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Abstract. In this paper we study the decidability of termination of sev-
eral variants of simple integer loops, without branching in the loop body
and with affine constraints as the loop guard (and possibly a precon-
dition). We show that termination of such loops is undecidable in some
cases, in particular, when the body of the loop is expressed by a set of lin-
ear inequalities where the coefficients are from Z∪{r} with r an arbitrary
irrational; or when the loop is a sequence of instructions, that compute
either linear expressions or the step function. The undecidability result
is proven by a reduction from counter programs, whose termination is
known to be undecidable. For the common case of integer constraints
loops with rational coefficients only we have not succeeded in proving
decidability nor undecidability of termination, however, this attempt led
to the result that a Petri net can be simulated with such a loop, which
implies some interesting lower bounds. For example, termination for a
given input is at least EXPSPACE-hard.

1 Introduction

Termination analysis has received a considerable attention and nowadays several
powerful tools for the automatic termination analysis of different programming
languages and computational models exist [15, 12, 1, 25]. Two important aspects
of termination analysis tools are their scalability and ability to handle a large
class of programs, which are directly related to the theoretical limits, regarding
complexity and completeness, of the underlying techniques. Since termination
of general programs is undecidable, every attempt at solving it in practice will
have at its core certain restricted problems, or classes of programs, that the
algorithm designer targets. To understand the theoretical limits of an approach,
we are looking for the decidability and complexity properties of these restricted
problems. Note that understanding the boundaries set by inherent undecidability
or intractability of problems yields more profound information than evaluating
the performance of one particular algorithm.

Much of the recent development in termination analysis has benefited from
techniques that deal with one simple loop at a time, where a simple loop is
specified by (optionally) some initial conditions, a loop guard, and a “loop body”
of a very restricted form. Very often, the state of the program during the loop
is represented by a finite set of scalar variables (this simplification may be the
result of an abstraction, such as size abstraction of structured data [25, 11]).



Regarding the representation of the loop body, the most natural one is, per-
haps, a block of straight-line code, namely a sequence of assignment statements,
as in the following example:

while X > 0 do {X := X + Y ; Y := Y − 1; } (1)

To define a restricted problem for theoretical study, one just has to state the
types of loop conditions and assignments that are admitted.

By symbolically evaluating the sequence of assignments, a straight-line loop
body may be put into the simple form of a simultaneous deterministic update,
namely loops of the form

while C do 〈x1, . . . , xn〉 := f(〈x1, . . . , xn〉)

where f is a function of some restricted class. For function classes that are
sufficiently simple to analyze, one can hope that termination of such loops would
be decidable; in fact, the main motivation to this paper has been the remarkable
results by Tiwari [26] and Braverman [10] on the termination of linear loops, a
kind of loops where the update function f is linear. The loop conditions in these
works are conjunctions of linear inequalities. Specifically, Tiwari proved that the
termination problem is decidable for loops of the following form:

while (Bx > b) do x := Ax + c (2)

where the arithmetic is done over the reals; thus the variable vector x has values
in Rn, and the constant matrices in the loop are B ∈ Rm×n, A ∈ Rn×n, b ∈ Rm

and c ∈ Rn.
Consequently, Braverman proved decidability of termination of loops of the

following form:

while (Bsx > bs) ∧ (Bwx ≥ bw) do x := Ax + c (3)

where the constant matrices and vectors are rational, and the variables are of
either real or rational type; moreover, in the homogeneous case (bs, bw, c = 0)
he proved decidability when the variables range over Z. This is a significant and
non-trivial addition, since algorithmic methods that work for the reals often fail
to extend to the integers (a notorious example is finding the roots of polynomials;
while decidable over the reals, over the integers, it is the undecidable Hilbert 10th

problem4).
Going back to program analysis, we note that it is typical in this field to

assume that some degree of approximation is necessary in order to express the
effect of the loop body by linear arithmetics alone. Hence, rather than loops with
a linear update as above, one defines the representation of a loop body to be a
set of constraints (again, usually linear). The general form of such a loop is

while (Bx ≥ b) do A

(
x
x′

)
≤ c (4)

