
Precise Cost Analysis via Local Reasoning

Diego E. Alonso-Blas, Puri Arenas, and Samir Genaim

DSIC, Complutense University of Madrid (UCM), Spain

Abstract. The classical approach to static cost analysis is based on first
transforming a given program into a set of cost relations, and then solving
them into closed-form upper-bounds. The quality of the upper-bounds
and the scalability of such cost analysis highly depend on the precision
and efficiency of the solving phase. Several techniques for solving cost
relations exist, some are efficient but not precise enough, and some are
very precise but do not scale to large cost relations. In this paper we
explore the gap between these techniques, seeking for ones that are both
precise and efficient. In particular, we propose a novel technique that first
splits the cost relation into several atomic ones, and then uses precise
local reasoning for some and less precise but efficient reasoning for others.
For the precise local reasoning, we propose several methods that define
the cost as a solution of a universally quantified formula. Preliminary
experiments demonstrate the effectiveness of our approach.

1 Introduction

Static Cost analysis (a.k.a. resource usage analysis) aims at statically deter-
mining the amount of resources (e.g., memory, execution steps, etc.) required
to execute a given program safely, i.e., without running out of resources. Ap-
plications of cost analysis range from detecting performance bottlenecks at the
development stage, to providing resource consumption guarantees at runtime.

Several cost analysis frameworks exist [4,13,15,10]. Although different in their
underlying techniques, they all report the cost as a closed-form upper-bound
function (UB for short) in terms of the input parameters. This paper uses the
classical approach of Wegbreit [18], in particular its extension for Java byte-
code [4], where the analysis is carried out in two phases: (1) the input program
is transformed into a set of cost relations (CRs for short) that define its cost;
and (2) the CRs are solved into UBs. While the first phase depends on the pro-
gramming language in which the program is written [4,11,12,9,17], the second
phase is common to all analyses that are based on this approach. In this paper
we focus on the second phase, i.e., on developing techniques for solving CRs.
However, we provide enough details to clarify how CRs are related to programs.

Example 1. The Java class depicted in Fig. 1 implements a dynamic array, where
field data is used to store its elements, and field size represents the number of
such elements. Method add adds the elements of the array elems to the dynamic
array. When the array data is full (L6), it is replaced by a new one of double

1class DynamicArray {
2 int[] data;
3 int size;
4 void add(int[] elems) {
5 for (int i=0; i<elems.length; i++) {
6 if (data.length == size) {
7 int[] tmp = new int[2∗data.length];
8 copy(tmp,size,data);
9 data = tmp;

10 }
11 data[size] = elems[i];
12 size++;
13 }
14 }

15 int r;
16 void qsort() {
17 qs(0, size−1);
18 }
19 void qs(int from, int to) {
20 if (to − from < r)
21 insertionSort(from,to);
22 else {
23 int m=partition(from,to);
24 qs(from,m−1);
25 qs(m+1,to);
26 }
27 }
28}

add(e, d, s) = for(e, d, s, i) ϕ0={e≥0, d≥0, s≥0, i=0}
for(e, d, s, i) = 0 ϕ1={i≥e}
for(e, d, s, i) = 2·nat(s) + 2 + for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i) = 2 + for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}
qsort(s, r) = qs(f, t, r) ψ0 = {s≥0, f=0, t=s−1}
qs(f, t, r) = nat(t−f)2 ψ1 = {t−f<r, r≥0}
qs(f, t, r) = nat(t−f) + qs(f,m′, r)+ ψ2 = {t−f≥r, r≥0, f≤m≤t,

qs(m′′, t, r) m′=m−1,m′′=m+1}

Fig. 1. Above, Java code of a DynamicArray class. Below, the CRs of the methods

size (L7-9). Methods qsort and qs sort the array using a variation of Quick Sort,
which resorts to Insertion Sort when the segment to be sorted is shorter than a
threshold defined by field r. Methods copy, partition, and insertionSort are omitted.

Below the Java code we show the corresponding CRs, generated using a cost
model that counts array accesses. Let us explain the CR of method add. Variables
e, d, s, and i stand for the lengths of arrays elems and data and the values of size
and i. Expression nat(e) is an abbreviation for max{e, 0}. The first equation
states that the cost of add(e, d, s) is as that of for(e, d, s, i). The constraints on
the right impose conditions and relations on the variables. The second equation
is for the case of exiting the loop (i ≥ e). The third one is for the case in
which the array is resized. In such case the cost is 2·nat(s) (the cost assumed
for copy), plus 2 (the accesses at L11), plus the cost of the remaining iterations
for(e, d′, s′, i′). Note that d′=2·d states that the size of array data is doubled.
The fourth equation describes the case in which the array is not resized. The
equations of qsort are defined similarly. We note that nat(t−f)2 and nat(t−f)
correspond to the cost of insertionSort and partition respectively. The constraint
f≤m≤t in ψ2 is an input-output summary inferred for the value m returned by
method partition. Methods add and qsort, respectively, have linear and quadratic
worst-case complexity. �

Early works on cost analysis [11,9] relied on Computer Algebra Systems
(CAS) for solving CRs. They can only handle cases in which the CRs can be

2

transformed into recurrence equations (the only valid input for CAS). This,
however, is a very limited subset because CRs allow using constraints to de-
fine complex applicability conditions and relations between the variables. To
overcome this limitation, recent works [3,6] have developed dedicated tools for
solving CRs into UBs. They are mostly based on the use of program analysis
techniques. These works are our starting point.

The techniques of [3] are based on assuming worst-case behaviour for all loop
iterations. It is very efficient and can handle a wide class of CRs. To solve the
CR for , this technique infers that 2+2·nat(e+s−1) is an UB on the cost of any
iteration of for , and it infers that there is at most nat(e−i) iterations of for ,
from which it concludes that nat(e−i)·(2+2·nat(e+s−1)) is an UB for CR for .
Note that this is a quadratic UB while the actual cost is linear. In the case of
qsort, the loss of precision is even bigger. It first infers that nat(t−f)2 is an UB
on the cost of each call to qs, and that there are at most 2nat(t−f) of such calls.
Then, it concludes that (t−f)2·2nat(t−f) is an UB for CR qs, while the actual
cost is quadratic.

