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Abstract. Distributed systems are hard to program, understand and
analyze. Two key sources of complexity are the many possible behav-
iors of a system, arising from the parallel execution of its distributed
nodes, and the handling of asynchronous messages exchanged between
nodes. We show how to systematically construct executable models of
publish/subscribe systems based on the Java Messaging Service (JMS).
These models, written in the executable Abstract Behavioural Speci-
fication (ABS) language, capture the essential parts of the messaging
behavior of the original Java systems, and eliminate details not related
to distribution and messages. We report on jms2abs, a tool that auto-
matically extracts ABS models from the bytecode of JMS systems. Since
the extracted models are formal and executable, they allow us to reason
about the modeled JMS systems by means of tools built specifically for
the modeling language. For example, we have succeeded to apply sim-
ulation, termination and resource analysis tools developed for ABS to,
respectively, execute, prove termination and infer the resource consump-
tion of the original JMS applications.

1 Introduction

Reverse engineering is a key technique to understand and improve software that
is available only in executable form. In this paper we focus on reverse engineer-
ing, or decompilation, of distributed Java applications given in bytecode form,
with the purpose of increasing the understanding of such applications though
analysis of reverse-engineered executable specifications. In the context of mobile
code, programming languages which are compiled to bytecode and executed on
a virtual machine are widely used nowadays. This is the approach used by Java
bytecode and .NET. The execution model based on virtual machines has two
important benefits when compared to classical machine code. First, bytecode
is platform-independent, i.e., the same compiled code can be run on multiple
platforms. Second, since the virtual machine is not directly executed on the
hardware, it is possible to apply a sandbox model which guarantees that the
bytecode does not have access to certain assets of the platform unless the code
is explicitly granted access to them. In languages such as Java and C#, handling
bytecode has a much wider application area than handling source code since the
latter is often not available.



We study a specific class of distributed systems called publish/subscribe sys-
tems [9]. For this class of systems resilience, scalability and performance are com-
mon desirable properties, and a key part of such systems is a special middleware
for message communication, which ensures such properties [14,21]. Furthermore
we focus on applications built using the Java Messaging Service (JMS) [13], an
industry-standard technology for realizing publish/subscribe enterprise systems
in Java. Our goal is to extract abstract behavioral specifications that capture the
essentials of the messaging behavior, eliding implementation details, but pre-
serving enough behavior that analysis can draw conclusions about distribution
and resource consumption of the original systems. The modeling language, called
abstract behavioral specification language (ABS) allows to abstract from imple-
mentation details: Abstract data types and functions specify internal, sequential
computations, while concurrency and distribution are handled using active ob-
jects. Analysis of ABS models is supported by a set of research tools.4

We report on jms2abs, a tool which automatically extracts an ABS model
from a JMS application in bytecode form. The main phases of the extraction
process are: (1) Decompile the bytecode into a higher-level intermediate repre-
sentation with structured control flow. (2) Based on annotations added by the
programmer, generate an ABS model from the intermediate representation. (3)
During generation, insert calls to a pre-written ABS library of the JMS middle-
ware, in order to model publish/subscribe middleware behavior.

The main contributions of our work can be summarized as follows:

– Section 4 provides a general and system-independent model of a subset of
JMS publish/subscribe systems;

– In Section 5, we define a procedure for translating the code of a JMS pub-
lish/subscribe system into an executable model, and realize this as a tool;

– Section 6 applies existing tools developed for the ABS language in order to
draw conclusions about the systems;

– Finally, Section 7 reports on a prototype implementation of our approach
and evaluates it on two JMS examples.

2 Publish/Subscribe Communication in JMS

JMS is an industry standard for message communication in Java enterprise sys-
tems [13]. It offers APIs for configuring message passing services and for per-
forming the message passing (i.e., encode, send, receive, and decode messages).
One may realize various kinds of messaging systems using JMS; we focus on
publish/subscribe systems.