4 Over the rationals, the problem is still open, according to [18].



where the loop body is interpreted as expressing a relation between the new
values x′ and the previous values x. Thus, in general, this representation is a
non-deterministic kind of program and may super-approximate the semantics
of the source program analyzed. But this is a form which lends itself naturally
to analysis methods based on linear programming techniques, and there has
been a series of publications on proving termination of such loops [24, 19, 22] —
all of which rely on the generation of linear ranking functions. For example, the
termination analysis tools Terminator [12], COSTA [1], and Julia [25], are based
on proving termination of such loops by means of a linear ranking function.

It is known that the linear-ranking approach cannot completely resolve the
problem [22, 10], since there are terminating programs having no such ranking
function, e.g., the loop (1) above. Moreover, the linear-programming based ap-
proaches are not sensitive to the assumption that the data are integers. Thus,
the problem of decidability of termination for linear constraint loops (4) stays
open, in its different variants. We feel that the most intriguing problem is:

Is the termination of a single linear constraints loop decidable, when the
coefficients are rational (or integer) numbers and the variables range over
the integers?

The problem may be considered for a given initial state, for any initial state, or
for a (linearly) constrained initial state.

Our contribution. In this research, we focused on hardness proofs. Our basic
tool is a new simulation of counter programs (also known as counter machines)
by a simple integer loop. The termination of counter programs is a well-known
undecidable problem. While we have not been able to fully answer the major
problem above, this technique led to some interesting results which improve our
understanding of the simple-loop termination problem. We next summarize our
main results. All concern integer variables.

1. We prove undecidability of termination, either for all inputs or a given input,
for simple loops which iterate a straight-line sequence of simple assignment
instructions. The right-hand sides are integer linear expressions except for
one instruction type, which computes the step function

f(x) =

{
0 x ≤ 0
1 x > 0

At first sight it may seem like the inclusion of such an instruction is tan-
tamount to including a branch on zero, which would immediately allow for
implementing a counter program. This is not the case, because the result of
the function is put into a variable which can only be combined with other
variables in a very limited way. We complement this result by pointing out
other natural instructions that can be used to simulate the step function.
This include integer division by a constant (with truncation towards zero)
and truncated subtraction.



2. Building upon the previous result, we prove undecidability of termination,
either for all inputs or for a given input, of linear constraint loops where
one irrational number may appear (more precisely, the coefficients are from
Z ∪ {r} for an arbitrary irrational number r).

3. Finally, we observe that while linear constraints with rational coefficients
seem to be insufficient for simulating all counter programs, it is possible
to simulate a subclass, namely Petri nets, leading to the conclusion that
termination for a given input is at least EXPSPACE-hard.

We would like to highlight the relation of our results to the discussion at the end
of [10]. Braverman notes that constraint loops are non-deterministic and asks:

How much non-determinism can be introduced in a linear loop with no
initial conditions before termination becomes undecidable?

It is interesting that our reduction to constraint loops, when using the irrational
coefficient, produces constraints that are deterministic. The role of the con-
straints is not to create non-determinism; it is to express complex relationships
among variables. We may also point out that some limited forms of linear con-
straint loops (that are very non-deterministic since they are weaker constraints)
have a decidable termination problem (see Section 6). Braverman also discusses
the difficulty of deciding termination for a given input, a problem that he left
open. Our results apply to this variant, providing a partial answer to this open
problem.

The rest of this paper is organized as follows. Section 2 presents some pre-
liminaries; Section 3 study the termination of straight-line while loops with a
“built-in” function that represents the step function; Section 4 attempts to apply
the technique of Section 3 to the case of integer constraints loops, and discusses
extensions of integer constraints loops for which termination is undecidable; Sec-
tion 5 describes how a Petri net can be simulated with linear constraint loops;
Section 6 discusses some related work; and Section 7 concludes.

2 Preliminaries

In this section we define the syntax of integer piecewise linear while loops, integer
linear constraints loops, and counter programs.

