
Extending the T OY System with the

ECLiPSe
Solver over Sets of Integers

S. Estévez-Mart́ın1, J. Correas1 and F. Sáenz-Pérez2 ?

1DSIC, 2DISIA
Complutense University of Madrid

Madrid, Spain

Abstract. Starting from a computational model for the cooperation
of constraint domains in the CFLP context (with lazy evaluation and
higher-order functions), we present the theoretical basis for the coor-
dination domain C tailored to the cooperation of three pure domains:
the domain of finite sets of integers (FS), the finite domain of integers
(FD) and the Herbrand domain (H). We also present the adaptation
of the goal-solving calculus CCLNC(C) (Cooperative Constraint Lazy
Narrowing Calculus over C) to this particular case, as well as soundness
and limited completeness results. An implementation of this cooperation
in the CFLP system T OY is presented. Our implementation is based on
inter-process communication between T OY and the external solvers for
sets of integers and finite domain of ECLiPSe.
Keywords: Constraint Functional Logic Programming, Constrained Lazy
Narrowing, Implementation, Domain Cooperation.

1 Introduction

T OY [14] is a multiparadigm programming language and system designed to
integrate the main declarative programming styles and their combination. T OY
supports constraint functional logic programming, including symbolic equations
and disequations, arithmetic constraints over the real numbers, and finite do-
main constraints. T OY has also incorporated a mechanism to support solver
cooperation, and a detailed description of both the theoretical foundations and
practical implementations involving three specific domains (Herbrand H, reals
R and finite domains of integers FD) is given in [5]. This model relies on the
CFLP (D) scheme [11] and the goal solving calculus [10]. This scheme must be
instantiated to a concrete constraint domain D which provides specific data val-
ues, constraints based on specific primitive operations, and a constraint solver.
In particular, this concrete constraint domain is the so-called Coordination Do-
main C =M⊕D1 ⊕ · · · ⊕ Dn, and is constructed from pure domains (i.e., each
Di), given as components, and a Mediatorial Domain M. This domain supplies

? This work has been partially supported by the Spanish projects STAMP (TIN2008-
06622-C03-01) (first and third authors), DOVES (TIN-2008-05624) (second author),
Prometidos-CM (S2009TIC-1465), and GPD (UCM-BSCH-GR35/10-A-910502).

communication mechanisms among these pure domains using a special kind of
hybrid constraints called bridges which allow to exchange information between
pure domains.

Finite domain and set solvers have been widely studied in CLP, e.g. ECLiPSe,
Conjunto and Cardinal [7, 2, 1], and also in functional programming (FaCiLe).
However, to the best of our knowledge, this cooperation has not been considered
in the context of CFLP languages. Curry and its prolog-based implementation,
PAKCS, do not incorporate a solver for set constraints.

This paper, based on [5], contains the following contributions: First, a compu-
tational model for the cooperation of the Herbrand domain H, the finite domain
FD, and a finite set domain FS is presented. The finite set domain has been
designed as an improved extension of ECLiPSe set solver, as well as a media-
torial domain M suitable for this cooperation. The computational model has
been proved sound and complete, with some restrictions w.r.t. the declarative
semantics provided by the CFLP (D) scheme. And finally, a preliminary imple-
mentation that integrates ECLiPSe set solver into T OY has been developed.

Regarding the implementation, in a previous paper [4] we presented as a first
approach a solver for sets of integers adapting a generic framework for defining
and solving interval constraints on any set of domains (finite or infinite) that
are lattices [6]. That experimental set solver prototype was not efficient enough.
Moreover, a formal computational model was not provided. In this paper, we
include a different implementation that uses set libraries provided by the con-
straint logic programming system ECLiPSe [12, 13, 8] .

This paper is organized as follows: Section 2 introduces the language T OY.
Section 3 defines the domains FS andM. In Section 4 we extend the formal goal-
solving calculus called CCLNC(C) (Cooperative Constraint Lazy Narrowing
Calculus over C) with new rules explicitly defined for this cooperation. Section
5 presents a prototype of this cooperation in the T OY system, and benchmarks
taken straight from the ECLiPSe distribution site [3] are used to compare with
our approach in terms of performance with encouraging results. Finally, Section
6 concludes and presents lines for future work.

2 The T OY Language

T OY [14] is a functional logic language and system that solves goals by means
of a demand driven lazy narrowing strategy [9] combined with constraint solving.

A T OY program is a collection of definitions of datatypes, operators, lazy
defined functions in Haskell style, as well as definitions of predicates in Prolog
style. A predicate is a particular kind of function which returns a Boolean true
value. A function includes an optional polymorphic type declaration f :: τ1 -> . . .
τn -> τ , and one or more defining rules with curried notation:

f t1 . . . tn = r <== C1, . . ., Cm where D1, . . ., Dp

A defined function must be linear in the left-hand side, i.e., t1 . . . tn cannot
include repeated variables. The right-hand side r can be any expression built

2

from variables, built-in operations, data constructors, and functions. Conditions
Ci, and local definitions Dj are optional. The intended meaning of a defining rule
is the same as in functional programming languages, namely: an expression of the
form f e1 . . . en = r can be reduced by reducing the actual parameters ek until
they match the patterns ti, checking that the conditions Ci are satisfied, and then
reducing the right hand side r (affected by the pattern matching substitution);
all this by using the local definitions Dj to obtain the values of locally defined
variables. Functions can be non-deterministic and higher-order. A goal in T OY
is a conjunction of conditions C1, . . ., Cm where each condition Ci is interpreted
as a constraint to be solved.

