
Running on Fumes?

Preventing Out-of-Gas Vulnerabilities in Ethereum Smart
Contracts using Static Resource Analysis

Elvira Albert1, Pablo Gordillo1, Albert Rubio1, and Ilya Sergey2

1 Complutense University of Madrid, Spain
2 Yale-NUS College and School of Computing, NUS, Singapore

Abstract. Gas is a measurement unit of the computational effort that
it will take to execute every single operation that takes part in the
Ethereum blockchain platform. Each instruction executed by the Ethe-
reum Virtual Machine (EVM) has an associated gas consumption speci-
fied by Ethereum. If a transaction exceeds the amount of gas allotted by
the user (known as gas limit), an out-of-gas exception is raised. There
is a wide family of contract vulnerabilities due to out-of-gas behaviors.
We report on the design and implementation of Gastap, a Gas-Aware
Smart contracT Analysis Platform, which takes as input a smart con-
tract (either in EVM, disassembled EVM, or in Solidity source code) and
automatically infers gas upper bounds for all its public functions. Our
bounds ensure that if the gas limit paid by the user is higher than our
inferred gas bounds, the contract is free of out-of-gas vulnerabilities.

1 Introduction

In the Ethereum consensus protocol, every operation on a replicated blockchain
state, which can be performed in a transactional manner by executing a smart
contract code, costs a certain amount of gas [29], a monetary value in Ether,
Ethereum’s currency, paid by a transaction-proposing party. Computations (per-
formed by invoking smart contracts) that require more computational or storage
resources, cost more gas than those that require fewer resources. As regards
storage, the EVM has three areas where it can store items: the storage is where
all contract state variables reside, every contract has its own storage and it is
persistent between external function calls (transactions) and quite expensive to
use; the memory is used to hold temporary values, and it is erased between
transactions and is cheaper to use; the stack is used to carry out operations and
it is free to use, but can only hold a limited amount of values.

The rationale behind the resource-aware smart contract semantics, instru-
mented with gas consumption, is three-fold. First, paying for gas at the moment
of proposing the transaction does not allow the emitter to waste other parties’

? This work was funded partially by the Spanish MINECO project TIN2015-69175-C4-
2-R and MINECO/FEDER, UE project TIN2015-69175-C4-3-R, by Spanish MICIN-
N/FEDER, UE projects RTI2018-094403-B-C31 and RTI2018-094403-B-C33, by the
CM project S2018/TCS-4314 and by the UCM CT27/16-CT28/16 grant.

(aka miners) computational power by requiring them to perform a lot of worth-
less intensive work. Second, gas fees disincentivize users to consume too much
of replicated storage, which is a valuable resource in a blockchain-based consen-
sus system. Finally, such a semantics puts a cap on the number of computations
that a transaction can execute, hence prevents attacks based on non-terminating
executions (which could otherwise, e.g., make all miners loop forever).

In general, the gas-aware operational semantics of EVM has introduced novel
challenges wrt. sound static reasoning about resource consumption, correctness,
and security of replicated computations: (1) While the EVM specification [29]
provides the precise gas consumption of the low-level operations, most of the
smart contracts are written in high-level languages, such as Solidity [13] or
Vyper [14]. The translation of the high-level language constructs to the low-
level ones makes static estimation of runtime gas bounds challenging (as we will
see throughout this paper), and is implemented in an ad-hoc way by state-of-the
art compilers, which are only able to give constant gas bounds, or return ∞
otherwise. (2) As noted in [17], it is discouraged in the Ethereum safety recom-
mendations [16] that the gas consumption of smart contracts depends on the
size of the data it stores (i.e., the contract state), as well as on the size of its
functions inputs, or of the current state of the blockchain. However, according
to our experiments, almost 10% of the functions we have analyzed do. The in-
ability to estimate those dependencies, and the lack of analysis tools, leads to
design mistakes, which make a contract unsafe to run or prone to exploits. For
instance, a contract whose state size exceeds a certain limit, can be made forever
stuck, not being able to perform any operation within a reasonable gas bound.
Those vulnerabilities have been recognized before, but only discovered by means
of unsound, pattern-based analysis [17].

In this paper, we address these challenges in a principled way by developing
Gastap, a Gas-Aware Smart contracT Analysis Platform, which is, to the best
of our knowledge, the first automatic gas analyzer for smart contracts. Gastap
takes as input a smart contract provided in Solidity source code [13], or in low-
level (possibly decompiled [26]) EVM code, and automatically infers an upper
bound on the gas consumption for each of its public functions. The upper bounds
that Gastap infers are given in terms of the sizes of the input parameters of
the functions, the contract state, and/or on the blockchain data that the gas
consumption depends upon (e.g., on the Ether value).

The inference of gas requires complex transformation and analysis processes
on the code that include: (1) construction of the control-flow graphs (CFGs), (2)
decompilation from low-level code to a higher-level representation, (3) inference
of size relations, (4) generation of gas equations, and (5) solving the equations
into closed-form gas bounds. Therefore, building an automatic gas analyzer from
EVM code requires a daunting implementation effort that has been possible
thanks to the availability of a number of existing open-source tools that we have
succeeded to extend and put together in the Gastap system. In particular, an
extension of the tool Oyente [3] is used for (1), an improved representation of

2

EthIR [6] is used for (2), an adaptation of the size analyzer of Saco [4] is used
to infer the size relations, and the Pubs [5] solver for (5).

