
May-Happen-in-Parallel Analysis for
Priority-based Scheduling

Authors’ Version?

Elvira Albert, Samir Genaim, and Enrique Martin-Martin

Complutense University of Madrid, Spain

Abstract. A may-happen-in-parallel (MHP) analysis infers the sets of
pairs of program points that may execute in parallel along a program’s
execution. This is an essential piece of information to detect data races,
and also to infer more complex properties of concurrent programs, e.g.,
deadlock freeness, termination and resource consumption analyses can
greatly benefit from the MHP relations to increase their accuracy. Previ-
ous MHP analyses have assumed a worst case scenario by adopting a sim-
plistic (non-deterministic) task scheduler which can select any available
task. While the results of the analysis for a non-deterministic scheduler
are obviously sound, they can lead to an overly pessimistic result. We
present an MHP analysis for an asynchronous language with prioritized
tasks buffers. Priority-based scheduling is arguably the most common
scheduling strategy adopted in the implementation of concurrent lan-
guages. The challenge is to be able to take task priorities into account
at static analysis time in order to filter out unfeasible MHP pairs.

1 Introduction

In asynchronous programming, programmers divide computations into shorter
tasks which may create additional tasks to be executed asynchronously. Each
task is placed into a task-buffer which can execute in parallel with other task-
buffers. The use of a synchronization mechanism enables that the execution of
a task is synchronized with the completion of another task. Synchronization can
be performed via shared-memory [9] or via future variables [13, 8]. Concurrent
interleavings in a buffer can occur if, while a task is awaiting for the completion of
another task, the processor is released such that another pending task can start
to execute. This programming model captures the essence of the concurrency
models in X10 [13], ABS [12], Erlang [1] and Scala [11], and it is the basis of

? Appeared in the Proc. of the 19th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR-19). Springer, Lecture Notes
in Computer Science volume 8312, subline Advanced Research in Computing and
Software Science (ARCoSS), 2013, pp 18–34. The final publication is available at
link.springer.com.

actor-like concurrency [2, 11]. The most common strategy to schedule tasks is
undoubtedly priority-based scheduling. Each task has a priority level such that
when the active task executing in the buffer releases the processor, a highest
priority pending task is taken from its buffer and begins executing. Asynchronous
programming with prioritized tasks buffers has been used to model real-world
asynchronous software, e.g., Windows drivers, engines of modern web browsers,
Linux’s work queues, among others (see [9] and its references).

The higher level of abstraction that asynchronous programming provides,
when compared to lower-level mechanisms like the use of multi-threading and
locks, allows writing software which is more reliable and more amenable to be
analyzed. In spite of this, proving error-freeness of these programs is still quite
challenging. The difficulties are mostly related to: (1) Tasks interleavings, typ-
ically a programmer decomposes a task t into subtasks t1, . . . , tn. Even if each
of the sub-tasks would execute serially, it can happen that a task k unrelated
to this computation interleaves its execution between ti and ti+1. If this task
k changes the shared-memory, it can interfere with the computation in several
ways, e.g., leading to non-termination, to an unbounded resource consumption,
and to deadlocks. (2) Buffers parallelism, tasks executing across several task-
buffers can run in parallel, this could lead to deadlocks and data races.

In this paper, we present a may-happen-in-parallel (MHP) analysis which
identifies pairs of statements that can execute in parallel and in an interleaved
way (see [13, 3]). MHP is a crucial analysis to later prove the properties men-
tioned above. It directly allows ensuring absence of data races. Besides, MHP
pairs allow us to greatly improve the accuracy of deadlock analysis [16, 10] as
it discards unfeasible deadlocks when the instructions involved in a possible
deadlock cycle cannot happen in parallel. Also, it improves the accuracy of ter-
mination and cost analysis [5] since it allows discarding unfeasible interleavings.
For instance, consider a loop like while (l!=null) {x=b.m(l.data); await

x?; l=l.next;}, where x=b.m(e) posts an asynchronous task m(e) on buffer
b, and the instruction await x? synchronizes with the completion of the asyn-
chronous task by means of the future variable x. If the asynchronous task is not
completed (x is not ready), the current task releases the processor and another
task can take it. This loop terminates provided no instruction that increases the
length of the list l interleaves or executes in parallel with the body of this loop.

Existing MHP analyses [13, 3] assume a worst case scenario by adopting a
simplistic (non-deterministic) task scheduler which can select any available task.
While the results of the analysis for a non-deterministic scheduler are obviously
sound, they can lead to an overly pessimistic result and report false errors due
to unfeasible schedulings in the task order selection. For instance, consider two
buffers b1 and b2 and assume we are executing a task in b1 with the following
code “x=b1.m1(e1); y=b1.m2(e2); await x?; b2.m3(e3);”. If the priority of
the task executing m1 is smaller than that of m2, then it is ensured that task
m2 and m3 will not execute in parallel even if the synchronization via await is
on the completion of m1. This is because at the await instruction, when the

2

processor is released, m2 will be selected by the priority-based scheduler before
m1. A non-deterministic scheduler would give this spurious parallelism.

Our starting point is the MHP analysis for non-deterministic scheduling of
[3], which distinguishes a local phase in which one inspects the code of each task
locally, and ignores transitive calls, and a global phase in which the results of
the local analysis are composed to build a global MHP-graph which captures the
parallelism with transitive calls and among multiple task-buffers. The contribu-
tion of this paper is an MHP analysis for a priority-based scheduling which takes
priorities into account both at the local and global levels of the analysis. As each
buffer has its own scheduler which is independent of other buffer’s schedulers,
priorities can be only applied to establish the order of execution among the tasks
executing on the same task-buffer (intra-buffer MHP pairs). Interestingly, even
by only using priorities at the intra-buffer level, we are also able to implicitly
eliminate unfeasible inter-buffer MHP pairs. We have implemented our analysis
in the MayPar system [4] and evaluated it on some challenging examples, includ-
ing some of the benchmarks used in [9]. The system can be used online through
a web interface where the benchmarks used are also available.

2 Language

We consider asynchronous programs with priority-levels and multiple tasks bu-
ffers. Tasks can be synchronized with the completion of other tasks (of the same
or of a different buffer) using futures. In this model, only highest-priority tasks
may be dispatched, and tasks from different task buffers execute in parallel. The
number of task buffers does not have to be known a priori and task buffers can
be dynamically created. We keep the concept of task-buffer disconnected from
physical entities, such as processes, threads, objects, processors, cores, etc. In [9],
particular mappings of task-buffers to such entities in real-world asynchronous
systems are described. Our model captures the essence of the concurrency and
distribution models used in X10 [13] and in actor-languages (including ABS [12],
Erlang [1] and Scala [11]). It also has many similarities with [9], the main differ-
ence being that the synchronization mechanism is by means of future variables
(instead of using the shared-memory for this purpose).

2.1 Syntax

Each program declares a sequence of global variables g0, . . . , gn and a sequence
of methods named m0, . . . ,mi (that may declare local variables) such that one
of the methods, named main, corresponds to the initial method which is never
posted or called and it is executing in a buffer with identifier 0. The grammar
below describes the syntax of our programs. Here, T are types, m procedure
names, e expressions, x can be global or local variables, buffer identifiers b are
local variables, f are future variables, and priority levels p are natural numbers.

3

M ::= T m(T̄ x̄){s; return e; }
s ::= s; s | x = e | if e then s else s | while e do s |

await f? | b = newBuffer | f = b.m(〈ē〉, p) | release

The notation T̄ is used as a shorthand for T1, ...Tn, and similarly for other names.
We use the special buffer identifier this to denote the current buffer. For the sake
of generality, the syntax of expressions is left free and also the set of types is not
specified. We assume that every method ends with a return instruction.

The concurrency model is as follows. Each buffer has a lock that is shared by
all tasks that belong to the buffer. Data synchronization is by means of future
variables as follows. An await y? instruction is used to synchronize with the
result of executing task y=b.m(〈z̄〉, p) such that await y? is executed only when
the future variable y is available (and hence the task executing m is finished).
In the meantime, the buffer’s lock can be released and some highest priority
pending task on that buffer can take it. The instruction release can be used to
unconditionally release the processor so that other pending task can take it.
Therefore, our concurrency model is cooperative as processor release points are
explicit in the code, in contrast to a preemptive model in which a higher priority
task can interrupt the execution of a lower priority task at any point (see Sec. 7).
W.l.o.g, we assume that all methods in a program have different names.

