
On the Limits of the Classical Approach to Cost
Analysis

Diego Alonso and Samir Genaim

DSIC, Complutense University of Madrid (UCM), Spain

Abstract. The classical approach to static cost analysis is based on
transforming a given program into cost relations and solving them into
closed-form upper-bounds. It is known that for some programs, this ap-
proach infers upper-bounds that are asymptotically less precise than the
actual cost. As yet, it was assumed that this imprecision is due to the
way cost relations are solved into upper-bounds. In this paper: (1) we
show that this assumption is partially true, and identify the reason due
to which cost relations cannot precisely model the cost of such programs;
and (2) to overcome this imprecision, we develop a new approach to cost
analysis, based on SMT and quantifier elimination. Interestingly, we find
a strong relation between our approach and amortised cost analysis.

1 Introduction

Cost analysis (a.k.a. resource usage analysis) aims at statically determining the
amount of resources required to safely execute a given program, i.e., without
running out of resources. By resource, we mean any quantitative aspect of the
program, such as memory consumption, execution steps, etc. Several cost analy-
sis frameworks are available [2,10,12,14,15,17]. Although different in their under-
lying theory, all of them usually report the cost of a program as an upper-bound
function (UBF for short) such that: when evaluated on (an abstraction of) a
given input, the UBF gives an upper-bound on the amount of resources required
for safely running the program on that specific input.

Many automatic cost analysis tools are based on the classical approach of
Wegbreit [22], which we describe using its extension for Java bytecode [2]. This
analysis is done in three steps: (1) the Java program is transformed into an
abstract program, in which data-structures are abstracted to their sizes, e.g.,
length of lists, depth of trees, etc.; (2) the abstract program is transformed into
a set of cost relations (CRs for short), which are a non-deterministic form of
recurrence equations that define the cost of executing the program in terms of
its input parameters; and (3) the CRs are solved into UBFs.

This analysis performs well in practice, however, for some classical examples,
it infers UBFs that are asymptotically less precise than the actual cost. Clearly,
the abstraction at step (1) may involve a loss of precision since it can introduce
spurious traces, which do not occur in the original program. This imprecision is
out of the scope of this paper. Instead, we focus on the imprecision at steps (2)



and (3). As yet, it was assumed that this imprecision is due to the way CRs are
solved into UBFs in step (3), and that, in principle, it could be overcome using
more precise resolution techniques.

The first contribution of this paper shows that this assumption is not true,
namely, that the cost of some programs cannot be modeled precisely with CRs.
This is because CRs are defined only in terms of the input parameters, and thus
they fail to capture dependencies between the output of a program and its cost.
These dependencies are crucial for programs in which the output of one part
is passed as input to another part, and transforming them into CRs introduces
spurious scenarios. Any resolution technique that solves CRs into UBFs must
cover these spurious scenarios, hence it would fail to obtain precise UBFs.

To eliminate these spurious scenarios, an UBF must be defined in terms of
both input and output. Our second contribution is a novel cost analysis that
uses the this notion of cost. It is based on quantifier elimination and template
UBFs. Briefly, it takes a given set of template UBFs, with some unknown param-
eters, and uses satisfiability modulo theory (SMT) and quantifier elimination to
instantiate those parameters, such that the resulting UBFs are safe.

The rest of the paper is organised as follows. Sec. 2 presents our running
examples and formally defines the language on which we apply our analysis.
Sec. 3 studies the limitations of CRs. Secs. 4 and 5 are the technical core of the
paper, in which we develop our cost analysis. Sec. 6 discusses the relation of our
analysis to amortised cost analysis. Sec. 7 describes a prototype implementation.
Sec. 8 overviews related work, and Finally, Sec. 9 concludes.

2 Motivating examples and preliminaries

In this section we describe an abstract cost rules (ACR for short) language [2],
which we use to formally present our cost analysis. In [2], a Java program is
automatically abstracted to this language. The abstraction guarantees that every
concrete trace has a corresponding abstract one with the same cost, but there
might be spurious abstract traces, which do not correspond to concrete ones.
Recall that our interest is in analysing ACR programs, the translation from
Java is out of the scope of this paper. We first explain the language using
some examples that we use along the paper. Then, we formally define its syntax,
semantics and the concrete notions of cost. As a notation, we refer to line number
n in a given Java (resp. ACR) program by Jn (resp. An).

Example 1. The Java code of the first example is depicted in Fig. 1 (on the left).
It implements a Stack data-structure using a linked list whose first element is
the top of the stack (field top points to this list). Method main has a loop (J14-
19) that in each iteration invokes method randPop (J15), which in turn pops an
arbitrary number of elements (J6-9), and then pushes a new element (J16). Note
that coin() at J6 non-deterministically returns true or false. Each pop operation
consumes m resources, as specified by the annotation @acquire(m) at J8, and each
push consumes 1 resource (J17). This example is based on a classical example

2



1class Stack {
2 Node top;
3

4 //@requires m >= 1
5 void randPop(int m) {
6 while( top != null && coin() ) {
7 top=top.next; //pop
8 //@acquire(m)
9 }

10 }
11

12 //@requires m >= 0
13 void main(int m) {
14 while( m > 0 ) {
15 randPop(m);
16 top = new Node(’a’,top); //push
17 //@acquire(1)
18 m = m−1;
19 }
20 }
21}

1 rpop([s,m], [s1 ])←
2 m ≥ 1,
3 s ≥ 0,
4 s1 = s.
5 rpop([s,m], [s1 ])←
6 m ≥ 1,
7 s ≥ 1,
8 acq(m),
9 s2 = s− 1,

10 rpop([s2 ,m], [s1 ]).
11

12 main([s,m], [s1 ])←
13 m = 0,
14 s1 = s,
15 main([s,m], [s1 ])←
16 m ≥ 1,
17 rpop([s,m], [s2 ]),
18 s3 = s2 + 1,
19 acq(1),
20 m1 = m− 1,
21 main([s3 ,m1 ], [s1 ]).

Fig. 1. Java code for Stack and its ACR program.

for amortised analysis [9], the only difference is that pop costs m units instead
of 1, to showcase some unique features of our analysis. These m units can be
seen as the cost of executing m iterations of a loop (which we omit).