Fig. 1 provides an overview of the publish/subscribe programming model of
JMS. Subscribers have the ability to express interest in events or messages in
order to be later notified of any message generated by a publisher that matches
their registered interest. The basic model for publish/subscribe interaction relies

4 These tools are currently being developed by the ongoing EU project HATS (FP7-
231620), http://www.hats-project.eu.
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Fig. 1. Overview of the JMS publish/subscribe programming model.

on a message notification service (middleware) to provide storage and manage-
ment for subscriptions, to mediate between and decouple publishers and sub-
scribers, and to deliver messages efficiently. Such middleware manages address-
able message destination objects denoted as topics. The steps that publishers
and subscribers perform, as depicted in Fig. 1, are: (1) Discover and join a topic
of interest by means of a connection factory of topics. (2) Establish a connection
to the factory and then start a new session for a such connection. (3) Create a
topic subscriber for the session which allows receiving (subscribers) and sending
(publishers) messages related to the topic of interest. (4) Create and publish a
message (publisher). (5) Receive a message (subscriber).

We consider the subset of JMS components depicted in Fig. 1, capturing the
essence of the publish/subscribe communication model. In addition, a model of
a JMS system must include the state information and logic that decides how
messages are processed and exchanged. Features such as transactions or fail-
ure recovery are outside the scope of this paper. Fig. 2 shows an example of a
JMS publish/subscribe implementation of a basic fruit supply business model,
consisting of a FruitSupplier class that acts as a publisher of updates for topic
"PriceLists"; SuperMarket class implements asynchronous updates receipts from
the topic, time-decoupled (i.e., non-blocking) from the publisher; and Example

class provides the main method that initializes instances of FruitSupplier and
SuperMarket.

Note that the different components are created and retrieved by invoking
API methods. In particular, ConnectionFactory and Topic objects can be either
created dynamically or found using JNDI services5. Subscribers can retrieve
messages either asynchronously using a MessageListener object or synchronously
through the (blocking) receive method of a TopicSubscriber object.

3 ABS: A Distributed Modeling Language

Within the OO paradigm, there are two main approaches to concurrency: (1)
thread-based concurrency models (like those of Java and C#) are based on
threads which share memory and are scheduled preemptively, i.e., threads can

5 http://www.oracle.com/technetwork/java/jndi/
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1 class Fru i tSupp l i e r extends Thread {
void run ( ) {

3 f a c = new TopicConnectionFactory ( ) ;
con = fac . createTopicConnect ion ( ) ;

5 s e s = con . c r ea t eTop i cSe s s i on ( . . . ) ;
t op i c = se s . c reateTopic ( ” P r i c eL i s t s ” ) ;

7 pub l i sh e r = se s . c r e a t ePub l i s h e r ( t op i c ) ;
message = se s . createObjectMessage ( p r i c e L i s t ) ;

9 pub l i sh e r . pub l i sh ( message ) ; // execut ion continues
con . c l o s e ( ) ; } }

11 class SuperMarket extends Thread implements MessageListener {
Pr i c eL i s t p r i c e L i s t ;

13 void onMessage ( ObjectMessage m) {
newPriceList = m. getObject ( ) ;

15 updatePr ices ( newPriceList ) ; }
void updatePr ices ( P r i c eL i s t l ) {

17 Product p ;
for ( int i = 1 ; i <= l . l ength ( ) ; i++) {

19 p = l . get ( i ) ;
i f ( p r i c e L i s t . conta in s (p ) ) p r i c e L i s t . update (p ) ;

21 else p r i c e L i s t . i n s e r t (p ) ; } }
void run ( ) {

23 f a c = new TopicConnectionFactory ( ) ;
con = fac . createTopicConnect ion ( ) ;

25 s e s = con . c r ea t eTop i cSe s s i on ( . . . ) ;
t op i c = se s . c reateTopic ( ” P r i c eL i s t s ” ) ;

27 subsc = top i cS e s s i on . c r e a t eSub s c r i b e r ( t op i c ) ;
subsc . s e tMessageL i s t ene r ( this ) ;

29 con . s t a r t ( ) ; // execut ion continues
con . c l o s e ( ) ; } }

31 class Example {
void main ( . . . ) { new SuperMarket ( ) . s t a r t ( ) ;

33

new Fru i tSupp l i e r ( ) . s t a r t ( ) ; } }

Fig. 2. Excerpt of implementation of publish/subscribe in JMS.

be suspended or activated at any time. To prevent threads from undesired in-
terleavings, low-level synchronization mechanisms such as locks have to be used.
Experience has shown that software written in the thread-based model is error-
prone, difficult to debug, verify and maintain [22]. (2) In order to overcome
these problems, the active objects model [22,16,8] aims at providing program-
mers with simple language extensions which allow programming concurrent ap-
plications with relatively little effort. The common idea is to take advantage of
the inherent concurrency implicit in the notion of object in the following way:
a concurrent object, conceptually, has a dedicated processor and it encapsulates
a local heap which is not accessible from outside the object. Active (also called
concurrent) objects operate similar to actors [12] and Erlang processes [5].