2.2 Semantics

A program state St = 〈g, Buf〉 is a mapping g from the global variables to their
values along with all created buffers Buf. Buf is of the form buffer1 ‖ . . . ‖ buffern

denoting the parallel execution of the created task-buffers. Each buffer is a term
buffer(bid , lk,Q) where bid is the buffer identifier, lk is the identifier of the active
task that holds the buffer’s lock or ⊥ if the buffer’s lock is free, and Q is the
set of tasks in the buffer. Only one task can be active (running) in each buffer
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(tid ,m, p, l, s) where tid
is a unique task identifier, m is the method name executing in the task, p is the
task priority level (the larger the number, the higher the priority), l is a mapping
from local (possibly future) variables to their values, and s is the sequence of
instructions to be executed or s = ε(v) if the task has terminated and the return
value v is available. Created buffers and tasks never disappear from the state.

The execution of a program starts from an initial state where we have an
initial buffer with identifier 0 executing task 0 of the form S0 = 〈g, buffer(0, 0,
{tsk(0,main, p, l, body(main))})〉. Here, g contains initial values for the global vari-
ables, l maps parameters to their initial values and local reference and future
variables to null (standard initialization), p is the priority given to main, and
body(m) refers to the sequence of instructions in the method m. The execu-
tion proceeds from S0 by selecting non-deterministically one of the buffers and
applying the semantic rules depicted in Fig. 1. We omit the treatment of the
sequential instructions as it is standard, and we also omit the global memory g
from the state as it is only modified by the sequential instructions.

4

(newbuffer)

fresh(bid ′) , l′ = l[x→ bid ′], t = tsk(tid ,m, p, l, 〈x = newBuffer; s〉)
buffer(bid , tid , {t} ∪ Q) ‖ B ;

buffer(bid , tid , {tsk(tid ,m, p, l′, s)} ∪ Q) ‖ buffer(bid ′,⊥, {}) ‖ B

(priority)
highestP (Q) = tid , t = tsk(tid , , , , s) ∈ Q, s 6= ε(v)

buffer(bid ,⊥,Q) ‖ B ; buffer(bid , tid ,Q) ‖ B

(async)

l(x) = bid1, fresh(tid1), l′ = l[y → tid1], l1 = buildLocals(z̄,m1)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈y = x.m1(z, p1); s〉} ∪ Q) ‖ buffer(bid1, ,Q′) ‖ B ;

buffer(bid , tid , {tsk(tid ,m, p, l′, s)} ∪ Q) ‖
buffer(bid1, , {tsk(tid1,m1, p1, l1, body(m1))} ∪ Q′) ‖ B

(await1)

l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 = ε(v)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B ;

buffer(bid , tid , {tsk(tid ,m, p, l, s)} ∪ Q) ‖ B

(await2)

l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 6= ε(v)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B ;

buffer(bid ,⊥, {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B

(release) buffer(bid , tid , {tsk(tid ,m, p, l, 〈release; s〉)} ∪ Q) ‖ B ;

buffer(bid ,⊥, {tsk(tid ,m, p, l, s)} ∪ Q) ‖ B

(return)

v = l(x)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈return x; 〉)} ∪ Q) ‖ B ;

buffer(bid ,⊥, {tsk(tid ,m, p, l, ε(v))} ∪ Q) ‖ B

Fig. 1. Summarized Semantics for a Priority-based Scheduling Async Language

Newbuffer: an active task tid in buffer bid creates a buffer bid ′ which is
introduced to the state with a free lock. Priority: Function highestP returns a
highest-priority task that is not finished, and it obtains its buffer’s lock. Async:
A method call creates a new task (the initial state is created by buildLocals)
with a fresh task identifier tid1 which is associated to the corresponding future
variable y in l′. We have assumed that bid 6= bid1, but the case bid = bid1 is
analogous, the new task tid1 is simply added to Q of bid . Await1: If the future
variable we are awaiting for points to a finished task, the await can be completed.
The finished task t1 is looked up in all buffers in the current state (denoted Buf).
Await2: Otherwise, the task yields the lock so that any other task of the same
buffer can take it. Release: the current task frees the lock. Return: When return

5

1 // g1 global variable
2 // g2 global variable
3 void task(){
4 g2 = g2 + 1;
5 }
6 void f(){
7 while(g1 > 0){
8 g1 = g1 − 1;
9 g2 = g2 + 1;

10 release;
11 }
12 }

13 void m(){
14 while(g1 < 0){
15 g1 = g1 + 1;
16 release;
17 }
18 }
19 void h(){
20 while(g1 > 0){
21 g1 = g1 − 2;
22 release;
23 }
24 }

25 // main has priority 0
26 main(){
27 this.f(<>,10);
28 Fut x = this.m(<>,5);
29 await x?;
30 this.h(<>,10);
31 Buffer o=newbuffer;
32 o.task(<>,0);
33 ...
34 }

Fig. 2. Example for inter-buffer and intra-buffer may-happen-in-parallel relations

is executed, the return value is stored in v so that it can be obtained by the future
variable that points to that task. Besides, the lock is released and will never be
taken again by that task. Consequently, that task is finished (marked by adding
the instruction ε(v)) but it does not disappear from the state as its return value
may be needed later on in an await.

Example 1. Figure 2 shows some simple methods which will illustrate different
aspects of our analysis. In particular, non-termination of certain tasks and data
races can occur if priorities are not properly assigned by the programmer, and
later considered by the analysis. Our analysis will take the assigned priorities
into account in order to gather the necessary MHP information to be able to
guarantee termination and absence of data races. Let us by now only show some
execution steps. The execution starts from a buffer 0 with a single task in which
we are executing the main method. Let us assume that such task has been given
the lowest priority 0. The global memory g is assumed to be properly initialized.

St0 ≡ 〈g, buffer(0, 0, {tsk(0,main, 0, l, body(main))})〉 async−−−−→
St1 ≡ 〈g, buffer(0, 0, {tsk(0, ..), tsk(1, f, 10, ..)})〉 async−−−−→
St2 ≡ 〈g, buffer(0, 0, {tsk(0, ..), tsk(1, ..), tsk(2,m, 5..)})〉 await−−−→
St3 ≡ 〈g, buffer(0,⊥, {tsk(0, .., await), tsk(1, ..), tsk(2,m, 5..)})〉 priority−−−−−→
St4 ≡ 〈g, buffer(0, 1, {tsk(0, .., await), tsk(1, ..), tsk(2,m, 5..)})〉 −→∗

St5 ≡ 〈g′, buffer(0, 1, {tsk(0, .., await), tsk(1, .., return), tsk(2,m, 5..)})〉 return−−−−→
St6 ≡ 〈g′, buffer(0,⊥, {tsk(0, .., await), tsk(1, .., ε(v)), tsk(2,m, 5..)})〉 priority−−−−−→
St7 ≡ 〈g′, buffer(0, 2, {tsk(0, .., await), tsk(1, .., ε(v)), tsk(2,m, 5..)})〉 −→∗

St8 ≡ 〈g′′, buffer(0, 0, {tsk(0, ..), tsk(1, .., ε(v)), tsk(2, .., ε(v)), tsk(3..)})〉 newbuf−−−−−→
St9 ≡ 〈g′′, buffer(0, 0, {tsk(0..), tsk(1..), tsk(2..), tsk(3..)}), 〉buffer(1,⊥, {}) async−−−−→
St10 ≡ 〈g′′, buffer(0, 0, {tsk(0..), ..}), 〉buffer(1,⊥, {task(4..)}) priority−−−−−→
St11 ≡ 〈g′′, buffer(0, 0, {tsk(0..), ..}), 〉buffer(1, 4, {task(4..)}) ...−→

6

At St1, we execute the instruction at Line 27 (L27 for short) that posts, in the
current buffer this, a new task (with identifier 1) that will execute method f with
priority 10. The next step St2 posts another task (with identifier 2) in the current
buffer with a lower priority (namely 5). At St3, an await instruction (L29) is used
to synchronize the execution with the completion of the task 2 spawned at L28.
As the task executing f has higher priority than the one executing m, it will be
selected for execution at St4. After returning from the execution of task 1 in St5,
the priority rule selects task 2 for execution in St6. An interesting aspect is
that after creating buffer 1 at St10, execution can non-deterministically choose
buffer 0 or 1 (in St11 buffer 1 has been selected).