Fig. 1 (on the right) includes the ACR version of Stack. It has been automat-
ically generated, and simplified for clarity, using the tools of [2]. A1-10 define a
procedure rpop that corresponds to randPop. It has two input parameters: s is
the size of the stack (i.e., the length of list top); and m is the value of variable
m. Note that s is an abstraction of top. It also has one output parameter s1
which corresponds to the size of the stack upon exit from randPop. Procedure
rpop is defined by means of two rules: the first one (A1-4) corresponds to the
case in which we do not enter the loop; and the second one (A5-10) corresponds
to executing one iteration and calling rpop recursively (A10) for more iterations.
The instruction s2 = s− 1 at A9 corresponds to removing an element from the
stack (J7). The translation of method main into procedure main (A12-20) is
done in a similar way. Just note that calling rpop (A17) with a stack of size s
results in a stack of size s2, and that s3 = s2 + 1 at A18 corresponds to J16.

A call main([s,m], [s1]) executes exactly m push operations, and thus, it can
execute at most s+m pop operations. Each push costs exactly 1, and each pop
at most m. Since m varies from one call to rpop to another, then s·m+ 1

2 (m2+m)
is an UBF on the resource consumption of main([s,m], [s1]). The analysis of [2]
infers the cubic UBF m3 + s·m2 +m, which is asymptotically less precise.

3



1//@requires n>=0
2void p(int n) {
3 if (n > 0) {
4 m = q(n);
5 //@release(m)
6 p(n−m);
7 //@release(m)
8 }
9}

10//@requires n>=1
11 int q(int n) {
12 int i = n/2;
13 do {
14 A x = new A();
15 B y = new B();
16 //@acquire(2)
17 i−−;
18 // [...]
19 } while(i>0 && coin());
20 return n/2 − i;
21}

1 p([n], [ ])←
2 n = 0.
3 p([n], [ ])←
4 n ≥ 1,
5 q([n], [m]),
6 rel(m),
7 n1 = n−m,
8 p([n1], [ ]),
9 rel(m).

10 l([i], [i1])←
11 i ≥ 0,
12 acq(2),
13 i1 = i− 1.

14 l([i], [i1])←
15 i ≥ 1,
16 acq(2),
17 i2 = i− 1,
18 l([i2], [i1]).
19 q([n], [m])←
20 n ≥ 1
21 i = n/2,
22 l([i], [i1]),
23 m = i− i1.

Fig. 2. Java code for the peak, and its ACR program.

Example 2. The second example is depicted in Fig. 2. We use it to explain the
notion of peak resource consumption. Method q (J10-21) receives an integer n,
executes at least 1 and at most n/2 iterations of a loop (J13-19), and returns
the number of iterations that have been performed. This loop creates 2 objects
in each iteration (J14-15). Method p executes a loop (using recursion) where
in each iteration it calls q with the current value of the loop counter n, and
then performs a recursive call where the loop counter is decremented by m (the
number of iterations that q has performed). The ACR version, depicted in Fig. 2
on the right, its relation to the Java code is as in Ex. 1. We skip details and
only comment that procedure l (A10-23) corresponds to the while loop (J13-19).
Note that the ACR includes explicit resource release instructions (A6 and A9).

A call p([n], [ ]) creates exactly 2·n objects. However, assuming that objects
of type A (resp. B) become unreachable at J5 (resp. J7), then m objects can
be garbage collected when reaching J5 (resp. J7). Thus, at any given moment
there cannot be more than n reachable objects, which means that a memory for
n objects (the peak consumption) is enough for safely executing this program.

The analysis of [2,3] infers the UBF n·(n+1)
2 which is asymptotically less precise.

In both programs of Exs. 1 and 2, the resource consumption is specified
with the annotations acq(e) and rel(e), for acquiring and releasing e resources
respectively. It should be clear that we are interested in inferring safe UBFs
assuming the given annotations, and not in inferring the annotations.

Syntax Formally, an ACR program is a set of procedures. A procedure p is
defined by a set of rules of the form p(x̄, ȳ)← b1, b2, . . . , bn where x̄ (resp. ȳ) is a
sequence of input (resp. output) parameters, and each bi is one of the following
instructions: a (linear) constraint ϕ; a procedure call q(w̄, z̄); or a resource con-
sumption instruction acq(e) or rel(e) where e is an arithmetic expression that
evaluates to a non-negative value. In the rest of the paper we assume a given
program P (to avoid repeating “for a given program P”).

4



1©
q(x̄, ȳ)← b̄′ ∈ P

〈ψ, q(x̄, ȳ) · b̄〉 0
 〈ψ, b̄′ · b̄〉

2©
ψ∧ϕ 6|= false

〈ψ,ϕ · b̄〉 0
 〈ψ ∧ ϕ, b̄〉

3©
eval(e, ψ) = v ≥ 0

〈ψ, acq(e) · b̄〉 v
 〈ψ, b̄〉

4©
eval(e, ψ) = v ≥ 0

〈ψ, rel(e) · b̄〉 v
 〈ψ, b̄〉

Fig. 3. Semantics of ACR programs

Semantics A state s takes the form 〈ψ, b̄〉, where b̄ is a sequence of instructions
pending for execution, and ψ is a constraint over vars(b̄) and possibly other ex-
istentially quantified variables. The store ψ imposes relations between variables
(e.g., x = 1, x > y). An execution starts from an initial state 〈x̄ = v̄, p(x̄, ȳ)〉,
where v̄ is a sequence of integers, which is then rewritten according to the rules
in Fig. 3. These rules define a transition relation s1

v
 s2, meaning that there is

a transition from s1 to s2 that consumes v resources. Rule 1© handles procedure
calls, it (non-deterministically) selects a rule from P that matches the call, and
adds its instructions b̄′ to the sequence of pending instructions. Variables in b̄′

(except x̄ ∪ ȳ) are renamed such that they are different from vars(b̄) ∪ vars(ψ).
Rule 2© handles constraints by adding them to the store, if the resulting state
is satisfiable. Rules 3©- 4© handle resource consumption. They evaluate e to a
non-negative value v, and label the corresponding transition with v or −v.

The execution stops when no rule is applicable, which happens when the
execution reaches (1) a final state 〈ψ′, ε〉 where ε is the empty sequence; or
(2) a blocking state 〈ψ′, ϕ · b̄〉 where ϕ ∧ ψ′ |= false. A trace t is a finite or
infinite sequence of states in which there is a valid transition between each pair
of consecutive states. Traces that end in a final state and infinite traces are
called complete. Namely, we exclude traces that end in a blocking state. We
write s1

∗
 s2 for a finite trace starting from s1 and ending at s2.

Definition 1 (trace cost). Given a finite trace t, its net-cost τ̃(t) is the sum
of the cost labels on its transitions. Given a complete trace t, its peak-cost τ̂(t)
is defined as max{τ̃(t′) | t′ is a prefix of t}.

Note that the peak-cost is always non-negative since the empty trace is a prefix
of any trace t. However, the net-cost can be also negative. This is because we do
not require that resources are acquired before they are released. This is useful for
modeling consumer/producer programs, where the produced data can be viewed
as resources. Though, we do not address such scenarios in this paper.