2.1 Integer piecewise linear loops

An integer piecewise linear loop (IPL loop for short) with integer variables
X1, . . . , Xn is a while loop of the form

while b1 ∧ · · · ∧ bm do {c1; . . . ; cn}

where each condition bi is a linear inequality a0 + a1 ∗X1 + · · · + an ∗Xn ≥ 0
with ai ∈ Z, and each ci is one of the following instructions

Xi := Xj +Xk | Xi := a ∗Xj | Xi := a | Xi = isPositive(Xj)



such that a ∈ Z and

isPositive(X) =

{
0 X ≤ 0
1 X > 0

We consider isPositive to be a primitive, but in the next section we will consider
alternatives. The semantics of an IPL loop is the obvious: starting from initial
values for the variables X1, . . . , Xn (the input), the instructions c1, . . . , cn are
executed sequentially as far as the condition b1 ∧ · · · ∧ bn holds. We say that
the loop terminates for a given input if the condition b1 ∧ · · · ∧ bn eventually
evaluates to false. For simplicity, sometime we use a composite expression, e.g,
X1 := 2 ∗X2 + 3 ∗X3 + 1, which should be taken to be a syntactic sugar for
a series of assignments, possibly using temporary variables. We will also make
use of a “macro” isZero(X) which should be understood as representing the
expression 1− isPositive(X)− isPositive(−X).

2.2 Integer linear constraints loops

An integer linear constraints loop (ILC loop for short) over n variables x =
〈X1, . . . , Xn〉 has the form

while (Bx ≥ b) do A

(
x
x′

)
≤ c

where for some m, p > 0, B ∈ Rm×n, A ∈ Rp×2n, b ∈ Rm and c ∈ Rp. The case
we are most interested in is that in which the constant matrices and vectors are
composed of rational numbers; this is equivalent to assuming that they are all
integers (just multiply by a common denominator).

Semantically, a state of such a loop is an n-tuple 〈x1, . . . , xn〉 of integers, and
a transition to a new state x′ = 〈x′1, . . . , x′n〉 is possible if x,x′ satisfy all the
constraints in the loop guard and the loop body. We say that the loop terminates
for given initial state if all possible executions from that state are finite, and that
it universally terminates if it terminates for every initial state. We say that the
loop is deterministic if there is at most one successor state to any state.

2.3 Counter programs

A (deterministic) counter program PC with n counters X1, · · · , Xn is a list of
labeled instructions 1:I1, . . . ,m:Im,m+1:stop where each instruction Ik is one
of the following:

incr(Xj) | decr(Xj) | if Xi > 0 then k1 else k2

with 1 ≤ k1, k2 ≤ m+1 and 1 ≤ j ≤ n. A state is of the form (i, 〈a1, . . . , an〉)
which indicates that Instruction i is to be executed next, and the current values
of the counters are X1 = a1, . . . , Xn = an. In a valid state, 1 ≤ i ≤ m+1 and all
ai ∈ N (it will sometimes be useful to also consider invalid states, and assume
that they cause a halt). Any state in which i = m+ 1 is a halting state. For any
other valid state (i, 〈a1, . . . , an〉), the successor state is defined as follows.



– If Ii is decr(Xj) (resp. incr(Xj)), then Xj is increased (resp. decreased) by
1 and the execution moves to label i+ 1.

– If Ii is “if Xj > 0 then k1 else k2” then the execution moves to label k1 if
Xj is positive, and to k2 if it is 0. The values of the counters do not change.

For simplicity, we assume that a counter with value 0 is never decremented, this
can be guaranteed by adding a conditional statement before each decr(Xj). The
following are known facts about the halting problem for counter programs.

Theorem 1 ([21]). The halting problem for counter programs with n ≥ 2 coun-
ters and the initial state (1, 〈0, . . . , 0〉) is undecidable.

The universal halting problem is the problem of deciding whether a given
program halts for any initial state.

Theorem 2 ([7]). The universal halting problem for counter programs with
n ≥ 2 counters is undecidable.

