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Abstract

Reasoning about Java bytecode (JBC) is complicated dus tmdtructured control-flow, the
use of three-address code combined with the use of an opstaaid etc. Therefore, many static
analyzers and model checkers for JBC first convert the cadeaitnigher-level representation.
In contrast to traditional decompilation, such repred@mntas often not Java source, but rather
some intermediate language which is a good input for theegpEnt phases of the todhter-
pretive decompilatiogonsists in partially evaluating an interpreter for the pded language (in
this case JBC) written in a high-level language w.r.t. theecto be decompiled. There have been
proofs-of-concept that interpretive decompilation issibie, but there remain important open
issues when it comes to decompile a real language such asTigpaper presents, to the best
of our knowledge, the first modular scheme to enable intéygrelecompilation of a realistic
programming language to a high-level representation, haofe)lBC to Prolog. We introduce
two notions of optimality which together require that degulation does not generate code more
than once for each program point. We demonstrate the impaciranodular approach and opti-
mality issues on a series of realistic benchmarks. Decattigil times and decompiled program
sizes are linear with the size of the input bytecode progréhis demonstrates empirically the
scalability of modular decompilation of JBC by partial exation.

Key words: program transformation, partial evaluation, decompmlatinterpreters, Java
bytecode, logic programming, Prolog

1. Introduction

Decompilation of Java bytecode (JBC for short) to an inteliate representation has become
a usual practice nowadays within the development of anedyzerifiers, model checkers, etc.
For instance, in the context ofiobile code, as the source code is not available, decompilation
facilitates the reuse of existing analysis and model ctmeciools. In general, high-level inter-
mediate representations allow abstracting away the p#atitanguage features and developing
the tools on simpler representations. In particular, JBéeompiled to a rule-based representa-
tion in [2], to clause-based programs in [35], to a threerasisicode representation in Soot [43]
and to the typed procedural language BoogiePL in [13]. Adsalysis of Java programs is for-
malized and performed using Datalog in [44] and in [20] PI€easbly is transformed into logic
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programs. This shows that the rule-based representat&ets in declarative programming in

general—and in Prolog in particular—provide a convenientnfaism to define such interme-

diate representations. For instance, as it can be seen 3[20], the operand stack used in a
bytecode language can be represented by means of expfjtdariables and its unstructured

control flow can be transformed into recursion.

All above cited approaches (except [20]) devedmbhoc or dedicated, decompilers to carry
out the particular decompilations. An appealing altekreatd the development of dedicated de-
compilers is the so-callédterpretivedecompilation byartial evaluation(PE for short) [23]. PE
is an automatic program transformation technique whiclsigpizes programs w.r.t. part of their
input data. Interpretive compilation was proposed in Futais seminal work [14], whereby
compilation of a prograrn® written in a §ourc§ programming languagdes into anotherarget)
programming languader is achieved by specializing an interpreter Egrwritten in Lt w.r.t. P.
The advantages of interpretive (de-)compilation w.r.didated (de-)compilers are well-known
and discussed in the PE literature (see, e.g., [5]). Vesflgrithey include:

1. Flexibility: it is easier to modify the interpreter in order to tune theatepilation (e.g.,
observe new properties of interest). As an interesting @&nin [5], a Java bytecode
interpreter is instrumented with an additional argumenthicomputes thé&race of byte-
code instructions in order to collect the computation st program decompiled by
using this interpreter contains an additional argumertt eie execution trace at the level
of Java bytecode. This trace will allow observing a good neinds interesting properties
about the program, e.g., runtime error freeness can be eshsuhien the trace does not
contain instructions which issue any kind of run-time error

2. Easier to trust it is more dificult to prove that ad-hoc decompilers preserve the program
semantics. For example, the formal specification choseddfining our bytecode inter-
preter is Bicolano [40], which is written with the Coq Proo§distant [7]. This allows
checking that the specification is consistent and also pgoproperties on the behavior of
some programs.

3. Easier to maintain new changes in the language semantics can be easily rdfliecte
the interpreter. This will become apparent later when wetkatdefining a bytecode
interpreter in Prolog is a rather easy task and, hence, aéataming it.

The challenge now is in defining a practical, scalable schterimerpretive decompilation which
achieves quality decompiled programs and, provided thfgasible, we will be able to take
advantage of the above features.

1.1. Summary of Contributions

There have been several proofs-of-concept of interprétiee compilation (e.g., [5, 20, 29]),
but there remain interesting open issues when it comes &sa#s power ardr limitations to
decompile a real language:

a) does the approach scale?
b) do decompiled programs preserve the structure of the cslgines?

c) is the “quality” of decompiled programs comparable to thatained by dedicated decom-
pilers?



This article answers these questions positively by prompai modular decompilation scheme
which can be steered to control the structure of decompibele @and ensure quality decompila-
tions which preserve the original program’s structure. @ain contributions are summarized
as follows:

1. We present the problems abn-modulardecompilation and identify the components
needed to enable a modular scheme. This includes how toavriteterpreter and how to
control anonline partial evaluator in order to preserve the structure of tigéraal program
w.r.t. method invocations.

2. We present a modular decompilation scheme which is doaret complete for the pro-
posed big-step interpreter. Theodular-optimalityof the scheme allows addressing issue
(a) by avoiding decompiling the same method more than once (lanloly ensuring that
the structure of the original program can be preserved.

3. We introduce an interpretive decompilation scheme whitéwers issuéc) by produc-
ing decompiled programs whosg@ality is similar to that of dedicated decompilers. This
requires alock-leveldecompilation scheme which avoids code duplication ane ced
evaluation.

4. We report on experimental results on an set of realisti¢ g&grams which demonstrate
the scalability and theficiency of our proposal.

For the sake of concreteness, our interpretive decompilacheme is formalized in the
context of PE of logic programs but the ideas we propose fablkmg the practicality of the
approach are also of interest for the interpretive (de-Jgtation of any pair of source and target
languages.

1.2. Outline of the Article

The article is organized as follows. The next section recme preliminary definitions and
presents the background on PE of logic programs. We re@ltdhrectness issues that a par-
tial evaluator must guarantee. We also sketch tlfferdinces between online anfliime partial
evaluators. Section 3 briefly describes the interpretiye@gch to (de-)compilation. We present
the first Futamura projection in generic terms and then iistie it to the particular decompi-
lation we want to carry out: decompile JBC to Prolog. Sectdopresents the subset of JBC
we consider to define our decompilation scheme. It also descnon-modular decompilation
(originally presented in [5]) and explains its limitatiofar the decompilation of real applica-
tions. These limitations are not tied to the decompilatibbydecode. They also occur in any
application of interpretive decompilation.

Our first contribution is a modular decompilation schemeahtis introduced in Section 5.
We start by presenting a big-step interpreter and explainitil necessary to enable a modular
decompilation scheme. Then, we define the annotations thsat be generated to obtain such
modular decompilation. An important property of the reisigitmethod is that it is ensured that
each method is decompiled once.

Our second important contribution is the refinement of thelmter decompilation scheme in
Section 6 to ensure the scalability of our approach. Thisireg, among other things, that the
decompiler does not emit code more than once for each bygansttuction. This leads to what
we callblock-optimalityin decompilation.

In Section 7 we extend the subset of JBC considered in prg\deations in order to sup-
port a realistic language with object-oriented featureg. Sow how our scheme can be easily
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adapted to handle the new features: the decompilation diiehp and associated instructions,
the representation of classes by means of Prolog modulesidndl invocations by module-
qualified calls. Our experimental results are reported ictiSe 8, where both the scalability
and dficiency of our approach are assessed using@iden suite of benchmarks [22]. Finally,
Section 9 reviews related work and Section 10 concludes.

2. Background on Partial Evaluation of Logic Programs

This section presents some preliminary notions and thegvaakd on PE of logic programs
(often calledpartial deduction required to formalize our decompilation scheme. We assume
some basic knowledge on the terminology of logic prograngnaind refer to [34] for detalils.

2.1. Logic Programming

Very briefly, anatom (or call) A is a syntactic construction of the forp(ty,...,t,), with
n > 0, wherep/n is a predicate signature angd...,t, are terms. Aclauseis of the form
H:- By,..., Bn, withm > 0, where its heall is an atom and its bodg;, . . ., By, is a conjunction
of matoms. Note that in this context commas denote conjunctidisenm = O the clause is
called afactand is written ‘H.”. A programis a finite set of clauses. §oalis a conjunction of
atoms. We denote by — tg,..., X, — ty} thesubstitutiono with o(X)) =t fori = 1,...,n
(with X = X if i # j), ando(X) = X for all other variablesX. Given an atorA, 6(A) denotes
the application of substitutiofito A. Given two substitutiong; andé,, we denote by, 6, their
composition. The identity substitution is denotedithy An atomA’ is aninstanceof A if there
is a substitutiorr with A’ = o(A).

The operational semantics of logic programs is based omatems.

Definition 1 (derivation step). Let G be A,...,Ar,...,Acand C = H:- By,..., By, be a re-
named apart clause in P (i.e., it has no common variables @jthLet Az be the selected atom
for its evaluation. Then Gs derivedfrom G if the following conditions hold:

6 = mguAr, H)
G’ is the goalH(Al, o AR, B B, ARt Ak)

As customary, given a prograf and a goalG, an SLD derivationfor P U {G} consists
of a possibly infinite sequende = Gy, G1, Gy, ... of goals, a sequende;, C,, ... of properly
renamed apart clauses Bf(i.e. C; has no common variables with a®; nor C; with j < i),
and a sequence eébmputed answer substitutiofig 6, . .. (or most-general unifieramgus for
short) such that eadBj,; is derived fromG; andC;,; usingé;,;. Finally, we say that the SLD
derivation is composed of ttmibsequengoalsGy, G1, Gy, . . ..

A derivation step can be non-deterministic whgnunifies with several clauses By giving
rise to several possible SLD derivations for a given goathSsLD derivations can be organized
in SLD trees A finite derivationG = G, G4, G, ..., G, is calledsuccessfuif G, is empty. In
that cased = 010-...06, is called the computed answer for g@l Such a derivation is called
failing if it is not possible to perform a derivation step with.

Executing a progran® for a call A consists in building arsLD treefor P U {A} and then
extracting thecomputed answeifsom every non-failing branch of the tree.



2.2. Partial Deduction

Partial evaluation in logic programming (see e.g. [16])d®iupon the SLD trees mentioned
above. We now introduce a generic functiBi, which is parametric w.r.t. thenfolding rule
unfold, and theabstraction operatqrabstract, and captures the essence of most algorithms for
PE of logic programs:

1: function PE PP, A, S)

2 Sp:=S; i:=0;

3 repeat

4 LP€:= unfold(S;, P, A);

5 Si;1 := abstract(S;, LP¢, A);

6 i=i+1;

7 until S;=Si.; % (modulo renaming)
8 return codegen(LP¢, unfold);

Function PE dfers from standard ones in the use of the set of annotatfonshose role is
described below. PE starts from a progr&@ma (possibly empty) set of annotatiofsand an
initial set of callsS. At each iteration, the so-callédcal controlis performed by the unfolding
rule unfold (Line 4), which takes the current set of ato®s the program and the annotations
and constructs partial SLD tree for each call ir5;. Trees are partial in the sense that, in order
to guarantee termination of the unfolding process, it maspdssible to chooseot to further
unfold a goal, and rather allow leaves in the tree with a nompty, possibly non-failing, goal
(these goals appear in the next examples within a frame)aiidmes corresponding to such goals
are returned bynfold and store irLP¢ (Line 4). Then, in theylobal control which is performed
by the abstraction operatabstract, when some calls in the leaves of the trees are not properly
covered the operatombstract adds them to the new set of atoms to be partially evaluated in
a proper “generalized” form such that termination is enduie., the conditiors; = S;_; is
reached).

Let us consider the PE of the following program to reversstaiking an accumulator (pred-
icaterev/3) w.r.t. the initial setS = {rev([1, 2|Xs],[], Zs)} andA = 0:

rev([],L,L).
rev([X|Xs],Ys,Zs) :- rev(Xs, [X|Ys],Zs).

