
Constancy Analysis

Samir Genaim and Fausto Spoto

1 CLIP, Technical University of Madrid (UPM), Spain
2 Università di Verona, Italy

samir@clip.dia.fi.upm.es, fausto.spoto@univr.it

Abstract. A reference variable x is constant in a piece of code C if the
execution of C does not modify the heap structure reachable from x.
This information lets us infer purity of method arguments, an important
ingredient during the analysis of programs dealing with dynamically al-
located data structures. We define here an abstract domain expressing
constancy as an abstract interpretation of concrete denotations. Then
we define the induced abstract denotational semantics for Java-like pro-
grams and show how constancy information improves the precision of
existing static analyses such as sharing, cyclicity and path-length.

1 Introduction

A major difference between pure functional/logic programming and imperative
programming is that the latter uses destructive updates. That is, data structures
are mutable: they are built and later modified. This can be both recognized as
a superiority of imperative programming, since it allows one to write faster and
simpler code, and as a drawback, since if two variables share a data structure
then a destructive update to the data reachable from one variable may affect the
data reachable from the other. This often leads to subtle programming bugs.

It is hence important to control what a method invocation modifies. Some
methods do not modify the data structures reachable from their parameters.
Others only modify those reachable from some but not all parameters. Namely,
some parameters are constant or read-only, others may be modified. If all pa-
rameters of a method are constant, the method is pure [10]. Knowledge about
purity is important since pure methods can be invoked in any order, which lets
compilers apply aggressive optimizations; pure methods can be used in program
assertions [7]; they can be skipped during many static analyses or more precisely
approximated than other methods. This results in more efficient and more pre-
cise analyses. For instance, sharing analysis [11] can safely assume that sharing
is not introduced during the execution of a pure method. In general, all static
analyses tracking properties of the heap benefit from information about purity.

For these reasons, software specification has found ways of expressing purity
of methods and constant parameters. The notable example is the Java Modeling
Language [7], which uses the assignable clause to specify those heap positions
that might be mutated during the execution of a method. Those clauses are
manually provided and used by many static analyzers, such as ESC/Java [6]



and ChAsE [4]. However, those tools do not verify the correctness of the user-
provided assignable clauses, or use potentially incorrect verification techniques.
A formally correct verification technique is defined in [14], but has never been
implemented. In [10] a formally correct analysis for purity is presented, it is
based on a preliminary points-to and escape analysis, and an implementation
exists and has been applied to some small size examples. In [8] a correct and
precise algorithm for statically inferring the reference immutability qualifiers of
the Javari language has been presented. The algorithm has been implemented
in the Javarifier tool.

In this paper, we investigate an alternative technique aiming at determining
which parameters of a method are constant. We use abstract interpretation [5]
and perform a static analysis over the reduced product of the sharing domain
in [11] (the sharing component) and a new abstract domain expressing the set
of variables bound to data structures mutated during the execution of a piece
of code (the purity component). The use of reduced product is justified since
the sharing component helps the purity component during a destructive update,
by identifying which variables share the updated data structure and hence lose
their purity; conversely, the sharing component uses the purity component during
method calls, since only variables sharing with non-pure parameters of a method
m can be made to share during the execution of m.

Our technique is sometimes less precise than [10], since it does not use the
field names (i.e., we do not keep information on which field has been updated,
but rather that a field has been updated). However, it is implemented in a com-
pletely flow-sensitive and context-sensitive fashion, which improves its precision.
Moreover, it is expressed in terms of Boolean formulas implemented through bi-
nary decision diagrams, resulting in fast analyses scaling to quite big programs.
Our contributions are hence: (1) a definition of the reduced product of sharing
and purity; (2) its application to large programs; (3) a comparison of the preci-
sion of sharing analysis alone with that of sharing analysis in reduced product
with purity; and (4) an evaluation of the extra precision induced by the pu-
rity information during static analyses tracking properties of the heap, namely,
possible cyclicity of data structures [9] and path-length of data structures [13].

The paper is organized as follows: Section 2 defines the syntax and semantics
of a simple Object-Oriented language; Section 3 develops our constancy analysis
for that language; Section 4 provides an experimental evaluation.