The most challenging aspect in the design of Gastap has been the approxima-
tion of the EVM gas model (which is formally specified in [29]) that is required
to produce the gas equations in step (4). This is because the EVM gas model
is highly complex and unconventional. The gas consumption of each instruction
has two parts: (i) the memory gas cost, if the instruction accesses a location
in memory which is beyond the previously accessed locations (known as active
memory [29]), it pays a gas proportional to the distance of the accessed location.
(ii) The second part, the opcode gas cost, is related to the bytecode instruction
itself. This component is also complex to infer because it is not always a constant
amount, it might depend in some cases on the current global and local state.

Gastap has a wide range of applications for contract developers, attackers
and owners, including the detection of vulnerabilities, debugging and verifica-
tion/certification of gas usage. As contract developers and owners, having a
precise resource analyzer allows answering the following query about a specific
smart contract: “what is the amount of gas necessary to safely (i.e., without an
out-of-gas exception) reach a certain execution point in the contract code, or
to execute a function”? This can be used for debugging, verifying/certifying a
safe amount of gas for running, as well as ensuring progress conditions. Besides,
Gastap allows us to calculate the safe amount of gas that one should provide
to an external data source (e.g., contracts using Oraclize[8]) in order to enable
a successful callback. As an attacker, one might estimate, how much Ether (in
gas), an adversary has to pour into a contract in order to execute the DoS attack.
We note that such an attack may, however, be economically impractical.

Finally, we argue that our experimental evaluation shows that Gastap is an
effective and efficient tool: we have analyzed more than 29,000 real smart con-
tracts pulled from etherscan.io [2], that in total contain 258,541 public functions,
and inferred gas bounds for 91.85% of them in 342.54 hours. Gastap can be
used from a web interface at https://costa.fdi.ucm.es/gastap.

2 Description of Gastap Components

Figure 1 depicts the architecture of Gastap. In order to describe all components
of our tool, we use as running example a simplified version (without calls to the
external service Oraclize and the authenticity proof verifier) of the EthereumPot

contract [1] that implements a simple lottery. During a game, players call a
method joinPot to buy lottery tickets; each player’s address is appended to an
array addresses of current players, and the number of tickets is appended to an
array slots, both having variable length. After some time has elapsed, anyone
can call rewardWinner which calls the Oraclize service to obtain a random number
for the winning ticket. If all goes according to plan, the Oraclize service then
responds by calling the __callback method with this random number and the
authenticity proof as arguments. A new instance of the game is then started,
and the winner is allowed to withdraw her balance using a withdraw method. In

3

https://costa.fdi.ucm.es/gastap

Oyente* CFG EthIR* S
A

C
O

 SR

Gas
Equation
Generator

GEPUBS

Smart
Contract

Gas
Bounds

Opcode
Gas
Cost

Memory
Gas
Cost

RBR

Fig. 1. Architecture of Gastap (CFG: control flow graph; RBR: rule-based represen-
tation; SR: size-relations; GE: gas equations)

Fig. 2, an excerpt of the Solidity code (including the public function findWinner)
and a fragment of the EVM code produced by the compiler, are displayed. The
Solidity source code is showed for readability, as Gastap analyzes directly the
EVM code (if it receives the source, it first compiles it to obtain the EVM code).

2.1 Oyente*: from EVM to a complete CFG

The first component of our tool, Oyente*, is an extension of the open-source
tool Oyente [3], a symbolic execution tool developed to analyze Ethereum smart
contracts and find potential security bugs. As Oyente’s aim is on symbolic exe-
cution rather than on generating a complete CFG, some extensions are needed to
this end. The EthIR framework [6] had already extended Oyente for two pur-
poses: (1) to recover the list of addresses for unconditional blocks with more than
one possible jump address (as Oyente originally only kept the last processed
one), and (2) to add more explicit information to the CFG: jump operations are
decorated with the jumping address, discovered by Oyente, and, other oper-
ations like store or load are also decorated with the address they operate: the
number of state variable for operations on storage; and the memory location for
operations on memory if Oyente is able to discover it (or with “?” otherwise).

However EthIR’s extension still produced incomplete CFGs. Oyente* fur-
ther extends it to handle a more subtle source of incompleteness in the generated
CFG that comes directly from the fact that Oyente is a symbolic execution en-
gine. For symbolic execution, a bound on the number of times a loop is iterated
is given. Hence it may easily happen that some (feasible) paths are not reached
in the exploration within this bound and they are lost. To solve this problem, we
have modified Oyente to remove the execution bound (as well as other checks
that were only used for their particular applications), and have added informa-
tion to the path under analysis. Namely, every time a new jump is found, we
check if the jumping point is already present in the path. In such case, an edge to
that point is added and the exploration of the trace is stopped. As a side effect,
we not only produce a complete CFG, but also avoid much useless exploration
for our purposes which results in important efficiency gain.