ABS [15] is the abstract behavioral specification language for distributed con-
current objects that we use to define the models. ABS has a functional sub-
language with abstract data types and functions to specify internal, sequential
computations. The functional language is a standard strict functional language
(the details are elsewhere [15]). As regards the concurrent imperative part, the
central concept is the notion of component object group (COG), which gener-
alizes the notion of concurrent or active object [12]. Intuitively, each COG has
a dedicated processor and the COG is a concurrently running, isolated compo-
nent. A COG can be considered as a container for objects. Its state is a heap
of objects which are owned by the COG for their entire lifetime. The behavior
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of a COG consists of a set of cooperative tasks, which, again, are owned by the
COG for their entire lifetime.

All communication is via asynchronous method calls between named objects,
typed by interfaces. Method calls may be seen as triggers of concurrent activity,
spawning new activities (so-called processes) in the called object without trans-
ferring control from the caller. The method caller may decide at runtime when
to synchronize with the reply from a call. In general, an object may have many
method activations competing to be executed. Among these, at most one process
(or task) is active and the other processes are suspended in a process pool. Pro-
cess scheduling is non-deterministic and occurs only at processor release points.
This means that switching between tasks of the same object happens only at
specific scheduling points during program execution, which are explicit in the
source code and can be syntactically identified. This particular feature of pro-
cess scheduling makes machine analysis notably simpler (when compared to the
thread-based concurrency model).

In ABS syntax, asynchronous method calls are denoted o!m(e). After asyn-
chronously calling x := o!m(e), the caller may proceed with its execution without
blocking on the call. Here x is a future variable, o is an object (typed by an in-
terface), and e are expressions. A future variable x refers to a return value which
has yet to be computed. There are two operations on future variables, which
control synchronization in ABS. First, a return test x? evaluates to false unless
the reply to the call can be retrieved. Second, the return value is retrieved by the
expression x.get, which blocks all execution in the object until the return value
is available. The statement sequence x = o!m(e); v = x.get encodes a block-
ing, synchronous call, abbreviated v = o.m(e), whereas the statement sequence
x = o!m(e); await x?; v = x.get encodes a non-blocking, preemptable call.

4 Modeling Publish/Subscribe Systems in ABS

This section shows how to model the behavior of a publish/subscribe system
implemented using JMS by means of the ABS language. The model abstracts
away implementation-related details of a distributed Java application while still
capturing the essence of cooperation among the components of the system. Our
goal is to preserve all essential application properties concerning distribution
and performance but improve on clarity and tractability for automatic analysis
purposes. Our starting point is the JMS system of Fig. 1, whose model in ABS
is shown in Fig. 4 (in the model, updatePrices is a function that will be defined
later). In particular, we focus on the components that participate in the system
(Sec. 4.1) and the operations that can be executed (Sec. 4.2). Sec. 5 will then
describe how to automate the model extraction process.
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JMS instructions Equivalent ABS models
Create a distributed object

obj = new C( ) ;
// c l a s s C implements Runnable
// in t e r f a c e or extends Thread

obj = new cog C( ) ;

Establish new session

f = new TopicConnectionFactory ( ) ;
c = f . createTopicConnect ion ( ) ;
s = c . c r ea t eTop i cSe s s i on ( . . . ) ;
t = new Topic ( ”TopicName” ) ;

s = middleware . c r e a t eS e s s i on ( ) ;
t = middleware . c reateTopic ( ”TopicName” ) ;

Send a message

pub = s . c r e a t ePub l i s h e r ( t ) ;
connect ion . s t a r t ( ) ;
m = s . createTextMessage ( ) ;
m. setText ( ”message” ) ;
pub . pub l i sh (m) ;

pub = s . c r e a t ePub l i s h e r ( t ) ;
m = ”message” ;
pub ! pub l i sh (m) ;

Receive a message synchronously

sub = s . c r e a t eSub s c r i b e r ( t ) ;
connect ion . s t a r t ( ) ;
m = top i cSub s c r i b e r . r e c e i v e ( ) ;

sub = s . c r e a t eSub s c r i b e r ( t ) ;
Fut<Message> f = s ! r e c e i v e ( ) ;
message = f . get ;

Receive a message asynchronously

sub = s . c r e a t eSub s c r i b e r ( t ) ;
l = new TextLi s tener ( ) ;
sub . s e tMessageL i s t ene r ( l ) ;
connect ion . s t a r t ( ) ;

sub = s . c r e a t eSub s c r i b e r ( t ) ;
l = new MessageListener ( ) ;
sub . s e tMessageL i s t ener ( l ) ;

Table 1. Example mapping from Java/JMS to Distributed ABS.