2 Our Simple Object-Oriented Language

This section presents syntax and denotational semantics of a simple Object-
Oriented language that we use through the paper. Its commands are normalized
versions of corresponding Java commands: the language supports reference and
integer types; in method calls, only syntactically distinct variables can be actual
parameters, which is a form of normalization and does not prevent them from
being bound to shared data-structures at run-time; in assignments, the left hand
side is either a variable or the field of a variable; Boolean conditions are kept



generic, they are conditions that are evaluated to either true or false; iterative
constructs, such as the while loop, are not supported since they can be imple-
mented through recursion. These assumptions are only for the sake of clear and
simple presentation and can be relaxed without affecting subsequent results. A
program has a set of variables V (including out and this) and a finite poset of
classes K. The commands of the language are

com ::= v := c | v := w | v := new κ | v := w + z | v := w.f | v.f := w |
v := v0.m(v1, . . . , vn) | if e then com1 else com2 | com1 ;com2

v, w, z, v0, v1, . . . , vn ∈ V are distinct variables, c ∈ Z ∪ {null}, κ ∈ K and e
is a Boolean expression. The signature of a method κ.m(t1, . . . , tp):t refers to a
method called m expecting p parameters of type t1, . . . , tp ∈ K ∪ {int}, respec-
tively, returning a value of type t and defined in class κ with a statement

t m(w1:t1, . . . , wn:tn) with {wn+1:tn+1, . . . , wn+m:tn+m} is com,

where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct, not in {out , this} and have
type t1, . . . , tn, tn+1, . . . , tn+m ∈ K∪{int}, respectively. Variables w1, . . . , wn are
the formal parameters of the method and wn+1, . . . , wn+m are its local variables.
The method also uses a variable out of type t to store its return value. For
a given method signature m = κ.m(t1, . . . , tp) : t, we define mb = com, mi =
{this, w1, . . . , wn}, mo = {out}, ml = {wn+1, . . . , wn+m} and ms = mi∪mo∪ml.
Classes might declare fields of type t ∈ K ∪ {int}.

We use a denotational semantics, hence compositional, in the style of [15].
However, we use a more complex notion of state, which assumes an infinite set of
locations. Basically, a state is a pair which consists of a frame and a heap, where
a frame maps variables to values and a heap maps locations to objects. Note
that since we assume a denotational semantics, a state has a single frame, rather
than an activation stack of frames as it is required in operational semantics.
We let L denote an infinite set of locations, and let V denotes the set of values
Z∪L∪ {null}. A frame over a finite set of variables V is a mapping that maps
each variable in V into a value from V; a heap is a partial map from L into
objects. An object is a pair that consists of its class tag κ and a frame that maps
its fields (identifiers) into values from V; we say that it belongs to class κ or has
class κ. Given a class κ, we assume that newobj(κ) return a new object where
its fields are initialized to 0 or depending on their types. If φ is a frame and
v ∈ V , then φ(v) is the value of variable v. If µ is a heap and ` ∈ L, then µ(`)
is the object bound in µ to `. If o is an object, then o.tag denotes its class and
o.φ denotes its frame; if f is a field of o, then sometimes we use o.f to refer to
(or set) its value instead of going through its frame.

Definition 1 (computional state). Let V denotes the set of variables in scope
at a given program point p. The set of possible states at p is

ΣV =

〈φ, µ〉
∣∣∣∣∣∣
1. φ is a frame over V and µ is a heap
2. rng(φ) ∩ L ⊆ dom(µ)
3. ∀` ∈ dom(µ). rng(µ(`).φ) ∩ L ⊆ dom(µ)





Conditions 2 and 3 guarantee the absence of dangling pointers. Given σ =
〈φ, µ〉 ∈ ΣV , we use φσ and µσ to refer to its frame and heap respectively. ut

Now we define the notion of Denotations which are the input/output semantics
of a piece of code. Basically they are mappings from states to states which
describe how the input state is changed when the corresponding code is executed.
Interpretations are a special case of denotations which provide a denotation for
each method in terms of its input and output variables.