4

contract EthereumPot {
address [] public addresses;
address public winnerAddress;
uint[] public slots ;
· · ·
function callback(bytes32 queryId, string result , bytes proof)

oraclize randomDS proofVerify(queryId, result, proof) {
if (msg.sender != oraclize cbAddress()) throw;
random number = uint(sha3(result))
winnerAddress = findWinner(random number);
amountWon = this.balance ∗ 98 / 100 ;
winnerAnnounced(winnerAddress, amountWon);
if (winnerAddress.send(amountWon)) {
if (owner.send(this.balance)) {

openPot();
}}
}

function findWinner(uint random) constant returns(address winner){
for(uint i = 0; i < slots .length; i++) {
if (random <= slots[i]) {
return addresses[i];
}}
}
· · ·
}

· · ·
DUP1
PUSH1 => 0x00
SWAP1
POP
PUSH1 => 0x03
DUP1
SLOAD
SWAP1
· · ·
PUSH1 => 0x40
MLOAD
DUP1
SWAP2
SUB
SWAP1
SHA3
PUSH1 => 0x01
· · ·
JUMPDEST
MOD
ADD
PUSH1 => 0x0a
DUP2
SWAP1
SSTORE
POP
PUSH2 => 0x0954
PUSH1 => 0x0a
SLOAD
PUSH2 => 0x064b
JUMP
· · ·

Fig. 2. Excerpt of Solidity code for EthereumPot contract (left), and
fragment of EVM code for function __callback (right)

When applying Oyente*, our extended/modified version of Oyente, we
obtain a complete CFG, with the additional annotations already provided by [6].

2.2 EthIR*: from CFG to an annotated rule-based representation

EthIR*, an extension of EthIR [6], is the next component of our analyzer.
EthIR provides a rule-based representation (RBR) for the CFG obtained from
Oyente*. Intuitively, for each block in the CFG it generates a correspond-
ing rule that contains a high-level representation of all bytecode instructions
in the block (e.g., load and store operations are represented as assignments)
and that has as parameters an explicit representation of the stack, local, state,
and blockchain variables (details of the transformation are in [6]). Conditional
branching in the CFG is represented by means of guards in the rules. EthIR*
provides three extensions to the original version of EthIR [6]: (1) The first
extension is related to the way function calls are handled in the EVM, where
instead of an explicit CALL opcode, as we have seen before, a call to an internal
function is transformed into a PUSH of the return address in the stack followed by
a JUMP to the address where the code of the function starts. If the same function
is called from different points of the program, the resulting CFG shares for all
these calls the same subgraph (the one representing the code of the function)
which ends with different jumping addresses at the end. As described in [17],
there is a need to clone parts of the CFG to explicitly link the PUSH of the
return address with the final JUMP to this address. This cloning in our imple-
mentation is done at the level of the RBR as follows: Since the jumping addresses
are known thanks to the symbolic execution applied by Oyente, we can find the

5

connection between the PUSH and the JUMP and clone the involved part of the
RBR (between the rule of the PUSH and of the JUMP) using different rule names
for each cloning. (2) The second extension is a flow analysis intended to reduce
the number of parameters of the rules of the RBR. This is crucial for efficiency
as the number of involved parameters is a bottleneck for the successive analysis
steps that we are applying. Basically, before starting the translation phase, we
compute the inverse connected component for each block of the CFG, i.e, the
set of its predecessor blocks. During the generation of each rule, we identify the
local, state or blockchain variables that are used in the body of the rule. Then,
these variables have to be passed as arguments only to those rules built from
the blocks of its inverse connected component. (3) When we find a store on an
unknown memory location “?”, we have to “forget” all the memory from that
point on, since the writing may affect any memory location, and it is not sound
anymore to assume the previous information. In the RBR, we achieve this dele-
tion by assigning fresh variables (thus unknown values) to the memory locations
at this point.

Optionally, EthIR provides in the RBR the original bytecode instructions
(from which the higher-level ones are obtained) by simply wrapping them within
a nop functor (see Fig. 3). Although nop annotations will be ignored by the size
analysis, they are needed later to assign a precise gas consumption to every rule.

block1647(s10, sv, lv, bc)⇒
nop(JUMPDEST), s11 = s9, s9 = s10, s10 = s11, nop(SWAP), s11 = 0, nop(PUSH),
l2 = s10, nop(MSTORE), s10 = 32, nop(PUSH), s11 = 0, nop(PUSH), s10 = sha3(s11, s10),

nop(SHA3), s9 = s10 + s9, nop(ADD), gl = s9, s9 = fresh0, nop(SLOAD), s10 = s6,

nop(DUP4), call(jump1647(s10, sv, lv, bc)), nop(GT), nop(ISZERO), nop(ISZERO),
nop(PUSH), nop(JUMPI)

Fig. 3. Selected rule including nop functions needed for gas analysis

Example 1. Figure 3 shows the RBR for block1647. Bytecode instructions that
load or store information are transformed into assignments on the involved vari-
ables. For arithmetic operations, operations on bits, sha, etc., the variables they
operate on are made explicit. Since stack variables are always consecutive we
denote by sn the decreasing sequence of all si form n down to 0. lv includes l2
and l0, which is the subset of the local variables that are needed in this rule or
in further calls (second extension of EthIR*). The unknown location “?” has
become a fresh variable fresh0 in block1647. For state variables, sv includes the
needed ones g11, g8, g7, g6, g5, g3, g2, g1, g0 (gi is the i-th state variable). Finally,
bc includes the needed blockchain state variables address, balance and timestamp.

