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Abstract

Reasoning about Java bytecode (JBC) is complicated due to its unstructured control-flow, the
use of three-address code combined with the use of an operandstack, etc. Therefore, many static
analyzers and model checkers for JBC first convert the code into a higher-level representation.
In contrast to traditional decompilation, such representation is often not Java source, but rather
some intermediate language which is a good input for the subsequent phases of the tool.Inter-
pretive decompilationconsists in partially evaluating an interpreter for the compiled language (in
this case JBC) written in a high-level language w.r.t. the code to be decompiled. There have been
proofs-of-concept that interpretive decompilation is feasible, but there remain important open
issues when it comes to decompile a real language such as JBC.This paper presents, to the best
of our knowledge, the first modular scheme to enable interpretive decompilation of a realistic
programming language to a high-level representation, namely of JBC to Prolog. We introduce
two notions of optimality which together require that decompilation does not generate code more
than once for each program point. We demonstrate the impact of our modular approach and opti-
mality issues on a series of realistic benchmarks. Decompilation times and decompiled program
sizes are linear with the size of the input bytecode program.This demonstrates empirically the
scalability of modular decompilation of JBC by partial evaluation.

Key words: program transformation, partial evaluation, decompilation, interpreters, Java
bytecode, logic programming, Prolog

1. Introduction

Decompilation of Java bytecode (JBC for short) to an intermediate representation has become
a usual practice nowadays within the development of analyzers, verifiers, model checkers, etc.
For instance, in the context ofmobilecode, as the source code is not available, decompilation
facilitates the reuse of existing analysis and model checking tools. In general, high-level inter-
mediate representations allow abstracting away the particular language features and developing
the tools on simpler representations. In particular, JBC isdecompiled to a rule-based representa-
tion in [2], to clause-based programs in [35], to a three-address code representation in Soot [43]
and to the typed procedural language BoogiePL in [13]. Also,analysis of Java programs is for-
malized and performed using Datalog in [44] and in [20] PIC assembly is transformed into logic
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programs. This shows that the rule-based representations used in declarative programming in
general—and in Prolog in particular—provide a convenient formalism to define such interme-
diate representations. For instance, as it can be seen in [2,35, 20], the operand stack used in a
bytecode language can be represented by means of explicit logic variables and its unstructured
control flow can be transformed into recursion.

All above cited approaches (except [20]) developad-hoc, or dedicated, decompilers to carry
out the particular decompilations. An appealing alternative to the development of dedicated de-
compilers is the so-calledinterpretivedecompilation bypartial evaluation(PE for short) [23]. PE
is an automatic program transformation technique which specializes programs w.r.t. part of their
input data. Interpretive compilation was proposed in Futamura’s seminal work [14], whereby
compilation of a programP written in a (source) programming languageLS into another (target)
programming languageLT is achieved by specializing an interpreter forLS written inLT w.r.t. P.
The advantages of interpretive (de-)compilation w.r.t. dedicated (de-)compilers are well-known
and discussed in the PE literature (see, e.g., [5]). Very briefly, they include:

1. Flexibility: it is easier to modify the interpreter in order to tune the decompilation (e.g.,
observe new properties of interest). As an interesting example, in [5], a Java bytecode
interpreter is instrumented with an additional argument which computes thetraceof byte-
code instructions in order to collect the computation history. A program decompiled by
using this interpreter contains an additional argument with the execution trace at the level
of Java bytecode. This trace will allow observing a good number of interesting properties
about the program, e.g., runtime error freeness can be ensured when the trace does not
contain instructions which issue any kind of run-time error.

2. Easier to trust: it is more difficult to prove that ad-hoc decompilers preserve the program
semantics. For example, the formal specification chosen fordefining our bytecode inter-
preter is Bicolano [40], which is written with the Coq Proof Assistant [7]. This allows
checking that the specification is consistent and also proving properties on the behavior of
some programs.

3. Easier to maintain: new changes in the language semantics can be easily reflected in
the interpreter. This will become apparent later when we seethat defining a bytecode
interpreter in Prolog is a rather easy task and, hence, also maintaining it.