3 Termination of IPL loops

In this section, we investigate the decidability of the following problems: given
an IPL loop P

1. Does P terminate for a given input?
2. Does P terminate for all inputs?

We show that both problems are undecidable by reduction from the halting
problem for counter programs. To see where the challenge in this reduction lies,
note that the loops we iterate a fixed block of straight-line code, while a counter
program has a program counter that determines the next instruction to execute.
While one can easily keep the value of the PC in a variable (which is what we
do), it is not obvious how to make the computation depend on this variable, and
how to simulate branching.

3.1 The reduction

Given a counter program PC ≡ 1:I1, . . . ,m:Im,m+1:stop with counters X1, . . .,
Xn, we generate a corresponding IPL loop T (PC) as follows:

while (PC ≥ 1 ∧ PC ≤ m ∧X1 ≥ 0 ∧ · · · ∧Xn ≥ 0) do {
T (1:I1)

...
T (m:Im)
PC := N1 + · · ·+Nm;

}

where T (k:Ik) is defined as follows



– If Ik ≡ incr(Xj), then T (k:Ik) is

Ak := isZero(PC − k);
Xj := Xj +Ak;
Nk := (k + 1) ∗Ak;

– If Ik ≡ decr(Xj), then T (k:Ik) is

Ak := isZero(PC − k);
Xj := Xj −Ak;
Nk := (k + 1) ∗Ak;

– If Ik ≡ if Xj > 0 then k1 else k2, then T (k:Ik) is

Ak := isZero(PC − k);
Fk := isPositive(Xj);
Tk := isPositive(Ak + Fk − 1);
Nk := Tk ∗ (k1 − k2) +Ak ∗ k2;

In Section 3.2 we prove the following:

Lemma 1. A counter program PC with n ≥ 2 counters terminates for the initial
state (i, 〈a1, . . . , an〉) if and only if T (PC) terminates for the initial input PC =
i ∧X1 = a1 ∧ · · · ∧Xn = an.

Lemma 1, together with theorems 1 and 2, imply

Theorem 3. The halting problem and universal halting problem for IPL loops
are undecidable.

3.2 Proof of correctness

Let us first state, informally, the main ideas behind the reduction, and then
formally prove Lemma 1 which in turn implies Theorem 3.

1. Variable PC represents the program counter, i.e., the label of the instruction
to be executed next.

2. Variables A1, . . . , Am are flags: when PC = i, then Ak = 1 if k = i, and
Ak = 0 if k 6= i. Thus, an operation Xj := Xj + Ak (resp. Xj := Xj − Ak)
will have effect only when Ak = 1, and otherwise it is a no-op. This is a way
of simulating only one instruction in every iteration.

3. Variables N1, . . . , Nm are used to compute the value of PC for the next
iteration. The idea is that when PC = k, Nk is set to the label of the next
instruction; while Ni, for i 6= k, is set to 0. Thus, the new PC can be obtained
by summing these variables.

Note that point (3) guarantees that PC := N1 + · · · + Nm correctly computes
the label of the next instruction. Thus, the while loop simulates the execution
of the counter program. Now we move to the formal proof.



Lemma 2. Let PC = i; then for all k, Ak is set to 1 when k = i, and to 0 when
k 6= i.

Proof. Immediate from the semantics of isZero and the code that sets Ak.

Lemma 3. Let PC = i, then (1) for k 6= i, it holds that Nk = 0; and (2) for
k = i, it holds that Nk = k+1 if Ik is decr(Xj) or incr(Xj), and Nk = k1 (resp.
Nk = k2) if Ik is “if Xj > 0 then k1 else k2” and Xj > 0 (resp. Xj = 0).