Definition 2 (procedure cost). Given a procedure p with m input and n out-
put parameters, its net-cost π̃(p) and peak-cost π̂(p) are defined as

π̃(p)={〈v̄1, v̄2, τ̃(t)〉 | v̄1 ∈ Zm, v̄2 ∈ Zn, t ≡ 〈x̄ = v̄1, p(x̄, ȳ)〉 ∗ 〈ψ, ε〉, ȳ = v̄2 |= ψ}
π̂(p) ={〈v̄1, τ̂(t)〉 | v̄1 ∈ Zm, t is a complete trace and starts in 〈x̄ = v̄1, p(x̄, ȳ)〉}

5



Intuitively, the net-cost tells what is the balance between the resources that have
been acquired and released during the execution of p. Note that it only considers
traces that terminate in a final state. The peak-cost tells what is the maximum
amount of resources that a program can hold (i.e., acquired but not released
yet) at any given state during the execution. Note that Def. 2 does not consider
traces that terminate in a blocking state. This is because they do not correspond
to valid traces in the Java program, and obtained due to the abstraction.

We say that C ≥ 0 resources are enough for safely executing p(v̄, ȳ) without
running out of resources if C ≥ max{c | 〈v̄, c〉 ∈ π̂(p)}. Note that for terminating
programs that only acquires resources, one could also use C ≥ max{c | 〈v̄, v̄′, c〉 ∈
π̃(p)}. This is the case for example of the Stack program. Our main interest is
in inferring UBFs on the peak-cost of each procedure, however, this will require
inferring first UBFs on the net-cost of each procedure p as we will see later.

3 Shortcomings of the classical approach to cost analysis

As explained in Sec. 1, the classical approach to cost analysis first transforms
a given program into a set of CRs, and then solves these CRs into UBFs. The
following CRs are automatically generated by [2] for the Stack program of Fig. 1

(1) rpop(s,m) = 0 {m ≥ 1 ∧ s ≥ 0}
(2) rpop(s,m) = m+rpop(s2 ,m) {m ≥ 1 ∧ s ≥ 1 ∧ s2 = s− 1}
(3) main(s,m) = 0 {m=0 ∧ s ≥ 0}
(4) main(s,m) = 1+rpop(s,m)+main(s3 ,m1 ) {m≥1∧s3=s2+1∧m1=m−1∧s≥s2≥0}

Eqs. (1)-(2) capture the cost of executing procedure rpop on the input s and
m, and Eqs. (3)-(4) capture the cost of executing procedure main on the input
s and m. Eq. (4) states that when m ≥ 1, the cost of executing main(s,m) is
1 (for the push operation); plus the cost of executing rpop(s,m); plus the cost
of executing main(s3 ,m1 ). The constraints on the right side of each equation
define the applicability conditions for that equation (e.g., m ≥ 1) and relations
between its variables (e.g., s3 = s2 + 1). Note that the above CRs have a similar
structure to the corresponding ACR program of Fig. 1.

A fundamental difference between ACRs and CRs is that the latter do not
include the output parameters. For example, in Eq. (4), the output parameter s2
in the call to rpop has been removed, and the constraint s ≥ s2 ≥ 0 (underlined
in Eq. (4)) has been added to indicate that, upon exit from rpop, the value of s2
is non-negative and smaller than or equal to s. Note that this is the most precise
relation between the input and the output parameters of rpop. This information
is obtained by value analysis (at the level of the ACR program) that infers
relations between the input and the output parameters [6].

CRs can be evaluated (they are similar to a functional program with con-
straints) to obtain the cost of a corresponding procedure. E.g., main(v1, v2) can
be evaluated to obtain the cost of executing main([v1, v2], [y]). Clearly, due to
the non-determinism (e.g., in the constraints), the evaluation of main(v1, v2)
might result in several possible values. Soundness requires that the cost of any

6



trace for main([v1, v2], [y]) is a possible result for main(v1, v2). Nevertheless, the
interest is not in evaluating CRs, since it is like executing the ACR program,
but rather in statically computing UBFs that bound their results. For example,
the solver of [1] infers the UBF m3 + m2·s + m for main(s,m). Intuitively, it
does this as follows: (a) it infers the maximum number of iterations that main
can perform, which is m; (b) it infers a worst-case behaviour for all iterations,
which is 1 + (s + m)·m since the stack can have at most s + m elements; and
(c) it multiplies (a) and (b) to get the above UBF.

It is known that, in practice, cost analysers that are based on CRs fail to
obtain the desired UBFs for programs like those in Fig. 1 and 2. Moreover, as
yet, it was assumed that this failure is due to (i) the way CRs are solved into
UBFs; and (ii) the imprecision in the value analysis which is used to infer input-
output relations (as s ≥ s2 ≥ 0 above). It was also assumed that, in principle,
one could develop more sophisticated techniques for solving CRs [4] or use more
precise value analysis (e.g., non-linear) that would obtain precise UBFs for such
programs. In what follows we show that these assumptions are not true. In
particular, that Eqs. (3)-(4) in the above CRs do not model precisely the cost
of procedure main, and thus any sound UBF for main would be imprecise.

Let us consider an evaluation of main(s,m) in the above CRs. It is easy
to see that, using Eq. (4), we can choose s2 = s and thus get main(s,m) =
1 +rpop(s,m)+main(s +1 ,m−1 ). Then, in the same way, we can get main(s +
1 ,m − 1 ) = 1 + rpop(s + 1 ,m − 1 ) + main(s + 2 ,m − 2 ), and so on for each

main(s +i ,m−i). Thus, an evaluation of main(s,m) admits
∑m−1

i=0 (1 +rpop(s +
i ,m − i)) as a possible result. Since rpop(s,m) can always evaluate to s·m, the

above sum can be reduced to u(s,m) = (m−1)
6 ·(m2 +3 ·s·m +m +6 ). This means

that any UBF f(s,m) for Eqs. (3)-(4) must satisfy ∀s,m : f(s,m) ≥ u(s,m),
which is asymptotically less precise than the UBF from Ex. 1. Thus, we conclude
that the imprecision is not related to how CRs are solved, and not to imprecision
in the value analysis since the input-output relation s ≥ s2 ≥ 0 that we used
above is the most precise one.

The actual reason for this imprecision is that, in Eq (4), the value for s2, i.e.,
the output of rpop, and the cost of rpop(m, s) can be chosen independently. For
example, in the original program it is not possible that s2 = s and that the cost
of rpop(s,m) is s·m, in which case s2 must be 0. However, in the above CRs this
scenario is possible. This relation cannot be captured if the UBFs are defined
only in terms of the input parameters, an observation that lead us to the idea
of defining UBFs in terms of both input and output parameters.

