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Abstract

Inferring precise relations between (the values of) program variables at different program points
is essential for termination and resource usage analysis. In both cases, this information is used
to synthesize ranking functions that imply the program’s termination and bound the number of
iterations of its loops. For efficiency, it is common to base value analysis on non-disjunctive abstract
domains such as Polyhedra, Octagon, etc. While these domains are efficient and able to infer
complex relations for a wide class of programs, they are often not sufficient for modeling the effect
of non-linear and bit arithmetic operations. Modeling such operations precisely can be done by
using more sophisticated abstract domains, at the price of performance overhead. In this paper we
report on the value analysis of COSTA that is based on the idea of encoding the disjunctive nature
of non-linear operations into the (abstract) program itself, instead of using more sophisticated
abstract domains. Our experiments demonstrate that COSTA is able to prove termination and
infer bounds on resource consumption for programs that could not be handled before.

1 Introduction

Termination and resource usage analysis of imperative languages have received
a considerable attention [3,22,20,8,19,13,14]. Most of these analyses rely on a
value (or size) analysis component, which infers relations between the values
of the program variables (or the sizes of the corresponding data structures) at
different program points. This information is then used to bound the number
of iterations of the program’s loops. Thus, the precision of value analysis
directly affects the class of (terminating) programs for which the corresponding
tool is able prove termination or infer lower and upper bounds on their resource
consumption. Moreover, in the case of resource consumption, it also affects
the quality of the inferred bounds (i.e., how tight there are).

Typically, for efficiency, the underlying abstract domains used in value
analysis are based on conjunctions of linear constraints, e.g., Polyhedra [10],
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Octagons [18], etc. While in practice these abstract domains are precise
enough for bounding the loops of many programs, they are often not suffi-
cient when the considered program involves non-linear arithmetic operations
(multiplication, division, bit arithmetics, etc). This is because the seman-
tics of such operations cannot be modeled precisely with only conjunctions
of linear constraints. In order to overcome this limitation, one can use ab-
stract domains that support non-linear constraints, however, these domain
typically impose a significant performance overhead. Another alternative is to
use disjunctive abstract domains, i.e., disjunctions of (conjunctions of) linear
constraints. This allows splitting the behavior of the corresponding non-linear
operation into several mutually exclusive cases, such that each one can be pre-
cisely described using only conjunctions of linear constraints. This alternative
also imposes performance overhead, since the operations of such disjunctive
abstract domains are usually more expensive.

In this paper, we develop a value analysis that handles non-linear arith-
metic operations using disjunctions of (conjunctions of) linear constraints.
However, similarly to [21], instead of directly using disjunctive abstract do-
mains, we encode the disjunctive nature of the non-linear operations directly
in the (abstract) program. This allows using non-disjunctive domains like
Polyhedra, Octagons, etc., and still benefit from the disjunctive information
in order to infer more precise relations for programs with non-linear arith-
metic operations. We have implemented a prototype of our analysis in costa,
a COSt and Termination Analyser for Java bytecode. Experiments on typ-
ical examples from the literature demonstrate that costa is able to handle
programs with non-linear arithmetics that could not be handled before.

The rest of this paper is organized as follows: Section 2 briefly describes
the intermediate language on which we develop our analysis (Java bytecode
programs are automatically translated to this language); Section 3 motivates
the techniques we use for handling non-linear arithmetic operations; Section 4
describes the different components of our value analysis; Section 5 presents a
preliminary experimental evaluation using costa; and, finally, we conclude in
Section 6.

2 A Simple Imperative Intermediate Language

We present our analysis on a simple rule-based imperative language [1] which
is similar in nature to other representations of bytecode [23,16]. For simplicity,
we consider a subset of the language presented in [1], which deals only with
methods and arithmetic operations over integers. In the implementation we
handle full sequential Java bytecode. A rule-based program P consists of a
set of procedures. A procedure p with k input arguments x̄ = x1, . . . , xk and
m output arguments ȳ = y1, . . . , ym is defined by one or more guarded rules.
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Rules adhere to this grammar:

rule ::= p(x̄, ȳ) ← g, b1, . . . , bn
g ::= true | e1 op e2 | g1 ∧ g2
b ::= x:=e | x:=e− e | x:=e+ e | q(x̄, ȳ)

x:=e ∗ e | x:=e / e | x:=e rem e
x:=e ⊗ e | x:=e⊕ e | x:=e . e | x:=e / e

e ::= x | n
op ::= >|<|≤|≥|=

where p(x̄, ȳ) is the head of the rule; g its guard, which specifies conditions for
the rule to be applicable; b1, . . . , bn the body of the rule; n an integer; x and
y variables and q(x̄, ȳ) a procedure call by value. The arithmetic operations
/ and rem refer respectively to integer division and remainder. They have
the semantics of the bytecode instructions idiv and irem [17]. Operations
⊗, ⊕, / and . refer respectively to bitwise AND, bitwise OR, left shift and
right shift. They have the semantics of the bytecode instructions iand, ior,
ishl, and ishr [17]. We ignore the overflow behavior of these instruction,
supporting them is left for future work.