The challenge now is in defining a practical, scalable schemeto interpretive decompilation which
achieves quality decompiled programs and, provided this isfeasible, we will be able to take
advantage of the above features.

1.1. Summary of Contributions

There have been several proofs-of-concept of interpretive(de-)compilation (e.g., [5, 20, 29]),
but there remain interesting open issues when it comes to assess its power and/or limitations to
decompile a real language:

a) does the approach scale?

b) do decompiled programs preserve the structure of the original ones?

c) is the “quality” of decompiled programs comparable to that obtained by dedicated decom-
pilers?
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This article answers these questions positively by proposing a modular decompilation scheme
which can be steered to control the structure of decompiled code and ensure quality decompila-
tions which preserve the original program’s structure. Ourmain contributions are summarized
as follows:

1. We present the problems ofnon-modulardecompilation and identify the components
needed to enable a modular scheme. This includes how to writean interpreter and how to
control anonlinepartial evaluator in order to preserve the structure of the original program
w.r.t. method invocations.

2. We present a modular decompilation scheme which is correct and complete for the pro-
posed big-step interpreter. Themodular-optimalityof the scheme allows addressing issue
(a) by avoiding decompiling the same method more than once, and(b) by ensuring that
the structure of the original program can be preserved.

3. We introduce an interpretive decompilation scheme whichanswers issue(c) by produc-
ing decompiled programs whosequality is similar to that of dedicated decompilers. This
requires ablock-leveldecompilation scheme which avoids code duplication and code re-
evaluation.

4. We report on experimental results on an set of realistic JBC programs which demonstrate
the scalability and the efficiency of our proposal.

For the sake of concreteness, our interpretive decompilation scheme is formalized in the
context of PE of logic programs but the ideas we propose for enabling the practicality of the
approach are also of interest for the interpretive (de-)compilation of any pair of source and target
languages.

1.2. Outline of the Article

The article is organized as follows. The next section recalls some preliminary definitions and
presents the background on PE of logic programs. We recall the correctness issues that a par-
tial evaluator must guarantee. We also sketch the differences between online and offline partial
evaluators. Section 3 briefly describes the interpretive approach to (de-)compilation. We present
the first Futamura projection in generic terms and then instantiate it to the particular decompi-
lation we want to carry out: decompile JBC to Prolog. Section4 presents the subset of JBC
we consider to define our decompilation scheme. It also describes non-modular decompilation
(originally presented in [5]) and explains its limitationsfor the decompilation of real applica-
tions. These limitations are not tied to the decompilation of bytecode. They also occur in any
application of interpretive decompilation.

Our first contribution is a modular decompilation scheme which is introduced in Section 5.
We start by presenting a big-step interpreter and explain why it is necessary to enable a modular
decompilation scheme. Then, we define the annotations that must be generated to obtain such
modular decompilation. An important property of the resulting method is that it is ensured that
each method is decompiled once.

Our second important contribution is the refinement of the modular decompilation scheme in
Section 6 to ensure the scalability of our approach. This requires, among other things, that the
decompiler does not emit code more than once for each bytecode instruction. This leads to what
we callblock-optimalityin decompilation.

In Section 7 we extend the subset of JBC considered in previous sections in order to sup-
port a realistic language with object-oriented features. We show how our scheme can be easily
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adapted to handle the new features: the decompilation of theheap and associated instructions,
the representation of classes by means of Prolog modules andvirtual invocations by module-
qualified calls. Our experimental results are reported in Section 8, where both the scalability
and efficiency of our approach are assessed using theJOlden suite of benchmarks [22]. Finally,
Section 9 reviews related work and Section 10 concludes.

2. Background on Partial Evaluation of Logic Programs

This section presents some preliminary notions and the background on PE of logic programs
(often calledpartial deduction) required to formalize our decompilation scheme. We assume
some basic knowledge on the terminology of logic programming and refer to [34] for details.