Prolog lists use the notatioX[L] to denote the list withX as head andl as continuation and []
to denote the empty list. The particulamfold operator determines which atom to select from
each goal and when to stop unfolding. Let us consider an dinfplrule based on theomeo-
morphic embeddin{p8] relation, awell-quasi orderused in state-of-the-art specialization tools.
Intuitively, the homeomorphic embedding is a structuralesing under which an expressien

is greater than (i.e., Bmbedy another expressiog if €, can be obtained frore; by deleting
some parts, e.gs(s(U+W)x(U+s(V))) embedss(U x (U+ V)). Such unfolding rule always selects
the leftmost atom and stops the derivation when the seleettdmbeds previous call and thus



threatens termination. We start by constructing the falhgaSLD-tree:
rev([1,2[Xs], [], Zs)
y
rev([2[Xs].[1],Zs)

\
rev(Xs,[2,1],Zs)

{(Xs[] ,ZSHW \&[X’IXS']I
true \rev(Xs’,[x>,2,1],2s)\

It can be observed that the call in the framev(Xs’,[X’, 2, 1], Zs) embeds the previous call
rev(Xs,[2, 1],Zs), hence the derivation is stopped. Such call is said to besteared to the
global control in the sense that it is returnedusjold as an element dfP® and hence it is passed
away as an argument &dstract.

The partial evaluator may have to build several SLD-treemnisure that all calls left in the
leaves [P¢in Line 4) are “covered” by the root of some tree. This is knaasntheclosedness
condition of PE [33]. E.g., after having built the first SLE2¢ for the callrev([1, 2|Xs],[], Zs),
the callrev(Xs’, [X/, 2, 1], Zs) is not covered byev([1, 2|Xs], [], Zs) because it is not an instance
of it. Atthis point theabstract operator adds the framed call to the new set of atoms to bialbart
evaluated. At the next iteration, the following SLD-tredislt for such call:

rev(Xs, [X/, 2, 1],Zs)

{XS!—)[],ZS!—)[XW \@[X [Xs']}
true ‘rev(Xs’,[X”,X’,2,1],Zs)

Thus, basically, the algorithm iteratively (Lines 3-7) stmicts partial SLD trees until all their
leaves are covered by the root nodes. An essential pointeodpleratombstract is that it has
to perform “generalizations” on the calls that have to betipglly evaluated in order to avoid
computing partial SLD trees for an infinite number of callsheThomeomorphic embedding
can be again used here to ensure termination and detect wdlishhave to be generalized. A
classical way of performing generalizations is to usentwst-specific generalizeperator fnsg
for short) in the following way. Suppose that a cAlis to be added to the s8f, and that there is
a callBin Sy s.t. AembedsB, then themsgof A andB is added to the s&y,; (and usuallyB is
removed). In the example, the framed eal/(Xs, [X’, X", 2, 1], Zs) embedsrev(Xs, [X, 2, 1], Zs)
(also framed), therefore both are generalized usingribgresulting inrev(Xs, [A, B, C[D], Zs).
The generalized call is added to the Sgt; andrev(Xs,[X, 2, 1], Zs)) removed. At the next
iteration, the following SLD tree is built for the generadzatom:

rev(Xs,[A, B, C|D], Zs)

{XSD—)D’ZSH[A‘W %[X’IXS’]}
true ‘reV(XS’,[X’,A,B,cm],zs)‘

Without such generalization, the algorithm would keep atiagicallsrev(Xs, [X, X', X", 2, 1], Zs),
rev(Xs, [X, X', X", X", 2,1],Zs),... infinitely.

A partial evaluation ofP w.r.t. S is then systematically extracted from the resulting set of
callsLP¢in the final phasesodegen in L8. The notion ofresultantis used to generate a program
rule associated to each root-to-leaf derivation of the Stdes for the final set of atomis®.
Given an SLD derivation oP U {A} with A € LP¢ ending inB and@ being the composition of the
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mgu’s in the derivation steps, the rléd) : —B is called theresultantof the derivation. A PE
is defined as the set of resultants (clauses) associated tietivations of the constructed partial
SLD trees for allP U LP®. The resulting program is often referred to as $pecialized program
or residual program In the example, the final s&P® contains the callsev([1, 2|Xs],[], Zs) and
rev(Xs, [A, B, C|D], Zs) from which the following PE (residual program) is genedate

rev([1,2],[0],[2,1]).

rev([1,2,AIB],[],C) :- rev_1(B,[A,2,1]1,C).
rev_1([],[A,B,CID], [A,B,CID]).

rev_1([A|B], [C,D,E|IF],G) :- rev_1(B,[A,C,D,E|IF],G).

The first two resultants are obtained from each derivatioanth) of the first tree above and the
last two ones from the last tree above.

It can be also observed that a post-processing of renammgden performed bgodegen
as explained below. Such a post-processing use to perfoaddition some form oargument
filtering [32]. This is because automatically generated prograntsjraparticular those gener-
ated by PE, very often contain redundant arguments whichotlaffect the correctness of the
program. Throughout the rest of the paper we will considesdegen function which is able to
remove arguments which are actually not used in any conipathtit rather just passed around.

2.3. Correctness of Partial Deduction

Intuitively, the notions of, respectivelgompletenesandcorrectnesof PE [16] ensure that
the specialized program produces no less, respectivelynare answers than the original pro-
gram. A stficient condition to ensure completeness is that the speethfirogram islosedby
the resulting set of atomsPe. As informally explained in Section 2.2, the closednesgd#@n
ensures that all calls which may arise during the computaifd® U S are instances dfP¢ and
hence there is a matching resultant for them (solutions @irtost).

Definition 2 (closedness)Let T and S be two sets of atoms. Then, S is T-clggeddh atom
in S is an instance of an atom in T. Given a program P and a setoohs T, we say that B T
is S-closed if the set of atoms which occur in the computatidghu T are S -closed.

The abstraction operator ensures that the closednesgiooridimet by means of a proper gener-
alization of calls. For instance, as the set of at¢gnes(Xs, [X', X", 2, 1], Zs)} is not closed w.r.t.
this set{rev(Xs, [X, 2, 1], Zs)}, the abstraction operator has generalized both terms ttethre
rev(Xs,[A, B, C|D], Zs) which covers both terms.

Let us see an example where the closedness condition dodwldoand hence we lose
completeness. Consider a program defined by these two stause

p(X) :- qX).
q(X).

The following partially evaluated program has been obthing specializing the above program
w.r.t. the set of atom$ = {q(a)}:

pX) - qX).

q(a).

The closedness condition w.r.t. the Setloes not hold because the atom in the left-hand side
of the first rule is not an instance of any atomSn It can be seen that the partially evaluated
7



program is not complete since the gpéb) succeeds in the original program while it fails in the
residual one.

Correctness is achieved when the resulting_$&is independent, i.e., there are no two calls
in LP® which unify.

Definition 3 (independence).Let S be a set of atoms. Then, Snidependenif no pair of atoms
in S have a common instance.

Let us see an example where the independence condition doésld and hence we lose
correctness. Consider again the above program and the at&ngS = {q(X), q(a)} which is
not independent. The following program is a partial evatratv.r.t. the set:

p(X) :- qX).
q(X).
qa).

It can be seen that the residual program produces more asfivegr the original one. In partic-
ular, for the goaly(Y) it returns two answer§f — X} and{Y — a} while the original program
generates only the first one.

Independence can be recovered by a post-processing of irep§l6]. In the previous pro-
gram, the two atoms i6 could be renamed ag (X) andq;(a) and the residual program would
contain one clause defining and another one fag,. In addition, renaming has benefits for
performance because it reduces the number of rules percptediThus, though the calls i?®
for our running example are independent, we rename the daxadifor predicaterev to rev_1.

Theorem 1 (correctness).Let P be a program, € be a finite, independent set of atoms and
P’ be a partial evaluation of ¢ in P. For every goal G such that'R {G} is LP®-closed, the
following conditions hold:

e SoundnessP’ U {G} has a successful derivation with answgesnly if P U {G} does.

e Completeness? U {G} has a successful derivation with an answemly if P U {G} does.

The above theorem is proven in early work on PE of logic progr§3, 25].

2.4. Online vs. @ine Partial Deduction

It is well-known that both the quality of the specialized grams and the time required for
the PE process greatly vary with the control strategies.u3edditionally, two approaches to
PE have been consideremhlineandoffline PE. In online PE, all control decisions are taken on
the fly during the specialization phase by keeping track efgppecialization history. This is the
case of the control rules used in the example of Section B.thd dlline approach, all control
decisions are taken before the proper specialization ph@kese control decisions are based
on abstract descriptions of the data instead of the actual dehe control strategy is usually
represented as program annotations which are the soléatecigeria for control of the partial
evaluator. For instance, in the local control, an annatatian explicitly indicate that an atom
should not be unfolded. In the global control, annotatigipécially specify for each call which
arguments have to be generalised away (i.e. replaced bgbles). Such annotations are in
some partial evaluators automatically generated binding-time analysisnd in other partial
evaluators they are manually provided by the user, eithpaihor in full.
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Under this classification, the PE algorithm we propose cacobsidered a hybrid approach
since theA annotations provide information to the control operatassjn dlline PE, and the
algorithm includes control rules based on the actual speaieon history, as in online PE. The
advantages of thefidine approach are that, once all control annotations aréadéN@j PE is quite
simple and ficient. On the other hand, online PE, though leficient, has a strictly more
powerful control strategy since control decisions are 8ase actual data instead of abstract
descriptions of data. Therefore, though dlline PEs can be replicated using online techniques,
many online PEs cannot be reproduced usiffigne techniques.

In this work we are interested in investigating how far we garwith the more powerful but
less dficient online PE approach. The motivation for this is that thay we may obtain decom-
pilations of higher quality than those achievable usiftjree PE. Thus, our challenges are both
in terms of quality of the decompiled programs and in termsfid€iency of the decompilation
process. As we will see later in the article many of the les$earned in this work are of interest
both to the online andffiine approaches to the PE of interpreters.

3. The Interpretive Approach to Compilation

The development of PE, program specialization and relaelhiques [14, 23, 15] has led
to an alternative approach to compilation (known as the krgamura projection) based on
specializing an interpreter with respect to a fixed objeogpam. Let us explain intuitively the
interpretive approach. We denoteix a generic partial evaluator, Ipya program and byn1
(resp.in2) the static (resp. dynamic) input data. Given a progkamve writeP; to denote that
P is written in languagé.. When the program is a meta-program, we write as a super-iagex
language the meta-program manipulates. For instamog, denotes a partial evaluator, written
in S, which manipulates programs writtenin We omit the languages (both sub. and super-
indexes) when they are not relevant. Finally, we use thetiootf{P]][ d] to denote the execution
of P with input datad. A partial evaluator can be defined as a program which belss/&gdlows:

p-inl = [[mix]][p,inl]
output [[p-in1]][in2] = [[p]][inl, in2]
Essentially, the execution afix for p and inl returns a specialized programinl whose

execution for the dynamic daiia2 must be the same as executing the original progsamr.t.
all dynamic plus static datafl, in2]. This implies the following:

[[p]] [inl,in2] = [[ [[mix]] [p, in1]]] [ in2] (1)

This means that the result of PE is a program which is sen@iytiequivalent w.r.t. the original
for the static data. We now define by means of equations thavimhof an interpreteint’,
which interprets programs written 8) and is written in (a possibly fierent) language:

output = [[sources]] [d] = [[int]]] [ sources, d] (2)

This captures the idea that executing a source programrce for some input datal in the
interpreter gives the same output as the execution of thig@noyields. Similarly, we can define

a compilercompy T from S to T written in (a possibly dferent) language as follows:
[[sources]][d] = [[[[ comp?~']] [sources]]][d] ®3)
[[comp?™T]] [sources] = targetr



Consider now a partial evaluatetx| (written inL) for programs written irT, and an interpreter
int3 (written in T) for programs written irs. Now, the compilation of a prograspurces to a
programtargetr by using a partial evaluatmrix[ can be performed as follows:

targetr = [[mix{]] [int}, sources]

which is justified by combining equations (1) and (2) in thisyw

[[ps]] d = [[int3]] [p.d] = [[ [[mix{]] [int7. p]]] d

Now, by comparing the above equation with equation (3), it ba observed the essence of
compilation by means of PE of interpreters: we obtain thepitation of the progranp written

in S into another languag&. The application of this interpretative approach to coatmh
within our framework consists in specializing a bytecoB€) (nterpreterint®S written in logic
programmind.P where the static data is the actual bytecode prograo be decompiled:

[[pecl] d = [[int5]] [pec, d] = [ [mix™]] [int5, pec] 1] d = [[pee]] d

It can be observed that the result is a decompiled prograrnm LP which, given the actual input
datad produces the same result as the original progsgm

4. Non-Modular Interpretive Decompilation

This section describes the state of the art in interpretaamthpilation of low-level languages
to Prolog, including recent work in [20, 4, 18, 5]. We do so bgnfiulating non-modular decom-
pilation in a generic way and identifying its limitations.