The key features of this language which facilitate the formalization of the
analysis are: (1) recursion is the only iterative mechanism, (2) guards are the
only form of conditional, (3) there is no operand stack, and (4) rules may
have multiple output parameters which is useful for our transformation. The
translation from Java bytecode programs to rule-based programs is performed
in two steps. First, a control flow graph (CFG) is built. Second, a procedure is
defined for each basic block in the CFG and the operand stack is flattened by
considering its elements as additional local variables. The execution of rule-
based programs mimics standard bytecode [17]. Multiple output arguments
in procedures come from the extraction of loops into separated procedure (see
Example 2.1). For simplicity, we assume that each rule in the program is given
in static single assignment (SSA) form [5].

Example 2.1 Figure 1 depicts the Java code (left) and the corresponding
intermediate representation (right) of our running example. Note that our
analysis starts from the bytecode, the Java code is shown here just for clarity.
Procedure m is defined by one rule, it receives x and b as input, and returns
r as output, i.e., r corresponds to the return value of the Java method. Rule
m corresponds to the first two instructions of the Java method, it initializes
local variables y and z, and then passes the control to m1. Procedure m1

corresponds to the if statement, and is defined by two mutually exclusive
rules. The first one is applied when b ≤ 1, and simply returns the value of
z in the output variable r. The second one is applied when b > 1, it calls
procedure m2 (the loop), and upon exit from m2 it returns the value of z1 in
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int m( int x , int b){
int y=1;
int z=0;
i f (b>1) {

while (y<x){
z=z+1;
y=y∗b ;

}
}
return z ;

}

m(〈x, b〉, 〈r〉)←
y:=1,
z:=0,
m1(〈x, b, y, z〉, 〈r〉).

m1(〈x, b, y, z〉, 〈r〉)←
b ≤ 1,
r:=z.

m1(〈x, b, y, z〉, 〈r〉)←
b > 1,
m2(〈x, b, y, z〉, 〈y1, z1〉),
r:=z1.

m2(〈x, b, y, z〉, 〈y, z〉)←
y ≥ x.

m2(〈x, b, y, z〉, 〈y2, z2〉)←
y < x,
z1:=z + 1,

1© y1:=y ∗ b,
m2(〈x, b, y1, z1〉, 〈y2, z2〉).

Fig. 1. A Java program and its intermediate representation. Method m computes dlogb(x)e.

the output variable r. Note that z1 refers to the value of z upon exit from
procedure m2 (the loop), it is generated by the SSA transformation. Procedure
m2 corresponds to the while loop, and is defined by two mutually exclusive
rules. The first one is applied when the loop condition is evaluated to false,
and the second one when it is evaluated to true. Note that m2 has two output
variables, they correspond to the values of y and z upon exit from the loop.

3 Motivating Example

Proving that the program of Figure 1 terminates, or inferring lower and up-
per bounds on its resource consumption (e.g., number of execution steps),
requires bounding the number of iterations that its loop can make. Bounding
the number of iterations of a loop is usually done by finding a function f
from the program states to a well-founded domain, such that if s and s′ are
two states that correspond to two consecutive iterations, then f(s) > f(s′).
Traditionally, this function is called ranking function [11]. Note that for termi-
nation, it is enough to prove that such function exists, while inferring bounds
on the resource consumption requires synthesizing such ranking function. For
the program of Figure 1, if the program state is represented by the tuple
〈x, b, y, z〉, then f(〈x, b, y, z〉) = nat(x − y), where nat(v) = max(v, 0), is a
ranking function for the while loop. Moreover, this function can be further
refined to f(〈x, b, y, z〉) = log2(nat(x− y) + 1), which is more accurate for the
sake of inferring bounds on the loop’s resource consumption.

In this paper we follow the analysis approach used in [1], which divides
the value analysis into several steps: (1) an abstract compilation [15] step
that generates an abstract version of the program, replacing each instruction
by an abstract description (e.g., conjunction of linear constraints) that over-
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m(〈x , b〉, 〈r〉)←
{y = 1},
{z = 0},
m1 (〈x , b, y , z 〉, 〈r〉).

m1 (〈x , b, y , z 〉, 〈r〉)←
{b ≤ 1},
{r = z}.

m1 (〈x , b, y , z 〉, 〈r〉)←
{b > 1},
m2 (〈x , b, y , z 〉, 〈y1 , z1 〉),
{r = z1}.

m2 (〈x , b, y , z 〉, 〈y , z 〉)←
{y ≥ x}.

m2 (〈x , b, y , z 〉, 〈y2 , z2 〉)←
{y < x},
{z1 = z + 1},

1© {y1 = >},
m2 (〈x , b, y1 , z1 〉, 〈y2 , z2 〉).