Definition 2. A denotation δ from V to V ′ is a partial function from ΣV to
ΣV ′ . We often refer to δ(σ) = σ′ as (σ, σ′) ∈ δ. The set of denotations from V
to V ′ is ∆(V ,V ′). An interpretation ι maps methods to denotations and is such
that ι(m) ∈ ∆(mi,mi ∪mo) for each method m = κ.m(t1, . . . , tp) : t in the given
program. The set of all possible interpretations is written as I. ut

The denotational semantics associates a denotation to each command of the
language. Let V denotes a set of variables. Let ι ∈ I. We define the denotation
for commands CιV J K : com 7→ ∆(V ,V ), as their input/output behaviour:

CιV Jv:=cK= {(σ, σ[φσ(v) 7→ c]) | σ ∈ ΣV }
CιV Jv:=wK= {(σ, σ[φσ(v) 7→ φσ(w)]) | σ ∈ ΣV }

CιV Jv:=new κK= {(σ, σ[µσ(`) 7→ newobj(κ)]) | σ ∈ ΣV , ` 6∈ dom(µσ)}
CιV Jv:=w + zK= {(σ, σ[φσ(v) 7→ φσ(w) + φσ(z)]) | σ ∈ ΣV }
CιV Jv:=w.fK= {(σ, σ[φσ(v) 7→ µσφσ(w).f ]) | σ ∈ ΣV , φσ(w) 6= null}
CιV Jv.f :=wK= {(σ, σ[µσφσ(v).f 7→ φσ(w)]) | σ ∈ ΣV , φσ(v) 6= null}

CιV
s
if e then com1

else com2

{
=
{(σ, σ′) ∈ CιV Jcom1K | σ |= e ≈ true}∪
{(σ, σ′) ∈ CιV Jcom2K | σ |= e ≈ false}

CιV Jcom1; com2K= {(σ, σ′′) | (σ, σ′) ∈ CιV Jcom1K ∧ (σ′, σ′′) ∈ CιV Jcom2K}

The denotation for a method call CιV Jv:=v0.m(v1, . . . , vp)K should consider the
denotation ι(m) (where m is the called method) and extend it to fit in the calling
scope and update the variable v. Assume the method signature is m(t1, . . . , tp):t,
and that we have a lookup procedure L that, for any given σ ∈ ΣV , fetches the
actual method that is called depending on the run-time class of v0. Then the
method call denotation is defined as follows:(σ, 〈φσ[v 7→ φ′′σ(out)], µ′′σ〉)

∥∥∥∥∥∥∥∥
1. σ ∈ ΣV , φσ(v0) ∈ dom(µσ);
2. m = L(v0, σ, m(t1, . . . , tp):t);
3. (σ′, σ′′) ∈ ι(m);
4. µσ ≡ µ′σ,∀0≤i≤p. φσ(vi) = φ′σ(wi)


The concrete denotational semantics of a program is the least fixpoint of the
following transformer of interpretations [3].

Definition 3 (Denotational semantics). The denotational semantics of a
program P is defined as

⋃
i≥0

T iP (ι0) , i.e. the least fixed point of TP where TP is:



TP (ι) =

(m,X)

∥∥∥∥∥∥
1. m ∈ P
2. σ ∈ Σms ,∀v ∈ ml. φσ(v) = 0 or φσ(v) = null
3. X = {(σ|mi , σ′|mi∪mo) | (σ, σ′) ∈ Cιms

q
mb

y
}


and ι0 = {(m, ∅) | m ∈ P} and ∀ι1, ι2 ∈ I the union ι1 ∪ ι2 is defined as
{(m,X1 ∪X2) | m ∈ P, (m,X1) ∈ ι1, (m,X2) ∈ ι2} ut

3 Constancy Analysis

We want to design an analysis to infer definite information about constant data
structures. This can be done by tracking data structures that are not modified
(definite information), or by tracking data structures that might be modified
(may information). We follow the latter approach as we believe it easier. In
addition, we want to analyze methods in a context independent way, and later
adapt the result to any calling context.