3 Definition of MHP

We first formally define the concrete property “MHP” that we want to approx-
imate using static analysis. In what follows, we assume that instructions are
labelled such that it is possible to obtain the corresponding program point iden-
tifiers. We also assume that program points are globally different. We use pm̊
to refer to the entry program point of method m, and pṁ to all program points
after its return instruction. The set of all program points of P is denoted by PP .
We write p ∈ m to indicate that program point p belongs to method m. Given a
sequence of instructions s, we use pp(s) to refer to the program point identifier
associated with its first instruction and pp(ε(v)) = pṁ.

Definition 1 (concrete MHP). Given a program P , its MHP is defined as
EP =∪{ES |S0 ∗ S} where for S=〈g, Buf〉, the set ES is ES = {(pp(s1), pp(s2)) |
buffer(bid1, ,Q1)∈Buf, buffer(bid2, ,Q2)∈Buf, t1 = tsk(tid1, , , , s1)∈Q1, t2 =
tsk(tid2, , , , s2)∈Q2, tid1 6= tid2}.

The above definition considers the union of the pairs obtained from all deriva-
tions from S0. This is because execution is non-deterministic in two dimensions:
(1) in the selection of the buffer that is chosen for execution, since the buffers
have access to the global memory different behaviours (and thus MHP pairs)
can be obtained depending on the execution order, and (2) when there is more
than one task with the highest priority, the selection is non-deterministic.

The MHP pairs can originate from direct or indirect task creation relation-
ships. For instance, the parallelism between the points of the tasks executing h

and task is indirect because they do not invoke one to the other directly, but
a third task main invokes both of them. However, the parallelism between the
points of the task main and those of task is direct because the first one invokes
directly the latter one. Def. 1 captures all these forms of parallelism.

Importantly, EP includes both intra-buffer and inter-buffer MHP pairs, each
of which are relevant for different kinds of applications, as we explain below.

7

Intra-buffer MHP pairs. Intra-buffer relations in Def. 1 are pairs in which bid1 ≡
bid2. We always have that the first instructions of all tasks which are pending
in the buffer’s queue may-happen-in-parallel among them, and also with the
instruction of the task which is currently active (has the buffer’s lock). This
piece of information allows approximating the tasks interleavings that we may
have in a considered buffer. In particular, when the execution is at a processor
release point, we use the MHP pairs to see the instructions that may execute
if the processor is released. Information about task interleavings is essential to
infer termination and resource consumption in any concurrent setting (see [5]).

Example 2. Consider the execution trace in Ex. 1, we have the MHP pairs
(29,pf̊) and (29,pm̊) since when the active task 0 is executing the await (point

29) in St4, we have that tasks 1 and 2 are pending at their entry points. The
following execution steps give rise to many other MHP pairs. The most relevant
point to note is that in St8 when the execution is at L30 and onwards, the tasks
1 and 2 are guaranteed to be at their exit program points pḟ and pṁ. Thus,
we will not have any MHP pair between the instructions that update the global
variable g1 (L8 and L15 in tasks 1 and 2, resp.) and the release point at L22
of the task 3 executing h. This information is essential to prove the termination
of h, as the analysis needs to be sure that the loop counter cannot be modified
by instructions of other tasks that may execute in parallel with the body of this
loop. The information is also needed to obtain an upper bound on the number
of iterations of the loop and then infer the resource consumption of h.

Inter-buffer MHP pairs. In addition to intra-buffer MHP relations, inter-buffer
MHP pairs happen when bid1 6= bid2. In this case, we obtain the instructions
that may execute in parallel in different buffers. This information is relevant
at least for two purposes: (1) to detect data-races in the access to the global
memory and (2) to detect deadlocks and livelocks when one buffer is awaiting
for the completion of one task running in another buffer, while such other task
is awaiting for the completion of the current task, and the execution of these
(synchronization) instructions happens in parallel (or simultaneously). If the
language allows blocking the execution of the buffer such that no other pending
task can take it, we have a deadlock, otherwise we have a livelock.

Example 3. Consider again the execution trace in Ex. 1, in St10 we have created
a new buffer 1 in which task 4 starts to execute at St11. We will have the inter-
buffer pair (21,4) as we can have L21 executing in buffer 0 and L4 executing
in buffer 1. Note that, if task had updated g1 instead of updating g2, we would
have had a data race. Data races can lead to different types of errors, and static
analyses that detect them are of utmost importance.

4 Method-Level Analysis with Priorities

In this section, we present the local phase of our MHP analysis which assigns
to each program point, of a given method, an abstract state that describes the

8

(1) τp(y=this.m(x̄, p),M) = M [〈y,O, Z,R〉/〈?,O, Z,R〉] ∪ {〈y, t, m̌, p〉}
(2) τp(y=x.m(x̄, p),M) = M [〈y,O, Z,R〉/〈?,O, Z,R〉] ∪ {〈y, o, m̃, p〉}
(3) τp(release,M) = τp(release1; release2,M)
(4) τp(release1,M) = M [〈Y, t, m̌, p〉/〈Y, t, m̃, p〉] where p ≥ p

(5) τp(release2,M) = M [〈Y, t, m̃, p〉/〈Y, t, m̂, p〉] where p > p

(6) τp(await y?,M) = M ′[〈y,O, m̃,R〉/〈y,O, m̂,R〉]
where M ′ = τp(release1; release2,M)

(7) τp(return,M) = M [〈Y, t, m̌, R〉/〈Y, t, m̃, R〉]
(8) τp(b,M) = M otherwise

Fig. 3. Method-level MHP transfer function: τp : s× B 7→ B.

status of the tasks that have been locally invoked so far. The status of a task
can be (1) pending, i.e., it is at the entry program point; (2) finished, i.e., it has
executed a return instruction already; or (3) active, i.e., it can be executing at
any program point (including the entry and the exit). The analysis uses MHP
atoms which are syntactic objects of the form 〈F,O, T,R〉 where

– F is either a valid future variable name or ?. The value ? indicates that the
task might not be associated with any future variable, either because there is
no need to synchronize with its result, or because the future has been reused
and thus the association lost (this does not happen in our example);

– O is the buffer name that can be t or o, which resp. indicate that the task
is executing on the same buffer or maybe on a different one;

– T can be m̌, m̃, or m̂ where m is a method name. It indicates that the
corresponding task is an instance of method m, and its status can be pending,
active, or finished resp.;

– P is a natural number indicating the priority of the corresponding task.

Intuitively, an MHP atom 〈F,O, T,R〉 is read as follows: task T might be exe-
cuting (in some status) on buffer O with priority P , and one can wait for it to
finish using future variable F . The set of all MHP atoms is denoted by A.

Example 4. The MHP atom 〈x, t, m̃, 5〉 indicates that there is an instance of
method m running in parallel, in the same buffer. This task is active (i.e., can
be at any program point), has priority 5, and is associated with the future x.

The MHP atom 〈?, o, ˆtask, 0〉 indicates that there is an instance of method task
running in parallel, maybe in a different buffer. This task is finished (i.e., has
executed return), has priority 0, and it is associated to any future variable.

An abstract state is a multiset of MHP atoms from A. The set of all multisets
over A is denoted by B. Given M ∈ B, we write (a, i) ∈ M to indicate that a
appears exactly i > 0 times in M . We omit i when it is 1. The local analysis
is applied on each method and, as a result, it assigns an abstract state from
B to each program point in the program. The analysis takes into account the
priority of the method being analyzed. Thus, since a method might be called with
different priorities p1, . . . , pn, the analysis should be repeated for each pi. For

9

the sake of simplifying the presentation, we assume that each method is always
called with the same priority. Handling several priorities is a context-sensitive
analysis problem that can be done by, e.g., cloning the corresponding code.