The above imprecision issue, among others, was addressed in [6] where pre-
cise and novel techniques for solving CRs were proposed. They are based on
defining the cost as a solution of a corresponding first-order universally quan-
tified formula. This method, as expected, would obtain the most precise UBs
for the CRs for and qs, however, it has two major limitations: (1) a template
UB has to be provided by the user; and (2) the use of a quantifier elimination
procedure for real numbers renders the technique impractical.

In this paper we explore the gap between [3] and [6], seeking for solving
techniques with efficiency close to [3] and precision close to [6]. Concretely, we
develop a novel technique that breaks down the input CR into atomic CRs of
simpler form, solves each of them separately, and then combines the results into
an UB for the original CR. Our main observation is that it is enough to solve
few atomic CRs precisely, while solving the others as in [3], without affecting the
overall precision. We also propose several methods for precisely solving atomic
CRs, which are based on the idea of specifying the cost using universally quan-
tified formulas as in [6]. However, we do not require the user to provide any
template, and, importantly, the generated formulas have almost a linear form
for which quantifier elimination can be done efficiently. Our prototype imple-
mentation and experiments [1] demonstrate the effectiveness of this approach.

This paper is organised as follows. Sec. 2 provides the required background
on CRs. Sec. 3 is the technical core of the paper. Sec. 4 describes a prototype
implementation and preliminary experiments. Finally, in Sec. 5 we conclude and
discuss related work.

2 Cost Relations: Syntax and Semantics

In this section we recall some basic notions related to CRs [3]. The sets of real,
rational, and integer values are denoted by R, Q, and Z, respectively. R+, Q+,
and Z+ denote their non-negative subsets. Variables are denoted by x, y, z, and

3

w, possibly subscripted. Values from R, Q, and Z are denoted, respectively, by
r, q, and v. A sequence of elements of type t is denoted by t̄. The set of variables
of t is denoted by vars(t). An assignment σ : V 7→ D maps variables from V to
values from D and σ(t̄) denotes the replacement of any x ∈ vars(t̄) by σ(x).

A linear expression has the form q0+q1·x1+ · · ·+qn·xn. A linear constraint
has the form l1≤l2, l1=l2, or l1≥l2, where l1 and l2 are linear expressions and
vars(l1)∪vars(l2) ⊆ Z. The constraints l1>l2 and l1<l2 abbreviate l1≥l2+1 and
l1+1≤l2, respectively. We use ϕ, φ, and ψ, possibly subscripted, to denote con-
junctions (often written as sets) of linear constraints. We say that ϕ is satisfiable
if there is an assignment σ for vars(ϕ) such that σ(ϕ) is true, denoted as σ |= ϕ.
If σ |= ϕ for every assignment σ for vars(ϕ) then ϕ is a valid formula.

Definition 1 (cost expression). A cost expression e is defined as:

e ::= q | nat(l) | loga(1+nat(l)) | anat(l)−1 | e+e | e·e
where q ∈ Q+, nat(l) = max{l, 0}, a > 1 ∈ Z+, and l is a linear expression.

Note that we use anat(l)−1, instead of simply anat(l), for the sake of simplifying
the formal presentation (we explain this after Lemma 3).

Definition 2 (cost relation). A cost relation is a set of cost equations of the

form 〈C(x̄) = e+
∑k
j=1Dj(ȳj), ϕ〉, where C and Dj are cost relation symbols.

Intuitively, a cost equation 〈C(x̄) = e +
∑k
j=1Dj(ȳj), ϕ〉 states that the

cost of C(x̄) is e plus the sum of the costs of D1(ȳ1), . . . , Dk(ȳk). The linear
constraint ϕ specifies the values of x̄ for which the equation is applicable, and
defines relations among the different variables. Since CRs usually originate from
programs, it is often helpful to think of each CR symbol as a (non-deterministic)
procedure, in which case we say that C calls D1, . . . , Dk.

Without loss of generality, in what follows we assume that the input CR
includes a single CR symbol. Namely, in Def. 2 we have Dj=C. We call such
CRs stand-alone. To handle CRs with more than one CR symbol, we rely on
the compositional approach of [3] which we briefly explain next. In a first step,
the input CR is transformed into a form in which all recursions are direct, i.e.
an equation that defines C can either call itself directly, or other CR symbols
that do not call C (directly or indirectly). In a second step, the CRs are solved
iteratively, where in each iteration we solve those that do not depend on any
other symbols (there must be at least one), and then substitute the result in the
calling contexts. In the rest of the paper CR refers to a stand-alone CR.

To define the cost assigned by C to a concrete input v̄, we use evaluation
trees. A (possibly infinite) tree will be denoted by node(r, 〈T1, . . . , Tk〉), where
r ∈ R+ is the value of the root and T1, . . . , Tk are sub-trees.

Definition 3 (evaluation tree). Given a CR C and an input v̄, we say that
node(r, 〈T1, . . . , Tk〉) is an evaluation tree for C(v̄) iff there exists an equation

E ≡ 〈C(x̄) = e+
∑k
j=1 C(ȳj), ϕ〉 and σ : vars(E) 7→ Z such that: (1) σ(xi)=vi

and σ|=ϕ; (2) r = σ(e); and (3) each Ti is an evaluation tree for C(σ(ȳi)).

4

Intuitively, when viewing C as a procedure, an evaluation tree can be seen as
a recursion tree where the call C(v̄) is evaluated as follows: we pick an equation
that defines C and an assignment σ that satisfies the equation’s constraints;
we evaluate σ(e) into r, and we recursively call each C(σ(ȳi)). Note that an
evaluation tree can be infinite. Note also that C(v̄) might have several evalua-
tion trees, due to the nondeterminism induced by choosing an equation for C
and a satisfying assignment σ for ϕ. The set of all evaluation trees for C(v̄) is
denoted by Trees(C(v̄)). The set of all possible costs for C(v̄) is then defined
as Answers(C(v̄))={Sum(T) | T∈Trees(C(v̄))}, where Sum(T) is the sum of all
nodes of T . Our interest is to approximate CRs by mean of closed-form UBs
functions, i.e., functions of the form f(x̄)=e, where vars(e) ⊆ x̄.