Fig. 2. Abstract compilation of the program of Figure 1

approximates its behavior; (2) a fixpoint computation step that computes an
abstract semantics of the program; and (3) in the last, we prove termination
or infer bounds on resource consumption using the abstract program of point
1 and the abstract semantics of point 2.

Applying the first step on the program of Figure 1 results in the abstract
program of Figure 2. It can be observed that linear arithmetic instructions
are precisely described by their corresponding abstract versions. For example,
z1:=z + 1 updates z1 to hold the value of z + 1, and its corresponding abstract
version {z1 = z + 1} is a denotation which states that the value of z1 is
equal to the value of z plus 1. However, in the case of non-linear arithmetic
instructions, the abstract description often loses valuable information. This
is the case of the instruction y1:=y ∗ b which is annotated with 1© in both
Figures 1 and 2. While the instruction updates y1 to hold the value of y ∗ b,
its abstract description {y1 = >} states that y1 can take any value. Here >
is interpreted as any integer value. This makes it impossible to bound the
number of iterations of the loop, since in the abstract program the function
f(〈x, b, y, z〉) = nat(x−y) does not decrease in each two consecutive iterations.

Without any knowledge on the values of y and b, the constraint {y1 = >}
is indeed the best description for y1:=y ∗ b when only conjunctions of linear
constraints are allowed. However, in the program of Figure 1 it is guaranteed
that the value of y is positive and that of b is greater than 1. Using this context
information the abstraction of y1:=y∗b can be improved to {y1 ≥ 2 ∗y}, which
in turn allows synthesizing the ranking function f(〈x, b, y, z〉) = nat(x − y)
and its refinement f(〈x, b, y, z〉) = log2(nat(x − y) + 1). This suggests that
the abstract compilation can benefit from context information when only con-
junctions of linear constraints are allowed. However, the essence of abstract
compilation is to use only syntactic information, and clearly context informa-
tion cannot be obtained always by syntactic analysis of the program.
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One way to solve the loss of precision when abstracting non-linear arith-
metic instructions is to allow the use of disjunctions of linear constraints. For
example, the instruction y1:=y ∗ b could be abstracted to ϕ1 ∨ · · · ∨ϕn where
each ϕi is a conjunction of linear constraints that describes a possible scenario.
E.g., we could have ϕj = {y ≥ 1 , b ≥ 2 , y1 ≥ 2 ∗ b} in order to handle the
case in which y ≥ 1 and b ≥ 2 . Then, during the fixpoint computation,
when the context becomes available, the appropriate ϕi will be automatically
selected. However, for efficiency reasons, we restrict our value analysis to use
only conjunctions of linear constraints. In order to avoid the use of disjunctive
constraints, similarly to [21], we follow an approach that encodes the disjunc-
tive information into the (abstract) program itself. For example, the second
rule of m2 would be abstracted to:

m2 (〈x , b, y , z 〉, 〈y2 , z2 〉)←
{y < x},
{z1 = z + 1},

1© op∗(〈y , b〉, 〈y1 〉),
m2 (〈x , b, y1 , z1 〉, 〈y2 , z2 〉).

op∗(〈a, b〉, 〈c〉)← {a = 0 , c = 0}.
op∗(〈a, b〉, 〈c〉)← {a = 1 , c = b}.

...
op∗(〈a, b〉, 〈c〉)← {a ≥ 2 , b ≥ 2 , c ≥ 2 ∗ a}.

Here, the instruction y1:=y ∗ b was abstracted to op∗(〈y , b〉, 〈y1 〉) which is a
call to an auxiliary abstract rule that defines possible abstract scenarios for
different inputs. During the fixpoint computation, since op∗ is called in a
context in which y ≥ 1 and b ≥ 2 , only the second and last rules of op∗ will
be selected. Then, these two rules propagate the constraint y1 ≥ 2 ∗ y back,
which is required for synthesizing the expected ranking functions, without
using disjunctive abstract domains.

4 Value Analysis

In this section we describe the value analysis of costa, which is based on the
ideas presented in Section 3. The analysis receives as input a program in
the intermediate language and a set of initial entries, and, for each (abstract)
procedure p(x̄, ȳ) it infers: (1) A pre-condition (over x̄) that holds whenever
p is called; and (2) a post-condition (over x̄ and ȳ) that holds upon exit from
p. The pre- and post-conditions are conjunction of linear constraints over the
domain of Polyhedra [10]. Later, they can be composed in order to obtain
invariants for some program points of interest.