Example 3. Consider again procedure rpop([s,m], [s ′]) of Fig. 1. The CRs-based
approach infers the UBF s·m for rpop, which depends only on the input param-
eters s and m. This indeed is the most precise UBF if only input parameters are
allowed, since there exists an execution in which we remove all stack elements.
However, if we allow the use of output parameters also, then (s−s′)·m describes
the exact cost of rpop: s− s′ is the number of elements that have been removed
from the stack, and removing each one costs m.

7



At this point, the use of output parameters to define UBFs might look in-
appropriate. This is because UBFs are usually used to statically estimate the
amount of resource required for safely executing the program. However, requir-
ing information on the output parameters in order to evaluate a given UBF is
like actually requiring to execute the program. This is not really the case because
of the following two reasons. First, when inferring UBFs on the net-cost, we dis-
tinguish between the entry procedure (e.g., main), and intermediate procedures
(e.g., rpop). The UBF for the entry procedure will (almost always) be definable
in terms of its input parameters only, however, in order to infer a precise UBF for
the entry procedure, we need UBFs for the intermediate procedures in terms of
input and output parameters. Second, UBFs on the peak-cost, which are the im-
portant ones for safety, will use only input parameters, however, inferring them
will make use of net-cost UBFs that depend on input and output parameters.

4 Inference of net-cost

In this section we describe our approach for inferring UBFs on the net-cost of
the program’s procedures, which is based on defining the cost in terms of the
input and output parameters. We show that it can infer the precise cost of the
Stack example of Fig. 1. In Sec. 5, we extend it to infer UBFs on the peak-cost.

Definition 3 (safe net-cost UBFs). Let p be a procedure with n input and m
output parameters. A function f̃p : Zn+m 7→ Q is a safe UBF on the net-cost of

p iff for any 〈v̄1, v̄2, c〉 ∈ π̃(p) it holds f̃p(v̄1, v̄2) ≥ c.

Intuitively, a function f̃p is an UBF on the net-cost of p if for any possible
execution that starts with input v̄1, terminates in a final state with an output
v̄2, and have net-cost c, it holds that f̃p(v̄1, v̄2) ≥ c. Clearly, CRs cannot be used
to infer such UBFs, since they do not use the output parameters.

In what follows we develop a novel approach for inferring such UBFs that is
based on the use of quantifier elimination. We present our approach in two steps:
(1) verification: in which we are given a set of candidate UBFs on the net-cost
of each procedure, and our interest is to verify that these functions are safe, i.e.,
satisfy Def. 3; and (2) inference: in which we are given a set of template UBFs,
and our interest is to instantiate the templates parameters into safe UBFs.

Verification of UBFs on the net-cost Let us start by explaining the basics of
the verification step. Assume that we have a procedure p defined by the following
single rule

p(x̄, ȳ)← acq(e), q1(x̄1, ȳ1), . . . , qn(x̄n, ȳn)

and that we have a set of safe UBFs f̃q1 , . . . , f̃qn on the net-cost of q1, . . . , qn. To

verify that a given f̃p is a safe UBF on the net-cost of p, it is sufficient to check

that the condition f̃p(x̄, ȳ) ≥ e+ f̃q1(x̄1, ȳ1)+ · · ·+ f̃qn(x̄n, ȳn) holds for any values
of the program variables. Applying this principle to all rules of the program, it
is possible to verify the safety of several candidate UBFs simultaneously.

8



Given a set F̃ of candidate UBFs on the net-cost that includes a function
f̃p : Zn+m 7→ Q for each procedure p ∈ P , we build a verification condition (VC

for short) whose validity implies the safety of each f̃p ∈ F̃ . The net-cost VC is
generated from the program rules as follows.

Definition 4 (Net-cost VC). Given a set F̃ of candidate UBFs, for each rule
r ≡ p(x̄, ȳ)← b1, b2, . . . , bn, we generate a condition ψr as follows:

1. let ϕ be the conjunction of all constraints in r;
2. let the net-cost b̃ of an instruction b be defined as follows: if b ≡ qi(x̄i, ȳi)

then b̃ ≡ f̃q(x̄i, ȳi), if b ≡ acq(e) then b̃ ≡ e, if b ≡ rel(e) then b̃ ≡ −e, and

if b is a constraint then b̃ ≡ 0;
3. let ψr ≡ ∀w̄ : ϕ⇒ f̃p(x̄, ȳ) ≥ b̃1 + · · ·+ b̃n where w̄ = vars(r).

Then, the net-cost VC is defined as Ψ(F̃ ) = ∧r∈Pψr.

Note that ψr is the condition we explained before, but taking into account the
constraints ϕ of the rule r which define the context in which this condition holds.

Example 4. Consider the program in Fig. 1, and let f̃r(s,m, s1) and f̃m(s,m, s1)
be candidate UBFs on the net-cost of rpop([s,m], [s1 ]) and main([s,m], [s1]),
respectively. The verification condition for this program w.r.t. F̃ = {f̃r(s,m, s1),
f̃m(s,m, s1)} is Ψ(F̃ ) = ψr1 ∧ ψr2 ∧ ψr3 ∧ ψr4 where:

ψr1 ≡ ∀w̄1 : m ≥ 1 ∧ s ≥ 0 ∧ s1 = s⇒ f̃r(s,m, s1) ≥ 0

ψr2 ≡ ∀w̄2 : m ≥ 1 ∧ s ≥ 1 ∧ s2 = s− 1⇒ f̃r(s,m, s1) ≥ m+ f̃r(s2,m, s1)

ψr3 ≡ ∀w̄3 : m = 0 ∧ s1 = s ∧ s ≥ 0⇒ f̃m(s,m, s1) ≥ 0

ψr4 ≡ ∀w̄4 :
m ≥ 1 ∧ s3 = s2 + 1∧
m1 = m− 1 ∧ s ≥ 0

⇒ f̃m(s,m, s1) ≥ f̃r(s,m, s2) + 1 + f̃m(s3,m1, s1)

The condition ψr4 , for example, corresponds to the second rule of procedure
main. It states that f̃m(s,m, s1) is a safe UBF if it is greater than the cost of
the call to rpop, i.e., f̃r(s,m, s2), plus 1 for the push operation, plus the cost of
the recursive call to main, i.e, f̃m(s3,m1, s1). This condition should hold for any
values that satisfy the constraint m ≥ 1∧ s3 = s2 + 1∧m1 = m− 1∧ s ≥ 0, i.e.,
in the context of the second rule. Let us consider now the validity of Ψ(F̃ ) for
the following possible concrete definitions of f̃r(s,m, s1) and f̃m(s,m, s1)

(a) f̃m(s,m, s1) = s·m+ 1
2 (m2 +m), and f̃r(s,m, s1) = (s− s1)·m

(b) f̃m(s,m, s1) = s·m+ 1
2 (m2 +m), and f̃r(s,m, s1) = s·m

Using (a), we get that Ψ(F̃ ) is a valid formula. Note that here we use the optimal
UBFs for main and rpop. Using (b), we get that Ψ(F̃ ) is invalid, though both
UBF are safe. This is because, in this case, using s·m as an UBF for rpop is not
enough for proving that s·m+ 1

2 (m2 +m) is an UBF for main.