Definition 4 (upper bound). A function C+ : Zn 7→ R+ is an UB for a CR
C, iff for any input v̄ ∈ Zn and cost r ∈ Answers(C(v̄)) we have C+(v̄) ≥ r.

Next we overview the approach of [3] for solving a CR into an UB. Suppose we
have two functions h(x̄)=e1 and g(x̄)=e2, where e1 and e2 are cost expressions,
such that for any T∈Trees(C(v̄)) the following holds (i) h(v̄) is an UB on the
depth of T ; and (ii) g(v̄) is an UB on the value of any node of T . Now assuming
that d is the maximum number of recursive calls in any equation of C, i.e., the
maximum branching factor of its evaluation trees, then C+(x̄)=g(x̄)·N where
N=h(x̄) if d = 1, and N=dh(x̄) if d>1. Technically, in [3], h(x̄) is computed by
inferring a linear ranking function [8] that bounds the recursion depth of C, and
g(x̄) is computed by relying on linear invariants.

Example 2. Consider the CR for in Fig. 1. The technique of [3] infers h(e, d, s, i) =
nat(e−i) and g(e, d, s, i) = 2+2·nat(e+s−1). Then, since the branching factor is
d=1, it reports the UB for+(e, d, s, i)=nat(e−i)·(2+2·nat(e+s−1)). For CR qs,
it infers h(f, t, r)=nat(t−f) and g(f, t, r)=nat(t−f)2. Then, since the branching
factor is d=2, it reports the UB qs+(f, t, r)=nat(t−f)2·2nat(t−f). �

Maximisation procedure. We rely on the technique of [3] that generates g(x̄) as
we explain next. Let e be the cost expression that is contributed by an equation
of C, and let b be a cost sub-expression of e. As explained in Def. 3, when
generating the nodes of an evaluation tree T∈Trees(C(v̄)), we evaluate σ(e)
to r. This evaluation requires computing σ(b). We call σ(b) an instance of b.

We reuse the techniques of [3] to infer a cost expression b̂(x̄) that satisfies the
following: for any input v̄, T∈Trees(C(v̄)) and any instance σ(b) of b in T , we

have b̂(v̄) ≥ σ(b). Intuitively, b̂(x̄) is a function that bounds each contribution of b

to the total cost. We call b̂(x̄) the maximisation of b, and, in our implementation,
we compute it reusing the components of [3].

3 Solving Cost Relations in Closed-Form Upper-Bounds

In this section we present our approach for solving a CR C into an UB . We as-
sume that C is defined by m equations of the form 〈C(x̄) = ei+

∑ki
j=1 C(ȳij), ϕi〉,

5

for1


for(e, d, s, i)= 0 ϕ1={i≥e}
for(e, d, s, i)= 2·nat(s)+for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i)= for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}

for2


for(e, d, s, i)= 0 ϕ1={i≥e}
for(e, d, s, i)= 2 + for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i)= for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}

for3


for(e, d, s, i)= 0 ϕ1={i≥e}
for(e, d, s, i)= for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i)= 2 + for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}

qs1


qs(f, t, r) = nat(t−f)2 ψ1={t−f<r, r≥0}
qs(f, t, r) = qs(f,m′, r) + qs(m′′, t, r) ψ2={t−f≥r, r≥0, f≤m≤t,

m′=m−1,m′′=m+1}

qs2


qs(f, t, r) = 0 ψ1={t−f<r, r≥0}
qs(f, t, r) = nat(t−f) + qs(f,m′, r)+ ψ2={t−f≥r, r≥0, f≤m≤t,

qs(m′′, t, r) m′=m−1,m′′=m+1}

Fig. 2. The sparse CRs of for and qs of Fig. 1.

1 ≤ i ≤ m. Our approach is presented in two steps: we reduce the problem of
solving C to solving atomic CRs, and then we focus on solving atomic CRs.

Observe that cost expressions, as in Def. 1, can be normalised into the form
P1 + · · · + Ph, where each Pi is a product of cost expressions bi1, . . . , bipi with
bij ∈ {q, nat(l), loga(1+nat(l)), anat(l)−1}. For simplicity, since q is non-negative,
we assume it is given as nat(q). We assume that each ei in C is given in this form.
Let PC = {P1, . . . , Pt} be the multiset of all non-zero product cost expressions
that appear in C (i.e., the products of e1, . . . , em). We define Ci as the CR
obtained from C by removing all Pj ∈ PC with j 6= i. Namely, in Ci there is
exactly one equation that contributes Pi, the others contribute 0. We call such
CRs sparse and the equation that includes Pi is called the main equation.

Example 3. Consider the CRs for and qs in Fig. 1. Their products are respec-
tively Pfor={2·nat(s), 2, 2} and Pqs={nat(t−f)·nat(t−f), nat(t−f)}. Their cor-
responding sparse CRs are depicted in Fig. 2. �

Observation 1 If C+
i (x̄) is an UB for the sparse CR Ci, for all 1 ≤ i ≤ t, then

C+(x̄) = C+
1 (x̄) + · · ·+ C+

t (x̄) is an UB for C.

The above observation explains how an UB for C can be obtained from
UBs for its sparse CRs C1, . . . , Ct. Thus, we can focus on solving sparse CRs.
We first explain the idea intuitively. Assume that bi1·bi2 is the product in the
main equation of Ci. Given an arbitrary T∈Trees(Ci(v̄)), the cost of each of its
nodes is either 0 or an instance of bi1·bi2. Let σ1(bi1·bi2), . . . , σh(bi1·bi2) be the

instances of bi1·bi2 in T∈Trees(Ci(v̄)), then the cost of T is S=
∑h
j=1 σj(bi1·bi2).