4.1 Distributed Entities

Our ABS model creates only one concurrent object per participant in the dis-
tributed communication, namely publishers, subscribers and the middleware; see
Fig. 3. Thus, each concurrent entity in ABS encapsulates the behavior of several
JMS components that will communicate with the remaining entities by means
of asynchronous calls and future variables.

Clients: Publishers and Subscribers. A JMS system relies on a number of objects
in order to perform distributed operations. This design makes JMS portable and
interoperable across multiple messaging products. However, it often makes the
resulting programs harder to understand and thus analyze. In the ABS models
we simplify this into a smaller set objects. Namely, a publish/subscribe client in
ABS will just need to create a session object and a publisher/subscriber object
to interact with the middleware.

Middleware. In a real publish/subscribe system the middleware (the message-
oriented middleware, or MOM) is a highly distributed entity. In our model of
JMS we simplify the middleware to one central entity. While not a desirable
choice in an actual implementation, it still allows to analyse many properties
of applications. The middleware entity relies on the concurrency model of ABS
to provide publish/subscribe services. The main block of the ABS model creates
the initial configuration of the publish/subscribe system, see Line 20 of Fig. 4
(the counterpart of Lines 32–33 of Fig. 2). Observe that the model uses COGs
to represent each of the distributed/concurrent entities.
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1 class Fru i tSupp l i e r (Middleware mw) {
Unit run ( ) {

3 Topic t op i c = ” P r i c eL i s t s ” ;
TopicSess ion s e s s i o n = mw. c r e a t eS e s s i on ( ) ;

5 TopicPubl i sher pub l i sh e r = s e s s i o n . c r e a t ePub l i s h e r ( t op i c ) ;
ObjectMessage message = new ObjectMessage ( p r i c e L i s t ) ;

7 s e s s i o n ! pub l i sh ( message ) ;
} }

9 class SuperMarket (Middleware mw) implements MessageListener {
Unit onMessage ( ObjectMessage m) {

11 newPriceList = m. getObject ( ) ;
p r i c e L i s t = updatePr ices ( newPriceList ) ;

13 }
Unit run ( ) {

15 Topic t op i c = ” P r i c eL i s t s ” ;
TopicSess ion s e s s i o n = mw. c r e a t eS e s s i on ( ) ;

17 TopicSubscr iber sub s c r i b e r = s e s s i o n . c r e a t eSub s c r i b e r ( t op i c ) ;
s ub s c r i b e r ! s e tMessageL i s t ener ( t h i s ) ;

19 }
{ Middleware mw = new cog Middleware ( ) ;

21 new cog SuperMarket (mw) ; new cog Fru i tSupp l i e r (mw) ;
} //main b lock

Fig. 4. Extracted ABS model for the running example.

4.2 Operations

Here we consider the operations of a publish/subscribe system.

Message Sending. A publisher sends a message to the topic using a session, see
method run of class FruitSupplier (Lines 3–10 of Fig. 2). The asynchronous
semantics of the operation can be simulated by an ABS asynchronous method
call, see Lines 3–8 of Fig. 4. In JMS, the sending operation implies some deci-
sions regarding delivery mode, priority and time-to-live for the message. These
configuration parameters can be global to a message publisher or specific for
each message. For flexibility, we use the latter option and include configuration
parameters as properties of messages.

Asynchronous Message Receipt. Method run of class SuperMarket in Fig. 2 shows
that asynchronous message receipt in JMS is achieved by instantiating the
MessageListener class. The new object is bound to the subscriber object and is
able to receive and process incoming messages in its onMessage method (named
notify in the publish/subscribe literature [9]). This method is triggered from the
JMS provider upon arrival of a new message to the topic (Lines 23–30 of Fig. 2).
In ABS, an equivalent asynchronous message receipt is implemented in Lines 15–
19 of Fig. 4. The concurrent behavior, i.e., the interaction with different topics
simultaneously, is achieved by sharing the single-threaded session object among
clients within the same COG. A serial order of outgoing and incoming messages is
implicitly modelled when using a shared session object. Table 1 summarizes the
mappings that we have described along this section for our particular example.