2.3 SACO: size relations for EVM smart contracts

In the next step, we generate size relations (SR) from the RBR using the Saco
tool [4]. SR are equations and inequations that state how the sizes of data change
in the rule [12]. This information is obtained by analyzing how each instruction of
the rules modifies the sizes of the data it uses, and propagating this information
as usual in dataflow analysis. SR are needed to build the gas equations and then
generate gas bounds in the last step of the process. The size analysis of Saco

6

has been slightly modified to ignore the nop instructions. Besides, before sending
the rules to Saco, we replace the instructions that cannot be handled (e.g., bit-
wise operations, hashes) by assignments with fresh variables (to represent an
unknown value). Apart from this, we are able to adjust our representation to
make use of the approach followed by Saco, which is based on abstracting data
(structures) to their sizes. For integer variables, the size abstraction corresponds
to their value and thus it works directly. However, a language specific aspect of
this step is the handling of data structures like array, string or bytes (an array
of byte). In the case of array variables, Saco’s size analysis works directly as in
EVM the slot assigned to the variable contains indeed its length (and the address
where the array content starts is obtained with the hash of the slot address).

Example 2. Consider the following SR (those in brackets) generated for rule
jump1649 and block1731 :
jump1619 (s10, sv, lv, bc) = block1633 (s8, sv, lv, bc){s10 < s9}
block1731 (s8, sv, lv, bc) = 41 + block1619 (s′8, s7, sv, lv, bc){s′8 = 1 + s8}
The size relations for the jump1619 function involve the slots array length
(g3 stored in s9) and the local variable i (in s8 and copied to s10). It corre-
sponds to the guard of the for loop in function findWinner that compares i and
slots.length and either exits the loop or iterates (and hence consume different
amount of gas). The size relation on s8 for block1731 corresponds to the size
increase in the loop counter.

However, for bytes and string it is more challenging, as the way they are stored
depends on their actual sizes. Roughly, if they are short (at most 31 bytes long)
their data is stored in the same slot together with its length. Otherwise, the slot
contains the length (and the address where the string or bytes content starts
is obtained like for arrays). Our approach to handle this issue is as follows. In
the presence of bytes or string, we can find in the rules of the RBR a particular
sequence of instructions (which are always the same) that start pushing the
contents of the string or bytes variable in the top of the stack, obtain its length,
and leave it stored in the top of the stack (at the same position). Therefore, to
avoid losing information, since Saco is abstracting the data structures to their
sizes, every time we find this pattern of instructions applied to a string or bytes
variable, we just remove them from the RBR (keeping the nops to account for
their gas). Importantly, since the top of the stack has indeed the size, under
Saco’s abstraction it is equal to the string or bytes variable. Being precise,
assuming that we have placed the contents of the string or bytes variable in the
top of the stack, which is si, the transformation applied is the following:

si+1 = 1, nop(PUSH1), si+2 = si, nop(DUP2), si+3 = 1, nop(PUSH1),
si+2 = and(si+3, si+2), nop(AND), si+2 = eq(si+2, 0), nop(ISZERO),
si+3 = 256, nop(PUSH2), si+2 = si+3 ∗ si+2, nop(MUL), si+1 = si+2 − si+1,
nop(SUB)si = and(si+1, si), nop(AND), si+1 = 2, nop(PUSH1),
si+2 = si, si = si+1, si+1 = si+2, nop(SWAP1), si = si+1/si, nop(DIV)

⇓
nop(PUSH1), nop(DUP2), nop(PUSH1), nop(AND), nop(ISZERO), nop(PUSH2),
nop(MUL), nop(SUB), nop(AND), nop(PUSH1), nop(SWAP1), nop(DIV)

7

Since the involved instructions include bit-wise operations among others and, as
said, the value of the stack variable becomes unknown, without this transforma-
tion the relation between the stack variable and the length of the string or bytes
would be lost and, as a result, the tool may fail to provide a bound on the gas
consumption. This transformation is applied when possible and, e.g., is needed
to infer bounds for the functions getPlayers and getSlots (see Table 3.2).

2.4 Generation of equations

In order to generate gas equations (GE), we need to define the EVM gas model,
which is obtained by encoding the specification of the gas consumption for each
EVM instruction as provided in [29]. The EVM gas model is complex and uncon-
ventional, it has two components, one which is related to the memory consump-
tion, and another one that depends on the bytecode executed. The first compo-
nent is computed separately as will be explained below. In this section we focus
on computing the gas attributed to the opcodes. For this purpose, we provide
a function Copcode : s 7→ g which, for an EVM opcode, takes a stack s and re-
turns a gas g associated to it. We distinguish three types of instructions: (1) Most
bytecode instructions have a fixed constant gas consumption that we encode pre-
cisely in the cost model Copcode, i.e., g is a constant. (2) Bytecode instructions
that have different constant gas consumption g1 or g2 depending on some given
condition. This is the case of SSTORE that costs g1 = 20000 if the storage value is
set from zero to non-zero (first assignment), and g2 = 5000 otherwise. But it is
also the case for CALL and SELFDESTRUCT. In these cases we use g = max(g1, g2)
in Copcode. (3) Bytecode instructions with a non-constant (parametric) gas con-
sumption that depends on the value of some stack location. For instance, the
gas consumption of EXP is defined as 10 + 10 · (1 + blog256(µs[1])c) if µs[1] 6= 0
where µs[0] is the top of the stack. Therefore, we have to define g in Copcode

as a parametric function that uses the involved location. Other bytecode in-
structions with parametric cost are CALLDATACOPY, CODECOPY, RETURNDATACOPY,
CALL, SHA3, LOG*, and EXTCODECOPY.