As explained in Sec. 2, we can compute a function b̂i1(x̄) such that b̂i1(v̄)≥σj(bi1)

for each 1 ≤ j ≤ h. Using b̂i1(v̄) we bound S as follows:

6

S =
∑h
j=1 σj(bi1·bi2) ≤

∑h
j=1 b̂i1(v̄)·σj(bi2) = b̂i1(v̄)·

∑h
j=1 σj(bi2)

Now assume that we have a function f+(x̄) such that f+(v̄)≥
∑h
j=1 σj(bi2), then

S≤b̂i1(v̄)·f+(v̄). Thus, since the above reasoning is done for an arbitrary T , we

can conclude that b̂i1(x̄)·f+(x̄) is an UB for Ci. Now to compute f+(x̄), we
consider a CR Ci2 that is obtained from Ci by replacing bi1·bi2 by bi2. Clearly,
Ci2(v̄)=

∑h
j=1 σj(bi2), and thus any UB for Ci2 defines a valid f+(x̄). This re-

duces the problem of solving Ci to that of solving Ci2, which is simpler since its
main equation includes a basic cost expression. Note that, in a similar way, we
could build Ci1 using b̂i2(x̄) and then use it to find an UB for Ci.

Formally, given a sparse CR Ci with a product bi1· · · · ·bipi in its main equa-
tion, we define the atomic CR Cij as the one obtained from Ci by replacing its
product by bij (i.e., removing all bik with k 6= j).

Example 4. Consider the sparse CRs depicted in Fig. 2. The following are pos-
sible atomic CRs for for1 and qs1

for12 qs11
for(e, d, s, i)=0 ϕ1 qs(f, t, r)=nat(t−f) ψ1

for(e, d, s, i)=nat(s)+for(e, d′, s′, i′) ϕ2 qs(f, t, r)=qs(f,m′, r)+qs(m′′, t, r) ψ2

for(e, d, s, i)=for(e, d, s′, i′) ϕ3

in which nat(s) and nat(t−f) are selected as basic cost expressions. CRs for2 ,
for3 and qs2 are already atomic. They correspond to for21 , for31 and qs21 . �

Lemma 1. Let Ci be a sparse CR, bi1· · · · ·bipi the product in its main equation,
and Cij an atomic CR of Ci. If C+

ij (x̄) is an UB for Cij(x̄), then C+
i (x̄) =

C+
ij (x̄)·

∏
k 6=j b̂ik(x̄) is an UB for Ci.

The above lemma allows focusing on finding an UB for a single atomic Cij
and then combine the result into an UB for Ci. To put this into practice we
need to address the following issues: (1) how to select the basic cost expression
j from the products in order to build Cij ; and (2) how to compute an UB for
Cij . In secs. 3.1 and 3.2 we discuss several methods for addressing the second
issue. The first issue is discussed later in Sec. 3.4.

Let us first position our approach in the spectrum of related approaches [3,6].

Solving Ci using the techniques of [3] we obtain the UB (
∏pi
k=1 b̂ik(x̄))·N . Inter-

estingly, this UB can be explained using our novel view of Lemma 1, which is
different from that of [3], as follows: we can consider b̂ij(x̄)·N as an UB for Cij ,

and then use it as in Lemma 1 to obtain (
∏pi
k=1 b̂ik(x̄))·N . Since, unlike [3], we

focus on solving atomic CRs, we develop dedicated techniques (i.e., techniques
that work only for atomic CRs) that are able to obtain an UB far more precise

than b̂ij(x̄)·N (we will usually eliminate the N factor). Solving Ci using the
techniques of [6] requires defining an UB template to be used during the solv-
ing process. If Ci does not admit an UB that matches the supplied templates,
then this technique will fail. Moreover, using arbitrary templates renders this
approach impractical since it is based on the use of quantifier elimination pro-
cedure. Our techniques for solving atomic CRs are actually inspired by those

7

of [6]. However, since we focus on a simpler form of CRs, we always use linear
templates for which the quantifier elimination procedure is efficient. In summary,
our approach uses [6] to precisely reason on the local cost of a single simple cost
expression bij , and then uses [3] to combine this local cost into an UB for Ci.

To simplify our notation, in what follows, we assume a given atomic CR D
with m equations of the form 〈D(x̄) = ei+

∑ki
j=1D(ȳij), ϕi〉, where e1 = b is a

basic cost expression, and ei = 0 for all 2 ≤ i ≤ m. Note that the main equation
of D is the first one. We denote by w̄i the set of variables in the i-th equation.

3.1 The Tree-Sum Method

We first explain this method for the case in which b = nat(l), and then we
show how to extend it to handle any basic cost expression b. In many cases, in
particular in examples that require amortised analysis, the sum of all instances
of b in any T ∈ Trees(D(v̄)) can be bounded by a linear expression. Thus, we
seek an UB for D of the form α(x̄) = q0+q1·x1+ · · ·+ qn·xn, where qi ∈ Q. The
way we search for α(x̄) is based on the use of universally quantified formulas as
in [6]. We first define a verification condition which ensures that a given α(x̄) is
a valid UB for D. Then, using a quantifier elimination procedure, we turn this
verification condition into a synthesis procedure that actually infers α(x̄).

Lemma 2. Let α(x̄)=q0+q1·x1+ · · ·+qn·xn, and define:

Ψ1 , ∀w̄1 : ϕ1 → nat(α(x̄)) ≥ nat(l) +
∑k1
j=1 nat(α(ȳ1j))

Ψ2 ,
∧m
i=2 ∀w̄i : ϕi → nat(α(x̄)) ≥

∑ki
j=1 nat(α(ȳij))

If Ψ1 ∧ Ψ2 is valid, then nat(α(x̄)) is an UB for the atomic CR D.