Example 1. To illustrate the T OY language, let us define the following function
atMostOne which, given a list of sets, restricts it to a list of triples such that,
given any two sets in the list, they have at most one element in common. The
symbol #-- stands for cardinality.

atMostOne :: [set]->bool

atMostOne [] = true

atMostOne [X|Xs] = atMostOne Xs <==

doList X Xs

doList :: set->[set]->bool

doList _ [] = true

doList X Ys = andL (map (sendCon X) Ys)

sendCon :: set->set->bool

sendCon SX SY = true <==

3 #-- SX, 3 #-- SY,

intersect SX SY SZ,

Z #-- SZ, Z #<= 1

andL :: [bool]->bool

andL = foldr (/\) true

The function doList uses the higher-order library function map, which applies
a partial application sendCon X to each element of the list Ys, returning a list of
Boolean results. A possible goal is:

L==[S1,S2], domainSets L {} {1,2,3,4,5}, atMostOne L, labelingSets L

where domainSets L {} {1,2,3,4,5} constrains each set variable, S1 and S2, to
be lattices of sets between {} and {1,2,3,4,5}; labelingSets enumerates all
ground values of the variables S1 and S2. Some solutions of this goal are:

S1 7→ {1,2,3}, S2 7→ {1,4,5} S1 7→ {2,3,5}, S2 7→ {1,2,4}
S1 7→ {1,2,3}, S2 7→ {2,4,5} S1 7→ {2,3,5}, S2 7→ {1,3,4}

Although in this paper curly brackets are used for denoting sets, our current
implementation resorts to the data constructor s, as such brackets are syntacti-
cally reserved for delimiting sections. 2

3 Constraint Domains and Solvers

In this section we present the formal definition of two constraint domains and
their solvers, the pure domain FS and the mediatorial domain M. Both are
defined with respect to the computational model for the cooperation of constraint
domains described in [5]. First let us recall some aspects.

A constraint domain has a specific signatureΣ = 〈TC, SBT, DC, DF, SPF 〉
consisting of pairwise disjoint sets of Type Constructors (TC), Specific Base
Types (SBT), Data Constructors (DC), Defined Function Symbols (DF) and

3

Specific Primitive Function Symbols (SPF). Base types and primitive function
symbols are related to specific constraint domains, while type constructors, data
constructors, and defined function symbols are provided by user programs.

In our computational model a constraint domain D with signature Σ is a
structure D = 〈BD, {pD}p∈SPF 〉 where BD =

⋃
d∈SBT BDd is the set of base val-

ues and pD is the interpretation of each primitive function symbol p ∈ SPF .
Interpretation pDtn → t means that the primitive function p with given argu-
ments t1, . . . , tn returns t in the domain D.

We define an expression with the syntax e ::= X | ⊥ | u | h | (e e1), where X
is a variable, ⊥ is a special data constructor that represents an undefined value
that belongs to any type, u ∈ BD is a base value, h ∈ DC ∪ DF ∪ SPF , and
(e e1) stands for the application of e to e1. A pattern is a particular expression
representing a data value that does not need to be evaluated. Its syntax is
t ::= X | ⊥ | u | c tm | f tm | p tm, where X is a variable, u ∈ BD, c ∈
DCn for some m ≤ n, f ∈ DFn for some m < n, and p ∈ SPFn for some
m < n, representing partial applications. Expressions and patterns without any
occurrence of ⊥ are called total.

An atomic constraint π ∈ AConD over a given domain D is defined either as
♦ (standing for truth), or � (standing for falsity), or p en →! t with p ∈ SPFn,
where each ei is an expression and t is a total pattern. By convention, constraints
of the form p en →! true are abbreviated as p en. In particular, strict equality
constraints e1 == e2 and strict disequality constraints e1 /= e2 are understood
as abbreviations of (==) e1 e2 →! true and (==) e1 e2 →! false, respectively.
Atomic primitive constraints π ∈ APConD over a given domain D are atomic
constraints where en are patterns.

A substitution σ ∈ SubD over a given domain D is a set of mappings from
variables to patterns. A valuation η over a given domain η ∈ V alD, is a ground
substitution, that maps variables to values. The valuations that satisfy a given
constraint π are said to be solutions of π, SolD(π) ⊆ V alD.

A constraint store is a pair S = Π2σ for a domain D, where Π ⊂ APConD
is a set of atomic primitive constraints and σ is an idempotent substitution
such that domain variables of σ and variables of Π are disjoint. The symbol
2 is interpreted as a conjunction. Solutions of constraint stores are defined as
SolD(Π 2σ) = SolD(Π) ∩ SolD(σ) where SolD(σ) = {η ∈ V alD | η = ση}. If σ
is empty SolD(Π) is used.

Constraint domains are equipped with their respective solvers, which process
the constraints arising in the course of a computation. We consider a constraint
solver for the domain D as modeled by a function solveD. From a user viewpoint,
a solver can behave as a black-box or a glass-box. We use a convenient abstract
technique for specifying the behaviour of glass-box solvers named store transfor-
mation system. The idea is to specify a set of store transformation rules which
describe different ways to transform a given store. A store is called irreducible
iff no store transformation rules can be applied to transform it. A rule is not
applicable if the store is not transformed by the rule in any way.

A transformation step for a given rule is denoted as `̀ D and

4

– π,Π 2σ `̀ D Π ′2σ′ indicates that the store π,Π 2σ, which includes the
atomic constraint π plus other constraints Π, is transformed into Π ′2σ′ in
one step.

– Π 2σ `̀ ∗D Π ′2σ′ indicates that Π 2σ can be transformed into Π ′2σ′ in
finitely many steps.

– Π 2σ `̀ D � indicates a failing transformation step.