Example 1. Consider the following method:

A m(x:A, y:A) with {} is y:=y.next; x.next:=y; out:=y;

The only command that might modify the heap structure is “x.next:=y”. Note
that “y:=y.next” does not affect the heap structure but rather changes the
heap location stored in y. This method might be called in different contexts
where the actual parameters: (1) do not have any common data structure; or
(2) have a common data structure. In the first case, “x.next:=y” might modify
only the data structure pointed by the first argument. In the second case, it
might modify a common data structure for x and y, and therefore we say that
both arguments might be modified. We describe this behaviour by the Boolean
formula x̌ ∧ (y̌ ↔ x̌·y), which is interpreted as: (1) in any calling context, the
data structure the first argument points to when the method is called might be
modified by the method (expressed by x̌); and (2) the data structure that the
second argument points to when the method is called, might be modified by
the method (expressed by y̌) iff x and y might share a data structure when the
method is called (expressed by x̌·y).

ut

We define now the set of reachable heap locations from a given reference
variable, which we need to define the notion of constant heap structure.

Definition 4 (reachable heap locations). Let µ be a heap. The set of lo-
cations reachable from ` ∈ dom(µ) is L(µ, `) = ∪{Li(µ, `) | i ≥ 0} where
L0(µ, `) = rng(µ(`).φ) ∩ L and Li+1(µ, `) = ∪{rng(µ(`′)) ∩ L | `′ ∈ Li(µ, `)}.
The set of reachable heap locations from v in σ ∈ ΣV , denoted LV (σ, v), is
{φσ(v)} ∪ L(µσ, φσ(v)) if φσ(v) ∈ dom(µσ); and the empty set otherwise. ut



Definition 5 (constant reference variable). A reference variables v ∈ V is
constant with respect to a denotation δ, denoted c(v, δ), iff for any (σ1, σ2) ∈ δ all
locations in LV (σ1, v) are constant with across δ, namely ∀` ∈ LV (σ1, v), µσ1(`)
and µσ2(`) have the same class tag and agree on their reference field values. ut

The definition above considers modifications of fields of reference type only. The
reason for concentrating on reference fields is that we have developed this analysis
for a specific need which requires tracking updates only in the shape of the data
structure (see Section 4). Tracking updates of integer fields can simply done
by modifying the above definition to consider those updates. In what follows,
a modification of a variable stands for a modification of the shape of the heap
structure reachable from that variable.

Definition 6 (common heap location). x, y ∈ V have a common heap loca-
tion (share) in a state σ ∈ ΣV if and only if LV (σ, x) ∩ LV (σ, y) 6= ∅ ut

We define now an abstract domain which captures a set of variables that might
be modified by a concrete denotation.

Definition 7 (update abstract domain). The update abstract domain UV
is a partial order 〈℘(V ),⊆〉. Its concretization function γV :UV → ∆(V ,V ′) is
defined as γV (X) = {δ | ∀v ∈ V. ¬c(v, δ)→ (v ∈ X)}. ut

As we have seen in Example 1, information about possible sharing between
variables is important for a precise constancy analysis. There are many ways for
inferring such information. Here, we use the pair-sharing domain [11]. Moreover,
constancy information improves the precision of method calls in pair sharing
analysis. This is because the execution of a method m can introduce sharing
between non-constant parameters only. Hence we design an analysis over the
(reduced) product of the update domain UV and of the pair-sharing domain SHV ,
denoted by SH×UV . Informally, the pair sharing domain abstracts an element
s ∈ ℘(ΣV ) to a set sh of symmetric pairs of the form (x, y) where x, y ∈ V . If
(x, y) ∈ sh then x and y might share in s, and if (x, y) 6∈ sh then they cannot
share, so that if (x, x) 6∈ sh then x must be null in s. In what follows, instead
of saying might share we simply say share.

Figure 1 defines abstract denotations for our simple language over SH×UV .
They are Boolean functions corresponding to the elements of SH×UV . For a
piece of code C, the Boolean variables:

– x̌·y and x̂·y indicate if x and y share before and after executing C, respec-
tively. Since pair sharing is symmetric, x̌·y and ˇy·x are equivalent Boolean
variables; and

– x̌ and x̂ indicate if x is modified with respect to its value before and after C
(by the program execution), respectively.