In Section 4.1 we describe the abstract compilation step which translates
the program P into an abstract version Pα. In Section 4.2 we describe a
standard fixpoint algorithm that is used to infer the pre- and post-conditions.
Finally, in Section 4.3 we explain how this information is used for bounding
the number of iterations of the program’s loops.
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4.1 Abstract Compilation

This section describes how to transform a given program P into an abstract
program Pα. In the implementation, we support also the abstraction of data-
structures using the path-length measure [22] (the depth of a data-structure)
and the abstraction of arrays to their length. However, in this paper we
omit these features since they do not benefit from the techniques we use for
abstracting non-linear arithmetic operations. Given a rule r ≡ p(x̄, ȳ) ←
g, b1, . . . , bn, the abstract compilation of r is rα ≡ p(x̄, ȳ) ← gα, bα1 , . . . , b

α
n,

where:

(i) the abstract guard gα is equal to the (linear) guard g ;

(ii) if bi ≡ q(z̄, w̄), then bαi ≡ q(z̄, w̄);

(iii) if bi ≡ x:=e13e2 and 3 ∈ {+,−}, then bαi ≡ {x = e13e2}; and

(iv) if bi ≡ x:=e13e2 and 3 6∈ {+,−}, then bαi ≡ op
3
(〈e1, e2〉, 〈x〉)

Then, Pα = {rα | r ∈ P}. Note that we use the same names for constraint
variables as those of the program variables (but in italic font for clarity).
This is possible since we have assumed that the rules of P are given in SSA
form. In the above abstraction, linear guards (point i) and linear arithmetic
instructions (point iii) are simply replaced by a corresponding constraint that
accurately model their behavior. Note that x:=e13e2 is an assignment while
{x = e13e2} is an equality constraint. In point ii, calls to procedures are
simply replaced by calls to abstract procedures. In what follows we explain
the handling of non-linear arithmetic (point iv).

If the elements of the underlying abstract domain consist only in conjunc-
tions of linear constraints, then non-linear operations are typically abstracted
to >. As we have seen in Section 3, this results in a significant loss of precision
that prevents bounding the loop’s iterations. A well-know solution is to use
disjunctions of linear constraints which allow splitting the input domain into
special cases that can be abstracted in a more accurate way. This can be done
by directly using disjunctive abstract domains, however, this comes on the
price of performance overhead. The solution we use in our implementation,
inspired by [21], is to encode the disjunctions in the (abstract) program it-
self, without the need for using disjunctive abstract domains. In practice, this
amounts to abstracting the non-linear arithmetic instruction x:=e13e2 into a
call op

3
(〈e1, e2〉, 〈x〉) to an auxiliary abstract procedure op

3
, which is defined

by several rules that cover all possible inputs and simulate the corresponding
disjunction. The rules of op

3
are designed by partitioning its input domain

and, for each input class, define the strongest possible post-condition. Clearly,
the more partitions there are, the more precise are the post-conditions, but
the more expensive is the analysis too. Therefore, when designing the rules of
op

3
this performance and precision trade-off should be taken into account. For
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the purposes of termination and resource usage analyzes, the partitioning of
the input domain aims at propagating accurate information about constancy,
equality and progression (e.g, multiplication by a constant), with the least
possible number of rules. In what follows, we explain the auxiliary abstract
procedures associated to the non-linear arithmetic operations of our language.

Integer division. The auxiliary abstract rule op
rem

and op
/

are defined in
terms of op

dr
which stands for x = y ∗ q + r:

op
dr

(〈x, y〉, 〈q, r〉) ← {x = 0, q = 0, r = 0}.
op

dr
(〈x, y〉, 〈q, r〉) ← {y = 1, q = x, r = 0}.

op
dr

(〈x, y〉, 〈q, r〉) ← {y = −1, q = −x, r = 0}.
op

dr
(〈x, y〉, 〈q, r〉) ← {x = y, q = 1, r = 0}.

op
dr

(〈x, y〉, 〈q, r〉) ← {x = −y, q = −1, r = 0}.
op

dr
(〈x, y〉, 〈q, r〉) ← {x > y > 1, 0 < q ≤ x

2
, 0 ≤ r < y}.

op
dr

(〈x, y〉, 〈q, r〉) ← {−x > y > 1, x
2
≤ q < 0,−y < r ≤ 0}.

op
dr

(〈x, y〉, 〈q, r〉) ← {x > −y > 1,−x
2
≤ q < 0, 0 ≤ r < −y}.

op
dr

(〈x, y〉, 〈q, r〉) ← {−x > −y > 1, 0 < q ≤ −x
2
, y < r ≤ 0}.

op
dr

(〈x, y〉, 〈q, r〉) ← {|y| > |x|, q = 0, r = x}.
op

/
(〈x, y〉, 〈q〉) ← op

dr
(〈x, y〉, 〈q, 〉).

op
rem

(〈x, y〉, 〈r〉) ← op
dr

(〈x, y〉, 〈 , r〉).