Solvers reduce primitive constraints to solved forms, which are simpler and
are shown as computed answers to the users. Formally:

SFD(Π2 σ) = {Π ′ 2 σ′ | Π 2 σ `̀ ∗D Π ′ 2 σ′, and Π ′ 2 σ′ is irreducible}

3.1 The Constraint Domain FS (Finite Sets)

We define the FS domain with the domain specific signature 〈TC, SBTFS , DC,
DF, SPFFS〉 where SBTFS = {elem, set}. The set of base values of base type
elem is a denumerable set BFSelem with a strict total order ≺, and the set of
base values for set contains all finite subsets of BFSelem, BFSset = Pf (BFSelem). A set
of elements of type elem is represented as {e1, . . . , en} where e1 ≺ . . . ≺ en.
Primitive functions in SPFFS are the following:

– Strict equality and strict disequality (==), (/=) :: A -> A -> bool.
– domainSets :: [set]->set->set->bool constrains the domain of each set

variable of the list w.r.t. a given lower and upper set bounds forming a lattice
of possible values for each variable.

– subset, superset :: set->set->bool;
intersect, union :: set->set->set are the usual operations on sets.

– disjoints :: [set]->bool constrains the list of sets to have no element
in common.

– labelingSets :: [set]->bool enumerates all ground instantiations of each
set expression in the list.

– ≺ :: elem->elem->bool is the strict total order between set elements.
– isin :: elem->set->bool constrains an element to be a member of a set.

Example 2. In order to illustrate the behaviour of some primitive functions, the
T OY goal: domainSets [Sx,Sy,Sz] {} {1,2}, subset Sx Sy, subset Sy Sz,

disjoints [Sx,Sz], superset Sy {1}, labelingSets [Sx,Sy,Sz] produces three so-
lutions: Sx 7→ {}, Sy 7→ {1,2}, Sz 7→ {1,2}; Sx 7→ {}, Sy 7→ {1}, Sz 7→ {1,2};
and Sx 7→ {}, Sy 7→ {1}, Sz 7→ {1}. 2

3.2 Solver for FS Domain

The FS solver for T OY has been developed on top of the solver for sets of
integers available in ECLiPSe, and has been extended with several additional
features, such as disequality handling and constraint deduction. For this reason,
FS solver has been split in two different layers: First, a glass-box solver FST
in T OY for dealing with those additional features, and second, the black-box
solver FSE available in ECLiPSe. Observe that, in the formal description of the

5

S1 domainSets [S1, . . . , Sn] lb ub, lb /= {}, Π2σ `̀ FST

domainSets [S1, . . . , Sn] lb ub, lb /= {}, S1 /= {},. . . , Sn /= {}, Π2σ

S2 isIn X S, Π2σ `̀ FST isIn X S, S /= {}, Π2σ

S3 subset S1 S2, S1 /= {}, Π2σ `̀ FST subset S1 S2, S1 /= {}, S2 /= {}, Π2σ

S4 subset S1 S2, S2 == {}, Π2σ `̀ FST S2 == {}, S1 == {}, Π2σ

S5 intersect S1 S2 S3, S3/={}, Π2σ `̀ FST

intersect S1 S2 S3, S3/={},S1 /= {}, S2 /= {}, Π2σ

S6 union S1 S2 S1, Π2σ `̀ FST union S1 S2 S1, subset S2 S1, Π2σ

S7 union S1 S2 S2, Π2σ `̀ FST union S1 S2 S2, subset S1 S2, Π2σ

S8 union S1 S2 S3, S3 == {}, Π2σ `̀ FST S1 == {}, S2 == {}, Π2σ

S9 S1 == S2, S1 /= S2, Π2σ `̀ FST �

Table 1. Store transformation rules for solveFS
T

, Π2σ `̀ FST Π ′2σ′

T OY extension, a general type elem is used, but ECLiPSe sets are only allowed
to contain integer elements. It can be easily extended to any other finite domain
by means of a bijection into the finite domain of integers.

A constraint solver for the domain FS is modeled as a function solveFS

which deals with a set Π of FS constraints. A solver invocation solveFS(Π)
returns a finite disjunction of existentially quantified constraint stores composed
of constraints and substitutions.

Formally, solveFS(Π) =
∨k
j=1{∃Y j(Πj 2 σj) | Πj 2 σj ∈ SFFS(Π), where

Y j = var(Πj 2 σj) \ var(Π)}. Alternative constraint stores which are returned
by solver invocations are usually explored in sequential order using backtracking.

The glass-box solver FST has been formalized using a store transformation
system. Its rules are shown in Table 1, where a given store Π2σ is transformed
into another storeΠ ′2σ′ in one rewriting stepΠ2σ `̀ FST Π ′2σ′. Rules from S1
to S8 infer new constraints in order to improve the performance of the ECLiPSe

solver, and generate equalities and disequalities that may help to anticipate
failure by means of rule S9. In some cases, such as rules S4 and S8, some
constraints can be removed, since both rules infer concrete values to variables.
Rule S1 propagates the information S1 /= {},. . . , Sn /= {} when the constraint
domainSets [S1, . . . , Sn] lb ub is processed and lb is not empty. The remaining
rules are similar. These rules complement the rules already existing in ECLiPSe,
especially for anticipating failure by handing disequalities. More rules based on
set theory could be added, as for example union S1 S2 S3, Π2σ `̀ FST subset

S1 S3, subset S2 S3.
As semantic results, we present soundness and limited completeness of the

glass box FST solver. Although it is out of the scope of this paper, well-typed
solutions WTSolP(G) ⊆ SolP(G) are those solutions for which type judgements
can be deduced from type assumptions in Σ. Completeness can only be guaran-
teed for well-typed solutions.