Theorem 1. Given a set F̃ of candidate UBFs, if |= Ψ(F̃ ) then F̃ is safe.

Note that checking the validity of Ψ(F̃ ) is a first order problem that can be
solved using SMT solvers (see Sec. 7).

9



Inference of UBFs on the net-cost For many applications it is useful to
infer the set F̃ , instead of verifying the correctness of a given one. This can be
formulated as seeking a set F̃ of UBFs for which Ψ(F̃ ) is valid, which means
solving the formula ∃f̃1 f̃2 . . . f̃k : Ψ(F̃ ). However, this is a second order problem
and solving it in general is impractical. A common approach to avoid solving a
second order formula is the use of template functions that restrict the form of
functions that we are looking for. A template for f̃p(x̄, ȳ) is a function with a
fixed structure, defined over the variables x̄ ∪ ȳ, and some unknown template
parameters.

Example 5. The following are UBF templates for procedure main and rpop:

1. f̃r(s,m, s1) = λ1·s·m+ λ2·s1·m+ λ3·s+ λ4·m+ λ5·s1 + λ0
2. f̃m(s,m, s1) = µ1·s·m+ µ2·m2 + µ3·s1·m+ µ4·s+ µ5·m+ µ6·s1 + µ0

The variables λ̄ and µ̄ are the template parameters.

Assuming that F̃ is a set of candidate UBF templates, and that P is the set of
template parameters, the inference problem is reduced to solving the first order
problem ∃P : Ψ(F̃ ). This can be solved by combining quantifier elimination and
SMT solvers (see Sec. 7). The idea behind UBF templates is that later we will
assign values to the template parameters such that the resulting UBFs are safe.

Note that in Ex. 5 we have chosen simple templates just to keep the technical
details in the next examples simple. We could also choose a cubic polynomial
template, and later try to find an instantiation such that the parameters of the
cubic parts are assigned 0 (in order to get the quadratic UBF). In principle,
any template UBF can be used as far as it uses arithmetic expressions that are
supported by the quantifier elimination procedure (see Sec. 7).

Example 6. Using the templates of Ex. 5 in the VC of Ex. 4, we get a VC Ψ(F̃ ) in
which the template variables λ̄∪ µ̄ are free variables. Eliminating the universally
quantified variables, we get a formula ξ over λ̄ ∪ µ̄ that is a conjunction of the
following equalities and inequalities:

λ1 ≥ 1 λ2 = −λ1 λ1 + λ3 ≥ 1 µ6 ≥ λ5 − λ1 2·µ2 ≥ λ1 + λ4
λ4 ≥ 0 µ1 = λ1 λ3 + λ5 ≥ 0 µ4 = λ1 − λ5 µ5 + µ2 ≥ µ4 + λ0 + λ4 + 1
µ0 ≥ 0 µ3 = 0 λ0 + λ4 ≥ 0 λ1 ≥ λ3 + λ5

Each model of ξ assigns values to the template parameters λ̄ and µ̄ such that
f̃r(s,m, s1) and f̃m(s,m, s1) of Ex. 5 are safe UBFs for rpop and main respec-
tively. For example, it is easy to check that

µ1 = 1, µ2 = µ5 =
1

2
, µ4 = µ6 = µ0 = 0, λ1 = 1, λ2 = −1, λ3 = λ4 = λ5 = 0

is a model of ξ, which corresponds to the desired UBFs s·m + 1
2 (m2 + m) and

(s − s1)·m for procedures main and rpop respectively. It is worth noting the
inequalities λ1 ≥ 1 and λ2 = −λ1, meaning that any UBF for rpop must involve
both s·m and s1·m (recall that s1 is its output parameter). If we analyse rpop
alone this would not be the case, and UBFs like s·m would be possible, however,
this is essential in order to obtain the quadratic UBF for main.

10



It is important to note that once the constraints over the template parame-
ters (i.e., ξ in the above example) are generated, then one should try to find a
model of ξ that results in a tight UBF. This process usually depends on the kind
of expression used in the templates. For example, in the case of polynomial tem-
plates one could try to first set the parameters of the higher degree components
to 0, etc. Another possibility is to start from a polynomial with low degree, and
increment it gradually until an UBF is found.

5 Inference of peak-cost

When a given program only acquires resources, the net-cost analysis can be used
to estimate the amount of resources required for safely executing the program.
This, however, is not the case when the program can also release resources.
For example, the net-cost of the program in Fig 2 is 0, since all resources are
released either at J5 or J7, however, it requires at least n+ 1 resources in order
to execute correctly. In order to estimate the amount of resources required for
safely executing such programs, what we need is the peak-cost, which is the
maximum amount of resources that a program can hold simultaneously.

Definition 5 (safe peak-cost UBFs). Let p be a procedure with n input pa-

rameters. A function f̂p : Zn 7→ Q is a safe UBF on the peak-cost of p, iff for

any 〈v̄1, c〉 ∈ π̂(p) it holds f̂p(v̄1) ≥ c.

Our approach for inferring UBFs on the peak-cost is done in two steps,
verification and inference, similar to the case of net-cost.

Verification of UBFs on the peak-cost Let us start by explaining the basics
of the verification step. Assume that we have a procedure p defined by the
following single rule

p(x̄, ȳ)← q1(x̄1, ȳ1), q2(x̄2, ȳ2)

and assume that we have UBFs f̂q1 and f̂q2 on the peak-cost of q1 and q2 re-

spectively. We are interested in verifying that a given function f̂p(x̄) is indeed
a safe UBF on the peak-cost of p. When executing p, the peak-cost might be
reached while executing q1 or q2. If it is reached during q1, then the peak-cost
of p is like that of q1, and if it is reached during q2, then the peak-cost of
p is like that of q2 plus the amount of resources that p holds before calling
q2. Now note that this last amount is exactly the net-cost of q1. Thus, in or-
der to verify the correctness of f̂p it is sufficient to check that the condition

f̂p(x̄) ≥ f̂q1(x̄1)∧ f̂p(x̄) ≥ f̃q1(x̄1, ȳ1) + f̂q2(x̄1) holds for any values of the program

variables, where f̃q1(x̄1, ȳ1) is a safe UBF on the net-cost of q1. Applying this
principle to all rules of the program, it is possible to verify the correctness of
several UBFs simultaneously.