Given the RBR annotated with the nop information, the size relations, and
the cost model Copcode, we can generate GE that define the gas consumption
of the corresponding code applying the classical approach to cost analysis [28]
which consists of the following basic steps: (i) Each rule is transformed into
a corresponding cost equation that defines its cost. Example 2 also displays
the GE obtained for the rules jump1619 and block1731. (ii) The nop instruc-
tions determine the gas that the rule consumes according to the gas cost model
Copcode explained above. (iii) Calls to other rules are replaced by calls to the
corresponding cost equations. See for instance the call to block1619 from rule
block1731 that is transformed into a call to the cost function block1619 in Ex. 2.
(iv) Size relations are attached to rules to define their applicability conditions
and how the sizes of data change when the equation is applied. See for instance
the size relations attached to jump1619 that have been explained in Ex. 2.

As said before, the gas model includes a cost that comes from the memory
consumption which is as follows. Let Cmem(a) be the memory cost function for

8

a given memory slot a and defined as Gmemory · a+
⌊

a2

512

⌋
where Gmemory = 3.

Given an EVM instruction, µ′i and µi denote resp. the highest memory slot
accessed in the local memory, resp., after and before the execution of such in-
struction. The memory gas cost of every instruction is the difference Cmem(µ′i)−
Cmem(µi). Besides MLOAD or MSTORE, instructions like SHA3 or CALL, among others,
make use of the local memory, and hence can increase the memory gas cost.

In order to estimate this cost associated to all EVM instructions in the code of
the function, we first make the following observations: (1) Computing the sum of
all the memory gas cost amounts to computing the memory cost function for the
highest memory slot accessed by the instructions of the function under analysis.
This is because, as seen, µi and µ′i refer to this position in each operation and
hence we pay for all the memory up to this point. (2) This is not a standard
memory consumption analysis in which one obtains the total amount of memory
allocated by the function. Instead, in this case, we infer the actual value of the
highest slot accessed by any operation executed in the function.

Example 3. Let us show how we obtain the memory gas cost for block1647. In
this case, the two instructions in this block that cost memory are underlined
in Fig. 3 and correspond to a MSTORE and SHA3 bytecodes. In this block, both
bytecodes operate on slot 0 of the memory, and they cost 3 units of gas because
they only activate up to slot 1 of the memory.

2.5 PUBS solver: from equations to closed-form bounds

The last step of the gas bounds inference is the generation of a closed-form gas
upper bound, i.e., a solution for the GE as a non-recursive expression. As the
GE we have generated have the standard form of cost relations systems, they
can be solved using off-the-shelf solvers, such as Pubs [5] or Cofloco [15],
without requiring any modification. These systems are able to find polynomial,
logarithmic and exponential solutions for cost relations in a fully automatic way.
The gas bounds computed for all public functions of EthereumPot using Pubs
can be found in Table 3.1, note that they are parametric on different state
variables, input and blockchain data.

3 Experimental Evaluation

This section presents the results of our evaluation of Gastap. In Sec. 3.1, we
evaluate the accuracy of the gas bounds inferred by Gastap on the EthereumPot
by comparing them with the bounds computed by the Solidity compiler.

In Sec. 3.2, we evaluate the efficiency and effectiveness of our tool by analyzing
more than 29,000 Ethereum smart contracts. To obtain these contracts, we pulled
from etherscan.io [2] all Ethereum contracts whose source code was available on
January 2018. Gastap is available at https://costa.fdi.ucm.es/gastap.

9

https://costa.fdi.ucm.es/gastap

3.1 Gas Bounds for EthereumPot Case Study

Table 3.1 shows in column solc the gas bound provided by the Solidity compiler
solc [13], and in the next two columns the bounds produced by Gastap for
opcode gas and memory gas, respectively, for all public functions in the contract.
If we add the gas and memory bounds, it can be observed that, for those functions
with constant gas consumption, we are as accurate as solc. Hence, we do not
lose precision due to the use of static analysis.

For those 6 functions that solc fails to infer constant gas consumption, it
returns ∞. For opcode gas, we are able to infer precise parametric bounds for
five of them, rewardWinner is linear on the size of the first and third state variables
(g1 and g3 represent resp. the sizes of the arrays addresses and slots in Fig. 2),
getSlots and findWinner on the third, getPlayers on the first, and __callback

besides depends on the value of result (second function parameter) and proof

(last parameter). It is important to note that, although the Solidity source code
of some functions (e.g., of getSlots and getPlayers) does not contain loops,
they are generated by the compiler and are only visible at the EVM level. This
also happens, for example, when a function takes a string or bytes variable as
argument. This shows the need of developing the gas analyzer at the EVM level.