5 Automatic Extraction of ABS Models from JMS

Figure 5 provides an overview of the main steps performed by jms2abs for auto-
matically extracting ABS models from JMS publish/subscribe systems. The tool
receives as input the bytecode associated to the JMS publish/subscribe system
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and, optionally, a set of annotations that indicate which methods of the code
should be transformed into functions and which ones into imperative methods.
The absence of annotations brings about a purely imperative translation. In-
tuitively, the following stages are carried out by the extraction process. First,
the bytecode is decompiled into a higher-level intermediate representation (IR)
which, among other things, features structured control flow. Then, a driver mod-
ule reads the IR and the set of annotations and directs the model extraction
process either towards a functional implementation or towards an imperative
one. The extraction of functional code requires a static single assignment (SSA)
transformation [4] and automatically generates abstract data types and func-
tions. The ABS library functions include standard data types for lists, trees, etc.
and some common functions on these types. They are used by the translation
when possible. The imperative object-oriented extraction is based on the mod-
eling of JMS using ABS defined in Table 1. As an external component to this
process, we have available the ABS implementation of the specific JMS middle-
ware in use. As a result of the process, an ABS model is obtained which includes
abstract data types, functions and classes. The following sections describe in
detail the main components of jms2abs.

5.1 From Bytecode to Intermediate Representation

A method m in a Java (bytecode) program is represented by a set of procedures
in the IR such that there is an entry procedure named m and the remaining
ones are intermediate procedures invoked only from m. The translation of a
program into the IR works by first building the control flow graph (CFG) from
the program, and then representing each block of the CFG in the IR as a rule.
The process is identical to that of Albert et al. [2], hence, we will not go into
the details of the transformation but just show the syntax of the transformed
program. A program in the IR consists of a set of procedures which are defined
as a set of (recursive) rules. A procedure p is defined by a set of guarded rules
which adhere to the following grammar:

rule ::= p(x̄, ȳ) ←g, b1, . . . , bn g ::= true | exp1 op exp2 | type(x,C)
exp ::= x | null | n | x−y | x+y | x∗y op ::= > | < | ≤ | ≥ | = | 6=

b ::= x:=exp | x :=new c | x :=y .f | x .f :=y | q(x̄ , ȳ)

8



where p(x̄, ȳ) is the head of the rule; x̄ (resp. ȳ) are the input (resp. output)
parameters; g its guard, which specifies conditions for the rule to be applicable;
b1, . . . , bn the body of the rule; n an integer; x and y variables; f a field name,
and q(x̄, ȳ) a call-by-value procedure call. The IR supports class definition and
includes instructions for object creation, field manipulation, and type compari-
son through the instruction type(x,C), which succeeds if the runtime class of x
is exactly C. A class C is a finite set of fields with either numeric (integer) or
reference (class name) type.. The key features of this representation, which will
simplify the transformation later, are: (1) input and output parameters are ex-
plicit variables of rules, (2) recursion is the only iteration mechanism, (3) guards
are the only form of conditional, and (4) objects can be regarded as records,
and the behavior induced by dynamic dispatch is compiled into dispatch rules
guarded by a type check.

0: iconst 1
1: istore 3
2: iload 3
3: aload 1
4: invokevirtual length:()I
7: if icmpgt 43
10: aload 1
11: iload 3
12: invokevirtual get:(I)LProduct;
15: astore 2
16: aload 0
17: aload 2
18: invokevirtual exists:(LProduct;)Z
21: ifeq 32
24: aload 0
25: aload 2
26: invokevirtual updatePrice:(LProduct;)V
29: goto 37
32: aload 0
33: aload 2
34: invokevirtual add:(LProduct;)V
37: iinc 3, 1
40: goto 2
43: return

updatePrices([this,l],[]) ← i := 1,
rule 2 ([this,l,i],[]).

rule 2 ([this,l,i],[]) ←
length([l],[s1]),
rule 7 ([this,l,i,s1],[]).

rule 7 1([this,l,i,s1],[]) ←
i ≤ s1,
get([l,i],[p]),
exists([this,p],[s2]),
rule 21 ([this,l,p,i,s2],[ip]).

rule 7 2([this,l,i,s1],[]) ←
i > s1.

rule 21 1([this,l,p,i,s1],[]) ←
s1 = 0,
add([this,p],[]),
rule 37 ([this,l,i],[]).

rule 21 2([this,l,p,i,s1],[]) ←
s1 6= 0,
updatePrice([this,p],[]),
rule 37 ([this,l,i],[]).

rule 37 ([this,l,i],[]) ←
ip := i +1,
rule 2 ([this,l,ip],[]).