Each abstract denotation is defined in terms of a Boolean function ϕ∧ψ, where ϕ
propagates (forward) sharing information and ψ propagates (backwards) update
information. In what follows we explain the meaning of each abstract denotation:



AιV Jv:=nullK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V })
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=wK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1 ∧ ϕ2

−ϕ1 = ∧{x̂·v ↔ ˇx·w | x ∈ V \{v}}
−ϕ2 = ˇw·w ↔ v̂·v
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=new κK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ v̂·v ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V \ {v}})
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=w.fK = AιV Jv:=wK
AιV Jv.f :=wK = ϕ ∧ ψ

−ϕ = ∧{x̂·y ↔ x̌·y ∨ ( ˇx·w ∧ y̌·v) | x, y ∈ V }
−ψ = {x̌↔ ˇv·x ∨ x̂ | x ∈ V }

AιV Jif e . . .K = AιV Jc1K ∨ AιV Jc2K
AιV Jc1; c2K = AιV Jc1K ◦ AιV Jc2K

AιV Jv:=v0.m(v1, . . . , vp)K = φ ∧ ϕ ∧ ψ
φm = ∨{ι(m) | m might be called }
φ = φm[si 7→ vi, out 7→ v, this 7→ v0]
ϕ = ∧{x̂·y ↔ x̌·y ∨ ϕ1 | x, y ∈ V \{v0, . . . , vp}}
ϕ1 = ∨{( ˇx·vi ∧ ˇy·vj ∧ ˆvi·vj ∧ (v̌i ∨ v̌j)) | i, j ∈ {0, . . . , p}}
ψ = ψ1 ∧ (v̌ ↔ ψ3 ∨ ψ2(v))
ψ1 = ∧{x̌↔ x̂ ∨ ψ2(x) | x ∈ V \{v, v0, . . . , vp}}
ψ2(x) = ∨{( ˇx·vi ∧ v̌i) | i ∈ {0, . . . , p}}
ψ3 = {x̌·y ∧ ŷ | y ∈ V \{v}}

Fig. 1. Abstract Denotations over SH×UV

– AιV Jv:=nullK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
and nothing can share with v after C (ϕ1). (U) x ∈ V \{v} is modified before
C iff it is modified after C, and v is modified before C iff it shares with some
y before C and y is modified after C.

– AιV Jv:=wK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
since v becomes an alias for w then v can share with x ∈ V \{v} after C iff
x shares with w before C (ϕ1); and v can share with itself after C (i.e., not
null) iff w shares with itself before C (ϕ2). (U) the same as for “v:=null”.

– AιV Jv:=new κK: the same as AιV Jv:=nullK except that v shares with itself
after executing the statement.

– AιV Jv:=w.fK: the same as AιV Jv:=wK since the analysis is field insensitive.
– AιV Jv.f :=wK: (SH) x, y ∈ V share after C iff before C, they shared or x

shared with w and y with v; (U) x ∈ V is modified before C, iff it shares
with v before C or x is modified after C.

– AιV Jif e . . .K: combines the branches through logical or.



– AιV Jc1; c2K: combines AιV Jc1K and AιV Jc2K. This is simply done by matching
the output variables of the first denotation with the input variables of the
second denotation.

– AιV Jv:=v0.m(v1, . . . , vp)K: (1) First we fetch the abstract denotations of all
methods that might be called, and we combine them through logical or into
φm; (2) Assuming that the method denotations use si 6= vi for the i-th formal
parameter, we rename all sharing information by changing each si into vi
and out into v. We get φ. (3) We add sharing information for variables which
are not in V \{v, v0, . . . , vp}. The sharing component ϕ states that x and y
might share after the call iff they shared before (i.e. x̌·y) or they shared with
arguments vi and vj where vi and vj share after the call, and either vi or vj
has been modified (expressed by ϕ1); (4) We add the constancy information
which states that x ∈ V \{v} is modified before iff it is modified after, or
if it shares with a variable that is modified by the method. For v it is a
bit different since we exclude the case that if v is modified after then it is
modified before, since we possibly assign to it a new reference.