The analysis of a given method, with respect to priority p, abstractly executes
its code over abstract elements from B. This execution uses a transfer function
τp, depicted in Fig. 3, to rewrite abstract states. Given an instruction b and an
abstract state M ∈ B, τp(b,M) computes a new abstract state that results from
abstractly executing b in state M . Note that the subscript p in τp is the priority
of the method being analyzed. Let us explain the different cases of τp:

– (1) Posting a task on the same buffer adds a new MHP atom 〈y, t, m̌, p〉
to the abstract state. It indicates that an instance of m is pending, with
priority p, on the same buffer as the analyzed method, and is associated
with future variable y. In addition, since y is assigned a new value, those
atoms in M that were associated with y should now be associated with ?
in the new state. This is done by M [〈y,O, Z,R〉/〈?,O, Z,R〉] which replaces
each atom that matches 〈y,O, Z,R〉 in M by 〈?,O, Z,R〉;

– (2) It is similar to (1), the difference is that the new task might be posted on
a buffer different from that of the method being analyzed. Thus, its status
should be active since, unlike (1), it might start to execute immediately;

– (3)-(5) These cases highlight the use of priorities, and thus mark the main
differences wrt [3]. They state that when releasing the processor, only tasks
of equal or higher priorities are allowed to become active (simulated through
release1). Moreover, when taking the control back, any task with strictly
higher priority is guaranteed to have been finished (simulated through release2).
Importantly, the abstract element after release1 is associated to the program
point of the release instruction, and that after release2 is associated to the
program point after the release instruction. These two auxiliary instructions
are introduced to simulate the implicit “loop” (in the semantics) when the
task is waiting at that point;

– (6) This instruction is similar to release, the only difference is that the status
of the tasks that are associated with future variable y become finished in the
following program point. Importantly, the abstract element after release1 is
associated to the program point of the await y?;

– (7) It changes the status of every pending task executing on the same buffer
to active, this is because the processor is released. Note that we do not
consider priorities in this case, since the task is finished.

In addition to using the transfer function for abstractly executing basic instruc-
tions, the analysis merges the results of paths (in conditions, loops, etc) using a
join operator. We refer to [3] for formal definitions of the basic abstract interpre-
tations operators. In what follows, we assume that the result of the local phase
is given by means of a mapping L

P
:PP 7→B which maps each program point p

(including entry and exit points) to an abstract state L
P

(p) ∈ B.

Example 5. Applying the local analysis on main, results in the following abstract
states (initially the abstract state is ∅):

10

28:{〈?, t, f̌, 10〉}
29:{〈?, t, f̃, 10〉, 〈x, t, m̃, 5〉}
30:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉}
31:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈?, t, ȟ, 10〉}
32:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈?, t, ȟ, 10〉}
33:{〈?, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈?, t, ȟ, 10〉, 〈?, o, ˜task, 0〉}

Note that in the abstract state at program point 30 we have both f and m finished,
this is because they have higher priority than main, and thus, while main is waiting
at program point 29 both f and m must have completed their execution before
main can proceed to the next instruction. If we ignore priorities, then we would
infer that f might be active at program point 30 (which is less precise).

5 MHP Graph for Priority-based Scheduling

In this section we will construct a MHP graph relating program points and
methods in the program, that will be used to extract precise information on
which program points might globally run in parallel. In order to build this graph,
we use the local information computed in Sec. 4 which already takes priorities
into account. In Sec. 5.2, we explain how to use the MHP graph to infer the
MHP pairs in the program. Finally, in Sec. 5.3 we compare the inference method
of MHP pairs using a priority-based scheduling with the technique introduced
in [3] for programs with a non-deterministic scheduling.

5.1 Construction of the MHP Graph with Priorities

The MHP graph has different types of nodes and different types of edges. There
are nodes that represent the status of methods (active, pending or finished) and
nodes that represent the program points. Outgoing edges from method nodes
are unweighted and unlabeled, they represent points of which at most one might
be executing. Outgoing edges from program point nodes are labeled, written →l

where the label l is a tuple (O,R) that contains a priority R and a buffer name
O. These edges represent tasks such that any of them might be running. Besides,
when two nodes are directly connected by i > 1 edges, we connect them with
a single edge superscripted with weight i, written as →i

l where l is the label as
before.

Definition 2 (MHP graph with priorities). Given a program P , and its
method-level MHP analysis result L

P
, the MHP graph of P is a directed graph

G
P

= 〈V,E〉 with a set of nodes V and a set of edges E = E1 ∪ E2 defined:

V = {m̃, m̂, m̌ | m ∈ PM} ∪ PP

E1 = {m̃→ p | m ∈ PM , p ∈ PP , p ∈ m} ∪ {m̂→ pṁ, m̌→ pm̊ | m ∈ PM}
E2 = {p→i

(O,R) x | p ∈ PP , (〈 , O, x,R〉, i) ∈ LP (p)}

11

˜main

ˇmain ˆmain

292827p ˚main 30 31 33 p ˙main

f̂f̃f̌ m̌ m̃ m̂ ȟ h̃ȟ ˜task

8 9 10 15 16 21 22 4

10 10
5

10

5

10

5

10

10

5

10

0

10

5

10

0

Fig. 4. MHP graph with priorities of the example

Example 6. Fig. 4 depicts the relevant fragment of the MHP graph for our run-
ning example. The graph only shows selected program points, namely all points
of the main task and those points of the other tasks in which there is a release

instruction, or in which the global memory is updated. For each task, we have
three nodes which correspond to their possible status (except for h and task that
we have omitted status that do not have incoming edges). In order to avoid clut-
tering the graph, in edges from program points, the labels only show the priority.
The weight is omitted as it is always 1. The label corresponding to the buffer
name is depicted using different types of arrows: normal arrows correspond to
the buffer name o, while dashed arrows to t. From the pending (resp. finished)
nodes, we always have an edge to the task entry (resp. exit) point. From the
active nodes, we have edges to all program points in the corresponding method
body, meaning that only one of them can be executing. The key aspect of the
MHP graph is how we integrate the information gathered by the local analysis
(with priorities) to build the edges from the program points: we can observe
that node 28 has an edge to pending f, and at the await (node 29) the edges
go to active f and m. After await, in nodes 30 and the next ones, the edges go
to finished tasks. The remaining tasks only have edges to their program points
since they do not make calls to other tasks.

5.2 Inference of Priority-based MHP pairs

The inference of MHP pairs is based on the notion of intra-buffer path in the
MHP graph. A path from p1 to p2 is called intra-buffer if the program points
p1 and p2 are reachable only through tasks in the same buffer. A simple way
to ensure the intra-buffer condition is by checking that the buffer labels are
always of type t (more accurate alternatives are discussed later). Intuitively, two
program points p1, p2 ∈ PP may run in parallel if one of the following conditions
hold:

12

1. there is a non-empty path in G
P

from p1 to p2 or vice-versa; or

2. there is a program point p3 ∈ PP , and non-empty intra-buffer paths from
p3 to p1 and from p3 to p2 that are either different in the first edge, or they
share the first edge but it has weight i > 1, and the minimum priority in
both paths is the same; or

3. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and
from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1, and at least one of the paths is not intra-buffer.

The first case corresponds to direct MHP scenarios in which, when a task is run-
ning at p1, there is another task running from which it is possible to transitively
reach p2, or vice-versa. For instance (33,4) is a direct MHP resulting from the
direct call from main to task.

The second and third cases correspond to indirect MHP scenarios in which
a task is running at p3 and there are two other tasks p1 and p2 executing in
parallel and both are reachable from p3. However, the second condition takes
advantage of the priority information in intra-buffer paths to discard potential
MHP pairs: if the minimum priority of path pt1 ≡ p3 ; p1 is lower than the
minimum priority of pt2 ≡ p3 ; p2, then we are sure that the task containing
the program point p2 will be finished before the task containing p1 starts. For
instance, consider the two paths from 29 to 8 and from 29 to 16, which form
the potential MHP pair (8,16). They are both intra-buffer (executing on buffer
0) and the minimum priority is not the same (the one to 16 has lower priority).
Thus, (16,8) is not an MHP pair. The intuition is that the task with minimum
priority (m in this case) will be pending and will not start its execution until all
the tasks in the other path are finished. Similarly, we obtain that the potential
MHP pair (10,15) is not a real MHP pair. Knowing that (10,15) and (16,8)
are not MHP pairs is important because this allows us to prove termination of
both tasks executing m and f. This is an improvement over the standard MHP
analysis in [3], where they are considered as MHP pairs—see Sect. 5.3. On the
other hand, when a path involves tasks running in several buffers (condition 3),
priorities cannot be taken into account, as the buffers (and their task schedulers)
work independently. Observe that, in the second and third conditions, the first
edge can only be shared if it has weight i > 1 because it denotes that there might
be more than one instance of the same type of task running. For instance, if we
add the instruction o.task(<>,0) at L33 we will infer the pair (4,4), reporting a
potential data race in the access to g2.