2.1. Logic Programming

Very briefly, anatom (or call) A is a syntactic construction of the formp(t1, . . . , tn), with
n ≥ 0, wherep/n is a predicate signature andt1, . . . , tn are terms. Aclauseis of the form
H :- B1, . . . , Bm, with m≥ 0, where its headH is an atom and its bodyB1, . . . , Bm is a conjunction
of m atoms. Note that in this context commas denote conjunctions. Whenm = 0 the clause is
called afact and is written “H.”. A programis a finite set of clauses. Agoal is a conjunction of
atoms. We denote by{X1 7→ t1, . . . ,Xn 7→ tn} thesubstitutionσ with σ(Xi) = ti for i = 1, . . . ,n
(with Xi , X j if i , j), andσ(X) = X for all other variablesX. Given an atomA, θ(A) denotes
the application of substitutionθ to A. Given two substitutionsθ1 andθ2, we denote byθ1θ2 their
composition. The identity substitution is denoted byid. An atomA′ is aninstanceof A if there
is a substitutionσ with A′ = σ(A).

The operational semantics of logic programs is based on derivations.

Definition 1 (derivation step). Let G be A1, . . . ,AR, . . . ,Ak and C = H :- B1, . . . , Bm be a re-
named apart clause in P (i.e., it has no common variables withG). Let AR be the selected atom
for its evaluation. Then G′ is derivedfrom G if the following conditions hold:

θ = mgu(AR,H)

G′ is the goalθ(A1, . . . ,AR−1, B1, . . . , Bm,AR+1, . . . ,Ak)

As customary, given a programP and a goalG, an SLD derivationfor P ∪ {G} consists
of a possibly infinite sequenceG = G0,G1,G2, . . . of goals, a sequenceC1,C2, . . . of properly
renamed apart clauses ofP (i.e. Ci has no common variables with anyG j nor C j with j < i),
and a sequence ofcomputed answer substitutionsθ1, θ2, . . . (or most-general unifiers, mgus for
short) such that eachGi+1 is derived fromGi andCi+1 usingθi+1. Finally, we say that the SLD
derivation is composed of thesubsequentgoalsG0,G1,G2, . . ..

A derivation step can be non-deterministic whenAR unifies with several clauses inP, giving
rise to several possible SLD derivations for a given goal. Such SLD derivations can be organized
in SLD trees. A finite derivationG = G0,G1,G2, . . . ,Gn is calledsuccessfulif Gn is empty. In
that caseθ = θ1θ2 . . . θn is called the computed answer for goalG. Such a derivation is called
failing if it is not possible to perform a derivation step withGn.

Executing a programP for a call A consists in building anSLD treefor P ∪ {A} and then
extracting thecomputed answersfrom every non-failing branch of the tree.
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2.2. Partial Deduction

Partial evaluation in logic programming (see e.g. [16]) builds upon the SLD trees mentioned
above. We now introduce a generic functionPE, which is parametric w.r.t. theunfolding rule,
unfold, and theabstraction operator, abstract, and captures the essence of most algorithms for
PE of logic programs:

1: function PE (P,A,S)
2: S0 := S; i := 0;
3: repeat
4: Lpe := unfold(Si ,P,A);
5: Si+1 := abstract(Si , Lpe,A);
6: i := i + 1;
7: until Si = Si−1 % (modulo renaming)
8: return codegen(Lpe, unfold);

Function PE differs from standard ones in the use of the set of annotationsA, whose role is
described below. PE starts from a programP, a (possibly empty) set of annotationsA and an
initial set of callsS. At each iteration, the so-calledlocal control is performed by the unfolding
rule unfold (Line 4), which takes the current set of atomsSi , the program and the annotations
and constructs apartial SLD tree for each call inSi . Trees are partial in the sense that, in order
to guarantee termination of the unfolding process, it must be possible to choosenot to further
unfold a goal, and rather allow leaves in the tree with a non-empty, possibly non-failing, goal
(these goals appear in the next examples within a frame). Theatoms corresponding to such goals
are returned byunfold and store inLpe (Line 4). Then, in theglobal control, which is performed
by the abstraction operatorabstract, when some calls in the leaves of the trees are not properly
covered, the operatorabstract adds them to the new set of atoms to be partially evaluated in
a proper “generalized” form such that termination is ensured (i.e., the conditionSi = Si−1 is
reached).