Proof. We consider the following two cases

1. Assume k 6= i, then (a) for incr(Xj) and decr(Xj) it is obvious that Nk = 0
since by Lemma 2 we have Ak = 0; and (b) for “if Xj > 0 then k1 else k2”,
since Ak equals 0 by Lemma 2, then also Tk = 0 (regardless of the value of
Fk), and thus Nk = 0 ∗ (k1 − k2) + 0 ∗ k2 = 0;

2. Assume k = i, then (a) for incr(Xj) and decr(Xj) it is obvious that Nk = k+
1 since by Lemma 2 we have Ak = 1; and (b) for “if Xj > 0 then k1 else k2”,
by Lemma 2 we have Ak = 1, and by definition of isPositive we have Fk = 0
when Xj = 0 and Fk = 1 when Xj > 0. Thus

Xj Fk Tk Nk

> 0 1 1 1 ∗ (k1 − k2) + 1 ∗ k2 = k1
= 0 0 0 0 ∗ (k1 − k2) + 1 ∗ k2 = k2

In order to prove Lemma 1, it is enough to show that T (PC) simulates the
corresponding counter program PC .

Lemma 4. Let PC be a counter program, T (PC) its corresponding IPL loop,
C ≡ (`, 〈a1, . . . , an〉) a configuration for PC , and S a state of T (PC) where
PC = `,X1 = a1, . . . , Xn = an. Then C is a halting configuration of PC if and
only if S terminates T (PC); while if C has a successor state (`′, 〈a′1, . . . , a′n〉)
in PC , then the loop body of T (PC) is enabled at S and its execution leads to a
state in which PC = `′, X1 = a′1, . . . , Xn = a′n.

Proof. For invalid initial states both the counter programs and the correspond-
ing while loop terminate immediately. For valid states the proof follows from
Lemmata 2 and 3.

3.3 Examples of piecewise-linear operations

The isPositive operation can be easily simulated by other natural instructions,
yielding different instruction sets that suffice for undecidability.

Example 1 (Integer division). Consider an instruction that divides an integer by
an integer constant and truncates the result towards zero (also if it is negative).
Using this kind of division, we have

isPositive(X) = X − 2 ∗X − 1

2

and thus, termination is undecidable for loops with linear assignments and inte-
ger division of this kind.



Example 2 (truncated subtraction). Another common piecewise-linear function
is truncated subtraction, such that x−̇y is the same as x− y if it is positive, and
otherwise 0. This operation allows for implementing isPositive thus:

isPositive(X) = 1−̇(1−̇X)

4 Reduction to ILC Loops

In this section we turn to Integer Linear Constraint loops. We attempt to apply
the reduction described in Section 3, and explain where and why it fails. So
we do not obtain undecidability for ILC loops, but we show that if there is one
irrational number that we are allowed to use in the constraints (any irrational will
do) the reduction can be completed and undecidability of termination proved.

In Section 5 we describe another way of handling the failure of the reduc-
tion with rational coefficients only: reducing from a weaker model, and thereby
proving a lower bound which is weaker than undecidability (but still non-trivial).

Observe that the loop constructed in Section 3 uses non-linear expressions
only for setting the flags Ak, Fk and Tk, the rest is clearly linear. Assuming
that we can encode these flags with integer linear constraints, then adapting the
rest of the reduction to ILC loops is straightforward: it can be done by rewriting
T (PC) to avoid multiple updates of a variable (that is, to single static assignment
form) and then representing each assignment as an equation instead. Thus, in
what follows we concentrate on how to represent those flags using integer linear
constraints.

4.1 Encoding Tk with integer linear constraints

In Section 3, we defined Tk as isPositive(Ak +Fk−1). Since 0 ≤ Ak +Fk ≤ 2, it
is easy to verify that this is equivalent to imposing the constraint Fk +Ak− 1 ≤
2 · Tk ≤ Fk +Ak.

4.2 Encoding Ak with integer linear constraints

The role of the flag Ak is to indicate if PC is equal to k. Expressing this relation
by linear constraints is possible thanks to the finite range of PC, as shown by
the following lemma.

Lemma 5. Let P1 and P2 be the following polyhedra

P1 =
∧
i

(Ai ≥ 0) ∧ (A1 + ....+Am = 1)

P2 = (PC = 1 ·A1 + 2 ·A2 + · · ·+m ·Am)

Then P1 ∧ P2 ∧ (PC = k)→ (Ak = 1) and P1 ∧ P2 ∧ PC 6= k → (Ak = 0).