Theorem 1. The store transformation system with transition relation `̀ FST is
finitely branching and terminating, and:

6

1. solveFS
T

(Π) is finite for any finite Π ⊆ APConFST .
2. (Soundness) SolFS(Π) ⊇

⋃
{SolFS(∃Y j(Πj 2 σj)) | Πj 2 σj ∈ SFFST (Π)}.

3. (Limited completeness) WTSolFS(Π) ⊆
⋃
{WTSolFS(∃Y j(Πj 2 σj)) |

Πj 2 σj ∈ SFFST (Π)}.

Regarding the black-box solver FSE , we can assume that solveFS
E

reduces
primitive constraints to a solved form, in the sense that they can not be further

reduced. Moreover, we assume that solveFS
E

is sound, and the completeness
property may fail for some choices of Π ⊆ APConFS , hence completeness in
previous theorem is limited by FSE .

3.3 The Mediatorial Domain M

The FD domain already existing in T OY can be joined with the new FS domain
by means of the amalgamated sum of both domains, defined as a new domain S =
FD⊕FS with signature 〈TC, SBTFD∪SBTFS , DC, DF, SPFFD∪SPFFS〉.
According to [5], FD and FS are joinable, and S is a conservative extension
of both domains: for any p ∈ SPFMFD, t̄m, t patterns, pFD t̄m → t iff pS t̄m → t,
analogously for FS.

However, this new domain S has no mechanisms for the communication be-
tween both pure domains. In order to establish cooperation between these do-
mains we need a new mediatorial domain, which supplies bridge constraints for
communicating FD and FS. The mediatorial domainM for the communication
between FD and FS is defined with signature 〈TC, SBTM, DC, DF, SPFM〉
as follows:

– SBTM = {int, set} ⊆ SBTFD ∪ SBTFS , and SPFM = { #-- }.
– Each set of base values of the mediatorial domain corresponds to a set of

base values of each pure domain: BMset = BFSset and BMint = BFDint .
– SPFM = {#-- :: int → set → bool}. The interpretation of the bridge

constraint is i #--Ms→ t, where #--M is a subset of the Cartesian product
Z×BFSset , defined to hold iff any of the following cases holds: either s is a set,
i is the cardinality of s and t = true; or s is a set, i is not the cardinality of
s and t = false; or t = ⊥.

We define solveM as a store transformation system, using the same abstract
technique for glass-box solvers described previously. Store transformation rules
are defined in Table 2. Rule M1 represents the case of a bridge with a ground
set, in which the variable X is bound to the cardinality of the set. In M2 the
cardinality of set variable S is zero and therefore S is bound to the empty set.
Rule M3 considers the case when a set variable has a known number of ele-
ments. It can be expressed as a set of elem variables with a specific ordering,
in order to represent the canonical form of the set. The particular constraints
expressing the order of the elements in the set are submitted to the FS solver.
Rules M4 and M5 correspond to the case in which the set and the cardinal-
ity are ground. If the constraint is satisfied then M4 is applied else M5 is
applied. Formally, solveM(Π) =

∨
{∃Y ′(Π ′2σ′) | Π ′2σ′ ∈ SFM(Π), Y ′ =

var(Π ′2σ′) \ var(Π)}.

7

M1 X#--u’,Π 2 σ `̀M Πσ1 2 σσ1

if u′ ∈ BFSset , X ∈ V ar and ∃u ∈ Z+ s.t. u#--Mu′ and σ1 = {X 7→ u}.
M2 u#--S,Π 2 σ `̀M Πσ1 2 σσ1

if u = 0, S ∈ V ar and σ1 = {X 7→ {}}
M3 u#--S,Π 2 σ S `̀M Πσ1 2 σσ1

if u ∈ Z+, S ∈ V ar, u > 0 and σ1 = {S 7→ {X1, . . . , Xu}}.
{X1 ≺ X2, . . . , Xn−1 ≺ Xu} is submitted to FS solver; Xi are fresh variables.

M4 u#--u′ , Π 2 σ `̀ M Π 2 σ

if u ∈ Z+, u′ ∈ BFSset and u#--Mu′.

M5 u#--u′, Π 2 σ `̀ M �

if u ∈ Z+, u′ ∈ BFSset and u#--Mu′ does not hold.

Table 2. Store transformation rules for solveM

Example 3. If rule M3 is applied to 3#--X, where X is a variable, then in this
step of computation the constraints X1 ≺ X2, X2 ≺ X3 are added to FS store,
where Xi are fresh variables, σ1 = {X 7→ {X1, X2, X3}}, and 3#--X,Π 2 σ `̀M
Πσ1 2 σσ1. 2

The following theorem ensures that the store transformation system for M-
stores can be accepted as a correct specification of a glass-box solver for the
domain M.

Theorem 2. The store transformation system with transition relation `̀M is
finitely branching and terminating, and:

1. solveM(Π) is finite for any finite Π ⊆ APConM.
2. (Soundness) SolM(Π) ⊇

⋃
{SolM(∃Y j(Πj 2 σj) | Πj 2 σj ∈ SFM(Π)}

3. (Completeness) WTSolM(Π) ⊆
⋃
{WTSolM(∃Y j(Πj 2 σj) | Πj 2 σj ∈

SFM(Π)}

4 Adapting the CCLNC(C) Calculus

The coordination domain that allows the communication among solvers is C =
M⊕H⊕FD⊕FS. Observe that all domains in C are pairwise joinable according
to [5], and communication with H is automatically performed by variable substi-
tutions. The cooperation mechanism on which T OY is based is the Cooperative
Constrained Lazy Narrowing Calculus, CCLNC, that can be instantiated to
different constraint domains, and in particular to C, giving CCLNC(C).