For joinPot we cannot ensure that the gas consumption is finite without
embedding information about the blockchain in the analyzer. This is because
joinPot has a loop: for (uint i = msg.value; i >= minBetSize; i-= minBetSize)

{tickets++;}, where minBetSize is a state variable that is initialized in the defi-
nition line as uint minBetSize = 0.01ether, and ether is the value of the Ether
at the time of executing the instruction. This code has indeed several problems.
The first one is that the initialization of the state variable minBetSize to the
value 0.01ether does not appear in the EVM code available in the blockchain.
This is because this instruction is executed only once when the contract is cre-
ated. So our analyzer cannot find this instruction and the value of minBetSize

is unknown (and hence no bound can be found). Besides, the loop indeed does
not terminate if minBetSize in not strictly greater than zero (which could indeed
happen if ether would take zero or a negative value). If we add the initializa-
tion instruction, and embed in the analyzer the invariant that ether> 0 (hence
minBetSize becomes > 0), then we are able to infer a bound for joinPot.

For __callback we guarantee that the memory gas is finite but we cannot
obtain an upper bound for it, Gastap yields a maximization error which is a
consequence of the information loss due to the soundness requirement described
in extension 3 of Section 2.2. Intuitively, maximization errors may occur when
the analyzer needs to compose the cost of the different fragments of the code.
For the composition, it needs to maximize (i.e., find the maximal value) the
cost of inner components in their calling contexts (see [5] for details). If the
maximization process involves memory locations that have been “forgotten” by
EthIR* (variables “?”), the upper bound cannot be inferred. Still, if there is no
ranking function error, we know that all loops terminate, thus the memory gas
consumption is finite.

10

function solc opcode bound Gastap memory bound Gastap
totalBet 790 775 15
locked 706 691 15
getEndTime 534 519 15
slots 837 822 15
rewardWinner ∞ 80391+5057·nat(g3)+5057·nat(g1) 18
Kill 30883 30874 9
amountWon 438 423 15
getPlayers ∞ 1373+292·nat(g1-1/32)

+75·nat(g1+31/32) 6·nat(g1)+24+

⌊
(6·nat(g1)+24)2

512

⌋
getSlots ∞ 1507+250·nat(g3-1/32)

+75·nat(g3+31/32) 6·nat(g3)+24+

⌊
(6·nat(g3)+24)2

512

⌋
winnerAddress 750 735 15
__callback ∞ 229380+3·(nat(proof)/32)

+103·nat(result/32)
+50·nat((32-nat(result))) max error

+5836·nat(g3)+5057·nat(g1)
owner 662 647 15
endTime 460 445 15
potTime 746 731 15
potSize 570 555 15
joinPot ∞ no rf 9
addresses 1116 1101 15
findWinner ∞ 1555+779·nat(g3) 15
random_number 548 533 15

Table 3.1. Gas bounds for EthereumPot. Function nat defined as nat(l)=max(0,l).

Finally, this transaction is called always with a constant gas limit of 400,000.
This contrasts with the non-constant gas bound obtained using Gastap. Note
that if the gas spent (without including the refunds) goes beyond the gas limit
the transaction ends with an out-of-gas exception. Since the size of g3 and g1
is the same as the number of players, from our bound, we can conclude that
from 16 players on the contract is in risk of running out-of-gas and get stuck as
the 400,000 gas limit cannot be changed. So using Gastap we can prevent an
out-of-gas vulnerability: the contract should not allow more than 15 players, or
the gas limit must be increased from that number on.

3.2 Statistics for Analyzed Contracts

Our experimental setup consists on 29,061 contracts taken from the blockchain
as follows. We pulled all Ethereum contracts from the blockchain as of January
2018, and removed duplicates. This ended up in 10,796 files (each file often
contains several contracts). We have excluded the files where the decompilation
phase fails in any of the contracts it includes, since in that case we do not get any
information on the whole file. This failure is due to Oyente in 1,230 files, which
represents a 11.39% of the total and to EthIR in 829 files, which represents
a 7.67% of the total. The failures of EthIR are mainly due to the cloning
mechanism in involved CFGs for which we fail to find the relation between the
jump instruction and the return address.

After removing these files, our experimental evaluation has been carried out on
the remaining 8,737 files, containing 29,061 contracts. In total we have analyzed
258,541 public functions (and all auxiliary functions that are used from them).

11

Type of result #opc %opc #mem %mem

Constant gas bound 223,294 86.37% 225,860 87.36%
Parametric gas bound 14,167 5.48% 13,312 5.15%
Time out 13,140 5.08% 13,539 5.24%
Finite gas bound (maximization error) 7,095 2.74% 5,830 2.25%
Termination unknown (ranking function error) 716 0.28% 0 0%
Complex control flow (cover point error) 129 0.05% 0 0%

Total number of functions 258,541 100% 258,541 100%

Table 3.2. Statistics of gas usage on the analyzed 29,061 smart contracts from
Ethereum blockchain

Experiments have been performed on an Intel Core i7-7700T at 2.9GHz x 8
and 7.7GB of Memory, running Ubuntu 16.04. Gastap accepts smart contracts
written in versions of Solidity up to 0.4.25 or bytecode for the Ethereum Virtual
Machine v1.8.18. The statistics that we have obtained in number of functions are
summarized in Table 3.2, and the time taken by the analyzer in Table 3.3. The
results for the opcode and memory gas consumption are presented separately.