Let us consider the PE of the following program to reverse a list using an accumulator (pred-
icaterev/3) w.r.t. the initial setS = {rev([1, 2|Xs], [] , Zs)} andA = ∅:

rev([],L,L).

rev([X|Xs],Ys,Zs) :- rev(Xs,[X|Ys],Zs).

Prolog lists use the notation [X|L] to denote the list withX as head andL as continuation and []
to denote the empty list. The particularunfold operator determines which atom to select from
each goal and when to stop unfolding. Let us consider an unfolding rule based on thehomeo-
morphic embedding[28] relation, awell-quasi orderused in state-of-the-art specialization tools.
Intuitively, the homeomorphic embedding is a structural ordering under which an expressione1

is greater than (i.e., itembeds), another expressione2 if e2 can be obtained frome1 by deleting
some parts, e.g.,s(s(U+W)×(U+s(V))) embedss(U× (U+V)). Such unfolding rule always selects
the leftmost atom and stops the derivation when the selectedcall embedsa previous call and thus
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threatens termination. We start by constructing the following SLD-tree:

rev([1, 2|Xs], [] , Zs)
��

rev([2|Xs], [1], Zs)
��

rev(Xs, [2, 1], Zs)
{Xs 7→[] ,Zs 7→[1,2]}

uukkkkkkk {Xs 7→[X′ |Xs′]}
,,XXXXX

true rev(Xs’,[X’,2,1],Zs)

It can be observed that the call in the framerev(Xs′, [X′, 2, 1], Zs) embeds the previous call
rev(Xs, [2, 1], Zs), hence the derivation is stopped. Such call is said to be transferred to the
global control in the sense that it is returned byunfold as an element ofLpe and hence it is passed
away as an argument toabstract.

The partial evaluator may have to build several SLD-trees toensure that all calls left in the
leaves (Lpe in Line 4) are “covered” by the root of some tree. This is knownas theclosedness
condition of PE [33]. E.g., after having built the first SLD-tree for the callrev([1, 2|Xs], [] , Zs),
the callrev(Xs′, [X′, 2, 1], Zs) is not covered byrev([1, 2|Xs], [] , Zs) because it is not an instance
of it. At this point theabstract operator adds the framed call to the new set of atoms to be partially
evaluated. At the next iteration, the following SLD-tree isbuilt for such call:

rev(Xs, [X′, 2, 1], Zs)
{Xs 7→[] ,Zs 7→[X′,1,2]}

uujjjjjjj {Xs 7→[X′′ |Xs′]}
,,YYYYYY

true rev(Xs’,[X’’,X’,2,1],Zs)

Thus, basically, the algorithm iteratively (Lines 3-7) constructs partial SLD trees until all their
leaves are covered by the root nodes. An essential point of the operatorabstract is that it has
to perform “generalizations” on the calls that have to be partially evaluated in order to avoid
computing partial SLD trees for an infinite number of calls. The homeomorphic embedding
can be again used here to ensure termination and detect whichcalls have to be generalized. A
classical way of performing generalizations is to use themost-specific generalizeroperator (msg
for short) in the following way. Suppose that a callA is to be added to the setSk, and that there is
a callB in Sk s.t. A embedsB, then themsgof A andB is added to the setSk+1 (and usuallyB is
removed). In the example, the framed callrev(Xs, [X′, X′′, 2, 1], Zs) embedsrev(Xs, [X, 2, 1], Zs)
(also framed), therefore both are generalized using themsgresulting inrev(Xs, [A, B, C|D], Zs).
The generalized call is added to the setSi+1 andrev(Xs, [X, 2, 1], Zs)) removed. At the next
iteration, the following SLD tree is built for the generalized atom:

rev(Xs, [A, B, C|D], Zs)
{Xs 7→[] ,Zs 7→[A,B,C|D]}

uukkkkkkk {Xs 7→[X′ |Xs′]}
,,YYYYYY

true rev(Xs’,[X’,A,B,C|D],Zs)

Without such generalization, the algorithm would keep on adding callsrev(Xs, [X, X′, X′′, 2, 1], Zs),
rev(Xs, [X, X′, X′′, X′′′, 2, 1], Zs),. . . infinitely.