Intuitively, Ψ1 requires that nat(α(x̄)) covers the cost of the main equation,
i.e., it covers the local cost nat(l) and the cost of the recursive calls. Similarly,
Ψ2 requires that nat(α(x̄)) covers the cost of the other equations (in this case the
local cost is 0). Our main interest is in inferring such α(x̄) rather than verifying
the correctness of a given one. Turning the verification condition into an inference
procedure can be done, using a quantifier elimination procedure, as follows:

1. we generate Ψ1 ∧ Ψ2 using a template function α(x̄) in which q0, . . . , qn are
variables, i.e., unknown;

2. we eliminate the universal quantifiers from Ψ1 ∧ Ψ2. This results in a set of
constraints Θ over the variables q0, . . . , qn; and

3. any solution of Θ (i.e., values for q0, . . . , qn that satisfy Θ) defines a valid
UB nat(α(x̄)). We simply pick a solution.

Note that if Θ is not satisfiable then there is no α(x̄) satisfying Ψ1 ∧ Ψ2. In
such case we say that the Tree-Sum method is not applicable for D. The main
subtle point in the above inference procedure is how to eliminate the universal
quantifiers, which is computationally expensive in general. However, since the
formula Ψ1∧Ψ2 have a very specific form (almost linear), in Sec. 3.3 we show how
this can be done efficiently. For now we just assume the existence of a procedure
that implements steps (2) and (3) above.

8

Example 5. Consider the CR for12, as defined in Ex. 4, and let α(e, d, s, i) = q0+
q1·e+q2·d+q3·s+q4·i. The corresponding Ψ1 and Ψ2 are:

Ψ1 , ∀w̄2 : ϕ2→nat(q0+q1·e+q2·d+q3·s+q4·i)≥nat(s)+nat(q0+q1·e+q2·d′+q3·s′+q4·i′)
Ψ2 , ∀w̄3 : ϕ3→nat(q0+q1·e+q2·d+q3·s+q4·i)≥nat(q0+q1·e+q2·d+q3·s′+q4·i′)

Solving Ψ1∧Ψ2, i.e finding values for q0, . . . , q4, gets q0=−2, q1=2, q2=−1, q3=2,
and q4=−2, which means that for+

12(e, d, s, i)=nat(2·s+2·e−2·i−d−2) is an UB
for CR for12. Then, to get an UB for CR for1 we apply Lemma 1 which results in
for+

1 (e, d, s, i)=2·nat(2·s+2·e−2·i−d−2). Similarly, generating the formulas for
for21 and for31 and solving them, we get the UBs for+

2 (e, d, s, i)=nat(2·e−2·i)
and for+

3 (e, d, s, i)=nat(2·e−2·i). Finally, we can use Obs. 1 to add them in
for+(e, d, s, i)=2·nat(2·s+2·e−2·i−d−2)+2·nat(2·e−2·i) as UB for for . Substi-
tuting this UB in the equation of add in Fig. 1, we get the expected linear
bound add+(e, d, s) = 2·nat(2·s+2·e−d−2)+2·nat(2·e) for method add. �

Now we turn to the general case in which b is an arbitrary basic cost ex-
pression, not necessarily nat(l). In such cases, in addition to nat(l), b can be
of the form loga(1 + nat(l)) or anat(l) − 1. Recall that when it is q ∈ Q+, we
have implicitly assumed it was written as nat(q). Note that in all cases b has
an embedded nat(l) expression. Let E be the CR obtained from D by replacing
b by its embedded nat(l). Then the following lemma explains how to obtain an
UB for D from that of E. Computing an UB for E is done as above.

Lemma 3. Let nat(α(x̄)) be an UB for E, and let

D+(x̄) =


nat(α(x̄)) b = nat(l)

1.5·nat(α(x̄)) b = loga(1 + nat(l))

anat(α(x̄)) − 1 b = anat(l) − 1

Then, D+(x̄) is an UB for D.

It is worth mentioning here the reason for which we use anat(l) − 1 as a basic
cost expression, instead of anat(l). This allows precisely lifting the UB of E to an
UB of D (in the last case of D+), which is not possible when using anat(l).

Example 6. Let us finish this section by trying to analyse the CR qs using the
Tree-Sum method. For qs11, we first generate:

Ψ1 , ∀w̄1 : ψ1→nat(q0+q1·f+q2·t+q3·r) ≥ nat(t−f)

Ψ2 , ∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ nat(q0+q1·f+q2·m′+q3·r)+
nat(q0+q1·m′′+q2·t+q3·r)

Solving Ψ1∧Ψ2 results in q0 = 0, q1 = −1, q2 = 1, and q3 = 0. Thus, nat(t−f) is
an UB for qs11. Using Lemma 1, we get qs+

1 (f, t, r)=nat(t−f)2. Solving qs21 with
the Tree-Sum method does not yield any result because the generated formula
is not valid. This is expected since qs21 does not have a linear bound. In Sec. 3.2
we develop further methods to handle such cases. �

9

3.2 The Level-Sum Method

In this section we describe our method for solving atomic CRs that exhibit a
divide and conquer like behaviour. As we have seen in Ex. 6, the Tree-Sum
method fails to handle such examples. We first explain it for the case of b =
nat(l), and then extend it to an arbitrary basic cost expression.

We start with some notation. Given an evaluation tree T∈Trees(D(v̄)), a
node in T is called primary if it is generated by the main equation. Note that
the cost of all other nodes in T is 0. The primary-depth of a primary node is the
number of primary nodes on the path from the root to that node (both included).
The primary-depth of T , denoted by pdepth(T), is the maximum among the
primary depths of all its primary nodes. The sum of (the cost of) all primary
nodes of primary-depth i is denoted by SumLevel(T, i).

We say that nat(α(x̄)) is an UB on the primary-depth of D, if for any input v̄
and T∈Trees(D(v̄)) we have nat(α(v̄)) ≥ pdepth(T). We say that it is an UB on
the Level-Sum of D, if for any input v̄, T∈Trees(D(v̄)), and 1 ≤ i ≤ pdepth(T)
we have nat(α(v̄)) ≥ SumLevel(T, i).

Lemma 4. Let nat(α1(x̄)) and nat(α2(x̄)) be UBs on the primary-depth and
Level-Sum of D, respectively. Then, nat(α1(x̄))·nat(α2(x̄)) is an UB for D.