Let us formalize the inference of the priority-based MHP pairs. We write
p1 p2 ∈ GP

to indicate that there is a path from p1 to p2 in G
P

such that the
sum of the edges weights is greater than or equal to 1, and p1 →i x p2 ∈ GP

to mark that the path starts with an edge to x with weight i. We will say that
a path p1 p2 ∈ GP

is intra-buffer if all the edges from program points to
methods have t labels. Similarly, we will say that p is the lowest priority of the
path p1 p2 ∈ GP

, written lowestP(p1 p2) = p, if p is the smallest priority

13

of all those that appear in edges from program points to methods in the path.
We now define the priority-based MHP pairs as follows.

Definition 3. Given a program P , we let ẼP = D ∪ Iintra ∪ Iinter where

D = {(p1, p2) | p1, p2 ∈ PP , p1 ; p2 ∈ GP)}
Iintra = {(p1, p2) | p1, p2, p3 ∈ PP , p3

i→ x1 ; p1 ∈ GP , p3
j→ x2 ; p2 ∈ GP ,

p3
i→ x1 ; p1 is intra−buffer , lowestP(p3

i→ x1 ; p1) = pr1,

p3
j→ x2 ; p2 is intra−buffer , lowestP(p3

j→ x2 ; p2) = pr2,
(x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)) ∧ pr1 = pr2}

Iinter = {(p1, p2) | p1, p2, p3 ∈ PP , p3
i→ x1 ; p1 ∈ GP , p3

j→ x2 ; p2 ∈ GP ,

p3
i→ x1 ; p1 or p3

j→ x2 ; p2 are not intra−buffer ,
x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)}

An interesting point is that even if priorities can only be taken into account at an
intra-buffer level, due to the inter-buffer synchronization operations, they allow
discarding unfeasible MHP pairs at an inter-buffer level. For instance, we can see
that (4,9), which would report an spurious data race, is not an MHP pair. Note
that 4 and 9 execute in different buffers. Still, the priority-based local analysis
has allowed us to infer that after 29, task f will be finished and thus, it cannot
happen in parallel with the execution of task in buffer o. Thus, it is ensured that
there will not be a data-race in the access to g2 from the two different buffers.

The following theorem states the soundness of the analysis, namely, that ẼP
is an over-approximation of EP —the proof appears in the extended version of
this paper [6]. Let Enon−detP be the MHP pairs obtained by [3].

Theorem 1 (soundness). EP ⊆ ẼP ⊆ Enon−detP .

As we have discussed above, a sufficient condition for ensuring the intra-buffer
condition of paths is to take priorities into account when all edges are labelled
with the t buffer. However, if buffers can be uniquely identified at analysis time
(as in the language of [9]), we can be more accurate. In particular, instead of
using o to refer to any buffer, we would use the proper buffer name in the labels
of the edges. Then, the intra-buffer condition will be ensured by checking that
the buffer name along the considered paths is always the same.

In our language, buffers can be dynamically created, i.e., the number of
buffers is not fixed a priori and one could have even an unbounded number of
buffers (e.g., using newBuffer inside a loop). The standard way to handle this sit-
uation in static analysis is by incorporating points-to information [17, 15] which
allows us to over-approximate the buffers created. A well-known approximation
is by buffer creation site such that all buffers created at the same program point
are abstracted by a single abstract name. In this setting, we can take advantage
of the priorities (and apply case 2 in Def. 3) only if we are sure that an abstract
name is referring to a single concrete buffer. As the task scheduler of each buffer
works independently, we cannot use knowledge on the priorities to discard pairs
if the abstract buffer might correspond to several concrete buffers. The extension
of our framework to handle these cases is subject if future work.

14

5.3 Comparison with non-Priority MHP Graphs

The new MHP graphs with priority information (Sec. 5.1), and the conditions
to infer MHP pairs (Sec. 5.2), are extensions of the corresponding notions in [3].
The original MHP graphs were defined as in Def. 2 with the following differences:

– The edges in E2 do not contain the label (O,R) with the buffer name and
the priority, but only the weight.

– The method-level analysis L
P

(p) in [3] does not take priorities into account,
so after a release instruction, pending tasks are set to active. With the
method-level analysis in this paper (Sect. 4), tasks with a higher priority
in the same buffer are set to finished after a release instruction—case (4) in
Fig. 3. This generates less paths in the resulting MHP graph with priorities
and therefore less MHP pairs.

– In [3], there is another type of nodes (future variable nodes) used to increase
the accuracy when the same future variable is re-used in several calls in
branching instructions. For the sake of simplicity we have not included future
nodes here as their treatment would be identical as in [3].

Regarding the conditions to infer MHP pairs, only two are considered in [3]:

1. there is a non-empty path in G
P

from p1 to p2 or vice-versa; or
2. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and

from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1.

The first case is the same as the first condition in Sect 5.2. The second case
corresponds to indirect MHP scenarios and is a generalization of conditions 2
and 3 in Sect 5.2 without considering priorities and intra-buffer paths. With
these conditions, we have that the release point 22 cannot happen in parallel
with the instructions that modify the value of the loop counter g1 (namely 8
and 15), because there is no direct or indirect path connecting them starting
from a program point. However, we have the indirect MHP pairs (10,15) and
(16,8), meaning respectively that at the release point of f the counter g1 can be
modified by an interleaved execution of m and that at the release point of m

the counter g1 can be modified by an interleaved execution of f. Such spurious
interleavings prevent us from proving termination of the tasks executing f and m

and, as we have seen in Sec. 5.2, they are eliminated with the new MHP graphs
with priorities and the new conditions for inferring MHP pairs.

6 Implementation in the MayPar System

We have implemented our analysis in a tool called MayPar [4], which takes
as input a program written in the ABS language [12] extended with priority
annotations. ABS is based on the concurrency model in Sec. 2 and uses the
concept of concurrent object to realize the concept of task-buffer, such that
object creation corresponds to buffer creation, and a method call o.m() posts

15

a task executing m on the queue of object o. Currently the annotations are
provided at the level of methods, instead of at the level of tasks. This is because
we lacked the syntax in the ABS language to include annotations in the calls, but
the adaptation to calls will be straightforward once we have the parser extended.

We have made our implementation and a series of examples available online
at http://costa.ls.fi.upm.es/costabs/mhp. After selecting an example, the
analysis options allow: the selection of the entry method, enabling the option to
consider priorities in the analysis, and several other options related to the format
for displaying the analysis results and the verbosity level. After the analysis,
MayPar yields in the output the MHP pairs in textual format and also optionally
a graphical representation of the MHP graph. Besides, MayPar can be used in
an interactive way which allows the user to select a line and the tool highlights
all program points that may happen in parallel with it.

The examples on the MayPar site that include priority annotations are within
the folder priorities. It is also possible to upload new examples by writing them
in the text area. In order to evaluate our proposal, we have included a series of
small examples that contain challenging patterns for priority-based MHP analy-
sis (including our running example) and we have also encoded the examples in the
second experiment of [9] and adapted them to our language (namely we use await

on futures instead of assume on heap values). MayPar with priority-scheduling
can successfully analyze all of them. Although these examples are rather small
programs, this is not due to scalability limits of MayPar. It is rather because of
the modeling overhead required to set up actual programs for static analysis.

7 Conclusions and Related Work

May-happen-in-parallel relations are of utmost importance to guarantee the
sound behaviour of concurrent and parallel programs. They are a basic compo-
nent of other analyses that prove termination, resource consumption boundness,
data-race and deadlock freeness. As our main contribution, we have leveraged
an existing MHP analysis developed for a simplistic scenario in which any task
could be selected for execution in order to take task-priorities into account. In-
terestingly, have succeeded to take priorities into account both at the intra-buffer
level and, indirectly, also at an inter-buffer level.