A rewriting calculus similar to the one defined in [5] can be adapted to model
the behaviour of the T OY system extended with this coordination domain. In
that calculus, goals must handle constraints related to different particular do-
mains. For the coordination domain presented in this paper, goals have the form:
G ≡ ∃U. P 2 C 2 M 2 H 2 F 2 S, where:

– U is a finite set of existential local variables created during the computation.

8

– P is a set of productions. During goal solving, productions are used to obtain
values for the variables demanded by the computation, using the goal solving
rules for constrained lazy narrowing.

– C is a constraint pool, where constraints are waiting to be solved.
– M = ΠM 2σM is the mediatorial store defined in Section 3.3.
– H = ΠH 2σH is the Herbrand store.
– F = ΠF 2σF is the finite domain store.
– S = ΠS 2σS is the finite set store defined in Section 3.2.

Roughly speaking, the calculus works as follows:

1. Initially, a goal consists of a sequence of constraints placed in C, while the
other components are empty.

2. Constraints in C are treated as follows:

(a) If π ∈ C is an atomic primitive constraint, then π is submitted to the
appropriate store, using rules in Table 3.

(b) Else, π is flattened by CCLNC(C), and is eventually transformed into a
conjunction of atomic primitive constraints, possibly using new existen-
tial variables. These atomic primitive constraints are placed in C. Some
computations are suspended in P by means of lazy narrowing.

3. Eventually, all atomic primitive constraints placed in C are processed. Sus-
pended productions which are not demanded are removed.

4. Finally, a solved goal is obtained: a goal with empty P and C, and where
the stores are in solved form.

CCLNC(C) rules that model the behaviour of constrained lazy narrowing
ignoring domain cooperation and solver invocation are those presented in [5]. In
order to adapt the calculus to the new coordination domain, new rules, defined in
Table 3, are needed for handlingM and FS constraints. Rule SB generates me-
diatorial constraints in M from FS constraints, while PP projects constraints
from FD to FS and vice versa, and SC places the constraints in the corre-
sponding solver. Rule IE infers equalities from bridges already existing in M .
Rule IF infers failure from disequalities detected in bridges in M . Finally, rule
SS performs the actual black-box set solver invocation. [5] includes rules forM,
H and FD domains similar to SS.

Functions bridges and proj are used by SB and PP for obtaining bridges and
projections, resp., for each primitive constraint. Given a pool of constraints that
includes the atomic primitive constraint π and a mediatorial store with a set of
bridge constraints B, we define the function bridgesFS→FD(π,B) to generate
new bridges for all set variables involved in π as long as they are not already
available in B. Projections (projFS→FD(π,B) and projFD→FS(π,B)) take place
whenever a constraint is posted to its corresponding solver. This process builds
mate constraints considering the available bridge constraints, and posts them to
the mate solver. Table 4 gives a specification of bridge and projection generation
for each constraint π. Each set variable has an associated finite domain variable
which represents the cardinality of the set.

9

SB Set Bridges
∃U. P 2 π,C 2 M 2 H 2 F 2 S `̀ SB ∃V

′
, U. P 2 π, C 2 B′,M 2 H 2 F 2 S

If π ∈ APConFS and ∃V ′ B′ = bridgesFS→FD(π,B) 6= ∅.
PP Propagate Projections

∃U. P 2 π,C 2 M 2 H 2 F 2 S `̀ PP ∃V ′, U. P 2 π,C 2 M 2 H 2 F ′ 2 S′

If π ∈ APConFD and ∃V ′Π′ = projFD→FS(π,B) 6= ∅, F ′ = F , and S′ = Π′, S,

else π ∈ APConFS and ∃V ′Π′ = projFS→FD(π,B) 6= ∅, F ′ = Π′, F , and S′ = S.

SC Submit Constraints
∃U. P 2 π,C 2 M 2 H 2 F 2 S `̀ SC ∃U. P 2 C 2 M ′ 2 H′ 2 F ′ 2 S′

Either π ∈ APConM, then M ′ = π,M , H′ = H, F ′ = F , and S′ = S,

or π ∈ APConFD, then M ′ = M , H′ = H, F ′ = π, F , and S′ = S,

or π ∈ APConFS , then M ′ = M , H′ = H, F ′ = F , and S′ = π, S,

or π ∈ {==,/=} and π /∈ APConFD, π /∈ APConFS

then M ′ = M , H′ = π,H, F ′ = F , and S′ = S.

IE Infer Equalities
∃U. P 2 C 2 (I1#--S, I2#--S, ΠM 2 σM) 2 H 2 F 2 S `̀ IE

∃U. P 2 C 2 (I1#--S, ΠM 2 σM) 2 H 2 I1 == I2, F 2 S

IF Infer Failure
∃U. P 2 C 2 (I1#--S1, I2#--S2, ΠM 2 σM) 2 H 2 (I1 /= I2, ΠF 2 σF) 2

(S1 == S2, ΠS 2 σS) `̀ IF �

SS FSE black-box Set Solver Invocation
∃U. P 2 C 2 M 2 H 2 F 2 (ΠS2σS) `̀ SS

∃Y ′, U. Pσ′ 2 Cσ′ 2 M ? σ′ 2 H ? σ′ 2 F ? σ′ 2 (Π′σ′2σSσ
′)

If (ΠS2σS) is not solved, and solveFSE
(ΠS) = ∃Y ′(Π′2σ′).