4.1. The Bytecode Language

The bytecode language we consider, denotedi@sis a simple imperative bytecode lan-
guage in the spirit of Java bytecode. To simplify the prestion, it does not include advanced
features of Java bytecode such as exceptions, arraysi-aljeted features, access control (e.g.
public, protected, private) and it manipulates only integembers. The extensions to consider
such advanced features will be discussed later in Sectiasd. As in Java bytecode.
uses an operand stack to perform intermediate computadioth@n array of variables to store
the formal parameters of the method and the actual methaables. Also, the globaheapis
not yet considered. Support for object-oriented featuriédde provided later. Finally,Lyc, has
an unstructured control flow, i.e., there are no explicicklmarkers, hence it includes explicit
conditional and unconditiongoto instructions.

A bytecode prograniy,. consists of a set of methods which are the basic (de-)cotigpila
units of £,.. The code of a methodh, denotedcoddgm), consists of a sequence of indexed
bytecode instruction®g : be, ..., pc, : bc,) with pc, ..., pc,, being consecutive natural
numbers. Thely instruction set is:

Insty, == push(x) | load(v) | store(v) | add | sub|mul |div |rem |
neg | if ¢ (pc) | if0 ¢ (pc) | goto(pc) | return | invoke (mn)

whereo¢ is a comparison operatoed, le, gt, etc.),v a local variable x an integer,pc an in-

struction index andnn a method name. Instructionsish, load andstore transfer values

or constants from the local variables to the stack (and ve&sa);add, sub, mul, div, rem
10



main(Method, InArgs,Top) :- step(goto(PC),S,8’) :-

build_sO(Method,InArgs,S0), S = st(fr(M,_,08,LV),FrS),
execute(S0,Sf), S’ = st(fr(M,PC,0S,LV),FrS).
Sf = st(fr(_,_, [Topl_1,.),.)). step(load(I),S,S’) :-
execute(S,S) :- S = st(fr(M,PC,0S8,L),FrS),
S = st(fr(M,PC, [_Topl_1,.),[1), next (M,PC,PC’), nth(L,I,V),
bytecode (M,PC,return,_). S’ = st(fr(M,PC’,[V|0S],L),FrS).
execute(S,Sf) :- step(store(I),S,S’) :-
S = st(fr(M,PC,_,_),_), S = st(fr(M,pPC, [V|0S],L) ,FrS),
bytecode (M,PC,Inst,_), next (M,PC,PC’), replace_nth(L,I,V,L’),
step(Inst,S,S’), S’ = st(fr(M,PC’,08,L’),FrS).

execute(S’,Sf). -
step(invoke(M’),S,S’) :-

step(push(X),S,S’) :- S = st(fr(M,PC,0S,LV),FrS),
S = st(fr(M,PC,0S,L),FrS), split_0S(M’,08,Args,08°7),
next (M,PC,PC’), build_sO(M’,Args,st(fr(M’,PC’,08°,LV’),_)),
S’ = st(fr(M,PC’, [X|0S],L),FrS). S’ = st(fr(M’,PC’,0S8’,LV’),
step(add,S,S’) :- [fr(M,PC,08’’,LV) |FrS]).
S = st(fr(M,PC, [X,Y|0S],L),FrS), step(return,S,S’) :-
next(M,PC,PC’), Z is X + Y, S = st(fr(_,_,[RVI_], ), [fr(M,PC,08,LV) |FrS]),
S’ = st(fr(M,PC’,[Z|08],L),FrS). next (M,PC,PC?),

s’ = st(fr(M,PC’, [RV|0S],LV),FrsS).

Figure 1:Fragment of (small-step],,. interpreter

andneg perform the usual arithmetic operations, betrg the division remainder angeg the
arithmetic negationif andif0 are conditional branching instructions (with the specédecof
comparisons with O)oto is an unconditional branchinggturn marks the end of methods and
invoke invokes a method. For simplicity, all methods are supposedturn an integer value. A
methodm is uniquely determined by its name. We writalls(m) to denote the set of all method
names invoked within the code af. We usedef{Py.) to denote the set ahternal method
names defined iPy,.. The remaining methods aexternal We say thaPy. is self-containedf
¥m € Py, calls(m) C defgPy), i.e., Py does not include calls to external methods.

Though very simpleLy. will be enough for our purposes when presenting the mairsidéa
the diferent decompilation schemes. Nevertheless it will be giylextended as needed when
we present more advanced features until the point of cayéhie full Java bytecode language in
the experimental evaluation in Section 8.

4.2. Non-modular, Online Decompilation

We rely on the interpretive approach to compilation by PEcdbed in Section 3. As it has
been already explained, the decompilation ofi@-bytecode progran®y to LP (for short LP-
decompilation) might be obtained by specializing (with @&partial evaluator) &c-interpreter
written in LP w.r.t. Py.. In Fig. 1 we show a fragment of a (small-stefi). interpreter im-
plemented in Prolog, namddt,,.. We assume that the code for every method in the bytecode
programPy is represented as a set of fabtgcecode/3 such that, for every paipg : bg in the
code for methoan, we have a facbytecode (m, pG,bg). The state carried around by the in-
terpreter is of the fornst (Fr,FrStack) whereFr represents the current frame (environment)
andFrStack the stack of frames (call stack) implemented as a list. Fsaane of the form
fr (M,PC,0Stack,LocalV), whereM represents the current meth@f; the program counter,
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0Stack the operand stack aricbcalV the list of local variables. Predicai®in/3, given the
method to be interpretetethod and a concrete input (method argumentsirgs, first builds
the initial state by means of predicateild_s0/3 and then calls predicatezecute/2. In turn,
execute/2 calls predicatestep/3, which produces’, the state after executing the bytecode,
and then calls predicatexecute/2 recursively withS’ until we reach areturn instruction
with the empty stack. For brevity, we only show the definitadnstep/3 for a selected set of
instructions and omit the code of some auxiliary predicatEsmelybuild s0/3, which was ex-
plained belownext/3, which produces the next program counter given the curne@frah/3
andreplace nth/4, which respectively get and set the i-th element of a listl spLit_0S/4,
which splits the current operand stack between the parasieteto be used in the called method
and the rest. By using this interpreter, we defim@a-modulardecompilation scheme in terms
of the generic functiofPE as follows:

Definition 4 (pecomp, ). Given a self-contained,c-bytecode program R, the (non-modular)
LP-decompilation of B can be obtained as:

pEcoMP £, (Ppc) = PE(INt,,, U Ppc, 0, S)
where S is the set of caljmmainm, _, _) |m € defsPyc)}.

Observe in the above definition that the set of annotatiorsigty. Following the PE terminol-
ogy, the above definition correspondstdine PE as we have explained in Section 2.4.

Recent work in interpretive, online decompilation has &®aion ensuring that the layer of
interpretation is completely removed from decompiled paogs, i.e. gffectivedecompilations
are obtained. This requires the use of the following advarmmtrol techniques. Type-based
homeomorphic embeddinglf) [4] has been used both at the local and global control todgeci
when to stop derivations and when to generalize calls sceffesitiveness of the decompilation
can be obtained in the presence of integers without comginghtermination. The unfolding
operator must also be able to accurately handle built-idipages and to safely perform non-
leftmost unfolding steps as in [6]. The operadbstract must incorporate a polyvariance control
mechanism [18] which avoids performing useless specifdizs that can introduce superfluous
decompiled code and thus degrade the decompilafi@cté&zeness. Our starting point is thus a
state-of-the-art online partial evaluator based on anldinfg operatomunfold<, and abstraction
operatorabstract, which incorporate such advanced techniques and is ablenovesthe layer
of interpretation. Such advanced partial evaluator is ugsetthe following both for running
examples and experiments.

4.3. Limitations

This section illustrates by means of the bytecode examgtgin2 that non-modular decom-
pilation does not ensure a satisfactory handling of is¢a)end(b) in Section 1. In the examples,
we often depict the Java source code for clarity, but the migder works directly on the byte-
code. The program consists of a set of methods that carryritlutreetic operations. Methogkd
computes the greatest-common divistss the absolute valug,cm the least-common multiple
andfact the factorial recursively. The LP-decompilation obtairtsdapplying Definition 4 is
shown in Fig. 3. The partial evaluator performs a post-pssice of renaming and argument
filtering [16] for all calls except for calls to theain predicate (as they represent calls to meth-
ods whose name we want to preserve). We identify below fouitdtions, which we identify as

12



int gecd(int x,int y){
int res;
while (y != 0){
res = xky; X = V;
y = res;}
return abs(x);}

int abs(int x){
if (x < 0) return -x;
else return x; }

int lem(int x,int y){
int ged = ged(x,y);
if (gecd == 0) return O;
else return x*y/gcd;}

int fact(int x){

if (x == 0)
return 1;
else

return x*fact(x-1);}

Method gcd Method lcm
0:1load (1) 0:10ad (0)
K Method fact
1:if0eq(11) 1:10ad (1)
. 0:10ad (0)
2:10ad (0) 2:invoke (gcd) .
Method abs 1:ifOne(4)
3:1oad (1) 3:store(2)
0:1oad(0) 2:push(1)
4:rem . 4:10ad(2)
1:if0ge(5) . 3:return
5:store(2) 5:ifOne 8
2:10ad (0) 4:10ad(0)
6:1load(1) 6:push(0)
3:neg 5:10ad (0)
7:store(0) 4:return 7:return 6:push (1)
8:load(2) 8:1load(0) P
5:10ad (0) 7:sub
9:store(1) 9:1oad (1) .
6:return 8:invoke(fact)
10:goto O 10:mul 9:mul
:mu
11:10ad(0) 11:1o0ad(2) 10: return
12:invoke (abs) 12:div
13:return 13:return

Figure 2:Source code and.-bytecode for working example

(L2)... (L4), of non-modular decompilation. It is important to note thath limitations, and the
way to avoid them which we propose in Section 5 below, are i@k&vant to the case offitine
PE.

(L1) Calls to methods armlined within their calling contexts and, as a consequence, the
structure of the original code is lost. For example, methm¢ations fromlcm to ged (index
2) and fromgcd to abs (index 12) do not appear in the decompiled code. As a resdtlast
two rules in the decompilation fdrcm, execute_1, correspond to thehile loop of gcd. This
happens because calls to methods are dealt withsimall-stepfashion within the interpreter,
i.e., the code of invoked methods is unfolded as if it wasadi inside the “caller” method.

(L2) As a consequence, decompilation becomes verjianent. E.g., ifn calls to the same
method appear within a code, such method will be decompitades. Even worse, if there is a
method invocation inside a loop, its code will be evaluateide in the best case, as we have to
perform the corresponding generalizations in the globatrobbefore reaching a fixpoint, as in
the example of Section 2.2. This is worse in the case of nésogs.

(L3) The non-modular approach does not work incrementally, énsétnse that it does not
supportseparatedecompilation of methods but rather has to (re)decompllienathod calls.
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main(lcm, [B,0],A) :- B>0, C is Bx0, main(gecd, [A,0],A) :- A>=0.