Note that, in practice, abstract rules that involve | · | are folded into several
cases. The sixth rule, for example, states that if x > y > 1 then x/y is a
positive number smaller than or equal to x

2
, and x rem y is a non-negative

number smaller than y. This rule is also essential for synthesizing logarithmic
ranking functions, when the input value is reduced at least by half in every
iteration. Note that we ignore the special cases when x = MIN VALUE and
y = −1, since it is a kind of overflow behavior.

Multiplication. The auxiliary abstract procedure op∗ is defined as follows:

op∗(〈x, y〉, 〈z〉)← {x = 0, z = 0}.
op∗(〈x, y〉, 〈z〉)← {x = 1, z = y}.
op∗(〈x, y〉, 〈z〉)← {x = −1, z = −y}.
op∗(〈x, y〉, 〈z〉)← {x ≥ 2, y ≥ 2, z ≥ 2 ∗ x, z ≥ 2 ∗ y}.
op∗(〈x, y〉, 〈z〉)← {x ≤ −2, y ≥ 2, z ≤ 2 ∗ x, z ≤ −2 ∗ y}.
op∗(〈x, y〉, 〈z〉)← {x ≤ −2, y ≤ −2, z ≥ −2 ∗ x, z ≥ −2 ∗ y}.

We have omitted those rules that can be obtained by swapping the arguments x
and y. In this abstraction, we distinguish the cases in which x = 0 (constancy),
x = ±1 (equality) and those in which |x| > 1 and |y| > 1 (progress). Note that,
for example, the post-condition z ≥ 2 ∗ x is essential for finding a logarithmic
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ranking function for loops like that of Figure 2. For example, it is not be
possible to synthesize such ranking function if we use a weaker, yet sound,
post-condition z > x.

The bitwise ⊗ and ⊕. The auxiliary abstract rules op⊗ and op⊕ are defined
in terms of op

ao
as follows:

op
ao

(〈x , y〉, 〈a, o〉) ← {x = 0, a = 0, o = y}.
op

ao
(〈x , y〉, 〈a, o〉) ← {x = −1, a = y, o = −1}.

op
ao

(〈x , y〉, 〈a, o〉) ← {x = y, a = x, o = x}.
op

ao
(〈x , y〉, 〈a, o〉) ← {x > y > 0, 0 ≤ a ≤ y, o ≥ x}.

op
ao

(〈x , y〉, 〈a, o〉) ← {x > 0, y < −1, 0 ≤ a ≤ x, y ≤ o ≤ −1}.
op

ao
(〈x , y〉, 〈a, o〉) ← {x < y < −1, a ≤ x, y ≤ o ≤ −1}.

op⊗(〈x, y〉, 〈a〉) ← op
ao

(〈x , y〉, 〈a, 〉).
op⊕(〈x, y〉, 〈o〉) ← op

ao
(〈x , y〉, 〈 , o〉).

Since these operations are commutative we omit rules derivable by swapping
the input arguments. The first two rules describe the cases x = 0 and x = −1,
i.e., vectors in which all bits are respectively 0 or 1. The third rule handles
the case x = y. The rest of rules are based on that the result of x ⊗ y has
less 1-bits than either x or y, whereas the result of x⊕ y has more 1-bits than
either x or y.

Shift left and right. Although shift operations in Java bytecode accept
any integer value as the shift operand, the number of shifted positions is
determined only by the five least significant bits, i.e., it is a value between 0
and 25 − 1 (for type long it is determined by the six least significant bits).
For the shift left operation /, the auxiliary abstract procedure op/ is defined
as follows:

op/(〈x, s〉, 〈z〉)← {x = 0, z = 0}.
op/(〈x, s〉, 〈z〉)← {s = 0, z = x}.
op/(〈x, s〉, 〈z〉)← {x > 0, 0 < |s| < 25, z ≥ 2x}.
op/(〈x, s〉, 〈z〉)← {x < 0, 0 < |s| < 25, z ≤ 2x}.
op/(〈x, s〉, 〈z〉)← {x > 0, |s| ≥ 25, z ≥ x}.
op/(〈x, s〉, 〈z〉)← {x < 0, |s| ≥ 25, z ≤ x}.

The above rules provide an accurate post-condition when the shift operand s
satisfies 0 ≤ |s| < 25. In the last two abstract rules, the post-conditions are
respectively z ≥ x and z ≤ x since we cannot observe the value of the first five
bits of s when |s| ≥ 25. Similarly, for the shift right operation ., the auxiliary
abstract rule op. is defined as follows:
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op.(〈x, s〉, 〈z〉)← {x = 0, z = 0}.
op.(〈x, s〉, 〈z〉)← {x = −1, z = −1}.
op.(〈x, s〉, 〈z〉)← {s = 0, z = x}.
op.(〈x, s〉, 〈z〉)← {x > 0, 0 < |s| < 25, x > z, x ≥ 2z, z ≥ 0}.
op.(〈x, s〉, 〈z〉)← {x < −1, 0 < |s| < 25, x− 1 ≤ 2z, z < 0}.
op/(〈x, s〉, 〈z〉)← {x > 0, |s| ≥ 25, 0 ≤ z ≤ x}
op/(〈x, s〉, 〈z〉)← {x < 0, |s| ≥ 25, x ≤ z ≤ −1}}.