Given a set F̂ of candidate UBFs on the peak-cost, which includes a function
f̂p : Zn 7→ Q for each procedure p ∈ P , we want to build a VC whose validity

11



implies that each f̂p is indeed a safe UBF. For this, we assume a given set F̃ of

safe UBFs on the net-cost of each procedure (later we will see that F̂ and F̃ can
be verified or inferred simultaneously). The peak-cost VC, denoted by Φ(F̃ , F̂ ),
is generated from the program rules as we explain next.

Definition 6 (Peak-cost VC). Let F̂ be a set of candidate UBFs on the peak-
cost, and F̃ be a set of safe UBFs on the net-cost. For each rule r ≡ p(x̄, ȳ) ←
b1, b2, . . . , bn, we generate a condition φr according to the following steps

1. let b`1 , . . . , b`k , with 1 ≤ `1 < · · · < `k ≤ n, be all elements of the body that
are of the form q`i(x̄`i , ȳ`i) or acq(e). We assume there is at least one such
element, otherwise we add acq(0) at the end of r;

2. let ϕi be the conjunction of all constraints in r up to b`i ;

3. the peak-cost b̂`i of an instruction b`i is defined as follows: if b`i ≡ q`i(x̄`i , ȳ`i)
then b̂`i ≡ f̂q(x̄`i), and if b`i ≡ acq(e) then b̂`i ≡ e;

4. let φr be the formula below where w̄ = vars(r) and b̃j are as in Def. 4.

φr ≡ (∧ki=1∀w̄ : ϕi ⇒ f̂p(x̄) ≥ (Σ`i−1
j=1 b̃j) + b̂j))︸ ︷︷ ︸

A

∧ (∀w̄ : ϕ1 ⇒ f̂p(x̄) ≥ 0))︸ ︷︷ ︸
B

Then, the peak-cost VC is Φ(F̃ , F̂ ) = ∧r∈Pφr.

Let us explain the parts of φr: (A) this part generalises the intuition that we have
explained before. Intuitively, the instructions b`1 , . . . , b`k are those that might
increase the resource consumption, thus, the peak-cost of p should be greater
than or equal to the peak-cost b̂`i of each b`i plus the resources

∑`i−1
j=1 b̃j that

p holds before executing b̂`i (note the use of the net-cost b̃j); and (B) this part
requires that the peak function is non-negative. Note that in principle we should
require ∀w̄ : ϕi ⇒ f̂p(x̄) ≥ 0 for all i ∈ [1 . . . k], however, requiring B is enough
since ϕi ⇒ ϕ1 for all i ∈ [2 . . . k]. In the examples below we sometimes omit the
second part B when it is redundant.

Example 7. The peak-cost VC for the program of Fig. 2, w.r.t. (some generic)
F̃ and F̂ , is Φ(F̃ , F̂ ) = φr1 ∧ · · · ∧ φr5 where

φr1 ≡ ∀w̄1 : n = 0⇒ f̂p(n) ≥ 0

φr2 ≡ (∀w̄2 : n ≥ 1⇒ f̂p(n) ≥ f̂q(n))∧
(∀w̄2 : n ≥ 1 ∧ n1 = n− 1⇒ f̂p(n) ≥ f̃q(n,m)−m+ f̂p(n1))∧
(∀w̄2 : n ≥ 1⇒ f̂p(n) ≥ 0)

φr3 ≡ ∀w̄3 : i ≥ 0⇒ f̂l(i) ≥ 2

φr4 ≡ (∀w̄4 : i ≥ 1⇒ f̂l(i) ≥ 2) ∧ (∀w̄4 : i ≥ 1 ∧ i2 = i− 1⇒ f̂l(i) ≥ 2 + f̂l(i2))

φr5 ≡ (∀w̄5 : n ≥ 1 ∧ i = n
2
⇒ f̂q(n) ≥ f̂l(i)) ∧ (∀w̄5 : n ≥ 1 ∧ i = n

2
⇒ f̂q(n) ≥ 0)

Formula φr2 , for example, corresponds to the second rule of procedure p. It
consists of 3 subformulas, the first two are the A-part and the last is the B-part.
In the second, note the expression f̃q(n,m)−m which is the amount of resource

that p holds before the recursive call to p. Using f̃q(n,m) = 2·m, f̂p(n) = n+ 2,

12



f̂q(n) = n+2, and f̂l(i, i1) = 2·i1 +2, it is possible to verify that Φ(F̃ , F̂ ) is valid.

However, using another safe UBF on the net-cost of q, e.g., f̃q(n,m) = n + 2,

then Φ(F̃ , F̂ ) is not valid. Indeed, 2·m is the most precise UBF on the net-cost
of q, and is the one needed to verify the above UBF on the peak-cost of p.

Theorem 2. Given a set F̃ of safe UBFs on the net-cost (Th. 1), and a set F̂
of candidate UBFs on the peak-cost, if |= Φ(F̃ , F̂ ), then F̂ is safe.

As in the case of Ψ(F̃ ) cost, checking the validity of Φ(F̃ , F̂ ) reduces to a
satisfiability problem of first order logic.

Inferring UBFs on the peak-cost Our main interest is in inferring F̂ rather
than verifying the correctness of a given one. This can be done using template
UBFs as the case of net-cost. However, an important point is that instead of
assuming a given set F̃ of UBFs on the net-cost, we can infer it at the same time
as F̂ , simply by considering the VC Φ(F̃ , F̂ ) ∧ Ψ(F̃ ). This is actually essential
in practice, since as we have seen in Ex. 7 not any safe UBF on the net-cost can
be used to infer the peak-cost. Inferring them simultaneously will force choosing
the required one.