A is C//B. main(ged, [B,0],A) :- B<O, A is -B.
main(lcm, [0,0],0). main(ged, [B,C],A) :- C\=0,
main(lcm, [B,0],A) :- B<O, D is Bx0, D is B rem C,

C is -B, A is D//C. execute_2(C,D,A)
main(lcm, [B,C],A) :- C\=0, D is B rem C,

execute_1(C,D,B,C,A). execute_2(A,0,A) :- A>=0.

execute_2(A,0,C) :- A<O, C is -A.
execute_1(A,0,B,C,D) :- A>0, E is BxC, D is E//A. | execute_2(A,B,G) :- B\=0,

execute_1(0,0,_,_,0). I is A rem B,

execute_1(A,0,B,C,D) :- A<O, E is -A, execute_2(B,I,G).
F is B*C, D is F//E.

execute_1(A,B,C,D,I) :- B\=0, K is A rem B, main(abs, [A],A) :- A>=0.
execute_1(B,X,C,D,I). main(abs, [B],A) :- B<O, A is -B.

Figure 3:Decompiled (non-modular) code for working example

Thus, decompiling a real language becomes unfeasible gasamus to consider system libraries,
whose code might not be available. Limitation L2 togethahwi3 answer issuéa) negatively.
(L4) The decompiled code contains basically the whole inteeprehen there are recursive
methods. This is why the decompiled program in Figure 3 doésantain the code correspond-
ing to the recursivéact method. The problem with recursion is as follows. Assume \@atto
decompile methodnl whose code i$pg : by, .. ., pg; : invokgml), ..., pc, : return). There
is an initial decompilation fo, = execute(st(fr(ml,pc;,os,1v),[]), S¢) in which the call
stack is empty. During its decompilation, a call of the folm= execute(st(fr(ml, pcj, os’, 1v’),
[fr(m1, pcj, os, 1v)]), S¢) with the call stack containing the previous frame appedrsnwve ar-
rive to the recursive call. At this point, the derivation rios stopped a8y <t A;. In order to en-
sure termination, global control generalizes the abous &b execute(st(fr(ml, pcj, -, -), -),
S¢), where_ denotes a fresh variable and thus the call-stack has becokmown. As a con-
sequence, after evaluating theturn statement, the continuation obtained from the call-stack
is unknown and we produce the caltecute(st(fr(., ., ), ), S¢) to be decompiled. Here,
the fact that the method and the program counter are unknoswempts us from any chance of
removing the interpretation layer, i.e., the decompiledecwill potentially contain the whole
interpreter. This indeed happens during the decompilatiofiact. Partial solutions to the
recursion problem exist and will be discussed later. Litites L1 and L4 answer issug®)
negatively.

5. A Modular Decompilation Scheme

By modulardecompilation, we refer to a decompilation technique whiEsmsmpilation unit
is the method, i.e., we decompile a method at a time. We shawthis approach overcomes the
four limitations of non-modular decompilation describedSection 4.3 and answers issya$
and(b) positively. In essence, we need to: (i) Give a compositidregtment to method invo-
cations. We show that this can be achieved by considerinig-atepinterpreter. (ii) Provide a
mechanism to residualize calls in the decompiled programdio not unfold them and add them
without modifications to the residual code). We automadijogénerate program annotations for
this purpose. (iii) Study the conditions which ensure #&iaratedecompilation of methods is
sound.
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5.1. Big-step Semantics Interpreter to Enable Modularity

Traditionally, two diferent approaches have been considered to define languagatism
big-step(or natural) semantics andmall-step(or structural operationgl semantics (see, e.g.,
[26]). Essentially, in big-step semantics, transitioniateethe initial and final states for each
statement, while in small-step semantics transitions défianextstep of the execution for each
statement. In the context of bytecode interpreters, itstout that most of the statements execute
in a single step, hence making both approaches equivalestith statements. This is the case
for our Lyc-bytecode interpreter for all statements excepttdl. The transition focall in small-
step defines the next step of the computation, i.e., the muite@me is pushed on the call-stack
and a new environment is initialized for the execution of itheked method. Note that, after
performing this step, we do not distinguish anymore betwibercode of the caller method and
that of the callee. This prevents us from having modularitseécompilation.

In the context of interpretive (de-)compilation of impévatlanguages, small-step inter-
preters are commonly used (see e.g. [39, 20, 5]). We argui¢henase of a big-step interpreter
is a necessity to enable modular decompilation which sdalesalistic languages. In Fig. 4,
we depict the relevant part of the big-step interpreterfgs-bytecode, name(htﬁ’cS We can
see that theall statement, after extracting the method parameters frompbeand ‘stack, calls
recursively predicateain/3 in order to execute the callee. Upon return from the methed ex
cution, the return value is pushed on the operand stack afdiestate and execution proceeds
normally. Also, we do not need to carry the call-stack extyiavithin the state, but only the
information for the current environment, i.e., states dtheformst (M,PC,0Stack,LocalV).
This is because the call-stack is already available by mefite calls for predicat@ain/3.

The compositional treatment of methodslmiS is not only essential to enable modular
decompilation (overcome L1, L2 and L3) but aiso to solve eursion problem in a simple
and elegant way. Indeed, the decompilation based on thetb[gmterpreterntbs does not
present L4. E.g., the decompilation of a recursive metmadstarts from the cakhaln(ml S0)
and then reaches a calhin(ml, args, ) whereargs represents the particular arguments in the
recursive call. This call is flagged as dangerous by locatroband the derivation is stopped.
The important points are that, unlike before, no re-compurias needed as the second call is
necessarily an instance of the first one and, besides, thameinformation loss associated to the
generalization of the call-stack, as there is no stack. Ekarsion problem was first detected
in [17] and a solution based on computing regular approxonatduring PE was proposed.
Although feasible in theory, such technique might be todhicient in practice and problematic
to scale it up to realistic applications due to the overhe&duced by the underlying analysis.
Another solution is proposed in [20], where a simpler cdrfiaw analysis is performed before
PE in order to collect all possible instructions which mifgitow the return. Such information
may then be used to recover information lost by the genettédiz. This solution turns out to be
also impractical for our purposes when considering réalgbgrams that make intensive use of
library code (e.g. Java bytecode) as many continuationfotlamw. Our solution does not require
the use of static analysis and, as our experiments shownbog@®se scalability problems.

Itis important to note that the idea of using a big-step seiosfor describing the interpreter
in order to achieve modular (de-)compilation is equallyfulm the ofline approach to inter-
pretive decompilation. Furthermore, to the best of our Kedge, our idea is novel and has not
been proposed before, neither in online norfitie PE of interpreters.
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execute(S,S) :-
S = st(M,PC,[_Topl_1,.), step(invoke(M’),S,S’) :-
bytecode (M,PC,return,_). S = st(M,PC,0S,LV),
execute(S,Sf) :- next (M,PC,PC’),
S = st(M,PC,_,_), split_0S(M’,0S,Args,0SRs),
bytecode(M,PC,Inst,_), main(M’,Args,RV),
step(Inst,S,S?), S’ = st(M,PC’, [RV|OSRs],LV).
execute(S’,Sf).

Figure 4:Fragment of big-stefp. interpreteﬂntisbc

5.2. Guiding Online PE with Annotations

We now present the annotations we use to provide additiomatra information to PE.
They are instrumental for obtaining the quality decomplatve aim at. We use the annotation
schema: “Precond = Ann Pred where Precondis an optional precondition defined as a
logic formula, Annis the kind of annotationAnn € {memaq rescall}) andPred is a predicate
descriptor, i.e., a predicate name and distinct free vla$alSuch annotations are used by local
control when a call foPredis found as follows:

e mema The current call is not further unfolded and is later trens#d to the global control
to carry out its specialization separately. It is then repthby a call to the specialized
version.

e rescall The current call is not further unfolded. Unlike calls medkmema, the current
call is not transferred to the global control. Thereforedhkis added to the residual code
without modification.

In the following, we denote byanfoldi,‘T the unfolding operator of Section 2.2 enhanced to use
the above annotations. We adopt the same names for the tonsias in &line PE [31] ¢escall
stands for residual call whilmnemo stands formemoisei.e., pass the call to th@emotable').
However, in dfline PE they are thenly means to control termination while in our method they
are only used to improve the accuracy in the local control. aAsther diference, in @line

PE, rescall annotations are used only for builtins. In principle, these for internal predicates
could threaten PE-completeness if a call is residualize:dt liginot an instance of some call in
the final setLP€ (i.e., it is not closed by.P¢). In the next section, we illustrate the importance of
rescallannotations also for internal predicates to enablfgaratePE. The role omemobecomes
important to control the structure of the decompiled pratgas we will see in Section 6.

5.3. Modular Decompilation

In order to achieve modular decompilation, it is instrunaétd allow performingseparate
decompilation. In the interpretive approach this requiveig able to perform separate PE,
i.e., to be able to specialize parts of the program indepgthdand then join the specializations

1This is how the list of atoms to be partially evaluated, nam@iin Section 2.2, is usually denoted iffline PE.
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together to form the residual program. For instance, censadself-contained logic program
P partitioned in a setP;,..., Py} of mutually disjoint subprograms which preserve predicate
boundaries, i.e., for any predicapeed in P we have that all rules fopred are in the same
partitionP;, for somej € {1,...,n}. Consider also the sets of ter@s ..., S, such that all calls
in Sj correspond to predicates defineddni = 1,...,n. We can now defin& = S;U---US, and
the usual notions of closedness and independence arealpplicA separatepartial evaluation
for P andS is obtained as the union of the individual specializationstweach corresponding
set of calls, i.e.l p,cp PE(Pi, 0, S;). One additional dficulty for separate PE is related to the use
of renaming for guaranteeing independence (see Definifipsirice renaming requires a global
table which is not available when generating code for théviddal subprograms. A simple
strategy which we will use in our modular decompilation isatlmw polyvariant specialization
(i.e. multiple specialized versions per predicate) fotsctd predicates locally defined in the
subprogranP; being partially evaluated, but to resort to monovariantcgpdization (i.e. only
one specialized version per predicate) for predicates asexss subprogram boundaries. Then,
the renaming can use a local renaming table, which must gtesrdhat there will be no name
clash with renamed calls from other subprograms.

We present now a modular decompilation scheme which, by oontbthe big-step inter-
preter with the use ofescall annotations, enables separate decompilation and ensanrest-
nesg(i.e., it is sound and complete w.r.t. internal methods).

Definition 5 (Mop-peEcomP -, ). Given aLpc-bytecode program R, a modular LP-decompilation
of Pyc can be obtained as:

MoD-DECOMP £, (Ppe) = U PE(IntY? ucode). Amod(m), S(M))
VmedefsPpc)

where the set of annotatiot&moq(m) = {(m € calls(m)) = rescallmain(m, _, )} and the initial
set of calls $m) = {main(m, _, J)}.

Let us briefly explain the above definition. Now the functidf B executed once per method
defined inPy, starting each time from a set of callS;,, which contains a call of the form
main(m, _, ) for methodm. The setAqq cONtains aescall annotation which fiects all methods
invoked (but not necessarily internal) insiBlg.. When a method invocation is to be decompiled,
the callstep(invoke(m’),_,_) occurs during unfolding. We can see that, by using the big-
step interpreter in Fig. 4, a subsequent malin (m’ , _, ) will be generated. As there iascall
annotation which fiects all methods invoked in the program, such call is notldefbbut rather
remains residual. I’ is internal, a corresponding decompilation from the aalin(m’,_, )

will be, or has already been, performed since function PEeégs@ted for every method iRy..
Thus, completeness is ensured for internal predicates.

Example 1. By applying functionmob-pecomp ., to the Ly-bytecode program in Fig. 2 we
execute PE once for each of the four methods in the programeatt execution we spe-
cialize the interpreter w.r.t. the calimin(fact,_,_), main(ged,_,-), main(lcm,_,_), and
main(abs,_,_ ). We obtain the following LP-decompilation:
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main(lcm, [B,C],A) :

main(lcm, [A,B],0) :

main(ged, [B,0],4A) :
main(gcd, [B,C],A) :

main(ged, [B,C]1,D),
D\=0,

E is BxC,

A is E//D.
main(gecd, [A,B],0).

main(abs, [B],A).
C\=0,

D is B rem C,
execute_1(C,D,A).

execute_1(A,0,C)
execute_1(A,B,F)

main(abs, [A],A)
main(abs, [B],A)
main(fact, [B],A)

main(fact, [0],1).