Note that when the program includes several non-linear instructions for
the same operations, then it might be useful to generate different auxiliary
abstract procedures for them, e.g, op1∗ , op2∗ , etc. This is required mainly when
the calling contexts of these instructions are disjoint, and therefore separat-
ing their auxiliary abstract procedures avoids merging the calling contexts,
which usually results in a loss of precision. In addition, non-linear arithmetic
instructions that do not affect the termination of the program can be ab-
stracted as before, i.e., to {x = >}, and thus avoid the performance overhead
caused by unnecessary auxiliary abstract procedures. These instructions can
be identified using dependency analysis, similar to what have been done in [4]
for identifying program variables that affect termination.

4.2 Fixpoint algorithm

Algorithm 1 implements the value analysis using a top-down strategy in the
style of [7]. It receives as input an abstract program Pα and a set of ini-
tial pre-conditions E, and computes pre- and post-conditions for each pro-
cedure in P (stored in tables PRE and POST respectively). The meaning
of a pre-condition PRE[q(x̄)] ≡ ϕ, is that ϕ holds when calling q, and of a
post-condition POST[q(x̄, ȳ)] ≡ ϕ is that ϕ holds upon exit from q.

Procedure fixpoint initializes the event queue Q to ∅ (L2), initializes the
elements of tables PRE and POST to false (L4 and L5), processes the initial
pre-conditions E by calling add pre for each one (L6) which in turn adds
the corresponding event to Q, and then in the while loop it processes the
events of Q until no more events are available. In each iteration, an event q (a
procedure name) is removed from Q (L8) and processed as follows: the current
pre-condition ψ of q is retrieved (L9), each of the rules of q is evaluated in
order to generate a post-condition for that specific rule w.r.t. ψ (L11), all post-
conditions are joint into a single element δ (using the least upper-bound t of
the underlying abstract domain), and finally δ is added as a post-condition for
q by calling add post. Note that the call to add post might add more events
to Q. The evaluation of a rule (procedure evaluate) w.r.t. a pre-condition ψ
processes each bαi in the rule’s body B as follows: if bαi is a call q′(w̄, z̄), then
it registers the corresponding pre-condition by calling add pre (L16) and adds

10
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Algorithm 1 The fixpoint algorithm

1: procedure fixpoint(Pα, E)
2: Q = ∅;
3: for all q(x̄, ȳ) ∈ P do
4: PRE[q(x̄)] = false;
5: POST[q(x̄, ȳ)] = false;

6: for all 〈p(x̄), ϕ〉 ∈ E do add pre(p(x̄), ϕ);

7: while Q.notempty() do
8: q = Q.poll();
9: ψ = PRE[q(x̄)];

10: δ = false;
11: for all q(x̄, ȳ)← Bα ∈ Pα do δ = δ t evaluate(q(x̄, ȳ)← Bα, ψ);

12: add post(q(x̄, ȳ), δ);

13: function evaluate(q(x̄, ȳ)← Bα, ψ)
14: for all bαi ∈ Bα do
15: if bαi ≡ q′(w̄, z̄) then
16: add pre(q′(w̄), ∃̄w̄.ψ);
17: ψ = ψ u POST[q′(w̄, z̄)];
18: else ψ = ψ u bαi ;

19: return ∃̄x̄ ∪ ȳ.ψ;

20: procedure add pre(q(x̄), ϕ)
21: ψ = PRE[q(x̄)];
22: if ϕ 6|= ψ then
23: PRE[q(x̄)] = ψ t ϕ;
24: Q.add(q);

25: procedure add post(q(x̄, ȳ), ϕ)
26: δ = POST[q(x̄, ȳ)];
27: if δ 6|= ϕ then
28: POST[q(x̄, ȳ)] = δ t ϕ;
29: for all p ∈ P do
30: if p calls q then Q.add(p);

the current post-condition of q to ψ (L17); otherwise, bαi is a constraint and
it simply adds it to ψ (L18).

Procedure add pre adds a new pre-condition for q if it does not imply the
current one, and adds the corresponding event to Q. Procedure add post adds
a new post-condition for q if it does not imply the current one, and adds events
for all procedures that call q since they might have to be re-analyzed. Note
that both procedures use the least upper bound t of the underlying abstract
domain in order to join the new pre- or post-conditions with the current one.
Note also that since we use abstract domains with infinite ascending chains, in

11
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practice, these procedures incorporate a widening operator in order to ensure
termination.

