometrically decreasing. The case of geometrically increasing is dual. Let
T1 ∈ T (C(x̄0)) and T2 be the evaluation tree of PC(f̂C(x̄0)). The observations about
T1, T2 and the monotonicity property in the proof of Theorem 4.8 also hold for this
case, and therefore it is enough to prove that for any ‖l‖ ∈ e and its corresponding
L = ‖l̂‖

ř(f̂C (x̄0)−N)
+ ‖−p̌‖ ∗ Ŝ(f̂C(x̄0) − N) in Êe, if ‖l1‖, . . . , ‖lκ‖ are instances of ‖l‖ in

a given path in T1, and L1, . . . , Lf̂C(x̄0) are those of L in T2, then Li ≥ ‖li‖ for any
1 ≤ i ≤ κ.

Base Case:. L1 is obtained when N = f̂C(x̄0), therefore L1 = ‖l̂‖
ř(f̂C (x̄0)−f̂C (x̄0))

+ ‖−p̌‖ ∗
Ŝ(f̂C(x̄0)− f̂C(x̄0)) = ‖l̂‖ ≥ ‖l1‖ since Ŝ(0) = 0.

Inductive Case:. We assume that Li ≥ ‖li‖ and will prove that Li+1 ≥ ‖li+1‖. We
have Ŝ(i) = 1

ř(i) ∗ 1
1−ř −

1
1−ř = 1

ř ∗ ( 1
ř(i−1) ∗ 1

1−ř −
1

1−ř ) + 1
ř∗(1−ř) −

1
(1−ř) = 1

ř ∗ Ŝ(i− 1) + 1
ř .
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We also have Li = ‖l̂‖
ři−1 + ‖−p̌‖ ∗ Ŝ(i− 1). Then, the following equations hold:

Li+1 = ‖l̂‖
ři + ‖−p̌‖ ∗ Ŝ(i)

= 1
ř ∗

‖l̂‖
ři−1 + ‖−p̌‖ ∗ ( 1

ř ∗ Ŝ(i− 1) + 1
ř )

= 1
ř ∗ ( ‖l̂‖ři−1 + ‖−p̌‖ ∗ Ŝ(i− 1)) + ‖−p̌‖ ∗ 1

ř
= 1

ř ∗ (Li + ‖−p̌‖)
≥ 1

ř ∗ (‖li‖+ ‖−p̌‖)
≥ ‖li+1‖ [Since ‖−p̌‖ ≥ −p̌ and ϕ1 |= li ≥ ř ∗ li+1 + p̌]

A.4. Theorem 4.18
Intuitively, since by definition the evaluation trees of Ĉ up to depth f̂C(x̄0) over-
approximate those of C, then, by the construction of Êe, it is guaranteed that the eval-
uation tree of 〈PC(N) = Êe +mh ∗PC(N − 1)〉 up to depth f̂C(x̄0) over-approximates C.
Therefore, if E is a solution for PC then E[N/f̂C(x̄0)] is an UB for C(x̄0).

A.5. Theorem 5.5
In order to prove the above theorem, it is enough to prove that if the costs con-
tributed by C(x̄0) and PC(N) along any corresponding chain of calls are e1, · · · , eκ0

and Ěe1 , · · · , Ěeκ respectively, it holds that Ěei ≤ ei for all 1 ≤ i ≤ κ and κ ≤ κ0. Since
N is instantiated by f̌C(x̄0) to the solution E of PC(N), any chain of calls of PC(N) is
exactly f̌C(x̄0) (i.e. κ = f̌C(x̄0)). According to Corollary 5.2, f̌C(x̄0) is the lower-bound
on the length of any chain of C(x̄0) and hence κ ≤ κ0 holds in general. Again, since cost
expression e (and hence its corresponding RR expression Ěe) follows the monotonicity
property, in order to prove Ěei ≤ ei, it is enough to prove the relation for their ‖.‖
sub-component. That means, if ‖l1‖, · · · , ‖lκ0

‖ are instances of ‖l‖ ∈ e in the chain of
calls e1, · · · , eκ0

and L1, · · · , Lf̌C(x̄0) are the instances of the replacements of ‖l‖ in Ěe

according to Definition 5.4 along the chain of calls Ěe1 , · · · , Ěeκ , it is enough to prove
that Li ≤ ‖li‖ for all 1 ≤ i ≤ f̌C(x̄0).