The abstract denotation for a method:

t m(w1:t1, . . . , wn:tn) with wn+1:tn+1, . . . , wn+m:tn+m is com,

is then defined as φm = ∃V ′. AιV JcomK ∧ ϕ1 ∧ ϕ2 where:

– S = {s1, . . . , sn} such that S ∩ms = ∅, and V = ms ∪ S
– ϕ1 = {¬x̌·y | x ∈ ml ∪ {out}, y ∈ ms}
– ϕ2 = { ˇsi·x↔ ˇwi·x | 1 ≤ i ≤ n, x ∈ mi}
– V ′ = {x̌·y, x̂·y, x̌, x̂ | x 6∈ S ∪ {this, out}, y ∈ V } ∪ { ˇout}

The idea is that we: (1) extend ml to V in order to include shallow variable
si for each method argument wi; (2) compute AιV JcomK; (3) add ϕ1 which in-
dicates that local variables are initialized to null; (4) add ϕ2 which creates
the connection between the shallow variables and the actual parameters; (5)
eliminate all local information by removing the Boolean variables V ′. The ab-
stract denotational semantics can be then defined similar to the concrete one in
Definition 3, where the initial method summaries are false ans summaries are
combined (during the fixpoint iterations) using the logical or ∨.

Example 2. Applying the above abstract semantics to the method defined in
Example 1 results in a Boolean formula whose constancy component is ( ˇthis↔

ˆthis) ∧ x̌ ∧ (y̌ ↔ (x̌·y ∨ ŷ)). For simplicity we ignore the part of φm that talks
about sharing.

4 Experiments

We show here some experiments with our domain for sharing and constancy
analysis. They have been performed with the Julia analyzer [12] on a Linux



Program M
Sharing Non-Cyclicity

T P T P

JLex 446 1595 (2324) 34.30% (34.84%) 506 (415) 34.03% (35.21%)

JavaCup 933 5707 (6486) 22.24% (23.76%) 853 (953) 59.23% (76.13%)

Kitten 2131 20976 (27824) 17.90% (19.11%) 2538 (3177) 36.34% (41.13%)

jEdit 3206 47408 (49356) 21.12% (21.28%) 4969 (5963) 43.49% (47.50%)

Julia 4028 79199 (129562) 9.71% (10.25%) 8014 (12018) 33.40% (38.17%)

Fig. 2. The effect of the purity component on Sharing and Non-Cyclicity. (M) number
of methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

machine based on a 64 bits dual core AMD Opteron processor 280 running
at 2.4Ghz, with 2 gigabytes of RAM and 1 megabyte of cache, by using Sun
Java Development Kit version 1.5. All programs have been analyzed including
all library methods that they use inside the java.lang.* and java.util.*
hierarchies.

Figure 2 compares sharing analysis alone with sharing analysis in reduced
product with constancy (Section 3), and its effect on non-cyclicity analysis [9].
In each column, numbers in parentheses correspond to the analysis using the
reduced product. For each program, it reports the number of methods analyzed,
including the libraries, and time and precision of the corresponding analysis
with and without constancy. For sharing, the precision is the amount of pairs of
variables of reference type that are proved not to share at the program points
preceding the update of an instance field, the update of an array element or
a method call. This is sensible since there is where sharing analysis is used
by subsequent analyses. That figure suggests that the constancy component
slightly improves the precision of sharing analysis. However, the importance
of constancy is shown when we consider its effects on a static analysis that
uses constancy information. This is the case of non-cyclicity analysis, which
finds variables bound to non-cyclical data structures [9]. Figure 2 shows that
the computation of cyclicity analysis after a simple sharing analysis leads to
less precise results than the same computation after a sharing and constancy
analysis. Here, precision is the number of field accesses that read the field of a
non-cyclical object. This is sensible since there is where non-cyclicity is typically
used.

The importance of constancy analysis becomes more apparent when it sup-
ports a static analysis that uses constancy, sharing and cyclicity information.
This is the case of path-length [13]. It approximates the length of the maximal
path of pointers one can follow from each variable. This information is the basis
of a termination [1] and resource bound analyses [2] for programs dealing with
dynamic data structures. Figure 3 shows the effects of constancy on path-length
and termination analysis (available in [12]) of a set of small programs that do
not use libraries except for java.lang.Object. Times are in milliseconds and
precision is the number of methods proved to terminate. Constancy information



Program M T P

Init 10 102 (140) 8 (8)

List 11 624 (512) 6 (11)

Diff 5 6668 (9040) 5 (5)

Hanoi 7 548 (868) 7 (7)

BTree 7 306 (415) 6 (7)