The correctness of the above lemma follows from the fact that only primary
nodes can have non-zero cost. Intuitively, the above lemma handles divide and
conquer examples since, in such examples, the input is distributed between the
recursive calls. Thus, the cost of all levels is similar and can be expressed as a
linear function on the initial input. Moreover, using the primary-depth, instead
of depth, allows ignoring those levels that do not contribute to the cost. Note
that the above lemma also reduces the problem of solving D, to that of finding
nat(α1(x̄)) and nat(α2(x̄)) that bound its primary-depth and Level-Sum. We
start with bounding the primary-depth.

Lemma 5. Let α(x̄) = q0+q1·x1+ · · ·+qn·xn, and define:

Φ1 ,

{
∀w̄1 : ϕ1 → nat(α(x̄)) ≥ 1 if k1 = 0∧k1
j=1 ∀w̄1 : ϕ1 → nat(α(x̄)) ≥ 1 + nat(α(ȳ1j)) if k1 ≥ 1

Φ2 ,
∧m
i=2

∧ki
j=1 ∀w̄i : ϕi → nat(α(x̄)) ≥ nat(α(ȳij))

If Φ1 ∧ Φ2 is valid, then nat(α(x̄)) is an UB on the primary-depth of D.

Intuitively, the primary-depth corresponds to the number of applications of
the main equation, in a sequence of recursive calls. This is reflected in Φ1 and
Φ2 as follows. In Φ1, we treat applications of the main equation. If the main
equation is non-recursive, i.e., k1 = 0, then we require that nat(α(x̄)) covers
that single application. In case it is recursive, i.e., k1 ≥ 1, then we require that
nat(α(x̄)) covers that application and further ones that might arise through each
recursive call. In Φ2, we treat applications of other equations. In such case we
require that nat(α(x̄)) covers applications of the main equation that might arise
through each recursive call. Note that each recursive call is considered separately,
since we count primary nodes in each path rather than the whole tree.

10

It is worth noting that if we apply Φ1 to all equations instead of only the
main one, then nat(α(x̄)) bounds the depth of any evaluation tree rather than
the primary-depth. Similar techniques, based on inference of (linear) ranking
functions, were used in [3] to bound the depth of the evaluation trees.

Example 7. Applying Lemma 5 to bound the primary-depth of qs21 (of Ex. 4)
results in Φ2 = true and Φ1 as the conjunction of the following formulas:

∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ 1+nat(q0+q1·f+q2·m′+q3·r)
∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ 1+nat(q0+q1·m′′+q2·t+q3·r)

Both originate from the recursive equation of qs2. They respectively correspond
to the first and second calls. Solving Φ1 ∧ Φ2 results in q0 = 1, q1 = −1, q2 = 1,
q3 = 0, which induces the UB nat(t−f+1) on the primary-depth of qs21. �

Now we turn to bounding the Level-Sum of D.

Lemma 6. Let α(x̄) = q0+q1·x1+ · · ·+qn·xn, and define:

Π1 , ∀w̄1 : ϕ1 → nat(α(x̄)) ≥ nat(l)

Π2 ,
∧m
i=1 ∀w̄i : ϕi → nat(α(x̄)) ≥

∑ki
j=1 nat(α(ȳij))

If Π1 ∧Π2 is valid, then nat(α(x̄)) is an UB on the Level-Sum of D.

Intuitively, Π1 requires that nat(α(x̄)) covers the local cost of the main equa-
tion at any level, and Π2 requires that it also covers the next level. Combin-
ing these conditions, and applying inductive reasoning, one can conclude that
nat(α(x̄)) is actually an UB on the Level-Sum of D.

Example 8. Consider again qs21 (of Ex. 4). Its corresponding formulas are:

Π1 , ∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ nat(t−f)

Π2 , ∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ nat(q0+q1·f+q2·m′+q3·r)+
nat(q0+q1·m′′+q2·t+q3·r)

Solving Π1 ∧Π2 results in q0=0, q1=− 1, q2=1, q3=0. This induces the bound
nat(t−f) on the Level-Sum. Combining this bound with that in Ex. 7, on the
primary depth, we obtain nat(t−f)·nat(t−f+1) as an UB for qs21, which is also
an UB for qs2. Combining this, using Obs. 1, with the bound of qs1 computed in
Ex. 6, we get qs+(f, t, r)=nat(t−f)·nat(t−f+1)+nat(t−f)·nat(t−f). Substitut-
ing this UB in the equation of qsort in Fig. 1 we obtain qsort+(s, r)=nat(s−1)·
nat(s)+nat(s−1)·nat(s−1), which is the expected bound for method qsort. �

Turning the verification condition to inference procedure, both in Lemma 5
and Lemma 6, is done as we explained in Sec. 3.1. Handling the general case
in which b is an arbitrary basic cost expression, is done exactly as the case of
Tree-Sum (see Lemma 3). Note that this affects only the UB on the Level-Sum.

Finally, we note that [3] proposed a technique for solving CRs with a divide
and conquer behaviour, however, it is limited to cases in which: (1) the cost of
all levels is non-increasing; and (2) the cost expression of each equation is linear.
Note that, CR qs1, for example, does not satisfy both conditions.

11

3.3 Solving the Universally Quantified Formulas

In this section we describe how we solve the universally quantified formulas of
Lemma 2, Lemma 5, and Lemma 6. Namely, starting from a template linear
function α(x̄) = q0+q1·x1+ . . .+qn·xn, we find rational values for q0, . . . , qn for
which the corresponding formula is valid. Note that our formulas are conjunc-
tions of universally quantified formulas of the following form:

∀w̄ : ϕ→ nat(l0) ≥ q + nat(l1) + . . .+ nat(ln) (1)

where ϕ defines a closed polyhedron, q ∈ {0, 1}, and each li is either a linear
function over w̄, or a template function α(x̄) = q0+q1·x1+ · · ·+qn·xn such that
x̄ ⊆ w̄ and qi 6∈ w̄ (i.e., each qi is existentially quantified). Our goal is to solve
these formulas using linear programming (LP) techniques.