Base Case:. The comparison of L1 and ‖l1‖ are done by the following case analysis as
done for the replacement of ‖l‖ in Definition 5.4.

(1) We obtain L1 when N = f̌C(x̄0) since ‖l‖ is linearly increasing. L1 = ‖ľ‖+(f̌C(x̄0)−
f̌C(x̄0)) ∗ ď = ‖ľ‖ ≤ ‖l1‖.

(2) In this case N = 1 since ‖l‖ is linearly decreasing and L1 = ‖ľ‖+ (1− 1) ∗ ď = ‖ľ‖ ≤
‖l1‖.

(3) Here, N = f̌C(x̄0) and L1 = ř(f̌C(x̄0)−f̌C(x̄0)) ∗‖ľ‖+ p̌∗ Š(f̌C(x̄0)− f̌C(x̄0)) = ‖ľ‖ ≤ ‖l1‖
since Š(0) = 0.

(4) Here, N = 1 and L1 = ř(1−1) ∗ ‖ľ‖+ p̌ ∗ Š(1− 1) = ‖ľ‖ ≤ ‖l1‖.
(5) ‖ľ‖ ≤ ‖l1‖.

Inductive Case:. Here we assume that Li ≤ ‖li‖ and will prove that Li+1 ≤ ‖li+1‖.
We do the similar case analysis.

(1) For Li, we have N = f̌C(x̄0)− i+ 1. So, Li = ‖ľ‖+ (f̌C(x̄0)− (f̌C(x̄0)− i+ 1)) ∗ ď =
‖ľ‖+(i−1)∗ď. Then Li+1 = ‖ľ‖+(f̌C(x̄0)−f̌C(x̄0)+i)∗ď = ‖ľ‖+i∗ď = ‖ľ‖+(i−1)∗ď+ď =
Li + ď ≤ ‖li‖+ ď ≤ ‖li+1‖ since ď is the minimum distance of ‖l‖ and ľ ≥ 0.

(2) Here, we have N = i for Li and N = i+ 1 for Li+1. Then the proof is similar to the
proof of (1).
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(3) For Li and Li+1, N = f̌C(x̄0) − i + 1 and N = f̌C(x̄0) − i respectively. Thus we
obtain Li = ř(i−1) ∗ ‖ľ‖ + p̌ ∗ Š(i − 1) and Li+1 = ři ∗ ‖ľ‖ + p̌ ∗ Š(i). We also have
Š(i) = ři−1

ř−1 = ř ∗ ř
i−1−1
ř−1 + 1 = ř ∗ Š(i − 1) + 1. Then Li+1 = ři ∗ ‖ľ‖ + p̌ ∗ Š(i) =

ř ∗ (ř(i−1) ∗ ‖ľ‖+ p̌ ∗ Š(i− 1)) + p = ř ∗ Li + p̌ ≤ ř ∗ ‖li‖+ p̌ ≤ ‖li+1‖ [since ľ ≥ 0 and
‖l‖ has the geometric progression behavior as defined in Definition 4.11].

(4) For Li and Li+1, N = i and N = i + 1 respectively and the proof is similar to the
proof of (3).

(5) ‖ľ‖ ≤ ‖li+1‖.

A.6. Theorem 5.8
Intuitively, since by definition the evaluation trees of Č up to depth f̌C(x̄0) under-
approximate those of C, then, by the construction of Ěe, it is guaranteed that the
evaluation tree of 〈PC(N) = Ěe+mh∗PC(N−1)〉 up to depth f̌C(x̄0) under-approximates
C. Therefore, if E is a solution for PC then E[N/f̌C(x̄0)] is a LB for C(x̄0).
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