Proof. It is easy to see that the only integer points in P1 are such that for a
single k, Ak = 1, while for all j 6= k, Aj = 0. Then, P2 forces PC to equal k.



4.3 Encoding Fk with integer linear constraints

Now we discuss the difficulty of encoding the flag Fk using linear constraints. The
following lemma states that such encoding is not possible when using rational
coefficients.

Lemma 6. Given non-negative integer variables X and F , it is not possible to
define a system of integer linear constraints Ψ (with rational coefficients) over
X, F , and possibly other integer variables, such that Ψ ∧ (X = 0) → (F = 0)
and Ψ ∧ (X > 0)→ (F = 1).

Proof. The proof relies on a theorem in [20] which states that the following
piecewise linear function

f(x) =

{
0 x = 0
1 x > 0,

where x is a non-negative real variable, cannot be defined as a minimization
mixed integer programming (MIP for short) problem with rational coefficients
only. More precisely, it is not possible to define f(x) as

f(x) = minimize g w.r.t. Ψ

where Ψ is a system of linear constraints with rational coefficients over x and
other integer and real variables, and g is a linear function over vars(Ψ). Now
suppose that Lemma 6 is false, i.e., there exists Ψ such that Ψ ∧ (X = 0) →
(F = 0) and Ψ ∧ (X > 0)→ (F = 1), then the following MIP problem

f(x) = minimize F w.r.t. Ψ ∧ (x ≤ X)

defines the function f(x), which contradicts [20].

4.4 An undecidable extension of ILC loops

There are certain extensions of the ILC model that allow our reduction to be
carried out. Basically, the extension should allow for encoding the flag Fk. The
extension which we find most interesting allows the use of a single, arbitrary
irrational number r (thus, we do not require the specific value of r to represent
any particular information). Thus, the coefficients are now over Z ∪ {r}. The
variables still hold integers.

Lemma 7. Let r be an arbitrary positive irrational number, and let

Ψ1 = (0 ≤ Fk ≤ 1) ∧ (Fk ≤ X)
Ψ2 = (rX ≤ B) ∧ (rY ≤ A) ∧ (−Y ≤ X) ∧ (A+B ≤ Fk)

then (Ψ1 ∧ Ψ2 ∧X = 0)→ Fk = 0 and (Ψ1 ∧ Ψ2 ∧X > 0)→ Fk = 1.



Proof. The constraints Ψ1 force Fk to be 0 when X is 0, and when X is positive
Fk can be either 0 or 1. The role of Ψ2 is to eliminate the non-determinism for the
case X > 0, namely, for X > 0 it forces Fk to be 1. The property that makes Ψ2

work is that for a given non-integer number d, the condition −A ≤ d ≤ B implies
A + B ≥ 1, whereas for d = 0 the sum may be zero. The role of the irrational
coefficient is to translate any integer value X, except 0, to a non-integer number:
d = rX (similarly also for Y and rY ). The variable Y is introduced to avoid
using another irrational coefficient −r.

Example 3. Let us consider r =
√

2 in lemma 7. When X = 0, Ψ1 forces Fk to
be 0, and it is easy to verify that Ψ2 is satisfiable for X = Y = A = B = Fk = 0.
Now, for the positive case, let for example X = 5, then Ψ1 limits Fk to the values
0 or 1, and Ψ2 implies (

√
2 ·5 ≤ B)∧ (−

√
2 ·5 ≤ A) since Y ≥ −5. The minimum

values that A and B can take are respectively −7 and 8, thus it is not possible
to choose A and B such that A + B ≤ 0. This eliminates Fk = 0 as a solution.
However, for these minimum values we have A + B = 1 and thus A + B ≤ Fk

satisfiable for Fk = 1.

Theorem 4. The termination of ILC loops where the coefficients are from Z∪
{r}, for a single arbitrary irrational constant r, is undecidable.