A partial evaluation ofP w.r.t. S is then systematically extracted from the resulting set of
callsLpe in the final phase,codegen in L8. The notion ofresultantis used to generate a program
rule associated to each root-to-leaf derivation of the SLD-trees for the final set of atomsLpe.
Given an SLD derivation ofP∪ {A} with A ∈ Lpe ending inB andθ being the composition of the
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mgu’s in the derivation steps, the ruleθ(A) : −B is called theresultantof the derivation. A PE
is defined as the set of resultants (clauses) associated to the derivations of the constructed partial
SLD trees for allP∪ Lpe. The resulting program is often referred to as thespecialized program
or residual program. In the example, the final setLpe contains the callsrev([1, 2|Xs], [] , Zs) and
rev(Xs, [A, B, C|D], Zs) from which the following PE (residual program) is generated:

rev([1,2],[],[2,1]).

rev([1,2,A|B],[],C) :- rev 1(B,[A,2,1],C).

rev 1([],[A,B,C|D],[A,B,C|D]).

rev 1([A|B],[C,D,E|F],G) :- rev 1(B,[A,C,D,E|F],G).

The first two resultants are obtained from each derivation (branch) of the first tree above and the
last two ones from the last tree above.

It can be also observed that a post-processing of renaming has been performed bycodegen
as explained below. Such a post-processing use to perform inaddition some form ofargument
filtering [32]. This is because automatically generated programs, and in particular those gener-
ated by PE, very often contain redundant arguments which do not affect the correctness of the
program. Throughout the rest of the paper we will consider acodegen function which is able to
remove arguments which are actually not used in any computation but rather just passed around.

2.3. Correctness of Partial Deduction

Intuitively, the notions of, respectively,completenessandcorrectnessof PE [16] ensure that
the specialized program produces no less, respectively, nomore answers than the original pro-
gram. A sufficient condition to ensure completeness is that the specialized program isclosedby
the resulting set of atomsLpe. As informally explained in Section 2.2, the closedness condition
ensures that all calls which may arise during the computation of P∪ S are instances ofLpe and
hence there is a matching resultant for them (solutions are not lost).

Definition 2 (closedness).Let T and S be two sets of atoms. Then, S is T-closed iff each atom
in S is an instance of an atom in T. Given a program P and a set of atoms T, we say that P∪ T
is S -closed if the set of atoms which occur in the computationof P∪ T are S -closed.

The abstraction operator ensures that the closedness condition is met by means of a proper gener-
alization of calls. For instance, as the set of atoms{rev(Xs, [X′, X′′, 2, 1], Zs)} is not closed w.r.t.
this set{rev(Xs, [X, 2, 1], Zs)}, the abstraction operator has generalized both terms to theterm
rev(Xs, [A, B, C|D], Zs) which covers both terms.

Let us see an example where the closedness condition does nothold and hence we lose
completeness. Consider a program defined by these two clauses:

p(X) :- q(X).

q(X).

The following partially evaluated program has been obtained by specializing the above program
w.r.t. the set of atomsS = {q(a)}:

p(X) :- q(X).

q(a).

The closedness condition w.r.t. the setS does not hold because the atom in the left-hand side
of the first rule is not an instance of any atom inS. It can be seen that the partially evaluated
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program is not complete since the goalp(b) succeeds in the original program while it fails in the
residual one.

Correctness is achieved when the resulting setLpe is independent, i.e., there are no two calls
in Lpe which unify.

Definition 3 (independence).Let S be a set of atoms. Then, S isindependentif no pair of atoms
in S have a common instance.

Let us see an example where the independence condition does not hold and hence we lose
correctness. Consider again the above program and the set ofatomsS = {q(X), q(a)} which is
not independent. The following program is a partial evaluation w.r.t. the setS:

p(X) :- q(X).

q(X).

q(a).

It can be seen that the residual program produces more answers than the original one. In partic-
ular, for the goalq(Y) it returns two answers{Y 7→ X} and{Y 7→ a} while the original program
generates only the first one.

Independence can be recovered by a post-processing of renaming [16]. In the previous pro-
gram, the two atoms inS could be renamed asq1(X) andq2(a) and the residual program would
contain one clause definingq1 and another one forq2. In addition, renaming has benefits for
performance because it reduces the number of rules per predicate. Thus, though the calls inLpe

for our running example are independent, we rename the second call for predicaterev to rev 1.