? is the application of σ′ to Π2σ: (Π2σ) ? σ′ = Πσ′2(σσ′ � vdom(σ)) where � stands for

the restriction of the composition σσ′ to variables in the domain of σ

Table 3. Store transformation rules for CCLNC(C)

Example 4. Let us see how this calculus is applied to Example 1. Substitutions
are not shown in the goal to avoid overloading the notation. Initially,

∅ 2

π1︷ ︸︸ ︷
L==[S1,S2],

π2︷ ︸︸ ︷
domainSets L {} {1,2,3,4,5},

π3︷ ︸︸ ︷
atMostOne L, labelingSets L 2 ∅

2 ∅ 2 ∅ 2 ∅

The constraint π1 is sent to theH store and theH solver is invoked producing
the substitution σ1 ={L 7→ [S1,S2]}. Next, π2 is processed using rules of Table
3: First, rule SB generates the bridge constraints I1#--S1 and I2#--S2 with I1

and I2 fresh variables, considering the function bridgesFS→FD defined in Table
4. Next, rule PP builds FD constraints corresponding to the projection of π2:

bridgesFS→FD(π2, ∅) = {I1#--S1, I2#--S2} = B

projFS→FD(π2, B) = {0#<=I1, I1#<=5, 0#<=I2, I2#<=5}

π2 is sent to the FS store, rule SC. The goal is then transformed to:

∅ 2 atMostOne [S1,S2], labelingSets [S1,S2] 2 I1#--S1, I2#--S2 2 ∅ 2
0#<=I1,I1#<=5,0#<=I2,I2#<=5 2 π2

10

π bridgesFS→FD(π,B) projFS→FD(π,B)

S1 == S2 {I1 == I2}

domainSets L=[S1, . . . , Sn] s s’

and s, s’∈ BFS
set

{Ii#--Si | Si has no

bridge in B, Ii fresh}

{c #<= Ii, Ii #<= c’ |1 ≤ i ≤ n and

c#--Ms, c’#--Ms’}

subset S1 S2 (Range for i depends on {I1 #<= I2}

intersect S1 S2 S3 the variables in π) {I3 #<= min{I1,I2}, I1#>=0, I2#>=0}

union S1 S2 S3 {I3#<=I1#+I2, max{I1,I2}#<=I3}

π bridgesFD→FS(π,B) projFD→FS(π,B)

I1 #< I2 (or #> or /=) {} {S1 /= S2 | I1#--S1, I2#--S2 ∈ B}

Table 4. Computing Bridges and Projections from FS to FD and from FD to FS.

Now π3 is flattened, producing new atomic primitive constraints:

∃ S12,I12.∅ 2
π4︷ ︸︸ ︷

3#--S1,
π5︷ ︸︸ ︷

3#--S2,

π6︷ ︸︸ ︷
intersect S1 S2 S12,

π7︷ ︸︸ ︷
I12#--S12,

π8︷ ︸︸ ︷
I12 #<= 1,

π9︷ ︸︸ ︷
labelingSets [S1,S2] 2

I1#--S1, I2#--S2 2 ∅ 2 0#<=I1, I1#<=5, 0#<=I2, I2#<=5 2 π2

π4 is sent to the mediatorial store, and solveM is invoked. Applying rule M3 from
Table 2, a substitution σ2 = {S1 7→ {E11,E12,E13}} and FS constraints E11≺E12
and E12≺E13 are obtained. The same rule applies to π5 producing the substitution σ3

= {S1 7→ {E21,E22,E23}} and FS constraints E21≺E22 and E22≺E23.
Next, the constraint π6 is processed in a similar way to π2, generating a new bridge
and new FD constraints:

bridgesFS→FD(π6, B) = {I12#--S12} = B′

projFS→FD(π6, B
′′) = {I12#<=min(I1,I2), I1#>=0, I2#>=0}, where B′′ = B ∪B′

Then rule SC is applied to π7, π8 and π9, submitting them to the M, FD and FS
stores, respectively. Finally, P and C are empty.

∃ S12,I12.∅ 2 ∅ 2 I1#--S1, I2#--S2, π4, π5, π7 2 ∅ 2 π8, 0#<=I1, I1#<=5, 0#<=I2,

I2#<=5, I12#<=min(I1,I2), I1#>=0, I2#>=0 2 π2, π6, E11≺E12, E12≺E13, E21≺E22,
E22≺E23, π9.

Taking into consideration I1#--S1, π4, I2#--S2, and π5, it is possible to infer the
equalities I1 == 3 and I2 == 3 applying rule IE of Table 3 twice. These equalities are
posted to the H store, producing the substitution σ4 = {I1 7→ 3, I2 7→ 3}:

∃ S12,I12.∅ 2 ∅ 2 3#--S1, 3#--S2, π7 2 ∅ 2 π8,I12#<=3 2 π2, π6, E11≺E12,
E12≺E13,E21≺E22, E22≺E23,π9.

If any store is not in solved form yet, its respective solver is appropriately invoked. In
FS, labelingSets enumerates all ground values for S1 and S2. A first attempt is S1 7→
{1,2,3}, S2 7→ {1,2,3}, but this substitution does not satisfy π6, π7 and π8. The rest of
the valuations are checked on backtracking until a solution is obtained, as for example
S1 7→ {1,2,3}, S2 7→ {1,4,5}. 2

11

The set of solutions SolP(G) of G ≡ ∃U. P 2 C 2 M 2 H 2 F 2 S w.r.t.
a program P includes all those µ ∈ V alC such that there is some µ′ ∈ V alC
verifying µ′ =\U µ and µ′ ∈ SolP(P 2C 2M 2H 2F 2S), which holds iff the
following two conditions are satisfied:

1. µ′ ∈ SolP(P 2C). By definition, this means P `CRWL(C) (P 2C)µ′, which
is equivalent to P `CRWL(C) Pµ

′ and P `CRWL(C) Cµ
′. This notation refers

to the existence of proofs in the instance CRWL(C) of the Constrained
Rewriting Logic CRWL, whose inference rules can be found in [11].