We have mentioned, above, Meyer’s result that MIP problems with rational
coefficients cannot represent the step function over reals. Interestingly, he also
shows that it is possible using an irrational constant, in a manner similar to
our Lemma 7. Our technique construction differs in that we do not make use of
minimization or maximization to define the function.

5 Simulation of Petri Nets

Let us consider a counter machine as defined in Section 2, but with a weak
conditional statement “if Xj < a then k1 else k2” (where a is a positive integer)
which is interpreted as: if Xj is smaller than a then the execution must continue
at label k1, otherwise it may continue to label k1 or label k2. This computational
model is equivalent to a Petri net. From considerations as those presented in
Section 4, we arrived at the conclusion that the weak conditional, and therefore
Petri nets, can be simulated by an ILC loop.

A (place/transition) Petri net [23] is composed of a set of counters X1, . . . , Xn

(known as places) and a set of transitions t1, . . . , tm. A transition is essentially
a command to increment or decrement some places. This may be represented
formally by associating with transition t its set of decremented places •t and
its set of incremented places t•. A transition is said to be enabled if all its
decremented places are non-zero, and it can then be fired, causing the decrements
and increments associated with it to take place. Starting from an initial marking
(values for the places), the state of the net evaluates by repeatedly firing one of
the enabled transitions.



Lemma 8. Given a Petri net P with initial marking M , a simulating ILC loop
with an initial condition ΨM can be constructed in polynomial time. In particu-
lar, the termination of the loop from an initial state in ΨM is equivalent to the
termination of P starting from M .

How this is done: The ILC loop will have variables X1, . . . , Xn that represent
the counters in a straight-forward way, and flags A1, . . . , Am that represent the
choice of the next transition much as we did for counter programs (except that
there is no PC variable). For each 1 ≤ i ≤ n we create the following constraints
in the body of the loop:

P1 =
∧
k

(A′k ≥ 0) ∧ (A′1 + ....+A′m = 1)

Ψi =
∧
i

(Xi ≥
∑

k:i∈•tk

A′k)

Φi = (X ′i = Xi −
∑

k:i∈•tk

A′k +
∑

k:i∈tk•

A′k)

The loop guard is X1 ≥ 0∧· · ·∧Xn ≥ 0. The initial state ΨM simply forces each
Xi to have the value as stated by the initial marking M . Note that the initial
values of Ai are not important since they are not used (we only use A′k). As
before, the constraint P1 ensures that one and only one of the A′k will equal 1 at
every iteration. The constraints Ψi ensure that A′k may receive the value 1 only
if transition k is enabled in the state. The constraints Φi (the update) clearly
simulate the chosen transition.

The importance of this result is that complexity results for Petri net are
lower bounds on the complexity of the corresponding problems in the context
of ILC loops, and in particular, from a known results about the termination
problem [14, 17], we obtain the following.

Theorem 5. The halting problem for ILC loops, for a given input, is at least
EXPSPACE-hard, even if all the coefficients in the program are in {−1, 0,+1}.

The observation regarding the coefficients follows immediately from the reduc-
tion, and indicates that it is not necessary to use big numbers to make this
problem hard (unlike some problems, e.g., Subset Sum, which are easy with
small numbers).

Note that the reduction does not provide useful information on universal
termination of ILC loops, since for Petri net it is PTIME-decidable [13].

6 Related work

Termination of integer loops has received considerable attention recently, both
from theoretical (e.g., decidability, complexity), and practical (e.g, developing
tools) perspectives. Research has considered: straight-line while loops, and loops
in a constraint setting possibly with multiple-paths.



For straight-line while loops, the most remarkable results are those of Ti-
wari [26] and Braverman [10]. Tiwari proved that the problem is decidable for
linear deterministic updates when the domain of the variables is R. Braverman
proved that this holds also for Q, and for the homogeneous case it holds for Z
(see discussion in Section 1). Both have considered universal termination, the
termination for a given input left open.