Example 4.1 Consider again the abstract program of Figure 2, where the
second abstract rule of m2 is replaced by

m2(〈x, b, y, z〉, 〈y2, z2〉)←
{y < x}, {z1 = z + 1}, op∗(〈b, y〉, 〈y1〉), m2(〈x, b, y1, z1〉, 〈y2, z2〉).

and the initial set of entries E = {〈m(〈x, b〉), true〉} . Then, the fixpoint algo-
rithm infers PRE[m2(〈x, b, y, z〉)] = {z ≥ 0, y ≥ 1, b ≥ 2}, PRE[op∗(〈b, y〉)] =
{b > 1, y ≥ 1}, and POST[op∗(〈b, y〉, 〈y1〉)] = {y1 ≥ 2 ∗ y}.

4.3 Bounding the loops

In this section we describe how the abstract program and the pre- and post-
conditions are used in order to bound the program’s loops, as done in [1].
Briefly, for each abstract rule p(x̄, ȳ)← gα, bα1 , . . . , b

α
n ∈ Pα, we generate a set

of transitions{
〈p(x̄)→ q(w̄), ∃̄x̄ ∪ w̄.ϕ〉

∣∣∣∣ i ∈ [1, . . . , n], bαi = q(w̄, z̄),
ϕ = PRE[q(x̄)] ∧ gα ∧ φ(bα1 ) · · · ∧ φ(bαi−1)

}
where ∃̄x̄ ∪ w̄.ϕ is the projection of ϕ on the variables x̄ ∪ w̄; φ(bαi ) = bαi
if bαi is a constraint; and φ(bαi ) = POST[bαi ] if bαi is a call. Then, the set of
all transitions is passed to, for example, the tool of [2], which in turn infers
ranking functions for the corresponding loops.

Example 4.2 Using the abstract rule and the pre- and post-conditions of
Example 4.1, we generate the transition relation

〈m2(〈x, b, y, z〉)→ m2(〈x, b, y1, z1〉), ϕ〉

where ϕ = {z ≥ 0, y ≥ 1, b ≥ 2, x < y, z1 = z+ 1, y1 ≥ 2∗y}. Then, the solver
of [2] infers the expected ranking functions as explained in Section 3.

5 Experimental Evaluation

We have implemented, in the context of costa [3], a prototype of the value
analysis described in Section 4. We have performed some experiments on
typical examples from the literature that use non-linear and bit arithmetic
operations. The benchmarks are available at http://costa.ls.fi.upm.es/

papers/bytecode2011. Unfortunately, the implementation cannot be tried
out via costa’s web-interface since it has not been integrated in the main
branch yet.
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costa, with the new value analysis, was able to prove termination of all
benchmarks. Note that without this value analysis costa could not handle
any of these benchmarks. We have also analyzed the benchmarks using other
termination analyzers for Java bytecode. Julia 1 [22] was not able to prove
termination of any of these benchmarks. AProVE 2 [12] could not prove
termination of programs with bit arithmetic operations, but could handle
programs with non-linear arithmetic operations such as multiplication and
integer division, except for the program of Figure 1 for which it could not
complete the proof in a time limit of 5 minutes. In what follows we explain
the results of our analysis on some of the benchmarks.

EX1: We start with an example borrowed from [9]:

void and ( int x){
while ( x > 0)

x = x & x−1;
}

and(〈x〉, 〈〉)← and1(〈x〉, 〈〉).
and1(〈x〉, 〈〉)← {x ≤ 0}.
and1(〈x〉, 〈〉)← {x > 0},
{y = x− 1},
op⊗(〈x, y〉, 〈x1〉),
and1(〈x1〉, 〈〉).

The code on the right is the abstract compilation of the corresponding inter-
mediate representation of the Java method. In order to bound the number of
iterations of the while loop, it is essential to infer that the value of x decreases
in each iteration. This cannot be guaranteed when considering the instruction
x=x & x−1 separately, since, for example, it does not decrease when x=0.
Our analysis infers the pre-condition PRE[op⊗(x, y)] = {y = x − 1, x > 0},
i.e., the context x > 0 is available when calling op⊗ , which in turn makes
it possible to infer the post-condition POST[op⊗(〈x, y〉, 〈x1〉)] = {y = x −
1, x > 0, 0 ≤ x1 ≤ x − 1}. Using this information we generate the transi-
tion 〈and1(〈x〉)→ and1(〈x1〉), {x > 0, 0 ≤ x1 ≤ x− 1}〉 for which we synthe-
size the ranking function f(〈x〉) = nat(x).