Consider a formula as in (1), but without the nat-expressions, i.e., of the form
∀w̄ : ϕ → l0 ≥ q+l1+ . . .+ln. It is known that there is a complete algorithm,
based on the use of LP [8], able to solve such a formula. Our aim is to transform
formulas as (1) to a nat-free as above, and then solve them using this algorithm.
Recall that nat(li) = max{li, 0}. This means that nat(li) can be eliminated by
explicitly considering the cases for li ≥ 0 and li ≤ 0 (we use li ≥ 0 and not li > 0
since in LP constraints must be non-strict). For example, eliminating nat(l0) can
be done by rewriting (1) as:

∀w̄ : ϕ ∧ l0 ≥ 0→ l0 ≥ q + nat(l1) + . . .+ nat(ln)
∧

∀w̄ : ϕ ∧ l0 ≤ 0→ 0 ≥ q + nat(l1) + . . .+ nat(ln)

This process can be applied iteratively to eliminate each nat(li). There is still
one problem that prevents us from directly applying the LP techniques: when
li is a template function, the constraints l0 ≥ 0 and l0 ≤ 0 are not linear. To
overcome this problem, assuming that eliminating the nat-expression results in a
formula ξ, we generated ξ′ be the by simply removing all non-linear constraints
from ξ. Since all non-linear constraints in ξ appear in the left-hand sides of the
implications, we observe that ξ′ → ξ. This means that we can solve ξ′, using
the LP based algorithm, instead of ξ. Although we scarify completeness, this
approach performs well in practice as demonstrated by our experiments.

3.4 Concluding Remarks

Let us conclude this section describing how all pieces, that have been described
so far, connects together to infer an UB for C.

Solving CR C. This is as done according to the following steps: (1) generating
the sparse CRs C1, . . . , Ct of C; (2) solving each Ci into an UB as described
below; and (3) combining these UBs, as in Obs. 1, into an UB for C.

Solving a sparse CR Ci. This step requires solving, using the methods described
in secs. 3.1 and 3.2, one Cij of the corresponding atomic CR which might fail
for some j and succeed for some others. We iterate over all possible j=1, . . . , pi,
and if all fail then we solve Ci using the approach of [3].

Solving an atomic CR Cij. This is done by trying the methods of secs. 3.1 and
3.2, in this order. Note that in [1] we describe some additional methods.

12

Table 1. Experimental comparison with pubs [3]. The times on the right (in secs)
correspond to analysing a CR that connects all benchmarks together (see Sec. 4).

Entry O(ub) – new O(ub) – pubs Eq Tn Tp Ov
add(a,b,c) nat(a)+nat(2a−b+2c) nat(a)·nat(a+c) 11 0.15 0.11 1.34

qsort(a,b,c) nat(a)2 2nat(a)·(nat(a)+nat(b)) 28 0.61 0.27 2.26

sum(a) nat(a) 2nat(a)·nat(a) 36 0.88 0.33 2.63

dac(a,b) nat(a)2+nat(a−b) 2nat(b)·nat(a) 45 1.24 0.40 3.13
log(a,b) nat(b)+nat(a)·log(nat(b)) nat(b)·nat(a) 54 1.71 0.47 3.63
once(a,b) nat(a)+nat(b) nat(b)·nat(a) 62 1.98 0.57 3.47
twice(a,b) nat(a)+nat(b) nat(b)·nat(a) 70 2.29 0.69 3.33

full(a,b) nat(a)·nat(b) nat(a)·nat(b)2 78 2.74 0.84 3.26

eratos(a) nat(a) nat(a)2 91 3.16 0.94 3.37
peak(a) nat(a) nat(a)·log(nat(a)) 96 3.43 1.01 3.38

stack(a,b,c) nat(b)·nat(c)+nat(b)2 nat(c)·nat(b)2 107 3.95 1.19 3.32
rotate(a,b) nat(a)+nat(b)+nat(a−b) nat(a)·nat(a−b) 120 4.84 1.62 2.99

maxsum(a,b) nat(b)·log(nat(b)) nat(b)2 138 7.67 2.12 3.62
mayor(a) nat(a)·log(nat(a)) nat(a)·log(nat(a)) 163 13.21 3.20 4.13

msort(a,b,c,d) nat(d−c)·log(nat(d−c)) nat(d−c)2 173 13.72 3.81 3.60
mergexp(a) nat(a) nat(a)·log(nat(a)) 187 14.65 4.02 3.65
enque(a,b,c,d) nat(c+d)+nat(a+c) nat(c+d)·nat(a+c) 199 16.34 4.68 3.49
deque(a,b,c) nat(a)+nat(c) nat(c)·nat(a) 208 17.40 4.91 3.55
infinity(a) nat(a) Failed: No RF 219 18.38 5.07 3.63

4 Implementation and Experiments

We have implemented our techniques as an extension of pubs [3], the solver used
in Costa [4] for solving CRs generated from Java programs. This allows us to
evaluate our approach directly on Java programs. We evaluate accuracy and
scalability on a set of benchmarks that we collected from related literature, or
were written to demonstrate some powerful features of our approach. Although
the programs are not large, they exhibit challenging behaviour for cost analysis.
The benchmarks and the implementation are available online [1].

In Table 1 we evaluate the accuracy of our approach by comparing it to
pubs [3]. We applied both approaches on each benchmark using a cost model that
measure memory consumption or visits to an specific program point (depending
on what was more interesting for each benchmark). Each line includes (from left
to right) the entry method and its parameters, the UB inferred by our approach
and the UB inferred by pubs. For readability, bounds are given in asymptotic
form [2]. In all examples our approach obtains UBs that are asymptotically more
accurate than those obtained by pubs. Moreover, our UBs approach obtains
precise asymptotic UBs, i.e., they exactly reflect the actual cost.

To analyse scalability, we have merged all our benchmarks into a single pro-
gram as follows: the benchmark in row i was modified to include a call (in one
of its loops) to the program at row i−1. This means that the i-th benchmark
executes at least i nested loops. The runtime (in seconds) of analysing each
such (modifed) benchmark is depicted in columns Tn (current approach) and

13

Tp (pubs) of Table 1. Columns Eq and Ov are, respectively, the total number
of equations and the overhead (Tn/Tp) introduced by our approach.