To the best of our knowledge, there is no previous MHP analysis for a priority-
based scheduling. Our starting point is the MHP analysis for concurrent objects
in [3]. Concurrent objects are almost identical to our multi-buffer asynchronous
programs. The main difference is that, instead of buffers, the concurrency units
are the objects. The language in [3] is data-race free because it is not allowed
to access an object field from a different object. Our main novelty w.r.t. [3]
is the integration of the priority-based scheduler in the framework. Although
we have considered a cooperative concurrency model in which processor release
points are explicit in the program, it is straightforward to handle a preemptive
scheduling at the intra-buffer level like in [9], by simply adding a release point
after posting a new task. If the posted task has higher priority, the active task will

16

be suspended and the posted task will become active. Thus, our analysis works
directly for this model as well. As regards analyses for Java-like languages [14,
7], we have that a fundamental difference with our approach is that they do not
take thread-priorities into account nor consider any synchronization between the
threads as we do. To handle preemptive scheduling at the inter-buffer level, one
needs to assume processor release points at any instruction in the program, and
then the main ideas of our analysis would be applicable. However, we believe
that the loss of precision could be significant in this setting.

Acknowledgements

This work was funded partially by EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the
Spanish projects TIN2008-05624, TIN2012-38137, PRI-AIBDE-2011-0900 and
by the Madrid Regional Government project S2009TIC-1465. We also want to
acknowledge Antonio Flores-Montoya for his help and advice when implementing
the analysis in the MayPar system.

References

1. Ericsson AB. Erlang Efficiency Guide, 5.8.5 edition, October 2011. From
http://www.erlang.org/doc/efficiency guide/users guide.html.

2. G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, 1986.

3. E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of May-Happen-in-Parallel
in Concurrent Objects. In FORTE’12, LNCS 7273, pages 35–51. Springer, 2012.

4. E. Albert, A. Flores-Montoya, and S. Genaim. Maypar: a May-Happen-in-Parallel
Analyzer for Concurrent Objects. In SIGSOFT/FSE’12, pages 1–4. ACM, 2012.

5. E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. Termination and
Cost Analysis of Loops with Concurrent Interleavings. In ATVA 2013. To appear.

6. E. Albert, S. Genaim, and E. Martin-Martin. May-Happen-in-Parallel Analysis for
Priority-based Scheduling (Extended Version). Technical Report SIC 12/13. Univ.
Complutense de Madrid, 2013.

7. R. Barik. Efficient computation of may-happen-in-parallel information for concur-
rent java programs. In E. Ayguadé, G. Baumgartner, J. Ramanujam, and P. Sa-
dayappan, editors, LCPC’05, volume 4339 of LNCS, pages 152–169. Springer, 2005.

8. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316–330. Springer, 2007.

9. M. Emmi, A. Lal, and S. Qadeer. Asynchronous programs with prioritized task-
buffers. In SIGSOFT FSE, page 48. ACM, 2012.

10. A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-in-Parallel based
Deadlock Analysis for Concurrent Objects. In FORTE’13, Lecture Notes in Com-
puter Science, pages 273–288. Springer, 2013.

11. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

12. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised
Papers), volume 6957 of LNCS, pages 142–164. Springer, 2012.

17

13. J. K. Lee and J. Palsberg. Featherweight X10: A Core Calculus for Async-Finish
Parallelism. In Proc. of PPoPP’10, pages 25–36. ACM, 2010.

14. L. Li and C. Verbrugge. A practical mhp information analysis for concurrent java
programs. In LCPC’04, LNCS, pages 194–208. Springer, 2004.

15. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object Sensitivity for
Points-to and Side-effect Analyses for Java. In ISSTA, pages 1–11, 2002.

16. M. Naik, C. Park, K. Sen, and D. Gay. Effective static deadlock detection. In
Proc. of ICSE, pages 386–396. IEEE, 2009.

17. John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In PLDI, pages 131–144. ACM, 2004.

18

The appendix is provided for reviewers’ convenience, it is not part of the paper

8 Proof (Sketch)

We consider an auxiliary MHP analysis Ẽ locP that is strictly greater than the ẼP .
Intuitively, the Ẽ locP is a refinement over the MHP analysis without priorities [3]
where only the method-level analysis has been improved taking priorities into
account. Basically, the method-level analysis of Ẽ locP is the new one from Figure 3
(page 9) but the graph and the pairs in the graph are defined as in the original
MHP analysis in [3].

The structure of our proof is similar to the proof of the analysis without
priorities in http://eprints.ucm.es/16713/.

Definition 4 (Auxiliary MHP Ẽ locP). Given a program P , and its method-
level MHP analysis result L

P
, the auxiliary MHP graph of P is a directed graph

Gloc
P

= 〈V,E〉 with a set of nodes V loc and a set of edges Eloc = Eloc
1 ∪ Eloc

2

defined as:

V loc = {m̃, m̂, m̌ | m ∈ PM} ∪ PP

Eloc
1 = {m̃→ p | m ∈ PM , p ∈ PP , p ∈ m} ∪ {m̂→ pṁ, m̌→ pm̊ | m ∈ PM}

Eloc
2 = {p i→ x | p ∈ PP , (〈 , , x, 〉, i) ∈ LP (p)}

Given a program P , we let Ẽ locP = D loc ∪ I loc where

D loc = {(p1, p2) | p1, p2 ∈ PP , p1 ; p2 ∈ GlocP
)}

I loc = {(p1, p2) | p1, p2, p3 ∈ PP , p3
i→ x1 ; p1 ∈ GlocP

, p3
j→ x2 ; p2 ∈ GlocP

,
x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)}

We will also consider a modification of the semantics in Figure 1 where states
are extended so that tasks inside each buffer contain the additional information
Lr (see Figure 5). Evaluation using the extended semantics will be denoted as
S ;r S′. This set Lr contains the tasks that have been called in the current

task and their status (ˇtid , ˜tid or ˆtid) as well as the future variable related to
them. L

r
is a concrete version of L

P
for each concrete task in a state.

Given a state of this extended semantics, we will define the concrete graph of
S (Gr

S
) and the set of concrete MHP pairs induced by the concrete graph (EGr

S
)

as follows:

Definition 5 (Concrete graph and MHP set). Given a state
S = 〈g, buffer(bid1 , lk1 ,Q1) ‖ . . . buffer(bidn , lkn ,Qn)〉, Q = Q1 ∪ . . . ∪ Qn, the
concrete graph Gr

S
= 〈V r, Er〉 is defined as:

V r
S = { ˜tid , ˆtid , ˇtid | 〈tid ,m, p, l, s,Lr 〉 ∈ Q} ∪ cPS

cPS = {(tid , pp(s)) | 〈tid ,m, p, l, s,Lr 〉 ∈ Q}
ES = eiS ∪ elS
eiS = { ˜tid → (tid , pp(s)) | 〈tid ,m, p, l, s,Lr 〉 ∈ Q}∪

{ ˆtid → (tid , p ˙tid) | 〈tid ,m, p, l, s,Lr 〉 ∈ Q}∪
{ ˇtid → (tid , pt̊id) | 〈tid ,m, p, l, s,Lr 〉 ∈ Q}∪

elS = {(tid , pp(s))→ x | 〈tid ,m, p, l, s,Lr 〉 ∈ Q ∧ (? : x ∈ Lr ∨ y : x ∈ Lr)}

19

(newbuffer)

fresh(bid ′) , l′ = l[x→ bid ′], t = tsk(tid ,m, p, l, 〈x = newBuffer; s〉,Lr)

buffer(bid , tid , t ∪Q) ‖ B ;r

buffer(bid , tid , tsk(tid ,m, p, l′, s,Lr) ∪Q) ‖ buffer(bid ′,⊥, {}) ‖ B

(priority)
highestP (Q) = tid , t = tsk(tid , , , , s,Lr) ∈ Q, s 6= ε(v)

buffer(bid ,⊥,Q) ‖ B ;r buffer(bid , tid ,Q) ‖ B

(async)

l(x) = bid1, fresh(tid1), l′ = l[y → tid1], l1 = buildLocals(z̄,m1)

L
r′ = Lr [y : x/? : x] ∪ (y : ˇtid1)

buffer(bid , tid , tsk(tid ,m, p, l, 〈y = x.m1(z, p1); s,Lr 〉 ∪ Q) ‖ buffer(bid1, ,Q′) ‖ B ;r

buffer(bid , tid , tsk(tid ,m, p, l′, s,L
r′) ∪Q) ‖

buffer(bid1, , tsk(tid1,m1, p1, l1, body(m1)) ∪Q′) ‖ B

(await1)
l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 = ε(v)L

r′ = Lr [y : ˜tid1/y : ˆtid1]

buffer(bid , tid , tsk(tid ,m, p, l, 〈await y?; s〉,Lr) ∪Q) ‖ B ;r

buffer(bid , tid , tsk(tid ,m, p, l, s,L
r′) ∪Q) ‖ B

(await2)

l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 6= ε(v)

buffer(bid , tid , tsk(tid ,m, p, l, 〈await y?; s〉,Lr) ∪Q) ‖ B ;r

buffer(bid ,⊥, tsk(tid ,m, p, l, 〈await y?; s〉,Lr) ∪Q) ‖ B

(release) buffer(bid , tid , tsk(tid ,m, p, l, 〈release; s〉,Lr) ∪Q) ‖ B ;r

buffer(bid , tid , tsk(tid ,m, p, l, 〈release1; release2; s〉,Lr) ∪Q) ‖ B

(release1)