Example 8. Let F̃ and F̂ be defined by the following linear UBF templates:

f̃p(n) = λ1·n+ λ2 f̃q(n,m) = λ3·n+ λ4·m+ λ5 f̃l(i, i1) = λ6·i+ λ7·i1 + λ8
f̂p(n) = µ1·n+ µ2 f̂q(n) = µ3·n+ µ4 f̂l(i) = µ5·i+ µ6

and let Φ(F̃ , F̂ ) be the VC of Ex. 7 using these F̃ and F̂ . Moreover, let Ψ(F̃ ) =
ψr1 ∧ · · · ∧ ψr5 be the corresponding net-cost VC using the above F̃ , where

ψr1 ≡ ∀w̄1 : n = 0⇒ f̃p(n) ≥ 0

ψr2 ≡ ∀w̄2 : n ≥ 1 ∧ n1 = n− 1⇒ f̃p(n) ≥ f̃q(n,m)−m+ f̃p(n1) +m

ψr3 ≡ ∀w̄3 : i ≥ 0 ∧ i1 = i− 1⇒ f̃l(i, i1) ≥ 2

ψr4 ≡ ∀w̄4 : i ≥ 1 ∧ i2 = i− 1⇒ f̃l(i, i1) ≥ 2 + f̃l(i2, i1)

ψr5 ≡ ∀w̄5 : n ≥ 1 ∧ i = n
2
,m = i− i1 ⇒ f̃q(n,m) ≥ f̃l(i, i1)

Then, applying quantifier elimination on Φ(F̃ , F̂ ) ∧ Ψ(F̃ ) to eliminate the uni-
versally quantified variables, we get a formula ξ over the template parameters
that is a conjunction of the following equalities and inequalities

λ2 ≥ 0 λ3 = 0 λ8 ≤ λ5 ≤ 0 λ1 = λ4 − 2 λ6 + λ8 ≥ 2
λ6 ≥ 2 µ6 ≥ 2 µ1 = λ1 + 1 λ4 = λ6 = −λ7 2·µ6 + µ5 ≤ 2·µ4 + 2·µ3

µ5 ≥ 2 µ2 ≥ 0 2·µ3 ≥ µ5 λ6 ≥ µ3 + 1 µ1 + µ2 ≥ µ3 + µ4

The models of ξ define possible instantiations F̃ and F̂ such that they are safe
UBFs. E.g., there is a model of ξ with µ1 = 1 and µ2 = 2 which defines the UBF
n + 2 on the peak-cost of p. Note the constraint λ3 = 0, which means that the
UBF on the net-cost of q must not depend on the input n (in Ex. 7 we failed with
f̃q(n,m) = n+ 2). This demonstrates how the peak-cost VC affects the net-cost
one. Note that, for p, we have inferred the UBF n+ 2 and not the optimal one
n+ 1 because the quantifier elimination is done over R and not over Z.

13



Example 9. Let us finish with an example of a non-terminating program. Con-
sider the following (contrived) program, which is defined by a single rule

p([n], [y1])← n ≥ m ≥ 0, acq(m), n1 = n−m, p([n1], [y1]).

Procedure p receives a non-negative integer n, non-deterministically chooses a
non-negative value m ≤ n, acquires m resources, and then calls p recursively
with n−m. The peak-cost of this program is exactly n, since any infinite trace
cannot acquire more than n resources and there are infinite traces that acquire
exactly n. The peak-cost VC for this program is

(∀n,m : n ≥ m ≥ 0⇒ f̂p(n) ≥ m) ∧ (∀n,m : n ≥ m ≥ 0⇒ f̂p(n) ≥ m+ f̂p(n1)

Assuming the template UBF f̂p(n) = λ1·n+λ2, the elimination of the universally
quantified variables result in the formula ξ = λ1 ≥ 1 ∧ λ2 ≥ 0. Since λ1 = 1 and
λ2 = 0 is a model of ξ, then f̂p(n) = n is a safe UBF.

6 Relation to Amortised Cost Analysis

In this section we discuss an interesting relation that we have observed between
UBFs that are defined in terms of both input and output parameters, and the
notion of potential functions used in the context of amortised cost analysis. This
may provide a semantics-based explanation to why amortised analysis can obtain
more precise UBFs.

A potential function, in the context of an ACR, is a function that maps a
given state to a non-negative rational number, which is called the potential of the
state. This potential can be interpreted as the amount of resources available in
the given state. An automatic amortised cost analysis [15] assigns to each proce-
dure p(x̄, ȳ) two potential functions: input Pp(x̄), and output Qp(ȳ). Intuitively,
the input potential Pp(x̄) must be large enough to pay for the cost of executing
p(x̄, ȳ), and, upon exit, leaving at least Qp(ȳ) resources to be consumed later.
Thus, if c is the net-cost of p, then Pp(x̄) ≥ c+Qp(ȳ) must hold. This later ex-
pression can be rewritten as Pp(x̄)−Qp(ȳ) ≥ c, which means that Pp(x̄)−Qp(ȳ)
is an UBF on the net-cost of p, but also is an UBF that uses input and the
output parameters. Thus, the above potential functions are in principle UBFs
as defined in Def. 3, however, they are just a special case since Pp(x̄) − Qp(ȳ)
does not allow using, for example, expressions like s1·m.

We have tried to analyse (a functional version of) the Stack example using
the amortised analysis of [15], which uses the above notion of potential func-
tions. The analysis failed to obtain the expected quadratic UBF, and instead,
it reported a cubic UBF. This failure confirms that it is essential to define the
output potential for rpop as s1·m, which cannot be defined using the above kind
of potential functions. Note that this should not be interpreted as a fundamental
limitation of [15], since their underlying machinery can be easily adapted to sup-
port potential functions of this form. In addition, the above discussion should
be considered only in the context of the ACR language, since amortised analysis
has many other features that goes beyond the ACR language.

14



7 Implementation and Experiments

A prototype implementation of our analysis is available at http://costa.ls.

fi.upm.es/acrp. It receives as input an ACR program and a set of template
UBFs. Then, it generates the VCs described in Secs. 4 and 5 as a Reduce
script [20], executes the script to eliminate the universally quantified variables,
and finally outputs the template parameters constraints in SMT2-LIB format,
which can be then solved using off-the-shelf SMT solvers.

For the quantifier elimination, the Reduce script uses the Redlog pack-
age [11] with the theory of real closed fields. This theory allows using a wide
range of template UBFs, such as multivariate polynomial, max and min opera-
tions, etc. As done in [19], Redlog can be switched to use Slfq [7], which is
a formula simplifier for the theory of real closed fields. Using Slfq significantly
reduces the size of the template parameters constraints, and thus improves the
overall performance. For solving the template parameters constraints we have
used Z3 [21], employing the logic of non linear real arithmetic (QF NRA). Cur-
rently, we only ask the SMT solver for a satisfying assignment, which in turn
instantiate the templates to safe UBFs. Looking for an assignment that gives
the tightest UBFs is left for future work.

We have applied the analyser on small examples collected from cost analysis
literature. All are available in the above address. For these examples we obtained
the expected precise UBFs. Unfortunately, being based on real quantifier elimi-
nation, our procedure does not yet scale for large programs. In a future work we
plan to explore patterns of ACR programs for which (a variation of) the analysis
scales, e.g., for the case of the multivariate polynomials of [15].