Fig. 6. Pretty-printed IR for method updatePrices of class PriceList.

As an example, let us consider method updatePrices in Fig. 2. The left-
hand column of Fig. 6 shows the bytecode of this method (which is the input
to jms2abs) and the right-hand column contains the IR that jms2abs uses
which features the three first points above. We can observe that instructions
in the IR have an almost one-to-one correspondence with bytecode instructions
(rule 7 in the IR corresponds to the CFG block starting at bytecode instruction

9



7, for example), but they contain as explicit parameters the variables on which
they operate (the operand stack is represented by means of variables). Another
important aspect of the IR is that unstructured control flow of bytecode (i.e.,
the use of goto statements) is transformed into recursion and loop conditions
become guards, as in rules rule 2 and rule 37 for instance.

5.2 From IR to Functional and Distributed ABS

To generate functions from a set of procedures in the IR, jms2abs performs three
main steps: (1) An SSA transformation on the IR guarantees that variables are
only written once [4]. (2) Then, for each recursive rules in the IR, it generates an
associated function with the same name, where each instruction is transformed
into an equivalent one in the functional sub-language of ABS. The process is
similar to decompilation of bytecode to a simply typed functional language [17],
to TRS [18] or to CLP programs [11]. Hence, we do not go into the details of the
process but rather show an example. (3) Finally, jms2abs generates definitions of
the data types involved in the functions. This is done by recursively inspecting
the types of the class fields until reaching a primitive type, and using data
constructors to group the fields that form an object.

The following function corresponds to the bytecode in Fig. 6. It is extracted
from the above IR in a fully automatic way. ABS’s let and case expressions, resp.,
are used to represent variable bindings and conditional statements in the original
program. Moreover, observe that several data types declarations have been gen-
erated from class PriceList. The new algebraic data type PriceList has two
data constructors: one for the empty list (EmptyPriceList) and one for the com-
bination of a product and another list (ConsPriceList(Product,PriceList)).

//Data type dec lara t ions
2 type ProductID = Int ; type Pr ice = Int ;

data Product = EmptyProduct | ConsProduct ( ProductID , Pr i ce ) ;
4 data Pr i c eL i s t = EmptyPriceList | ConsPr iceLi s t ( Product , P r i c eL i s t ) ;

//Function d e f i n i t i on s
6 Pr i c eL i s t updatePr ices ( P r i c eL i s t l ) {

l e t Int i = 1 in loop ( p r i c eL i s t , newPriceList , i ) ;
8 }

Pr i c eL i s t loop ( P r i c eL i s t l1 , P r i c eL i s t l2 , Int i ) {
10 l e t n = length ( l 2 ) in

case i <= n {
12 True => l e t p = get ( l2 , i ) in

case ( conta in s ( l2 , p ) ) {
14 True => return loop ( update ( l1 , p ) , l2 , i +1);

Fa l se => return loop ( add ( l1 , p ) , l2 , i +1);}
16 False => return l 1 ;}

}

All procedures which have not been transformed into functions will become
methods of the ABS models. Each ABS class will have as attributes the same
ones as in the original Java program. Then, the translation of each method is
performed by mapping each instruction in the IR into an equivalent one in ABS.
The instructions which involve the distribution aspects of the application are
translated by relying on the mapping of Table 1.

Fig. 7 shows the IR for the Java method SuperMarket.run. Observe how
instructions in lines 2–5 match with the pattern for session establishment shown
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in Table 1. Instructions in lines 7–9 correspond to the asynchronous receiving of a
message. From this IR it is straightforward to extract the model for method run

showed in Fig. 4. Because of the correspondence between the involved operations
in JMS and ABS, the main properties of the JMS systems (e.g., those regarding
reliability and safety [6]) are preserved.

0 run([this],[]) ← tConFac := null, tCon := null, tSes := null, topic := null,
1 tSubscriber := null, tListener := null,
2 tConFac := new TopicConnectionFactory,
3 createTopicConnection([tConFac],[tCon]),
4 createTopicSession([tCon],[tSes]),
5 createTopic([tSes,this.topicName],[topic])
6 createSubscriber([tSes,topic],[tSubscriber]),
7 tListener := new PriceListener,
8 setMessageListener([tSubscriber,tListener],[]),
9 start([tCon],[]), close([tCon],[]).