L
r′ = Lr [y : x̌/y : x̃] where priority(x) ≥ p

buffer(bid , tid , tsk(tid ,m, p, l, 〈release1; s〉,Lr) ∪Q) ‖ B ;r

buffer(bid ,⊥, tsk(tid ,m, p, l, s,L
r′) ∪Q) ‖ B

(release2)
L

r′ = Lr [y : x̃/y : x̂] where priority(x) > p

buffer(bid , tid , tsk(tid ,m, p, l, 〈release2; s〉,Lr) ∪Q) ‖ B ;r

buffer(bid ,⊥, tsk(tid ,m, p, l, s,L
r′) ∪Q) ‖ B

(return)

v = l(x), L
r′ = Lr [y : x̌/y : x̃]

buffer(bid , tid , tsk(tid ,m, p, l, return x; ,Lr) ∪Q) ‖ B ;r

buffer(bid ,⊥, tsk(tid ,m, p, l, ε(v),L
r′) ∪Q) ‖ B

Fig. 5. Extended Semantics

20

Using the concrete graph, we define the set of concrete MHP EGr
S

:

EGr
S

= dMHP ∪ iMHP
dMHP = {(a, b) | a, b ∈ cPS ∧ a; b ∈ Gr

S
}

iMHP = {(a, b) | a, b ∈ cPS ∧ (∃c ∈ cPS : c; a ∈ Gr
S
∧ c; b ∈ Gr

S
)}

We will also define the set of MHP pairs at runtime:

Definition 6. Given a program P, we define the set of MHP pairs at runtime
as:

ErP =
⋃
{ErS | So ;r S}

For each state S = 〈g, buffer(bid1 , lk1 ,Q1) ‖ . . . buffer(bidn , lkn ,Qn)〉, Q =
Q1 ∪ . . . ∪Qn, the set of MHP pairs ErS at runtime is:

ErS = {((tid1 , pp(s1)), (tid2 , pp(s2))| | 〈tid1 , , , , s, 〉 ∈ Q, 〈tid2 , , , , s, 〉 ∈ Q, tid 6= tid2}

Finally, we define the abstraction function ϕ over pairs of (task identifier,
program point) to obtain the set of MHP program points EG

S
induced by the

concrete graph Gr
S
. The abstraction function ϕ is extended to sets of pairs in the

obvious way.

Definition 7 (Abstraction function ϕ). ϕ(tid , p) = p

Definition 8.

EGS = {(ϕ(tid1 , p1), ϕ(tid1 , p1)) | ((tid1 , p1), (tid2 , p2)) ∈ EGr
S
}

= {(p1, p2) | ((tid1 , p1), (tid2 , p2)) ∈ EGr
S
}

Using the previous notions, we can proceed with the proof of Theorem 1.

Theorem 1 (soundness) EP ⊆ ẼP ⊆ Enon−detP .

Proof. To prove the first part of Theorem 1, EP ⊆ ẼP , we will prove that EP ⊆
Ẽ locP (Lemma 1) and Ẽ locP ⊆ ẼP (Lemmas 5 and 6). For the second part, ẼP ⊆
Enon−detP , we apply Lemma 9.

Lemma 1 (EP ⊆ Ẽ locP).

Proof.

EP
(1)
= ϕ(ErP)

(2)
= ϕ(

⋃
S

ErS)
Lemma 2
⊆ ϕ(

⋃
S

EGr
S
)

(3)
=

⋃
S

ϕ(EGr
S
)

(4)
=

⋃
S

EG
S

Lemma 3
⊆ Ẽ locP

The equality (1) holds because the extended semantics (Figure 5) and the
semantics from Figure 1 are equivalent w.r.t. the MHP points, since pp(release) =
pp(release1) = pp(release2). The step marked with (2) is true by Definition 6.
Step (3) holds trivially, since it is the application of the abstraction function ϕ.
Finally, equality (3) is true by Definition 8.

Lemma 2. ∀S : (S0 ;r∗ S)⇒ (ErS ⊆ EGrS)

21

Proof. The proof is similar to the proof of Theorem A.1.4 in http://eprints.

ucm.es/16713/. We have to prove that, given a state S such that S0 ;r∗ S =
〈g, buffer(bid1 , lk1 ,Q1) ‖ . . . buffer(bidn , lkn ,Qn)〉 with Q = Q1 ∪ . . . ∪ Qn and
〈tid1 , , , , s, 〉 ∈ Q, 〈tid2 , , , , s, 〉 ∈ Q, tid 6= tid2 , the set EGr

S
contains the

pair ((tid1 , pp(s1)), (tid2 , pp(s2))). For that, we will prove that every program
point (tid , pp(s)) reachable from S0 using the extended semantics is also reach-
able from a node (0, pp(s0)) of the main task in the concrete graph Gr

S
, i.e.,

(0, pp(s0)) ;∗ (tid , pp(s)) ∈ Gr
S
.

The proof proceeds by induction on the length of the derivation S0 ;∗ S. The
semantic rules from Figure 5 have different effects on the states, but they can be
split into atomic steps that maintain the property: sequential step, release, loss
of a future variable, new task added, task ending and take lock. Then we express
the semantics rules as combinations of these atomic, property preserving steps:

– Rule (newbuffer) is an instance of a sequential step.

– Rule (priority) is an instance of a take lock step.

– Rule (async) is an instance of a sequential step followed by a loss of future
variable and a new task added step.

– Rule (await1) is an instance of a sequential step and a task ending.

– Rule (await2) is an instance of a sequential step.

– Rule (release) is an instance of a sequential step.

– Rule (release1) is an instance of a sequential step and a release.

– Rule (release2) is an instance of a sequential step and a task ending.

– Rule (return) is an instance of a sequential step and a release.

To prove Lemma 3 we need the following definitions:

Definition 9 (Order on MHP atoms). The set A is partially ordered as
follows: we first let m̌ and m̂ are smaller than m̃ (since it includes both entry
and exit program points), and any future variable is smaller than ? (since it
includes all future variables), then, we say that 〈F1, O1, T1, P2〉 � 〈F2, O2, T2, P2〉
iff O1 = O2, P1 = P2, F1 is smaller than or equal to F2, and T1 is smaller than
or equal to T2. Given M1,M2 ∈ B, we say that a ∈M2 covers a′ ∈M1 if a′ � a.
We say that M1 v M2 if all elements of M1 are covered by different elements
from M2.

Definition 10 (Upper-bounds on B). The join (or upper-bound) of M1 and
M2 in B, denoted M1 tM2, is an operation that calculates a multiset M3 ∈ B
such that M1 v M3 and M2 v M3. Note that it is not guaranteed that the least
upper bound exists [3], and thus t can be defined in several ways. For loops,
in order to guarantee termination, if the multiplicity of a given MHP atom a
increases in each iteration, then it is set to ∞.

Definition 11 (Abstraction of L
r

sets). Consider that S = 〈g, buffer(bid1 , lk1 ,Q1) ‖
. . . buffer(bidn , lkn ,Qn)〉, Q = Q1∪. . .∪Qn and 〈tid1 ,m, , , , 〉 ∈ Q. We define

22

the following functions ψS, ψ′S and ψ′′S to obtain multisets in B from L
r

sets as:

ψ′′S(ˇtid) = m̌

ψ′′S(˜tid) = m̃

ψ′′S(ˆtid) = m̂

ψ′S(y : x) = y : ψ′′S(x)

ψS(L
r
) = {(ψ′S(a), i) | a ∈ L

r
,#i : b ∈ L

r
: ψ′S(a) = ψ′S(b)}

Lemma 3. ∀S : (S0 ;r∗ S)⇒ (EG
S
⊆ Ẽ locP)

Proof. We have to prove that every pair (a, b) ∈ EG
S

is also in Ẽ locP . The proof is
a case distinction over the origin of the pair—(a, b) ∈ dMHP or (a, b) ∈ iMHP—
and using the fact that the L

P
obtained for each instruction is more general

than the concrete Lr defined by the extended semantics (Lemma 4).