EX2: The next example implements the Euclidean algorithm for computing
the greatest common divisor of two natural numbers. It is taken from the
Java bytecode termination competition database 3 :

1 using the online version http://julia.scienze.univr.it/
2 using the online version http://aprove.informatik.rwth-aachen.de/
3 http://termcomp.uibk.ac.at
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int gcd ( int a , int b){
int tmp ;
while (b>0 && a>0){

tmp = b ;
b = a % b ;
a = tmp ;

}
return a ;

}

gcd(〈a, b〉, 〈r〉)← gcd1(〈a, b〉, 〈r〉).
gcd1(〈a, b〉, 〈a〉)← {a ≤ 0}.
gcd1(〈a, b〉, 〈a〉)← {b ≤ 0}.
gcd1(〈a, b〉, 〈r〉)←
{a > 0, b > 0},
{tmp = b},
op

rem
(〈a, b〉, 〈b1〉),

{a1 = tmp},
gcd1(〈a1, b1〉, 〈r〉).

costa was not able to prove termination of this program in the competition
of July 2010, mainly because it ignores the calling context when abstract-
ing b=a % b, and therefore it cannot infer that b decreases. Our analy-
sis infers the pre-condition PRE[op

rem
(〈a, b〉)] = {a > 0, b > 0}, which in

turn makes it possible to infer the post-condition POST[op
rem

(〈a, b〉, 〈b1〉)] =
{a > 0, b > 0, b > b1}. Using this information we generate the transition
〈gcd1(〈a, b〉)→ gcd1(〈a1, b2〉), {a > 0, b > 0, b > b1}〉 for which we synthesize
the ranking function f(〈a, b〉) = nat(b).

EX3: The next example is taken from the method toString(int i, int

radix) of class java.lang.Integer. It is used for writing a number in any
numeric base. For simplicity, we have removed code that does not affect the
termination, and annotated the loop with a pre-condition that is inferred by
our analysis:

// { i <= 0 , 2 <= r a d i x }
while ( i <= −rad ix ) {

i = i / rad ix ;
}

p(〈i, radix 〉, 〈〉)← {i > −radix}.
p(〈i, radix 〉, 〈〉)←
{i ≤ −radix},
op

/
(〈i, radix 〉, 〈i1〉),

p(〈i1, radix 〉, 〈〉).

Due to the pre-condition PRE[op
/
(〈i, radix 〉, 〈i1〉)] = {2 ≤ radix , i ≤ −radix},

our analysis infers the post-condition POST[op
/
(〈i, radix 〉, 〈i1〉)] = {2 ≤ radix ,

i ≤ −radix , i
2
≤ i1 < 0}. Using this post-condition we generate the transition

〈p(〈i, radix 〉)→ p(〈i1, radix 〉), {2 ≤ radix , i ≤ −radix , i
2
≤ i1 < 0}〉. For this

transition we synthesize the ranking function f(〈i, radix 〉) = log2(nat(−i)+1).

EX4: The next example is a variation of a loop from the class Integer in the
method toUnsignedString(int i, int shift), which is used for writing a
number in binary, octal or hexadecimal form:

14
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// { 1 <= s h i f t <= 4 }
while ( i > 0 ) {

i >>= s h i f t ;
}

p(〈i, shift〉, 〈〉)← {i ≤ 0}.
p(〈i, shift〉, 〈〉)←
{i > 0},
op.(〈i, shift〉, 〈i1〉),
p(〈i1, shift〉, 〈〉).

Due to the pre-condition PRE[op.(〈i, shift〉] = {i > 0, 1 ≤ shift ≤ 4}, our
analysis infers the post-condition POST[op.(〈i, shift〉, 〈i1〉)] = {i > 0, 1 ≤
shift ≤ 4, i ≥ 2 ∗ i1, i1 ≥ 0}. Using this postcontidion we generate the transi-
tion 〈p(〈i, shift〉)→ p(〈i1, shift〉), {i > 0, 1 ≤ shift ≤ 4, i ≥ 2 ∗ i1, i1 ≥ 0}〉, for
which we synthesize the ranking function f(〈i, shift〉) = log2(nat(i) + 1).

6 Conclusions

In this paper we have described how we handle non-linear arithmetic instruc-
tions in the value analysis of costa. It is well-know that handling such opera-
tions is problematic when the underlying abstract domain allows only the use
of conjunctions of linear constraints. It is also well-know that the use of dis-
junctive abstract domains is a possible solution to this problem, however, on
the price of performance overhead. In this paper, instead of using disjunctive
abstract domains, we encoded the disjunctive nature of non-linear arithmetic
instructions into the abstract program itself. This encoding, when combined
with a value analysis that is based on non-disjunctive abstract domains such
as Polyhedra or Octagons, makes it possible to dynamically select the best
abstraction depending on the context from which the code that correspond to
the encoding was reached. Our experiments demonstrate that costa is now
able to prove termination and infer bound on resource consumption for pro-
grams that it could not handle before. For future work, we plan to improve
the scalability of the analyzer, support overflow in arithmetic operations, and
support floating point arithmetic. Note that, given the latest developments
in the Parma Polyhedra Library [6], supporting overflow and floating point
arithmetic is relatively straightforward.
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