BSTree 10 234 (273) 9 (10)

Virtual 11 357 (418) 10 (11)

ListInt 11 767 (507) 6 (11)

Program M T P

Nested 4 324 (447) 4 (4)

Double 5 270 (268) 5 (5)

FactSum 6 169 (178) 6 (6)

Sharing 7 309 (501) 6 (7)

Factorial 5 102 (196) 5 (5)

Ackermann 5 1308 (1732) 5 (5)

BubbleSort 5 871 (951) 5 (5)

FactSumList 8 278 (703) 7 (8)

Fig. 3. The effect of the purity information on Termination analysis. (M) number of
methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

results in proving that all terminating methods terminate (only 2 methods of
Init are not proved to terminate: they actually diverge). Without constancy
information, many terminating methods are not proved to terminate.

These experiments suggest that constancy information contributes to the
precision of sharing, cyclicity, path-length and hence termination analysis. Com-
puting constancy information with sharing requires more time than computing
sharing alone (Figure 2). Performing other analyses by using the constancy in-
formation increases the times further (Figures 2 and 3). Nevertheless, this is
justified by the extra precision of the results.

5 Acknowledgments

This work of Samir Genaim was funded in part by the Information Society Tech-
nologies program of the European Commission, Future and Emerging Technolo-
gies under the IST-15905 MOBIUS project, by the Spanish Ministry of Educa-
tion (MEC) under the TIN-2005-09207 MERIT project, the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project, and a Juan de
la Cierva Fellowship awarded by the Spanish Ministry of Science and Educa-
tion. The authors would like to thank the anonymous referees for their useful
comments.

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Ter-
mination Analysis of Java Bytecode. In Gilles Barthe and Frank de Boer, editors,
Proceedings of the IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS), Lecture Notes in Computer Science,
Oslo, Norway, June 2008. Springer-Verlag, Berlin. To appear.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In Rocco De Nicola, editor, 16th European Symposium on Pro-
gramming, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages
157–172. Springer, March 2007.



3. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics Approach:
Theory and Applications. Journal of Logic Programming, 19-20:149–197, 1994.

4. N. Cataño and M. Huisman. Chase: A Static Checker for JML’s Assignable Clause.
In L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Proc. of
the 4th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’03), volume 2575 of Lecture Notes in Computer Science,
pages 26–40. Springer, 2003.

5. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’77), pages 238–252, 1977.

6. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking.
Technical Report 159, COMPAQ Systems Research Center, 1998.

7. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML. Technical
Report 96-06p, Iowa State University, 2001.

8. Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of refer-
ence immutability. In ECOOP 2008 — Object-Oriented Programming, 22nd Eu-
ropean Conference, Paphos, Cyprus, July 9–11, 2008.

9. S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation
into Boolean Functions. In E. A. Emerson and K. S. Namjoshi, editors, Proc. of
Verification, Model Checking and Abstract Interpretation, volume 3855 of Lecture
Notes in Computer Science, pages 95–110, Charleston, SC, USA, January 2006.

10. A. Salcianu and M. C. Rinard. Purity and Side Effect Analysis for Java Programs.
In R. Cousot, editor, Proc. of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture
Notes in Computer Science, pages 199–215, Paris, France, 2005. Springer.

11. S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In
C. Hankin, editor, Proc. of Static Analysis Symposium (SAS), volume 3672 of
Lecture Notes in Computer Science, pages 320–335, London, UK, September 2005.

12. F. Spoto. The julia Static Analyser. profs.sci.univr.it/∼spoto/julia, 2008.
13. F. Spoto, P. M. Hill, and E. Payet. Path-Length Analysis for Object-Oriented

Programs. In Proc. of Emerging Applications of Abstract Interpretation, Vienna,
Austria, March 2006. profs.sci.univr.it/∼spoto/papers.html.

14. F. Spoto and E. Poll. Static Analysis for JML’s assignable Clauses. In G. Ghelli,
editor, Proc. of FOOL-10, the 10th ACM SIGPLAN International Workshop on
Foundations of Object-Oriented Languages, New Orleans, Louisiana, USA, January
2003. ACM Press. Available at www.sci.univr.it/∼spoto/papers.html.

15. G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
1993.