Lemma 4. ∀S = 〈g, buffer(bid1 , lk1 ,Q1) ‖ . . . buffer(bidn , lkn ,Qn)〉, if S0 ;r∗

S and 〈tid1 ,m, p, l, s,Lr 〉 ∈ Q then ψS(Lr) v L
P

(pp(s)).

Proof. It follows easily by induction on the length of the derivation S0 ;r∗ S,
since the transfer function τp in Figure 3 adds the same information as the rules
of the extended semantics of Figure 5. We notice that, for any program point
p in a loop, the value of L

P
(p) will be an upper bound of the values of τp(p)

after a number of iterations. Therefore, for any iteration in the computation,
ψS(Lr) v L

P
(p).

Lemma 5 ((Ẽ locP r ẼP) ∩ EP = ∅).

Proof. We have to prove that all pairs that Ẽ locP adds over ẼP are not real MHP
pairs in EP , i.e., that the pairs removed by the new global phase of Section 5.2
cannot happen in any computation from S0. The graph G

P
of Definition 2 and

Gloc
P

of Definition 4 contain the same set of vertices, and the edges are the same
except from the labels (buffer name O and priority P) added in E2 over Eloc

2 .
The set of MHP pairs is defined as Ẽ locP = Dloc∪I loc and ẼP = D∪I intra ∪I inter ,
but as the graphs are the same Dloc = D. Extra MHP pairs added by Ẽ locP are
in Iextra = I loc r (D ∪ I intra ∪ I inter). Looking at the definitions of these sets of
indirect pairs, it is easy to see that pairs (a, b) in Iextra verify:

a, b, c ∈ PP , c
i→ a′ ; a ∈ GP , c

j→ b′ ; b ∈ GP ,

c
i→ a′ ; a is intra−buffer , lowestP(c

i→ a; a) = pr1,

c
j→ b′ ; b is intra−buffer , lowestP(c

j→ b′ ; b) = pr2,
(x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)) ∧ pr1 6= pr2},
(a, b) /∈ D ∪ I intra ∪ I inter

(Notice that a pair may appear in D, I intra or I inter at the same time). Suppose
that pr1 < pr2 , the method with minimum priority is m and a, b are not entry
points of methods. We proceed by contradiction:

23

Any evaluation leading to the MHP pair (a, b) must lead to a state S0 ;∗

S′ = 〈g, buffer(bid1 , lk1 ,Q1)〉 ‖ B, where 〈tid1 ,m1, , , 〉 ∈ Q1, 〈tid2 ,m2 , , , 〉 ∈
Q1, m1 = method(pp(a′)) and m2 = method(pp(b′)). In state S′ methods con-
taining program points a′ and b′ are in the queue. From S′, the evaluation
must lead to a state S′ ;∗ S that generates the MHP pair (a, b), i.e., S =
〈g, buffer(bid1 , lk1 ,Q1)〉 ‖ B, where 〈tid ′1 , , , , s1〉 ∈ Q1, 〈tid ′2 , , , , s2 〉 ∈ Q1,
pp(s1) = a and pp(s2) = b. In the derivation S′ ;∗ S, the evaluation must
pass through a state S′′ where method m starts to execute (as a is not an entry
point), i.e., S′′ = 〈g, buffer(bid1 , tidm ,Q1)〉 ‖ B, where 〈tidm ,m, , , body(m)〉 ∈
Q1. However, state S′′ cannot be reached from S. When the semantic rule
(priority) is applied to give the lock of Q1 to task tidm , task tid2 (or any
other task reachable from m2) will appear in Q1. Since pr1 is less than m2 or
any other task reachable from m2, tidm could never get the lock.

Lemma 6. A ⊆ B ∧ (B r C) ∩A = ∅ ⇒ A ⊆ C

Proof. By contraposition, we prove A * C ⇒ A * B ∨ (B r C) ∩ A 6= ∅. Since
A * C, consider x ∈ A such that x /∈ C. If x ∈ B then x ∈ (BrC)∩A 6= ∅. On
the other hand, if x /∈ B then A * B.

To prove that the new set of MHP pairs is smaller than set obtained by the
previous MHP analysis in [3] that does not consider priorities (ẼP ⊆ Enon−detP)
we will prove that every path between program points in the graph of the new
analysis is also a path in the previous graph. (Notice that paths between program
points must have an even number of edges: edges from a program point to
a method node are followed by other edge from the method node to another
program point). We will use the following notions:

Definition 12 (Enon−detP). Let Lnd
P

(p) the method-level MHP analysis result

in [3]. The set of MHP pairs Enon−detP in [3] (without considering the optimiza-
tion using future nodes) is defined using the graph Gnd

P
as follows:

Gnd
P

= 〈V nd , End〉
End = End

1 ∪ End
2

V nd = {m̃, m̂, m̌ | m ∈ PM} ∪ PP

End
1 = {m̃→ p | m ∈ PM , p ∈ PP , p ∈ m} ∪ {m̂→ pṁ, m̌→ pm̊ | m ∈ PM}

End
2 = {p i→ x | p ∈ PP , (? : x, i) ∈ Lnd

P
(p)}

Enon−det
P = Dnd ∪ I nd

Dnd = {(p1, p2) | p1, p2 ∈ PP , p1 ; p2 ∈ GndP
)}

I nd = {(p1, p2) | p1, p2, p3 ∈ PP , p3
i→ x1 ; p1 ∈ GndP

, p3
j→ x2 ; p2 ∈ GndP

,
x1 6= x2 ∨ (x1 = x2 ∧ i = j > 1)}

Notice that V nd = V , End
1 = E1 from Definition 2 and Dnd = D from

Definition 3.

Definition 13 (Order of MHP atoms). We say that an MHP atom with
priority and buffer 〈F,O, T, P 〉 is smaller than a MHP atom F : T (from [3]),

24

written 〈F,O, T, P 〉 �′ (F ′ : T ′), if F is smaller than F ′ and T is smaller than
T ′. We extend this order to an order between multisets of MHP atoms (M v′ M ′)
as in Definition 9.

Lemma 7. ∀p ∈ PP .LP
(p) v′ Lnd

P
(p)

Proof. Straightforward, since the transfer function τp (Figure 3) only differs from
the transfer function from [3] (we will write it τndp) in the case of a release instruc-
tion. As the program point related to a release instruction is the same as the pro-
gram point of its release1 and release2 instructions, for this case τp(release,M) =
τp(release1,M) ∪ τp(release2,M

′), where M ′ = M [〈Y, t, m̌, p〉/〈Y, t, m̃, p〉] for
those tasks such that p ≥ p. Considering the MHP atoms added in the mul-
tiset by any of the release instruction we have that:

– If 〈Y, t, m̃, p〉 such that p ≥ p, then (Y : m̃) will be added by τndp .

– If 〈Y, t, m̂, p〉 such that p ≥ p, then (Y : m̃) will be added by τndp , which is
bigger.

Since both transfer functions start from ∅ and the way of computing the upper
bound is the same, we conclude that L

P
(p) v′ Lnd

P
(p) for every program point

p.

Lemma 8. If a, b, c ∈ PP , m ∈ PM and a →i
(O,R) m → b ;∗ c ∈ G

P
then

a
j→ m→ b;∗ c ∈ Gnd

P
, with j ≥ i.

Proof. By induction on the length of the path b;∗ c.

– Base Case: a→i
(O,R) m→ c ∈ G

P

By Lemma 7 we know that a
j→ c ∈ End

2 and j ≥ i. The edge m → c is in
E1, so by definition it is also in End

1 .

– Inductive Step: a
j→ m→ b;+ c ∈ G

P

By the Inductive Hypothesis we have that b ;+ c ∈ Gnd
P

. The reasoning
is similar to the previous case: Lemma 7 and End

1 = E1. Therefore, we can

construct a path a
j→ m→ b;+ c ∈ Gnd

P
such that j ≥ i.

Lemma 9 (ẼP ⊆ Enon−detP).

Proof. Straightforward by Lemma 8.

25