We have also compared our approach to [6]. For all benchmarks of Table 1,
it did not obtain an UB within the one minute time limit. This is expected since
it is based on a general procedure for real quantifier elimination.

5 Conclusions and Related Work

In this paper we have developed a novel approach for solving CRs into precise
closed-form UBs. It is based on the idea of dividing the basic cost expressions
of a given CR C into two parts: (a) those for which we employ precise reasoning
to track their behaviour along the execution; and (b) those for which we simply
use their worst case behavior. Then, we show how such different bounds can be
combined into an UB for C. For part (b) we rely on existing techniques [4] to
maximise cost expressions. For part (a) we first model the contribution of the
corresponding cost expressions using universally quantified formulas, and then, a
precise UB on their costs can be obtain by eliminating the universal quantifiers.
Note that while quantifier elimination is a very expensive procedure in general,
in our case, since the formulas are of a very specific form, they can be solved
efficiently. Our method has been implemented within Costa [4], and preliminary
experiments demonstrate its superiority on previous methods for solving CRs.

Related work. The most related works to ours are [4,6] which aim at solving CRs
into closed-form UBs. In Sec. 4 we have seen that, in practice, our approach is
more precise than [4] and more efficient than [6]. Detailed discussion on simi-
larities and differences is provided along Sec. 3. Note that although the method
described so far is usually more precise than [3], as we have seen in Sec. 4, there
are some examples for which the use of the last case of Lemma 3 causes a loss
of precision. E.g., replacing nat(s) by 2nat(s) in for12 of Ex. 4, the approach
of [3] obtains nat(e−i)·2nat(s+e−1) while we obtain 2nat(2(s+e−i−1)−d). In [5], the
techniques of [4] were improved to handle cases in which the cost can be mod-
eled with arithmetic or geometric sequences. This approach is complementary to
ours, in the sense that it cannot handle our benchmarks and we cannot handle
some of their examples (when basic cost expressions require non-linear bounds).

There are some works that aim at inferring loop bounds on the visits to a
given program point [14,19]. They are mostly related to our Lemma 5. These
approaches are not limited to linear bounds, however, they cannot handle re-
cursive programs with more than one recursive call. Our techniques can benefit
from these approaches when each cost equation has at most one recursive call.
Cost analysis techniques that are based on amortised analysis [15,16], could, in
principle, handle some of our examples when the bounds are polynomial, and the
data are over the non-negative integers. Solving CRs using template functions
and real quantifier elimination has been considered before in [7]. Finally, several
cost analysis frameworks [9,11] that are based on generating CRs can benefit
from our advances in solving CRs.

14

Acknowledgements This work was funded partially by the projects FP7-ICT-
610582, TIN2008-05624, TIN2012-38137, PRI-AIBDE-2011-0900 and S2009TIC-
1465. Diego Esteban Alonso-Blas is supported by the PhD scholarship program
of the Complutense University.

References

1. Companion Web-Page. http://costa.ls.fi.upm.es/amor/.
2. E. Albert, P. Arenas, D. Alonso, S. Genaim, and G. Puebla. Asymptotic Resource

Usage Bounds. In APLAS, volume 5904 of LNCS, pages 294–310. Springer, 2009.
3. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in

Static Cost Analysis. J. Autom. Reasoning, 46(2):161–203, 2011.
4. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of

Object-Oriented Bytecode Programs. Theor. Comput. Sci., 413(1):142–159, 2012.
5. E. Albert, S. Genaim, and A.N. Masud. On the Inference of Resource Usage Upper

and Lower Bounds. ACM Trans. Comput. Log. To appear.
6. D. E. Alonso-Blas and S. Genaim. On the Limits of the Classical Approach to

Cost Analysis. In SAS, volume 7460 of LNCS, pages 405–421. Springer, 2012.
7. H. Anderson, S.C Khoo, S. Andrei, and B. Luca. Calculating Polynomial Runtime

Properties. In APLAS, volume 3780 of LNCS, pages 230–246. Springer, 2005.
8. R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A new look at the auto-

matic synthesis of linear ranking functions. Inf. Comput., 215:47–67, 2012.
9. R. Benzinger. Automated higher-order complexity analysis. Theor. Comput. Sci.,

318(1-2):79–103, 2004.
10. N. Danner, J. Paykin, and J.S. Royer. A Static Cost Analysis for a Higher-Order

Language. In PLPV, pages 25–34. ACM, 2013.
11. S. K. Debray and N. Lin. Cost Analysis of Logic Programs. ACM Trans. Program.

Lang. Syst., 15(5):826–875, 1993.
12. B. Grobauer. Cost Recurrences for DML Programs. In ICFP, pages 253–264.

ACM, 2001.
13. S. Gulwani, J.K. Mehra, and T.M. Chilimbi. SPEED: Precise and Efficient Static

Estimation of Program Computational Complexity. In POPL, pages 127–139.
ACM, 2009.

14. S. Gulwani and F. Zuleger. The Reachability-Bound Problem. In PLDI, pages
292–304. ACM, 2010.

15. J. Hoffmann, , K. Aehlig, and M. Hofmannn. Multivariate Amortized Resource
Analysis. ACM Trans. Program. Lang. Syst., 34(3):14:1–14:62, 2012.

16. H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and K. Hammond. Automatic
Amortised Analysis of Dynamic Memory Allocation for Lazy Functional Programs.
In ICFP, pages 165–176. ACM, 2012.

17. P. B. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive,
Polymorphic and Higher-Order Functional Programs. In IFL, volume 3145 of
LNCS, pages 86–101. Springer, 2003.

18. B. Wegbreit. Mechanical Program Analysis. Commun. ACM, 18(9):528–539, 1975.
19. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound Analysis of Imperative

Programs with the Size-Change Abstraction. In SAS, volume 6887 of LNCS, pages
280–297. Springer, 2011.

15

http://costa.ls.fi.upm.es/amor/

	Precise Cost Analysis via Local Reasoning