Theorem 1 (correctness).Let P be a program, Lpe be a finite, independent set of atoms and
P′ be a partial evaluation of Lpe in P. For every goal G such that P′ ∪ {G} is Lpe-closed, the
following conditions hold:

• Soundness:P′ ∪ {G} has a successful derivation with answerθ only if P∪ {G} does.

• Completeness:P∪ {G} has a successful derivation with an answerθ only if P′ ∪ {G} does.

The above theorem is proven in early work on PE of logic programs [33, 25].

2.4. Online vs. Offline Partial Deduction

It is well-known that both the quality of the specialized programs and the time required for
the PE process greatly vary with the control strategies used. Traditionally, two approaches to
PE have been considered,onlineandoffline PE. In online PE, all control decisions are taken on
the fly during the specialization phase by keeping track of the specialization history. This is the
case of the control rules used in the example of Section 2.2. In the offline approach, all control
decisions are taken before the proper specialization phase. These control decisions are based
on abstract descriptions of the data instead of the actual data. The control strategy is usually
represented as program annotations which are the sole decision criteria for control of the partial
evaluator. For instance, in the local control, an annotation can explicitly indicate that an atom
should not be unfolded. In the global control, annotations typically specify for each call which
arguments have to be generalised away (i.e. replaced by variables). Such annotations are in
some partial evaluators automatically generated by abinding-time analysisand in other partial
evaluators they are manually provided by the user, either inpart or in full.
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Under this classification, the PE algorithm we propose can beconsidered a hybrid approach
since theA annotations provide information to the control operators,as in offline PE, and the
algorithm includes control rules based on the actual specialization history, as in online PE. The
advantages of the offline approach are that, once all control annotations are available, PE is quite
simple and efficient. On the other hand, online PE, though less efficient, has a strictly more
powerful control strategy since control decisions are based on actual data instead of abstract
descriptions of data. Therefore, though all offline PEs can be replicated using online techniques,
many online PEs cannot be reproduced using offline techniques.

In this work we are interested in investigating how far we cango with the more powerful but
less efficient online PE approach. The motivation for this is that this way we may obtain decom-
pilations of higher quality than those achievable using offline PE. Thus, our challenges are both
in terms of quality of the decompiled programs and in terms ofefficiency of the decompilation
process. As we will see later in the article many of the lessons learned in this work are of interest
both to the online and offline approaches to the PE of interpreters.

3. The Interpretive Approach to Compilation

The development of PE, program specialization and related techniques [14, 23, 15] has led
to an alternative approach to compilation (known as the firstFutamura projection) based on
specializing an interpreter with respect to a fixed object program. Let us explain intuitively the
interpretive approach. We denote bymix a generic partial evaluator, byp a program and byin1
(resp.in2) the static (resp. dynamic) input data. Given a programP, we writePL to denote that
P is written in languageL. When the program is a meta-program, we write as a super-indexthe
language the meta-program manipulates. For instance,mixL

S
denotes a partial evaluator, written

in S, which manipulates programs written inL. We omit the languages (both sub. and super-
indexes) when they are not relevant. Finally, we use the notation [[P]][ d] to denote the execution
of P with input datad. A partial evaluator can be defined as a program which behavesas follows:

p in1 = [[mix]] [ p, in1]
output = [[p in1]] [ in2] = [[p]] [ in1, in2]

Essentially, the execution ofmix for p and in1 returns a specialized programp in1 whose
execution for the dynamic datain2 must be the same as executing the original programp w.r.t.
all dynamic plus static data [in1, in2]. This implies the following:

[[p]] [ in1, in2] = [[ [[ mix]] [ p, in1] ]] [ in2] (1)

This means that the result of PE is a program which is semantically equivalent w.r.t. the original
for the static data. We now define by means of equations the behavior of an interpreterintS

L
,

which interprets programs written inS, and is written in (a possibly different) languageL:

output = [[sourceS]] [ d] = [[intSL]] [ sourceS, d] (2)