:- main(abs, [A],C).
:- B\=0, H is A rem B,
execute_1(B,H,F).

= A>=0.
:— B<O, A is -B.

:- B\=0, C is B-1,
main(fact,[C],D), A is Bx*D.

The structure of the original program w.r.t. method callsrisserved, as the residual predicate for
lcm contains an invocation to the definitiongéd, which in turn invokeabs, as it happens in the
original bytecode. Moreover, we now obtain dfeetive decompilation for the recursive method
fact where the interpretive layer is completely removed withtbetneed of any analysis. Thus,
L1 and L4 have been successfully solved.

The following theorem ensures the correctness of moduleordgilation for the big-step
bytecode interpreter. Completeness can be ensured bydaxgloalls to external methods not
defined in the bytecode. It is independent of the way thepnéter is defined, as the closedness
condition for the internal methods is enforced by our degéng of Ameg and Sy, Soundness
holds in the case of our interpreter, because the only cdllshware transferred to the global
control are instances afain/3 andexecute/2 and their first argument is the method’s name,
which makes them mutually exclusive. A post-processingpéming is thus optional, but it can
be necessary to ensure that the independence conditiort femagher interpreters.

Theorem 2 (correctness).Consider af.-bytecode program 2, a concrete input | and the
Lyc-bytecode interpreterntifm. Let B, be the result ofop-pEcomp, (Poc). Then, A is an

answer for R U {1} iff A is an answer obtained running,£on Intisbc with input 1.

Proof 1. Let us first prove the completeness of modular decompilafidns requires to prove
the closedness condition as stated in Definition 2. We firge Ha exclude calls t@xternal
predicates not defined in the bytecode for which we do notillata answer irP; . Thus, we
need to ensure closedness for the calls which hageall annotations and are internal. For
the remaining internal calls, closedness is already edswydraditional PE (Theorem 1). We
reason by contradiction. Consider a method invocatiomtavhich has arescall annotation
true = rescallmain(nY, _, ) but it is not covered by P¢. This leads to a contradiction because,
function PE is executedm € defgPyc), includingm’. Thus, there is an initial catain(m’, _, )

in Sy and hence it is covered by the final $&¢.

In order to prove the correctness of our modular decompitedscheme, the full code of the
interpreter must be studied. Here we focus on proving indépece as stated in Definition 3.
In the case ofntzshc, it is implied by the facts that: 1) the only recursive defors aremain/3
andexecute/2 and the remaining predicates are always evaluable (in tieesa [41]), 2) thus
every call manipulated by the global control is an instarfceatin/3 or execute/2 and 3) all
such instances include the method name in some of their)@giments, which makes them
mutually exclusive and hence independent. Since we hawegiodependence and closedness
of the resulting terms, by Theorem 1, we have the correctofas®dular decompilation. O
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We now characterize the notion ofodular-optimalityin decompilation which ensures that
(1) only the code associated to internal methods is deceaitihus, we can have external calls
(e.g., to libraries) which are not decompiled and overcor@g(R) and each method is decom-
piled only once and thus we overcome L2.

Proposition 1 (modular-optimality). Given aLp-bytecode program g, functionmon-pEcomp 7,
only decompiles the code corresponding to internal metlkedised in ., and the code of each
method is decompiled once.

Proof 2. Only internal methods dPy,. are decompiled because all calls are annotatedszsill
and hence they are not transferred to the global controln;Tlve must prove that each method
is decompiled once. The proof follows by contradiction. ése that a methodh is decom-
piledn > 1 times. This means that during the PE process, there havenbesdls of the form
main(m, _, _) that have been unfolded. This leads to a contradictioner®tis arescall annota-
tion which dfects every method which is called in the prograrain(m, _, ). This prevents from
unfoldingmain(m, _, _) and the result follows. 0

Note that modular decompilation gives a monovariant treatnto methods in the sense
that it does not allow creating specialized versions of mettiefinitions. This is against the
usual spirit in PE, where polyvariance is a main goal to aehfarther specialization. However,
in the context of decompilation, we have shown that a moriamatreatment is necessary to
enable scalability and to preserve program structure. titrally raises the question whether a
polyvariant treatment could achieve, even if at the costlidiency and loss of structure, a better
quality decompilation. Note that enabling polyvariant@pkzation in the modular setting can
be trivially done by not introducingescallannotations for certain selected methods which should
be treated in a polyvariant manner. Our experience indici@t there is often a small quality
gain at the price of a highly irfecient decompilation.

6. An Optimal Decompilation Scheme

The main issue is whether it is possible to obtain, by mearistefpretive decompilation,
programs whosejuality is equivalent to that obtained by dedicated decompilessjeic) in
Section 1. We will show now that, using the mofeetive unfolding strategies of PE, code for the
same program point can be emitted (i.e. it can be decomptadral times, which degrades both
the dficiency and the quality of decompilation. In order to obtaisuits which are comparable
to that of dedicated decompilers, it makes sense to usessih@lristics. Since decompilers first
build a control flow graph(CFG) for the method, which guides the decompilation preces
now study how a similar notion can be used for controlling PEhe interpreter.

Let us explainblock-leveldecompilation by means of an example. Consider the method
my in Fig. 5. The source code is shown to the left, the relevatednde in the center and its
CFG to the right. As customary, the CFG [1] consists of bakicks which contain a sequence
of non-branching bytecode instructions and which are cotedeby edges which describe the
possible flows originated from the branching instructiolitse(conditional jumps, exceptions,
virtual method invocation, etc.). In our small languagg,, conditional jumps (i.e.ifo and
if@¢) are the only branching instructions. divergence poin{D point) is a program point
(bytecode index) from which more than one branch origindikewise, aconvergence point
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Method myy
int my (. ..){ pCo : beg
A pc; @ if o (pcy)

PCi1 tbci
if (cond){ B}
pc;-1 - goto(pcy)

else{C}

pc; - be;

D -

.. PCk_1 - bcy_:
1 pCx [ bey

pCn - return

Block A
Pco:bco
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Block B YBlock C

v cond

PCi+1:bCisa

pcj:bcj

pcj-1:goto(pcy) PCk-1:bck 1

P

pck:bek

Block D

pcn:return

Figure 5:Source codefy.-bytecode and CFG ofi, method

main(my, -, -)
execute(st(mpy, 0, 0Sg, 1vg), )
resa)
execute(st(my, pc;, 0Si, 1vy), )

COTL///////’

execute(st(mp1, PCi+1,0Si41, 1Viy), )
| trese)
execute(st(my, PCk, 0Sk, Lvy), )
| treso)
execute(st(my1, PCn, 0Sy, Lvy), )

|

true

TT—_oond

execute(st(my, pcj, 0S5, 1v;), )
y frec)

execute(st(my, pCk, 0Sk, 1vy), )
¢(reS'D)

execute(st(my1, PCn, 0Sn, 1vy), )

|

true

main(my; ,Args,Out)
main(my; ,Args,Out)

:— {res,}, cond;, {resg}, {resp}.
:- {res,},cond;, {resc}, {res,}.

Figure 6:Unfolding SLD-tree and decompiled coderaf; method

(C point) is a program point where two or more branches mehgé¢he CFG ofmy,, the only

divergence (resp. convergence) poinpcs (resp. pc).

By using the decompilation scheme presented so far, werotht@iSLD-tree shown in Fig. 6,
in which all calls are completely unfolded as there is no teation risk (norrescallannotation).
The decompiled code is shown under the tree.
for BlockX and cond; to refer to the condition associated to the branching iestyo atpc;

W rssx ) to refer to the residual code emitted

(cond; denotes its negation). The quality of the decompiled codeti®ptimal due to:

D. Decompiled codgres,} for BlockA is duplicated in both rules. During PE, this code is
evaluated once but, due to the way resultants are defined:¢slegen in Section 2.2),
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each rule contains the decompiled code associated to thke Wwhench of the tree. This
code duplication brings in two problems: it increases aersibly the size of decompiled
programs and also makes their execution slower. For insfambencond; holds, the
execution goes unnecessarily througles,} in the first rule, fails to proveond; and,
then, attempts the second rule.

C. Decompiled code oBlockD is again emitted more than once. Each rule for the de-
compiled code contains a (possiblyférent) version{resp} and{res,}, of the code of
BlockD. Unlike above, at PE time, the codeRibckD is actually evaluated in the context
of {cond;, {resg}} and then re-evaluated in the context{obnd;, {resc}}. Convergence
points thus might degrade botfiieiency (and endanger scalability) and quality of decom-
pilation (due to larger residual code).

The amount of repeated residual code grows exponentiatly thhe number of C and D points
and the amount of re-evaluated code grows exponentialtytivé number of C points. Thus, we
now aim for anoptimal block-leveldecompilation that helps overcome problems D and C above.
Intuitively, a block-level decompilation must produce aideial rule for each block in the CFG.
This can be achieved by building SLD-trees which corresgorehch single block, rather than
expanding them further. Note that this idea is against thedy spirit of PE which, in order to
maximize the propagation of static information, tries tdd&LD-trees as large as possible and
only stops unfolding when there is termination risk.

The memo annotations presented in Section 5.2 facilitate the desighe optimal inter-
pretive decompilation scheme. In particular, we can edsilge the unfolding process to stop
at D points by including anemo annotation forexecute/2 calls whosePC corresponds to a
D point. In the example, unfolding stops pt; as desired. Regarding C points, an additional
requirement is to partially evaluate the code on blockdiataat these points at most once. The
problem is similar to the polyvariant vs monovariant treainin the decompilation of methods
in Section 5.3, by viewing entries to blocks as method caltst. surprisingly, the solution can be
achieved similarly in our setting by: (1) stopping the dation atexecute/2 calls whosePC
corresponds to C points and (2) passing the call to the gtaiyalol, and ensuring that it is eval-
uated in a sfiiciently generalized context which covers all incoming esitd. The former point
is ensured by the use afemoannotations and the latter by including in the initial seatfims a
generalized call of the forraxecute(st(my1, pck, -, -), -) for all C points, which forces such gen-
eralization. The next definition presents the optimal degitation scheme whereiv_points(m)
andconv_points(m) denote, respectively., the set of D points and C points oéthodm.

Definition 6 (opriMaL-DECOMP -, ). Given alpc-bytecode program R, an optimal, modular LP-
decompilation of B. can be obtained as:

OPTIMAL-DECOMP 7, (Ppc) = U PE(IntzC U code), Aypi(m), S(m))

YmedefsPhpc)
ApockdM) = {pc € div_points(m) U conv_points(m) = memoexecutést(m, pc, _, ), )}
S(m) = {mainlm, _, )} U {executést(m, pc, _, ),_) | pc € conv_points(m)}
ﬂopt(m) = ﬂmod(m) U ﬂblockim)

An important point is that, unlike annotations usedfiine PE [29] which are generated by only
taking the interpreter into account, our annotations feraptimal decompilation are generated
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by taking into account the particular program to be decoadbillmportantly, both the annota-
tions and the initial set of calls can be computed autoniftibg performing two passes on the
bytecode (see, e.g., [2, 43]).

The result of performing an optimal decompilationrog) is:

main(my ,Args,0ut) :- {res,}, execute,(...).
executey(...) :- cond;,{resg}, execute,(...).
executey(...) :- cond;,{resc}, execute,(...).
executey(...) :- {resp}.

Now, the residual code associated to each block appearsmtite code. This ensures that the
optimal decompilation preserves the CFG shape as dedidatapilers do. Thus, the quality
of our decompiled code is as good as that obtained by stateeedrt decompilers [2, 35] but
with the advantages of interpretive decompilation (seei@ed). We formally prove the quality
of our proposed decompilation scheme in the next propositio

Proposition 2 (block-optimality). Given a bytecode programyE the optimal decompilation
functionopriMaL-pEcOMP £, €nsures that: (1) residual code for each bytecode instauctn B,

is emitted once in the decompiled program, (II) each bytedostruction in B, is evaluated at
most once during PE and (ll1) there is at most one residuag ffok each block in the bytecode.