Fig. 7. Pretty-printed IR for method run of class SuperMarket.

6 Using the ABS Toolset on the Extracted Models

The final goal of the extraction of ABS models from bytecode systems is to
be able to perform machine analysis of JMS systems via their equivalent ABS
models. This section outlines the application of two ABS tools: the simulator [15]
and the COSTABS termination and resource usage analyzer [1].

6.1 Simulation

Once compiled, ABS models can be run in a simulator. The ABS toolset has
two main simulators, with corresponding back-ends in the ABS compiler: One
simulator is defined using rewriting logic and the Maude system [7], and the
other is written in Java. The Maude simulator allows modellers to explore the
model’s state-space declaratively and model check it. The Java simulator does
source-level simulation, meaning that modellers can follow the model’s control
flow at the statement level and observe object or method state. Both simulators
allow modellers to control scheduling of methods, for example, control when a
JMS message is sent and when it is received.

6.2 Resource and Termination Analysis

Resource analysis (a.k.a. cost analysis) aims at automatically inferring bounds on
the resource consumption of programs statically, i.e., without having to execute
the program. The inferred bounds are symbolic expressions given as functions of
its input data sizes. For instance, given a method void traverse(List l), an
upper bound (e.g., on the number of execution steps) can be an expression on the
form l*200+10, where l refers to the size of the list l. The analysis guarantees
that the number of steps of executing traverse will never exceed the amount
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inferred by analysis. COSTABS [1], a COSt and Termination analyzer for ABS,
is a system able to prove termination and obtain resource usage bounds for both
the imperative and functional fragments of ABS programs. The resources that
COSTABS can infer include termination, number of execution steps, memory
consumption, number of asynchronous calls. Knowledge of the number of asyn-
chronous calls is useful to understand and optimize the distributed behavior of
the application (e.g., to detect bottlenecks when one object is receiving a large
amount of asynchronous calls). COSTABS allows using asymptotic (i.e., big O
complexity) notation for the results of the analysis and obtain simpler cost ex-
pressions.

Method #Instructions Memory #Async Calls

run max(allSubscribers) max(allSubscribers) 1

onMessage m*(m+max(priceList))+m2 max(priceList) 1

Table 2. Resource analysis results.

Let us analyze the resource consumption of the methods of class SuperMarket
from the extracted ABS model. Table 2 shows the asymptotic results that
COSTABS computes. The upper bound on the number of instructions inferred
for method run depends on the number of clients that are subscribed to the
topic (field allSubscribers of class TopicSession). max(f) denotes the maxi-
mum value that field f can take. This is because in our current implementation
the size of the list of subscribers is not statically known, as it is updated when a
new subscriber arrives (the analysis uses max(allSubscribers) to bound its size).
As regards the analysis of onMessage, it requires analyzing updatePrices which
traverses the new list of prices priceList and, for each of its elements, it checks
whether it already exists or must be added to the local list of prices. The lat-
ter requires inspecting the object message m which is an input parameter of
the method. Hence, we obtain a quadratic complexity on the sizes of m and
priceList. The memory allocation accounts for the creation of the functional
data structures. Namely, in method run (resp. onMessage), we create the data
structure allSubscribers (resp. PriceList). Finally, it can be observed that
both methods perform a constant number of asynchronous method calls, hence
the rightmost column shows a constant complexity (denoted by 1). A main nov-
elty of COSTABS, which is not available in other systems, is the notion of cost
centers. This is motivated by the fact that distribution does not match well with
the traditional monolithic notion of cost which aggregates the cost of all dis-
tributed components together. Albert et al. [1] propose the use of cost centers to
keep the resource consumption of the different distributed components separate.