Let us first discuss the results in Table 3.2 which aim at showing the effec-
tiveness of Gastap. Columns #opc and #mem contain number of analyzed
functions for opcode and memory gas, resp., and columns preceded by % the
percentage they represent. For the analyzed contracts, we can see that a large
number of functions, 86.37% (resp. 87.36%), have a constant opcode (resp. mem-
ory) gas consumption. This is as expected because of the nature of smart con-
tracts, as well as because of the Ethereum safety recommendations mentioned in
Section 1. Still, there is a relevant number of functions 5.48% (resp. 5.15%) for
which we obtain an opcode (resp. memory) gas bound that is not constant (and
hence are potentially vulnerable). Additionally, 5.08% of the analyzed functions
for opcodes and 5.24% for memory reach the timeout (set to 1 minute) due to
the further complexity of solving the equations.

As the number of analyzed contracts is very large, a manual inspection of
all of them is not possible. Having inspected many of them and, thanks to the
information provided by the Pubs solver used by Gastap, we are able to classify
the types of errors that have led to a “don’t-know” answer and which in turn
explain the sources of incompleteness by our analysis: (i) Maximization error : In
many cases, a maximization error is a consequence of loss of information by the
size analysis or by the decompilation when the values of memory locations are
lost. As mentioned, even if we do not produce the gas formula, we know that the
gas consumption is finite (otherwise the system flags a ranking function error
described below). (ii) Ranking function error: The solver needs to find ranking
functions to bound the maximum number of iterations of all loops the analyzed
code might perform. If Gastap fails at this step, it outputs a ranking function
error. Section 3 has described a scenario where we have stumbled across this
kind of error. We note that number of these failures for mem is lower than for
opcode because when the cost accumulated in a loop is 0, Pubs does not look
for a ranking function. (iii) Cover point error: The equations are transformed
into direct recursive form to be solved [5]. If the transformation is not feasible, a

12

Phase Topcode (s) Tmem (s) Ttotal (s) %opc %mem %total

CFG generation (Oyente*) — — 17,075.55 — — 1.384%
RBR generation (EthIR*) — — 81.37 — — 0.006%
Size analysis (Saco) — — 105,732 — — 8.57%
Generation of gas equations 141,576 125,760 267,336 11.48% 10.2% 21.68%
Solving gas equation (Pubs) 395,429 447,502 842,931 32.06% 36.3% 68.36%

Total time Gastap 1,233,155.92 100%

Table 3.3. Timing breakdown for Gastap on the analyzed 29,061 smart contracts

cover point error is thrown. This might happen when we have mutually recursive
functions, but it also happens for nested loops as in non-structured languages.
This is because they contain jump instructions from the inner loop to the outer,
and vice versa, and become mutually recursive. A loop extraction transformation
would solve this problem, and we leave its implementation for the future work.

As regards the efficiency of Gastap, the total analysis time for all functions
is 1,233,155.92 sec (342.54 hours). Columns T and % show, resp., the time in
seconds for each phase and the percentage of the total for each type of gas bound.
The first three rows are common for the inference of the opcode and memory
bounds, while equation generation and solving is separated for opcode and mem-
ory. Most of the time is spent in solving the GE (68.36%), which includes some
timeouts. The time taken by EthIR is negligible, as it is a syntactic transfor-
mation process, while all other parts require semantic reasoning. All in all, we
argue that the statistics from our experimental evaluation show the accuracy,
effectiveness and efficiency of our tool. Also, the sources of incompleteness point
out directions for further improvements of the tool.

4 Related Work and Conclusions

Analysis of Ethereum smart contracts for possible safety violations and security
and vulnerabilities is a popular topic that has received a lot of attention recently,
with numerous tools developed, leveraging techniques based on symbolic execu-
tion [23,19,25,22,20,27], SMT solving [24,21], and certified programming [9,18,7],
with only a small fraction of them focusing on analyzing gas consumption.

The GASPER tool identifies gas-costly programming patterns [11], which
can be optimized to consume less. For doing so, it relies on matching spe-
cific control-flow patterns, SMT solvers and symbolic computation, which makes
their analysis neither sound, nor complete. In a similar vein, the recent work by
Grech et al. [17] identifies a number of classes of gas-focused vulnerabilities, and
provides MadMax, a static analysis, also working on a decompiled EVM byte-
code, data-combining techniques from flow analysis together with CFA context-
sensitive analysis and modeling of memory layout. In its techniques, MadMax
differs from Gastap, as it focuses on identifying control- and data-flow patterns
inherent for the gas-related vulnerabilities, thus, working as a bug-finder, rather
than complexity analyzer. Since deriving accurate worst-case complexity bound-
aries is not a goal of any of both GASPER and MadMax, they are unsuitable
for tackling the challenge 1, which we have posed in the introduction.