Proof 3. The proof follows easily by contradiction.

In order to prove (1), consider that two resultants contasidual code for the same bytecode
instruction. This can be due to two reasons. (a) There isarBitD-tree a D point which leads
to two derivations. This is not possible because D pointsaaretated amemoand hence the
derivation must have been stopped. (b) There are two sepaeas which contain derivations
for instructions of the same block. Then, this block must lietdock. Hence, it is not possible
because C points are annotatedresmoand hence the derivation must have stopped before.

We focus now on D blocks to prove (I1). Consider that therechiasen two evaluations of an
instructionpc, within a D blockB starting atpc; € conv_points(M). Then, there must have been
two different instancegxecute(st(M, pcy, A,B),C)) and, later,execute(st(}M, pcs,D, E), F)).
This is not possible because there exists the initialeadkcute(st(M, pcy, -, -), -)) in Sy which
does not allow the evaluation ekecute(st(M, pc;,D, E), F)).

For (1) to be false there must exist a block in the CFG whintludes a sequence of bytecode
instructions(pc; : by,...,pG : bi,...,pG : by, withi > 2 andn > i such that the residual
program contains a rule for the subsequence of bytecodeidtisins(pc : b,..., pc; : b))
withi € {2,...,n} andj € {i,...,n}. This requires that the local control stops unfolding for a
call of the formexecute(st(M, pc;, A, B), C)). According to our optimal local control strategy,
execution of a bytecode instruction is only left residu#th# instruction at positiopg in method
M is aC point or aD point, which contradicts the assumption that the sequeheswuctions
(pcy:by,...,pG :bi,..., pc : by) belongs to the same block in the CFG. 0

After taking into account the central observation from 8ech that the interpreter should be
written in big-step semantics, each of the optimality ciit@bove is simpler or more complicated
to achieve depending on the local control strategy we use. ekample, if we start from a
modular decompiler as discussed in Section 5 above, optyraiterion (111) will in general
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be satisfied, but not criteria (1) nor () since the local tohrule tends to over-specialize calls
which results in re-evaluating expressions and emittirdeaoultiple times.

Conversely, if we use anfitine partial evaluator, the natural local control rule to isé&
residualize all calls texecute and then filter out all information other than the method atgre
and program counter when transferring the atom to the globatrol method. This control
strategy trivially guarantees optimality criteria (1) aifj since it guarantees that each bytecode
instruction is decompiled independently of the others. By, it tends to under specialize and
namely it does not satisfy the optimality criterion (l11s aoon as there is a block with more than
one bytecode instruction, which is almost always the casespecialized program will contain
a separate rule for each and every bytecode instructioneimlitck. As a result, the residual
program thus obtained is high-level in the sense that it igewmrin Prolog. However, its control
strategy is heavily influenced by the fact that we decom€ Jinstead of converting, e.qg.
from Java source) and the decompiled program is not at ailssito the Prolog program which
a Prolog programmer would write for performing the same.t&kce an important objective of
decompilation is to enable program understanding and aisalye argue that programs which
satisfy this optimality criterion (ll), like the ones we igerate, are easier to reason about.

Another important observation is that the costly mechasjsramely the type-based homeo-
morphic embedding [4] and the polyvariance control from][18ed for controlling the PE that
were used earlier to achieve the results in Sections 4.2 &hdrb not needed anymore using
the optimal decompilation scheme. Instead, the followigal control operators can be used:
unfold unfolds all calls except those matchingi@moor rescallannotation, andbstract adds to
the setS;,; every call inLP¢ which is not an instance of any call 8. It can be easily proved that
termination is ensured both at the local and at the globakablevel thanks to the annotations
and the initial set of atoms provided to the PE in Definitiohréuitively, in the local control, the
only source of potential non-termination is a loop in thegogtde program, and there is always
a convergence point associated with it, therefore teriginas guaranteed as the corresponding
memoannotation associated with the divergence point will fam#olding to stop. In the global
control, we have to ensure that the set of atoms to be speaiatioes not grow infinitely. The
only atoms which can potentially occur in the set are thosleeformexecute(st(m, pc, _, ), )
with pc € div_points(m) U conv_points(m). Those withpc € conv_points(m) are always an in-
stance of an atom already present in the set thus they are adsted. As regards those with
pc € div_points(m), it can be derived from Proposition 2 that only one singlesias of the atom
can be added to the set, otherwise the corresponding byedtde traversed more than once.
The complete proof of termination will require a completenfialisation of the control rules and
a complete definition of the bytecode interpreter used, amadt given in this paper.

7. Decompiling Object-Oriented Bytecode

In this section we present the main extensions that are degedepply interpretive decom-
pilation to a bytecode language with object-oriented feztu Such features include: dynamic
memory allocation, arrays, classes and objects, inhegtand polymorphism. We first present
an extension of’y,, denoted asfgc, which includes all these features in the spirit of Java-byte
code. An.LQ-bytecode prograniP,. consists of a set of classefassePy) = C, partially
ordered w.r.t the subclass relation. The class is the bdsiygqompilation unit of£®.. Each class

bc
¢ € C contains information about the class it extehdad the fields and methods it declares.

2If a class does not explicitly extend any class, it impliciitends clas8bject.
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A method (field) is uniquevocally identified by its method Ifflesignature which is of the form
c:mn(c: fn), wherec is the class in which it is declared anth (fn) the method (field) name.
The nameinit is reserved for the class initialization methods (constms). We writedefgc)

to denote the set afternal method signatures defined in the clasSome other features of Java
bytecode like interfaces, static methods and static fie®septions, access control and types
besides integers and references are not yet considerethpdifgithe presentation. We show
later in Section 8 that they do not add any complication tadeompilation process. As ifipc,

the code associated to a methnddenoteccoddm), consists of a sequence of indexed bytecode
instructions. Theﬂg’C instruction set is:

InStLboc = push(x) |load(v) | store(v) | add | sub |mul |div | rem | neg |
if o (pc) | 10 o (pc) | goto(pc) | return | invoke (ms)
newarray(7) | arrload | arrstore | arraylength
new(c) | getfield(£fs) | putfield(£fs) | dup | ifnull | ifnonnull

wherer is a type signaturer € C U {int}, c is a classc € C, ms a method signature antks

a field signature. The first two rows correspond to the insoas in Ly, which are already
described in Section 4.1. The third row comprises the ieftsas to manipulate arrays: creation
(newarray (1)), loading and storing an element (resprload andarrstore), and consulting
the array lengthgrraylength). The last row contains instructions to manipulate objeaibgect
creation fiew), accessing and modifying fields (regetfield andputfield), thedup instruc-
tion duplicates the reference stored on top of the operaauk stnd new conditional branching
instructions for referencesfnull and ifnonnull. As we are omitting static methods, the
invoke instruction always corresponds to virtual invocationsr simplicity, all methods are
supposed to return a value (except for constructors).

7.1. Handling the Heap during Decompilation

An Lg’c-bytecode program manipulates both integers and refesenoebjects and arra3is
Therefore, besides using an operand stack and an arrayadfadables, it uses heapwhere
objects and arrays are allocated. Thus, the first desigrsidacivhich we have to take is how
to represent theZp. heap in Prolog. A first alternative would be to represent atsjas Prolog
terms. Each object could have as main functor an identifieit§aclass and as many arguments
as fields there are in the corresponding class. The problémtiis approach is that, though
apparently simple, logic programs do not allow destruatipdates, i.e., once an argument (vari-
able) gets associated (unified) to a functor, it cannot becesed to a dierent functor, as the
subsequent unification would fail. A possible way out wouddthe use of the non-pure Prolog
predicatesetarg, which allows overwriting values. However, the programsstiobtained are
not very amenable to static analysis since the useeabrg breaks the declarative nature of
logic programs and introduces allfidculties associated to the analysis of shared mutable data
structures, which is well-known to pose majoffdiulties to static analysis. Since one of our
main motivations is to analyze the programs obtained by eaonhpilation, we opt for another
alternative which produces declarative programs. In ttiigoalternative, the heap is passed as
an explicit argument which is not overwritten, but ratherdified as needed. We now describe
how thelnt%fm interpreter is extended to handle the heap, derioﬂggc. The extensions include:

SWe use the special functerf /1 to distinguish references in the Prolog representation.
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e The main predicate of the interpreter is now of the famin (M, InArgs ,Hin, Top,Hout),
where the new additional parametéiisa andHout stand, respectively, for the input and
the output heap of the method. Note that névs not just a method name but a method
signature.

e The state carried out by the interpreter has to include aa exgument for the heap. Thus,
it is of the formst (M,PC,0S,LV,H), whereH is the current heap. Agaii,is a method
signature.

e The corresponding rules for theep/3 associated with the new added bytecode instruc-
tions have to be provided. As an example, consider the imgheation in our Prolog
interpreter of thegetfield (£) operation:

step(getfield(F),S,S’) :-
S = st(M,PC, [ref(R) IS],L,H),
S’ = st(M,PC’, [V|S],L,H),
next (M,PC,PC’),
getfield(H,R,F,V).

There is an important fference between the heap and the operand stack whmttsathe
decompilation process. While the operand stack is a local staticture of each method execu-
tion, the heap is a global entity which stores objects thatlsa created at any point during a
program’s execution and besides objects can be aliasedcaBgsthe consequence is that the
heap becomes unknown at PE time (typically it is a logic \depand, hence, most operations
involving the heap cannot be fully evaluated and have to apmsidual in the decompiled code.
Essentially, we treat the heap during decompilation as atradi data type with a set of oper-
ations which manipulate it. For instance, this is the casth@fatomgetfield(H,R,F,V) in
the code above. In Figure 7 we list all the predicates useldearinterpreter, which use the heap,
together with a description of their functionality. Out@rguments are underlined (the rest are
input). Note that these are exactly the set of predicatescraappear residual in our decom-
piled programs besides arithmetic operations, callsatm/5 (bytecode methods) and calls to
execute_i/n (bytecode blocks). Figure 8 depicts to the right side an gtarf a decompiled
program containing heap operations.

7.2. Decompilation with Classes

Object-oriented programs, both high-level and bytecode structured as a set of classes.
It makes sense then to devise a decompilation scheme wheedetompilation is done at the
level of classes: we decompile one class at a time, and wihah class, we decompile each
declared method at a time. Clearly, it is convenient to stinecdecompiled programs at a similar
level. A natural choice in a module-structured language Rkolog is to make use of modules
such that each class is decompiled in a corresponding moduRrolog module consists of a
module name, a list of exported predicates, a list of imgbm@dules (optionally together with
the list of predicates imported from each module) and thed¢sdt of clauses) of the exported
and auxiliary predicates. We propose a decompilation seheith the following characteristics:

1. There is a Prolog module per class in the bytecode progr@mthe same name.
2. A Prolog predicate is associated with each declared rdethith the same name. As we
will see later this is done via a simple post-renaming ofithén/5 atoms.
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Creation operations:
new(H,C,R,H’) H’ is the heap obtained from the heap H by creating a new object
of type C. The new object is stored at location R.
newarray(H,T,N,R,H’) H’ is the heap obtained from the heap H by creating a new array
with N elements of type T. The new array is stored in location R.

Accessing operations:

getfield(H,R,F,V) Field F of object at location R in the heap H has the value V.
arrload(H,R,I,V) The element at index I of the array at location R

in the heap H has the value V.
arraylength(H,R,N) The length of the array at location R in the heap H is N.

Setting operations:
putfield(H,R,F,V,H’) The heap H’ results from setting the field F of object
at location R in the heap H with the value V.
arrstore(H,R,I,V,H’) The heap H’ results from setting the element at index I
of the array at location R in the heap H with the value V.

Figure 7:Residual heap operations

3. Each Prolog module: 1) exports all predicates correspgrid the methods declared in the
corresponding class and, 2) imports all needed externdiqaies from the corresponding
modules.