2. µ′ ∈ SolC(M 2H 2F 2S), which is equivalent to µ′ ∈ SolC(M)∩SolC(H)∩
SolC(F) ∩ SolC(S), where SolD for a domain D was defined in Section 3.

In this work, we present the following semantic results for the cooperative goal
solving calculus CCLNC(C): soundness and limited completeness with respect
to Constraint ReWriting Calculus CRWL(D) [11], which provides a declarative
semantics for CFLP (D) programs.

Soundness result ensures that the solved forms obtained as computed answers
for an initial goal using the rules of the cooperative goal solving calculus are
indeed semantically valid answers of G.

Theorem 3 (Soundness). Assume a CFLP (C)-program P, a goal G for P,
and a solved goal S such that G `̀ ∗P S. Then, SolC(S) ⊆ SolP(G).

Completeness result ensures that, under some limitations, any well-typed
solution can be obtained by CCLNC(C).

Theorem 4 (Limited Completeness). Let G be a goal for a program P and
µ ∈ WTSolP(G) a well-typed solution. Assume that neither P nor G are un-
safe. Then, unless there are unsafe rule applications, a CCLNC(C) computa-
tion G `̀ ∗P S can be found, ending with a goal in solved form S such that
µ ∈WTSolC(S), i.e., WTSolC(S) ⊇WTSolP(G).

A program P or goal G is called unsafe if they have free occurrences of higher-
order variables, or ’opaque decompositions’ that can produce ill-typed goals [5].
Unsafe rule applications are some applications of DC rule from constrained lazy
narrowing (in [5]) and rules involving incomplete black-box solvers invocations.

5 Implementation and Experiments

A prototype of this extension has been added to the T OY system. Not all fea-
tures described in this paper are included: set constraints are directly passed to
the ECLiPSe solver (FST is not implemented yet). Nevertheless, the prelimi-
nary results obtained are promising, and we expect to improve them when the
full implementation is available.

The extension of T OY with ECLiPSe domains has been designed to keep it
as simple as possible. An ECLiPSe program executes in a different process acting
as a server, accepting and executing requests from the T OY process. During the

12

execution of a T OY goal, for every constraint π in APConFS that needs to
be evaluated, a request is issued to the ECLiPSe server. The server evaluates π
and returns the result to the T OY process. For communicating both processes,
standard input/output library predicates have been used operating on a pipe
that interconnects them.

The implementation of this extension of T OY has been developed for working
in two modes: The first mode, referred to as interactive, is oriented to model
reasoning, i.e., when the model can be modified during solving. It is based on an
interactive communication between T OY and ECLiPSe. When T OY requires
a constraint to be solved in ECLiPSe, T OY posts it and blocks until ECLiPSe

server returns an answer. This approach takes advantage of all features of the
T OY language with the new FS domain.

The second, batch mode, is intended for classic CP applications, where con-
straints are first specified and then posted and solved. This approach delays
the computation of some or all constraints of the current goal, sending them to
ECLiPSe at the end of the T OY narrowing. This mode avoids the interactive
communication between both processes that may slow down the execution of
goals. However, communication is inevitable when more answers are demanded
for a given goal. The backtracking mechanism forces interactive communication
between both processes, even though the constraints are sent in batch mode.

Several issues have been addressed in order to make the system work. The
most relevant issue is related to the cooperation between constraint domains.
Since ECLiPSe includes a finite domain tightly integrated with the sets domain,
the finite domain already existing in T OY (provided by the SICStus implemen-
tation) has been replaced by the ECLiPSe finite domain.

The preliminary implementation has been tested with two well-known exam-
ples in the literature about integer sets solvers, taken from the ECLiPSe web
page [3]: Steiner triplets and Social Golfers problems. T OY formulations are ac-
cessible in http://gpd.sip.ucm.es/sonia/systems.html. The Steiner Triplets
Problem of order n consists of finding a set of n(n-1)/6 triples of distinct integer
elements in {1,2,...,n} such that any two triples have at most one element
in common. The second example is The Social Golfers Problem. It consists of
trying to schedule g*p golfers into g groups of p players over w weeks, such that
no golfer plays in the same group with any other golfer more than just once.

These programs have been executed with different parameters, as shown in
column Bench. of Table 5, which shows the results for the computation of all
solutions or until failure when there are no solutions for the input arguments.
Symmetries are not removed, in order to have the same behavior as the original
ECLiPSe programs.

We have executed these examples in T OY and compared their performance
with the existing implementation in ECLiPSe. Both examples have been ex-
ecuted in a system with an Intel c© CoreTM i7-740QM processor (4 cores) at
1.73 GHz with 3 GB of physical memory and running Ubuntu 10.10. Experi-
ments marked with a hyphen in their execution time have reached a time out
of 3,600 seconds. ECLiPSe column contains the time in milliseconds spent by