Decidability and complexity of termination of single and multiple-path in-
teger linear constraints loops has been intensively studied for different classes
of constraints. Lee et al. [16] proved that termination of a multiple-path ILC
loop, when the constraints are restricted to size-change constraints (i.e., con-
straints of the form Xi > X ′j or Xi ≥ X ′j over N), is PSPACE-complete [16].
Later, Lee and Ben-Amram [6] identified sub-classes of such loops for which the
termination can be decided in polynomial time. Ben-Amram [4] showed how to
extend and adapt some theory from the domain of size-change constraints to
general monotonicity constraints (i.e., constraints of the form Xi > Y , Xi ≥ Y ,
where Y can be primed or unprimed variable), he proved that termination for
such loops is PSPACE-complete. It is important to note that his results hold
for any well-founded domain, not necessarily N. In [5], Ben-Amram considered
loops with monotonicity constraints over Z, and prove that the termination
problem is PSPACE-complete. Recently, Bozzelli and Pinchinat [8] proved that
it is still PSPACE-complete also for gap-constraints, i.e., constraints of the form
X−Y ≥ c where c ∈ N. Ben-Amram [3] proved that when extending size-change
constraints with integer constants, i.e., allowing difference constraints of the form
Xi−X ′j ≥ c where c ∈ Z, the termination problem become undecidable. However
for a subclass in which each source (i.e., unprimed) variable might be used only
once (in each path) the problem is PSPACE-complete.

All the above work concerns multiple-path loops. Petri nets and various ex-
tensions, such as Reset and Transfers nets, can also be seen as multiple-path
constraint loops. The termination of Petri net and several extensions is known
to be decidable [13, 14, 17].

Back to single-path loops, a topic that received much attention is the syn-
thesis of ranking functions for such loops, as a means of proving termination.
Sohn and Van Gelder [24] proposed a method for the synthesis of linear ranking
functions for ILC loops over N. Later, their method was extended by Mesnard
and Serebrenik [19] to Z and to multiple-path loops. Both rely on the duality
theorem of linear programming. Podelski and Rybalchenko [22] also proposed a
method for synthesizing linear ranking function for ILC loops. Their method is
based on Farkas’ lemma. It is important to note that [19, 22] are complete when
the variables range over R or Q, but not Z. Recently, Bagnara et al. [2] proved
that [19, 22] are actually equivalent, in the sense that they compute the same
set of ranking functions, and that the method of Podelski and Rybalchenko has
better worst-case complexity. Bradley et al. [9] presented an algorithm for com-
puting linear ranking functions for straight-line integer while loops with integer
division.



Piecewise affine functions have been long used to describe the step of a dis-
crete time dynamical system. Blondel el al. [7] considered systems of the form
x(t + 1) = f(x(t)) where f is a piecewise affine function over Rn (defined by
rational coefficients). They show that some problems are undecidable for n ≥ 2,
in particular, whether all trajectories go through 0 (the moartality problem).
This can be seen as termination of the loop while x 6= 0 do x := f(x).

7 Conclusion

Motivated by the increasing interest in the termination of integer loops, in this
research, we have studied the hardness of terminations proofs for several variants
of such loops. In particular, we have considered straight-line while loops, and
integer linear constraints loops. The later are very common in the context of
program analysis.

For straight-line while loops, we proved that if the underlying instructions
set allows the implementation of a simple piecewise linear function, namely the
step function, then the termination problem is undecidable. For integer linear
constraints loops, we have showed that allowing the constraints to include a
single arbitrary irrational number makes the termination problem undecidable.
For the case of integer constraints loops with rational coefficients only, which
is very common in program analysis, we could simulate a Petri net. This result
provide interesting lower bound on the complexity of the termination, and other
related problems, of ILC loops.

We have recently obtained additional results using techniques similar to those
described in this paper. Specifically, we have shown an EXPSPACE lower bound,
as in Section 5, that holds for ILC loops with a deterministic update. We have
also shown undecidability for a while loop having the body of the following form

if (x > 0) then (one deterministic update) else (another update)

and the guard as in IPL loops, where the updates are linear (and do not involve
the step function).

We hope that our results shed some light on the termination problem of sim-
ple integer loops and perhaps will inspire further progress on the open problems.
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