13

In a concurrent work, Marescotti et al. identified three cases in which com-
puting gas consumption can help in making Ethereum more efficient: (a) pre-
vent errors causing contracts get stuck with out-of-gas exception, (b) place the
right price on the gas unit, and (c) recognize semantically-equivalent smart con-
tracts [24]. They propose a methodology, based on the notion of the so-called
gas consumption paths (GCPs) to estimate the worst-case gas consumption us-
ing techniques from symbolic bounded model checking [10]. Their approach is
based on symbolically enumerating all execution paths and unwinding loops to
a limit. Instead, using resource analysis, Gastap infers the maximal number of
iterations for loops and generates accurate gas bounds which are valid for any
possible execution of the function and not only for the unwound paths. Besides,
the approach by Marescotti et al. has not been implemented in the context of
EVM and has not been evaluated on real-world smart contracts as ours.

Conclusions. Automated static reasoning about resource consumption is critical
for developing safe and secure blockchain-based replicated computations, man-
aging billions of dollars worth of virtual currency. In this work, we employed
state-of-the art techniques in resource analysis, showing that such reasoning is
feasible for Ethereum, where it can be used at scale not only for detecting vul-
nerabilities, but also for verification/certification of existing smart contracts.

References

1. The EthereumPot contract, 2017. https://etherscan.io/address/

0x5a13caa82851342e14cd2ad0257707cddb8a31b7.
2. Etherscan. https://etherscan.io, 2018.
3. Oyente: An Analysis Tool for Smart Contracts, 2018. https://github.

com/melonproject/oyente.
4. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,

E. Martin-Martin, G. Puebla, and G. Román-Dı́ez. SACO: Static Analyzer
for Concurrent Objects. In TACAS’14, LNCS 8413, pages 562–567. Springer.

5. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference of
upper bounds for recurrence relations in cost analysis. In SAS’08, LNCS
5079, pages 221–237. Springer.

6. E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey. EthIR: A Frame-
work for High-Level Analysis of Ethereum Bytecode. In ATVA’18, LNCS
11138, pages 513–520. Springer.

7. S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards Verifying Ethereum
Smart Contract Bytecode in Isabelle/HOL. In CPP’18, pages 66–77. ACM.

8. T. Bernani. Oraclize, 2016. http://www.oraclize.it.
9. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,

N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and
S. Zanella-Béguelin. Formal verification of smart contracts: Short paper.
In PLAS’16, pages 91–96. ACM.

10. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without bdds. In TACAS 1999, LNCS 1579, pages 193–207. Springer.

14

https://etherscan.io/address/0x5a13caa82851342e14cd2ad0257707cddb8a31b7
https://etherscan.io/address/0x5a13caa82851342e14cd2ad0257707cddb8a31b7
https://etherscan.io
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente
http://www.oraclize.it

11. T. Chen, X. Li, X. Luo, and X. Zhang. Under-optimized smart contracts
devour your money. In SANER’17, pages 442–446. IEEE Computer Society.

12. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL 1978, pages 84–96.

13. Ethereum. Solidity, 2018. https://solidity.readthedocs.io.
14. Ethereum. Vyper, 2018. https://vyper.readthedocs.io.
15. A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs

with cost equations. In APLAS’14, LNCS 8858, pages 275–295. Springer.
16. Ethereum Foundation. Safety - Ethereum Wiki, 2018. https://github.

com/ethereum/wiki/wiki/Safety, last accessed on 14 November 14 2018.
17. N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-

dakis. Madmax: surviving out-of-gas conditions in ethereum smart contracts.
PACMPL, 2(OOPSLA):116:1–116:27, 2018.

18. I. Grishchenko, M. Maffei, and C. Schneidewind. A Semantic Framework for
the Security Analysis of Ethereum Smart Contracts. In POST’18, volume
10804 of LNCS 2018, pages 243–269. Springer.

19. S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar. Online detection of effectively callback free objects
with applications to smart contracts. PACMPL, 2(POPL):48:1–48:28, 2018.

20. S. Kalra, S. Goel, M. Dhawan, and S. Sharma. ZEUS: analyzing safety of
smart contracts. In NDSS’18. The Internet Society.

21. A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena. Exploiting The
Laws of Order in Smart Contracts. CoRR, abs/1810.11605, 2018.

22. J. Krupp and C. Rossow. teether: Gnawing at ethereum to automatically
exploit smart contracts. In USENIX Security Symposium, pages 1317–1333.
USENIX Association, 2018.

23. L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts
smarter. In CCS’16, pages 254–269. ACM.

24. M. Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, and N. Sharygina.
Computing Exact Worst-Case Gas Consumption for Smart Contracts. In
ISoLA’18, LNCS 11247, pages 450–465. Springer.

25. I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding the
greedy, prodigal, and suicidal contracts at scale. In ACSAC’18, pages 653–
663. ACM.

26. M. Suiche. Porosity: A Decompiler For Blockchain-Based Smart Contracts
Bytecode, 2017.

27. P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. T. Vechev. Securify: Practical security analysis of smart contracts. In
CCS’18, pages 67–82. ACM.

28. B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539,
1975.

29. G. Wood. Ethereum: A secure decentralised generalised transaction ledger,
2014.

15

https://solidity.readthedocs.io
https://vyper.readthedocs.io
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/wiki/wiki/Safety

	Running on Fumes