13

Bench. ECLiPSe inter SU batch SU T OY ecl SU

steiner3 0 0 n/a 0 n/a 0 n/a

steiner4 0 10 n/a 10 n/a 10 n/a

steiner5 10 50 0.20 30 0.33 10 1.00

steiner6 670 1 280 0.52 810 0.83 680 0.99

steiner7 266 210 1 869 850 0.14 1 434 930 0.19 262 480 1.01

golf4 2 2 40 360 0.11 90 0.44 50 0.80

golf5 2 2 50 410 0.12 100 0.50 50 1.00

golf6 2 2 60 540 0.11 130 0.46 60 1.00

golf7 2 2 60 700 0.08 140 0.42 70 0.85

golf8 2 2 70 790 0.08 190 0.36 70 1.00

golf9 2 2 70 1 010 0.06 220 0.31 80 0.87

golf10 2 2 80 1 400 0.05 270 0.29 80 1.00

golf3 3 2 51 138 724 550 0.07 928 880 0.05 50 630 1.01

golf4 3 2 1 043 113 - n/a - n/a 1 046 230 0.99

Table 5. Results of experiments for all solutions (execution times in milliseconds).

the original programs1 (taken from ECLiPSe site [3]). Column inter is the time
in milliseconds taken by T OY interactive mode. Column batch contains the
time spent by T OY batch mode. Columns named SU contain the speedup of
each mode w.r.t. the ECLiPSe column. n/a stands for speedups which are not
computable because any of the values is zero or not available.

In addition to the T OY modes, it has been measured the time that ECLiPSe

takes in solving the set of constraints sent by T OY, but removing any overhead
produced by narrowing and inter-process communication. This has been done
by generating an ECLiPSe Prolog program that contains all atomic primitive
constraints created by T OY in the narrowing process. This is shown in Table 5
under T OY ecl heading.

As it can be observed in Table 5, T OY batch mode is faster than the inter-
active mode, in which lazy narrowing computation in T OY is interleaved with
constraint solving in ECLiPSe. The former case does not require to establish
a communication from the ECLiPSe server to T OY every time a constraint
is posted, and therefore computation in ECLiPSe is performed without inter-
ruption for communicating intermediate results to T OY. Batch mode in these
particular examples is very appropriate, since the structure of the solution is first
generated in T OY together with all constraints, which are solved in a second
step, in a similar way usual CP problems are specified and solved.

It is remarkable that in all cases T OY ecl takes approximately the same
time than the original ECLiPSe program, in particular for golf4 3 2, that is
a time consuming experiment and generates a very high number of solutions.
These results show that T OY does not introduce a noticeable overhead w.r.t.
the tests directly performed in ECLiPSe.

1 Social golfers ECLiPSe program has been modified in order to make it comparable
to the T OY program. The ECLiPSe website version program does not perform set
labeling, producing very poor results.

14

6 Conclusions and Future Work

This paper presented a theoretical model for cooperation of the pure domains:
Herbrand, FD and FS in the T OY system, by means of a mediatorial domain
M for allowing communication among domains. Domain FS has been designed
starting from an existing set domain in the ECLiPSe system, extended with
several transformation rules to infer additional information. We have proved that
this model is sound and complete, although completeness of FS is guaranteed
as far as permitted by the completeness of the underlying black-box solver. The
prototype system T OY with ECLiPSe external solvers has been experimentally
tested with promising results.

As future work, we plan to complete the implementation of the system with
the FST solver presented in this paper, and perform a thorough experimental
evaluation of the system. We are interested as well in the coordination of these
domains with the domain R over real numbers.

References

1. F. Azevedo. Cardinal: A finite sets constraint solver. Constraints, 12:93–129, 2007.
2. F. Bergenti, A. Dal Palú, and G. Rossi. Integrating finite domain and set con-

straints into a set-based constraint language. Fundam. Inf., 96:227–252, 2009.
3. ECLiPSe Web Site. http://eclipseclp.org/.
4. S. Estévez, A. Fernández, and F. Sáenz. Cooperation of the Finite Domain and Set

Solvers in T OY. In P. Lucio, G. Moreno, and R. Peña, editors, In Proc. Prole’09,
pages 217–226, Spain, 2009.

5. S. Estévez-Mart́ın, A. J. Fernández, T. Hortalá-González, M. Rodŕıguez-Artalejo,
F. Sáenz-Pérez, and R. del Vado Vı́rseda. On the Cooperation of the Constraint
Domains H, R and FD in CFLP . TPLP, 9:415–527, 2009.

6. A. J. Fernández and P. M. Hill. An interval constraint branching scheme for lattice
domains. J. UCS, 12(11):1466–1499, 2006.

7. M. Gavanelli, E. Lamma, P. Mello, and M. Milano. Dealing with incomplete knowl-
edge on clp(fd) variable domains. ACM Trans. Program. Lang. Syst., 27:236–263,
March 2005.

8. C. Gervet and P. Van Hentenryck. Length-lex ordering for set csps. In AAAI,
2006.

9. R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A demand driven com-
putation strategy for lazy narrowing. In Proc. PLILP’93, volume 714 of LNCS,
pages 184–200. Springer, 1993.

10. F. López-Fraguas, M. Rodŕıguez-Artalejo, and R. del Vado-Virseda. A Lazy Nar-
rowing Calculus for Declarative Constraint Programming. In PPDP’04, pages
43–54. ACM Press, 2004.

11. F. López-Fraguas, M. Rodŕıguez-Artalejo, and R. del Vado Vı́rseda. A new generic
scheme for functional logic programming with constraints. Higher-Order and Sym-
bolic Computation, 20(1/2):73–122, 2007.

12. A. Sadler and C. Gervet. Hybrid set domains to strengthen constraint propagation
and reduce symmetries. In CP’04. Vol. 3258, LNCS, pages 604–618. Springer, 2004.

13. A. Sadler and C. Gervet. Enhancing set constraint solvers with lexicographic
bounds. Journal of Heuristics, 14(1):23–67, 2008.

14. Toy Web Site. http://toy.sourceforge.net/.

15