The decompilation scheme with classes is formalized agvistl

Example 2. Definition 7 Lass-pEcomP LEC)' Given a class of amgc-bytecode program, an op-
timal, LP-decompilation of c is defined as:

CLASS-DECOMP 10 (C) = ¢( U PE(Int 0 U coden), Acias{m), S(M)))
VmedefsE)

whereAgasdM) = Aopt(M) U Aneap beINgAp(mM) and §m) the sets in Definition 6 adapted for
the new interpretemt L0 The setAneapdenotes the set oéscall annotations to residualize the
heap operations in Flgure 7.

The functiony denotes a simple post-processing which is applied oveetia predicates re-
sulting from the successive PEs, producing a Prolog moditletie characteristics enumerated
above. Basically, 1) it produces the corresponding modeéelfr, with the lists of imported and
exported predicates, and 2) it renames all atoms of thefarim (¢ :mn,Args,Hin,Out ,Hout)
asc:Mn(Args,Hin,Out,Hout). This is interpreted in Prolog as a module-qualified cadl, ia
call to predicatenn of modulec.

We can now define an object-oriented decompilation afgrbytecode program as follows.

-DECOMP o0 (Ppc) = U LASS-DECOMP .
00-DECO iﬁc( be) CLASS-DECOMP [0 (c)
VeeclassefPyc)

Observe thabo-pecomp ) takes a set oﬁ . Classes and produces a set of Prolog modules. An
example of the appllcat|on @fo- -DECOMP 10 |s shown in Figure 8. On the left side, we show the

Java-like source code of our example program, togethert\bvﬁlij pe-bytecode which is shown

within brackets. Again, we show the source code for clarity the decompilation works on

the bytecode. It has three class&sB andFoo. B extendsA inheriting fieldn and re-defining
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class A {

public int n;

public AQ{this.n=1;} :— module(’A’, [init/4,m/4]).

[ 0:10ad(0)
1:invoke(Object:init) :- usemodule(’Object’, [init/4]1).
2:1o0ad(0)
3:push(1) init([ref(T)],HO,_Out,H2) :-
4:putfield(A:n) ’Object’ :init ([ref(T)],HO,_,H1),

| 5:return putfield(H1,T,’A’:n,1,H2).

int m(){return n+1;)

[ 0:10ad(0) m(ref(T) ,HO,N’ ,HO) :-
1:getfield(A:n) getfield(HO,T,’A’ :n,N),
2:push(1) N’ is N+1.
3:add

| 4:return

}

class B extends A {

| 0:10ad(0) :- module(’B’, [init/4,m/4]).
1:invoke(A:init)

| 2:return :— usemodule(’A’, [init/4]).

int m(){return n+2;}

[ 0:10ad(0) init ([ref(T)],HO,_,H1) :-
1:getfield(A:n) A’ :init ([ref(T)],HO,_,H1).
2:push(1)
3:add m(ref(T) ,HO,N’ ,HO) :-

| 4:return getfield(HO,T,’A’ :n,N),

} N> is N+2.

class Foo { :— module(’Foo’, [foo/4]).

int foo(A a){return a.m();} :— use_module(’A’, [m/4]).
0:1oad(1) :— use_module(’B’, [m/4]).

l 1:invoke (A:m) l
2:return foo([_,Ref] ,HO,Out,H1) :-

} resolve (Ref ,HO0,C),

C:m([Ref] ,HO,Out,H1).

Figure 8:Example of decompilation with classes

methodm. Methodfoo of Foo invokes methodn on an object declared of type The LSC-
bytecode of each declared method is shown within brackets.th® right side, we show the
Prolog decompiled program. It has three modwleB andFoo. Note that, in Prolog, strings
starting with an uppercase letter are interpreted as \agamnd the rest as functors or constants.
Thus, if one wants to use the special constarihe notatioriA” has to be used. TH&o module
will be explain in the next section. The corresponding ratiis are exportéchported. See
for example how module exports predicatesnit/4 andm/4, and imports predicaténit/4
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from moduleObject®. Note that all predicates have four arguments as they coame fhe
corresponding instance akin/5. There are several calls in the decompiled program which are
module-qualified call, e.g., the call imit/4 inside modules.

7.3. Virtual Invocations

An important feature of object-oriented languagepadtymorphismn the presence of vir-
tual invocations. In a virtual invocation, the method to xeauted is determined at run-time
depending on the actual type of the corresponding objectit Bappens with heap operations,
the operation t@esolvethe method to be called cannot be performed at PE time, amdhie
to be residualized. In fact, the information needed (oltjgat) for the resolution is in the heap
which is in general unknown at PE time as we saw in Sectionli.the following we show the
code corresponding to thewvoke operation for virtual invocations in ouint 0 interpreter:

step(invoke(C:M’),S,S’) :-
S = st(M,PC,0S,LV,H), next(M,PC,PC’),
split_0S(M’,0S, [Ref|Args] ,0SRs),
resolve(Ref,H,C’), main(C’:M’, [Ref|Args] ,H,RV,H’),
S’ = st(M,PC’, [RV|0OSRs],LV,H’).

Predicateresolve/3 is encharged of performing the above method resolutioneiGthe call
resolve(Ref,H,C’) it proceeds as follows: 1) the class of the current objecidtionRef in
the heaf is obtained, and 2) due to inheritance, it can happen thanttaod is not declared
in such class, then it has to go up in the classes hierarchlyraathing a class in which the
method is declared. This class is finally returned in Then, the call tanain/4 is done with
the method signatur@’ :M’. As with heap operations, the correspondiagcall annotation has
to be provided to make the corresponditiggolve/3 atom appear in the decompiled code. It
always appears immediately before calls correspondingethod invocations (except calls to
constructory).

Example 3. As an example, consider methddo of classFoo in Fig. 8. The method is
invoked on an object declared of type However, variablea can actually store at run-time a
reference to an object of clagsor of any class extending, in this caseB. Whether to execute
methodm of classA or of classB is thus determined at run-time. In the Prolog code, we can
observe the call teesolve/3 immediately before the call to predicai¢4, which is module-
qualified with the obtained module.

8. Experimental Evaluation

We report on two dferent implementations of a decompiler for full (sequehtialva Byte-
code into Prolog. For the first one we extend an already egigibwerful online PE, the one
integrated in th&€iaoPP analysis and specialization system [21]. This partial @a@r imple-
ments several unfolding rules and abstraction operatdris. dllows us to compare theftérent
decompilation schemes explained in the paper, in particid@ompare to the non-optimal ones.
Such comparison is presented in Section 8.1. However, teghead introduced by using such

4Constructor methods first call the constructor of its sup@ss; in this cas@bject.
SInvocations to constructors are never virtual. They cartatically resolved.
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Figure 9:Evaluating the scalability adptimaldecompilation with thgOlden Suite

generic and powerful tool prevents us from competing witthad decompilers as regards ef-
ficiency (decompilation times). For this reason, we havei@drout a second implementation
for which we have written a stand-alone PE which only corstdlive local and global strategies
required by an optimal decompilation. This partial evabnas integrated into a decompilation
tool calledjbc2prolog which also includes a Java bytecode interpreter. This midkessible to
both obtain optimal decompilation and be competitive imof dficiency with ad-hoc decom-
pilers. A thorough comparison against the decompiler inGRETA [3] system and against the
JDec [8] decompiler is presented in Section 8.2.

Both implementations consider full sequential Java bydecd he extensions needed to han-
dle the features not consideredA}ﬁC (exceptions, static fields and methods, access contrdl, etc
do not add any special complication to the decompilatioresth For instance, exception han-
dling is simply dealt with as another source of branchingisertainly makes the size of our
decompiled programs grow considerably, although thisiisething every decompiler of a real-
life language has to deal with. Solutions based on statitysisaexist which allow avoiding
some exception branches. Egullity analysis can be used to avoid considering branches corre-
sponding to null-pointer exceptions which are proved to &e-null, which reduces the size of
the code considerably. These analyses can be easily imatepdn our decompilation tool and
it is indeed a subject of future work.

8.1. Assessing the Scalability of Decompilation

For the experimental evaluation, we have used the starmatrdiet of benchmarks in the
JOIden suite [22]. In particular, our first goal is to compare thelabaity of the optimal de-
compilation scheme (see Definition 7) against that ofrtteelular (non-optimal) one (see Def-
inition 5). Here it comes the need to use the partial evatuaft@iaoPP, as it combines the
power of online control operators like type-based home@micrembedding [4], with the ability
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of adding conditional annotations as described in DefiniGoAs most programs in th¥lden
suite make an extensive use of library methods, non-modi@leompilation cannot be assessed
as we run into memory problems when trying to decompile troeaaf library calls. Figure 9
depicts four charts measuringfigirent aspects of the decompilation. In order to reason about
scalability, we assess thefldirences between the non-optimal and the optimal approaakes
well as how the size of the programfiexts the decompilation. The times are computed as the
arithmetic mean of five runs on an Intel Core 2 Duo at 1.86GHh ®{GB of RAM, running
Linux 2.6.24-21. We measure two aspects of the decompilatiee decompilation time (in mil-
liseconds) and the decompiled program size (in bytes). dtilshbe noticed that absolute data
are not required to assess scalability issues. We rathdrreégive data per instruction in order
to prove that it does not increase with the size of the prograrhe relative decompilation time
indicates the &iciency of the process and the size of decompiled programiseistly related to

the decompilation quality. Each poinX[Y] in the charts corresponds to the decompilation of a
single method in thgOlden suite, whereX represents the number of instructions of the method
andY the measured data (time per instruction or decompiled proguize per instruction). The
charts in the left-hand side show the data obtained (timéisartop chart and sizes in the bot-
tom one) for both the non-optimal and the optimal decomipitatThe variations in the optimal
decompilation cannot be appreciated when combined withdmeoptimal. Thus, we include in
the charts on the right-hand side the figures for the optireabthpilation in isolation such that
we adjust the scale on the Y-axis to the domain of the data.

From the charts, we conclude: (1) Times per instruction atably larger for the smallest
methods, as can be seen by looking at the initial curve intthetg. This is because the overhead
introduced for starting a new decompilation is more notibeavhen the time for decompilation
itself is small, while it becomes negligible for larger medls. The same happens for the size of
the decompiled programs. (2) The optimal decompilationeagls important speedups in gen-
eral (for all methods with more than 40 instructions). Besidt obtains significantly smaller
decompiled programs. The speedups per package range f86rm®ower to 314 in bisort for
the decompilation times; and from=32times smaller irpower to 9 times smaller irbisort for
the decompiled program sizes. Note that there is a cleaegmondence between both measures,
since C points introduce both ificiency and size increase in decompilation, as explained in
Section 6. Moreover, modular decompilation runs out of mgnfior some of the largest meth-
ods. This is again related to code duplication (C and D ppautsl (re-)evaluation (C points),
which grow exponentially. (3) The most important conclusie that, while in the non-optimal
decompilation both the times and the sizes per instructieatty increase with the size of the
benchmarks, this does not happen in the optimal scheme.elogtimal decompilation, these
figures are totally stable (mostly constant) for all methaith more than 40 instructions. This
shows that both the decompilation times and the decompilegram sizes arbnear with the
size of the input bytecode program, thus demonstratingdakakility of our optimal decompi-
lation. One might wonder why there are still small variaidn the ratio. In our experience,
the following points also matter: 1) the complexity of thentol flow of the methods, 2) the
relative complexity of the bytecode instructions used,, égtructions which operate in the heap
tend to produce more residual code, 3) the structure w.ethaus of the program, e.g., classes
with methods of medium size tend to result in better decaatipihs than those with few large
methods or many small ones.
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Benchmark jbc2prolog COSTA || JDec
Pack ‘Ncls|Nmths| Nins Thl ‘ Tsps| Tge | Tpe | Tcg || Tj2p Tecosta Tjdec
bisort 2| 15| 554 10 | 10 0 | 147 | 10 || 177 170 1802
bh 9| 73 2012\ 57 | 28 0 | 652 | 70 || 807 860 7394
em3d 4| 22| 713 | 27 7 0 | 184 | 26 || 243 347 3386
health 6| 27 | 973 || 37 | 13 0 | 224 | 26 || 300 420 4822
mst 5| 31| 703| 14 4 0 | 173 | 20 || 210 317 3958
perimeter 9 | 46 | 838 | 37 9 0O | 134 | 13 || 193 363 6564
power 6 | 32 |1927| 43 | 24 4 566 | 64 || 701 693 5330
treeadd | 2 | 12 | 308 || 6 3 0 67 14 90 143 1600
tsp 216 | 946 | 17 | 13 4 | 367 | 26 || 427 380 1948
voronoi | 6 | 73 | 1781|| 50 | 19 7 | 673 | 62 || 810 1023 5270