8 Related Work

Static cost analysis dates back to the seminal work of Wegbreit [22]. Recently
it has received a considerable attention which resulted in several cost analysers
for different programming languages [2,10,12,15]. The research in this paper is
mostly related to [2] and [15], in the sense that our research was motivated by
the limitations of [2], and our solution turned to have common ideas with of [15]
as we have explained in Sec. 6. When comparing [15], the advantage of our
analysis is in that it has a more general notion of potential functions, it is not
limited to polynomial templates, and can handle variables with negative values.
However, unlike ours, their techniques can handle data-structures by assigning
potentials to its parts, and their tool is reasonably scalable and performs very
well in practice.

Our peak-cost constraints are similar to those of [3], they were used for infer-
ring memory consumption in the presence of garbage collection. The limitations
of CRs have been considered also in [4], but from a different perspective. Solving
CRs using template function and real quantifier elimination has been consid-
ered before in [5]. However, it cannot handle the limitations we pointed out in
this paper, and cannot handle non-terminating programs. Also [13,23] deal with

15

http://costa.ls.fi.upm.es/acrp
http://costa.ls.fi.upm.es/acrp


similar problems, however, they cannot handle the limitation described in this
paper, and cannot handle non-terminating programs. Real quantifier elimination
has been used for program verification in [8,16,18].

9 Conclusions

In this paper we have studied well known limitations of cost analysis approaches
that are based on the use of CRs. We have shown that, unlike it was assumed
so far, the reason for these limitations is that CRs ignore the output values of
procedures. In particular, we have shown that there are programs whose cost
cannot be modeled precisely using CRs. In order to overcome these limitations,
we have defined the notion of UBFs that use both input and output parameters,
and developed a novel approach for cost analysis that is based on this kind
of UBFs. Interestingly, we have found a relation between this kind of UBFs
and potential functions that are used in automatic amortised cost analysis [15],
which might give an alternative explanation to why amortised analysis (of ACR
programs) can be more precise than the classical approach.

Starting from template UBFs, our analysis generates a verification condition
over these templates in which the program variables are universally quantified.
Eliminating these variables using quantifier elimination tools results in a (pos-
sibly non-linear constraint) whose models define possible instantiations for the
templates such that they are safe UBFs. An important feature of approach is
that it can be used for inferring lower-bounds (for terminating programs) with
minimal changes: just replacing ≥ by ≤ in the VC, and, in addition, ∧ by ∨ in
each peak-cost condition φr. Due to lack of space we skipped the details. We
have also reported on a preliminary implementation and its evaluation on small
examples. For future work, we would like to find some special cases of ACR
program for which the analysis can scale to large programs.

Acknowledgements This work was funded in part by the Information &
Communication Technologies program of the European Commission, Future
and Emerging Technologies (FET), under the ICT-231620 HATS project, by
the Spanish Ministry of Science and Innovation (MICINN) under the TIN-
2008-05624 and PRI-AIBDE-2011-0900 projects, by UCM-BSCH-GR35/10-A-
910502 grant and by the Madrid Regional Government under the S2009TIC-
1465 PROMETIDOS-CM project. Diego Alonso is supported by the UCM PhD
scholarship program.

References

1. Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-Form Up-
per Bounds in Static Cost Analysis. Journal of Automated Reasoning, 46(2):161–
203, February 2011.

16



2. Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanar-
dini. Cost Analysis of Object-Oriented Bytecode Programs. Theoretical Computer
Science, 413(1):142–159, 2012.

3. Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Parametric Inference
of Memory Requirements for Garbage Collected Languages. In ISMM, pages 121–
130, New York, NY, USA, 2010. ACM.

4. Elvira Albert, Samir Genaim, and Abu Naser Masud. More precise yet widely
applicable cost analysis. In VMCAI, volume 6538 of LNCS, pages 38–53. Springer,
January 2011.

5. Hugh Anderson, Siau-Cheng Khoo, Stefan Andrei, and Beatrice Luca. Calculating
polynomial runtime properties. In APLAS, volume 3780 of LNCS, pages 230–246.
Springer, 2005.

6. Florence Benoy and Andy King. Inferring Argument Size Relationships with
CLP(R). In LOPSTR’97, volume 1207 of LNCS, pages 204–223. Springer, 1997.

7. Christopher W. Brown and Christian Gross. Efficient preprocessing methods for
quantifier elimination. In CASC, volume 4194 of LNCS, pages 89–100, 2006.

8. Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, and Chaochen Zhou. Discovering
non-linear ranking functions by solving semi-algebraic systems. In ICTAC, volume
4711 of LNCS, pages 34–49. Springer, 2007.

9. Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press, 3rd edition, 2009.

10. Saumya K. Debray and Nai-Wei Lin. Cost Analysis of Logic Programs. ACM
Transactions on Programming Languages and Systems, 15(5):826–875, 1993.

11. Andreas Dolzmann and Thomas Sturm. REDLOG: Computer Algebra meets Com-
puter Logic. ACM SIGSAM Bulletin, 31(2):2–9, 1997.

12. Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: Precise and
Efficient Static Estimation of Program Computational Complexity. In Proc. of
POPL’09, pages 127–139. ACM, 2009.

13. Sumit Gulwani and Florian Zuleger. The Reachability-Bound Problem. In PLDI,
pages 292–304. ACM, 2010.

14. Timothy J. Hickey and Jacques Cohen. Automating Program Analysis. J. ACM,
35(1):185–220, 1988.

15. Martin Hofmann Jan Hoffmann, Klaus Aehlig. Multivariate Amortized Resource
Analysis. In POPL’11, pages 357–370. ACM, 2011.

16. Deepak Kapur. Automatically generating loop invariants using quantifier elimina-
tion. In Deduction and Applications, volume 05431, 2006.

17. Daniel Le Métayer. ACE: An Automatic Complexity Evaluator. ACM Trans.
Program. Lang. Syst., 10(2):248–266, 1988.

18. David Monniaux. Automatic modular abstractions for template numerical con-
straints. Logical Methods in Computer Science, 6(3), 2010.

19. Thomas Sturm and Ashish Tiwari. Verification and Synthesis using Real Quantifier
Elimination. In ISSAC 2011, pages 329–336. ACM, 2011.

20. REDUCE Computer Algebra System. REDUCE home page.
21. Z3 Theorem Prover . Z3 home page.
22. Ben Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9),

1975.
23. Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis

of imperative programs with the size-change abstraction. In SAS, volume 6887 of
LNCS, pages 280–297. Springer, 2011.

17

http://reduce-algebra.sourceforge.net
http://research.microsoft.com/projects/Z3/

	On the Limits of the Classical Approach to Cost Analysis