The cost bounds that are shown in Table 2 are computed as a monolithic ex-
pression which accumulates the resources consumed by all objects together. More
interestingly, COSTABS can show the results separated by cost centers. In partic-
ular, we consider that all objects of the same class belong to the same cost center
(i.e., the share the processor). Now, the execution of method SuperMarket.run

performs steps in three cost centers, namely in SuperMarket, Middleware and
in TopicSubscriber. By enabling the cost centers option, COSTABS shows
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that max(allSubscribers) is the upper bound on both number of instructions and
memory in the cost center Middleware. In cost center TopicSubscriber, the
upper bounds on number of instructions and on memory consumption are con-
stant. Also, in cost center SuperMarket, the upper bound for both cost models
is constant. Method onMessage is integrally executed in the SuperMarket cost
center (hence the same results of Table 2 are obtained). Performing cost anal-
ysis of a distributed system, using cost centers, allows detecting bottlenecks if
one distributed component (cost center) has a large resource consumption while
siblings are idle most of the time.

7 Prototype Implementation

jms2abs can be used on 32-bit Linux systems through a command-line interface,
is open-source and can be downloaded from http://tools.hats-project.eu/.
Also, available from the same place, is our ABS model of JMS middleware, exam-
ples of how to write publish/subscribe ABS models using the middleware model,
and Java/JMS example applications from which models may be extracted. These
examples correspond to the running example of this paper, and a Chat exam-
ple borrowed from Richards et al. [20] and slightly simplified. The Java code is
accompanied by the necessary Java/JMS libraries and a makefile which may be
used to run the tool on the Java examples. Although still a research prototype,
jms2abs is reasonably efficient. For instance, on an Intel(R) Core(TM) i5 CPU
at 1.7GHz with 4GB of RAM running Ubuntu Linux 11.10, the overall time to
extract the model for the running example is 910 msec. This time is divided
into the time for building the CFG (240 msec.), generating and optimizing the
intermediate representation (40 msec.) and building and refining the ABS model
(630 msec.). The Chat example is smaller and its overall model extraction time
is 790 msec. In this case, the most costly phase is also the model generation and
refinements, which takes 490 msec. of the overall time.

8 Related Work

Reverse engineering higher-level specifications from complex third party or legacy
code has applications in analyzing, documenting and improving the code. Broadly
speaking, we can classify reverse engineering tools into two categories: (1) When
the higher-level specification is some sort of software visualization formalism
which abstracts away most of the program semantics (e.g., UML class diagrams,
control flow graphs or variable data flow graphs), reverse engineering is usually
applied in order to understand the structure of the source code faster and more
accurately. This in turn can detect problems related to the design of the appli-
cation, to task interactions, etc. (2) When the higher-level specification provides
an abstraction of the program semantics, but still the properties of interest are
observable on it, reverse engineering can be used to develop analysis tools that
reason about the original code by means of analyzing the reverse engineered
specification. This has the advantage that, instead of analyzing the complex
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original code, we develop the tools on a simpler formalism which allows inferring
the properties of interest more easily.

Our work falls into the second category. The overall motivation behind our
work is to be able to analyze (complex) distributed Java JMS applications by
means of tools developed for (simpler) ABS models. In particular, we have been
able to apply simulation and cost analysis techniques developed for ABS pro-
grams [3,19] to reason on JMS applications. It is widely recognized that publish/-
subscribe systems are difficult to reason about, and there are several previous
approaches to modeling their behavior using different formalisms. Baldoni et
al. [6] provide one of the first formal computational frameworks for modeling
publish/subscribe systems. The focus in this work is different from ours; their
main concern is the notion of time in the communication, which allows them to
evaluate the overall performance, while we do not consider this aspect. Another
formalism for publish/subscribe system is provided by Garlan et al. [10]. Instead
of building executable programs as we do, they rely on a finite state machine
that can be checked using existing model checking tools.

9 Conclusions and Future Work

Our goal is to show that it is possible to build a tool that automatically extracts
useful models for complex distributed systems such as the JMS publish/sub-
scribe using the concurrency and distribution mechanisms provided by the ABS
modeling language. These mechanisms are not very different from those used by
other distributed object-based modeling languages [12], and so we expect our
study to provide useful conclusions beyond the mere case study performed.

Publish/subscribe systems come in a large range of flavors, depending on ap-
plications and requirements [9]. The common idea is to asynchronously decouple
publishers from subscribers. In a purely centralized model such as the one used
in this paper, providing the expected service is not hard, as the server has full
knowledge to ensure that messages are sent only to active subscribers, in the
same order in which they come in. In general, however, a reusable and general
model must allow for decentralized implementations in which full consistency
(in the sense that messages are received by only and all subscribers at any given
time) and order preservation (same order of messages for all subscribers) cannot
be achieved with good performance. We are currently examining ways in which
the ABS framework can be extended to allow richer families of implementations.
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