[‘overall [51]347[10755] 297 | 131 [ 14 | 3186 | 330 || 3958 || 4717 || 42074

Table 1: Hiiciency of jbc2prolog

8.2. Hficiency: Comparing against other Decompilers

To assess thefigciency of our approach we compare the decompilation timegeteus-
ing our tooljbc2prolog w.r.t. those obtained using the decompiler in the COSTAesysi3]
and those of the well-known Java decompil@ec [8]. COSTA is a COSt and Termination
analysis tool for Java bytecode. It performs a decompitatibthe bytecode into a rule-based
representation before the actual analysis phase with thefimaking the analysis design sim-
pler. This decompilation basically consists of two partsrsti-the CFG for each method is
built and then, for each block in the CFG, an associated sufgaduced. We have chosen the
COSTA decompiler to compare théfieiency of interpretive decompilation because COSTA is
also implemented in Prolog and hence the underlying imph¢ation language performance is
identical. The resulting decompiled program is a set ofswlhich resemble our Prolog clauses
in several aspects: recursion is the only form of iteratiod eonditional instructions are cap-
tured by guarded rules. However, there are still sorffeidinces w.r.t. our decompiled programs:
a) in COSTA the operand stack is explicitly flattened andespnted by means of local variables
whereas irjbc2prolog PE together with argument filtering automatically achidve #fect, and
b) we represent the heap explicitly in the residual programsxplained in Section 7.1. These
two features together are important since in the programsrdpiled using COSTA (0CiaoPP)
all bytecode instructions remain residual and have to bentas builtins, i.e., predefined pro-
cedures by analysis. In contrast,jim2prolog bytecode instructions are interpreted at decom-
pilation time and converted into basic Prolog instructisush as unifications and arithmetic or
into the ADT operations in Figure 7 for those instructiongoining the heap. As a result, ex-
tending an existing Prolog analyzer to analyze JBC decadgtograms is simpler using our
decompiler than using those in COSTA [2] @raoPP [35], since the decompiled programs are
executable and the analysis does not need to be extendednyifarther builtins.

Again we use the set of benchmarks in d@den suite [22]. Table 1 shows the times taken
(in milliseconds) by each of theftiérent phases gtic2prolog together with the total time used by
the COSTA andiDec decompiler for each package of th®lden suite. All times are computed
as the arithmetic mean of five runs, in this case on a Intel Qdapeiad Q9300 at 2.5GHz with
1.95GB of RAM, running Linux 2.6.27-9. In particular, for&aJOlden package we measure:
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the total number of classes, methods and instructions ipac&age (columnslgs, Nmins and
Nins), the time taken by the fierent phases dbc2prolog, namely, the parsing and loading time
of the . class file (columnTy,), the pre-processing time to infer the divergence and agevee
points of the bytecode program (coluriig,g, the generation of the entries to the PE (column
Tge), the actual specialization time (colurtipe) and the time taken by the code generation phase
(columnTg). Finally, last three columns show respectively the tdtaks taken bybc2prolog
(columnT jzp), the COSTA decompiler (columRcosts) and thelDec decompiler (colum jgec).
The last row shows the overalls of all measurements. We aaihse the wholelOlden suite

is decompiled byjbc2prolog in less than 4 seconds versus thé decs in COSTA and the 42
secs inJDec. It can be concluded that our results our competitive withséhof an ad-hoc
decompiler. In particular, we see that they are similar tséhobtained in COSTA. Furthermore,
in most exampleghc2prolog is more dficient than COSTA, especially woronoi, perimeter
andtreeAdd. On the other hand we can see tfi@@prolog is about ten times faster thdbec.
Our conclusion in this regard is that it is venfltiult to compare with decompilers written in
other programming languages, since the performance ofntpéementation language heavily
influences the decompilation time.

9. Related Work

Previous work ininterpretative(de-)compilation has mainly focused on proving that the ap-
proach is feasible for small interpreters and medium-sj@djrams. The focus has been on
demonstrating itgffectivenessi.e., that the so-called interpretation layer can be resddvom
the compiled programs. To achievifextiveness, filine [29], online [5, 20, 39] and hybrid [30]
PE techniques have been assessed and novel control sisategie been proposed and proven
effective [18, 4]. Our work startstbfrom the premise that interpretive decompilation is felesib
and dfective as proved by previous work and studies further isatngsh have not been explored
yet. Let us review now related work both in the field of decdatn of low-level code. Related
work on on the PE of interpreters has been already compargddtion 1 and in several places
throughout the paper.

The work by Breuer and Bowen [9] is only tangentially relatedours. They propose a
general method for compiling decompilers from the spedifica of (non-optimizing) compil-
ers. The main idea is that a data type specification for a progning-language grammar can
be remolded into a functional program that enumerates ah®fabstract syntax trees of the
grammar. It is showed that by relying on this technique a dggler can be generated from a
simple Occam-like compiler specification. The only sinithawith our work is that decompiled
programs are somehow obtained from specifications (in osg o&the interpreter and in their
case of the compiler). However, the underlying methodsexkrtically diferent and also they
do not provide a practical solution for ensuring applicatdaditions for their technique.

As regards (direct) decompilation of low-level back to smucode, it has been the subject
of a good amount of research. Decompilation can be attengteiferent levels, with dferent
levels of success. The most complicated case is when deliogipinary executables. There are
a good number of associated complications, such as reogvéiré control flow. One intrinsic
problem in this approach is that it is not possible in genralistinguish code from data stati-
cally. See e.g. [10, 42] and their references for a discassiothe problems and techniques for
binary decompilation. The next level is decompilation ofexably, see e.g. [11]. This shares
many of the complications associated to the decompilatfdrir@ries, since current hardware
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architectures are rather complex, but at least it is passibkeparate code from data. The fol-
lowing level is decompilation of code to be run on a virtualamae. This is in general easier
to perform since virtual machines are usually simpler thament hardware architectures and
because often the code for this virtual machines (bytecods) satisfy certain behavior restric-
tions (must beverifiable[27]) and types of variables are available. As a result, enghrticular
case of decompilation of Java bytecode back to Java sountenber of successful commercial
and free software decompilers exist which are able to hamtiigge class of bytecode programs,
especially those generated by common Java compilersjaeac. Nevertheless, things become
more complicated when the Java bytecode has been geneyateddbfuscator, and especially
when an optimizing compiler, or a compiler from other pragnaing languages such as Haskell,
Eiffel, ML, Ada, and Fortran is used. See e.g. [37] and its refagifior a good account on the
existing Java bytecode decompilers and thialilties associated to its decompilation.

As already mentioned, there exist several analyzers fa Bgtecode which use a higher-
level intermediate representation and which can be seed-hs@decompilers. In particular,
both the COSTA [3] andiaoPP [21] systems have a front-end which converts bytecode into
an intermediate representation which is then the input ¢ostibsequent analysis. Though in
both cases the intermediate representation is similahdrcase of COSTA it is formalized as a
rule-based representation [2], wherea€imoPP it is formalized as Horn clauses, i.e., a logic
program [35]. The reason for doing that @iaoPP is that, at least in principle, that allows
using the analysis which are already availableiaoPP. However, there is a crucialfiiérence
between the logic programs generated in [35] and those gtteby our decompiler. Whereas
the programs generated by [35] are only meant to be the dulifjetatic analysis and are not
executable, the programs we generate can both be subjedlises or be executed. The reason
why the programs in [35] nor those in [2] are executable isabse they basically capture the
control-flow of the bytecode program, but the basic bytedod&uctions themselves remain as
builtins, i.e., predefined predicates, to the analysis. Analysigliesare correct as long as the
behavior of such bytecode instructions is safely approtechdy the analysis. Producing fully
executable logic programs as the result of decompilationigrivial since many of the bytecode
instructions operate on the heap in a way or another. Thusrdar to make an executable
decompiled program we need to introduce the JVM heap eHplinithe logic program. All this
is done automatically in our approach.

10. Conclusions

We argue thatleclarative languageand the technique gfartial evaluationhave nowadays
a large application field within the development of analysevification, and model checking
tools for modern programming languages. On one hand, dgislatanguages provide a conve-
nient intermediate representation which allows (1) regméng all iterative constructs (loops) as
recursion, independently of whether they originate froenative loops (conditional and uncon-
ditional jumps) or recursive calls, and (2) all variablesha local scope of the methods (formal
parameters, local variables, fields, and stack values iFdwel languages) can be represented
uniformly as explicit arguments of a declarative program.te other hand, the technique of PE
enables the automatic (de-)compilation of a (complicatedjlern program to a simple declar-
ative representation by just writing an interpreter for thedern language in the corresponding
declarative language and using an existing partial evatuat

The resulting intermediate representation greatly siiieglithe development of the above
tools for modern languages and, more interestingly, egstdvanced tools developed for declar-
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ative programs (already proven correct affiideive) can be directly applied on it. In previous
work [5], by reasoning on our decompiled residual programs,have automatically proved
in the CiaoPP system some non-trivial properties of Java bytecode progrsuch as termina-
tion, run-time error freeness and infer bounds on its resoapnsumption. In order to prove
run-time error freeness, we have proposed an enhancedobgtéaterpreter which computes,
in addition to the return value of the method called, alsottaee which captures the computa-
tion history. Such traces represent the semantic stepsamktherefore do not only represent
instructions, as the context has also some importance. fi&ey allowed us to distinguish, for
example, for a same instruction, the step that throws am¢iecefrom the normal behavior. E.g.,
invokevirtual step_ok andinvokevirtual step NullPointerException represent, re-
spectively, a normal method call and a method call on a nféreace that throws an exception.
Such additional flexibility of interpretive decompilatibias allowed to prove run-time error free-
ness in a straightforward way by simply specifying the propef being error-free as verifying
that the corresponding trace in the decompiled program oiesontain an exceptional step.

A unique feature of our decompiled programs is that theyasgmt the whole program state,
i.e., in contrastto [35, 2, 43], our decompiled programdaiora representation of the heap in ad-
dition to the operand stack. The advantage is decompilegtanas are fullyexecutablavhich in
turn broadens their application field. As an example, rdgeve have developed a novel frame-
work for test case generatiojd5] of bytecode by relying on our decompiled Prolog progsam
Basically, the standard approach to generating test-chagsally is to perform aymbolicexe-
cution of the program [12, 36, 38, 24, 19], where the contefit@riables are expressions rather
than concrete values. The symbolic execution producestamsysf constraintsconsisting of the
conditions to execute theféerent paths. This happens, for instance, in branchinguicisbins,
like if-then-else, where we might have to generate testséasr the two alternative branches
and hence accumulate the conditions for each path as ciomstriihe fact that our decompiled
program are executable Prolog programs allows us to djreely on available techniques for
constraintlogic programs (where backtracking is inherent to the laigg) to carry out such
symbolic execution.

Finally, a main objective of our work has been to investigatel provide the necessary tech-
nigues, to make interpretive decompilation scale in pcactA further goal has been to ensure,
and provide the techniques, that decompiled programs mefige structure of the original pro-
grams and that their quality is comparable to that obtairyedigdicated decompilers. We believe
that the techniques proposed in this paper, together witin #xperimental evaluation, provide
for the first time actual evidence that the interpretive tiigwroposed by Futamura in the 70s
is indeed an appealing and feasible alternative to the dpxent of ad-hoc decompilers from
modern languages to intermediate representations.
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