This captures the idea that executing a source programsource for some input datad in the
interpreter gives the same output as the execution of the program yields. Similarly, we can define
a compilercompS→T

L from S to T written in (a possibly different) languageL as follows:

[[sourceS]] [ d] = [[ [[ compS→T
L

]] [ sourceS] ]] [ d] (3)
[[compS→T

L
]] [ sourceS] = targetT
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Consider now a partial evaluatormixT
L (written inL) for programs written inT, and an interpreter

intS
T

(written in T) for programs written inS. Now, the compilation of a programsourceS to a
programtargetT by using a partial evaluatormixT

L can be performed as follows:

targetT = [[mixTL]] [ intST, sourceS]

which is justified by combining equations (1) and (2) in this way:

[[pS]] d = [[intST]] [ p, d] = [[ [[ mixTL]] [ intST, p] ]] d

Now, by comparing the above equation with equation (3), it can be observed the essence of
compilation by means of PE of interpreters: we obtain the compilation of the programp written
in S into another languageT. The application of this interpretative approach to compilation
within our framework consists in specializing a bytecode (BC) interpreterintBC

LP
written in logic

programmingLP where the static data is the actual bytecode programpBC to be decompiled:

[[pBC]] d = [[intBCLP]] [ pBC, d] = [[ [[ mixLP]] [ intBCLP, pBC] ]] d = [[pLP]] d

It can be observed that the result is a decompiled programpLP in LP which, given the actual input
datad produces the same result as the original programpBC.

4. Non-Modular Interpretive Decompilation

This section describes the state of the art in interpretive decompilation of low-level languages
to Prolog, including recent work in [20, 4, 18, 5]. We do so by formulating non-modular decom-
pilation in a generic way and identifying its limitations.

4.1. The Bytecode Language

The bytecode language we consider, denoted asLbc, is a simple imperative bytecode lan-
guage in the spirit of Java bytecode. To simplify the presentation, it does not include advanced
features of Java bytecode such as exceptions, arrays, object-oriented features, access control (e.g.
public, protected, private) and it manipulates only integer numbers. The extensions to consider
such advanced features will be discussed later in Sections 7and 8. As in Java bytecode,Lbc

uses an operand stack to perform intermediate computationsand an array of variables to store
the formal parameters of the method and the actual method variables. Also, the globalheapis
not yet considered. Support for object-oriented features will be provided later. Finally,Lbc, has
an unstructured control flow, i.e., there are no explicit block markers, hence it includes explicit
conditional and unconditionalgoto instructions.

A bytecode programPbc consists of a set of methods which are the basic (de-)compilation
units ofLbc. The code of a methodm, denotedcode(m), consists of a sequence of indexed
bytecode instructions〈pc0 : bc0, . . . , pcnm : bcnm〉 with pc0, . . . , pcnm being consecutive natural
numbers. TheLbc instruction set is:

InstLbc ::= push(x) | load(v) | store(v) | add | sub | mul | div | rem |

neg | if ⋄ (pc) | if0 ⋄ (pc) | goto(pc) | return | invoke(mn)

where⋄ is a comparison operator (eq, le, gt, etc.),v a local variable,x an integer,pc an in-
struction index andmn a method name. Instructionspush, load and store transfer values
or constants from the local variables to the stack (and vice-versa);add, sub, mul, div, rem
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main(Method,InArgs,Top) :-

build_s0(Method,InArgs,S0),

execute(S0,Sf),

Sf = st(fr(_,_,[Top|_],_),_)).

execute(S,S) :-

S = st(fr(M,PC,[_Top|_],_),[]),

bytecode(M,PC,return,_).

execute(S,Sf) :-

S = st(fr(M,PC,_,_),_),

bytecode(M,PC,Inst,_),

step(Inst,S,S’),

execute(S’,Sf).

step(push(X),S,S’) :-

S = st(fr(M,PC,OS,L),FrS),

next(M,PC,PC’),

S’ = st(fr(M,PC’,[X|OS],L),FrS).

step(add,S,S’) :-

S = st(fr(M,PC,[X,Y|OS],L),FrS),

next(M,PC,PC’), Z is X + Y,

S’ = st(fr(M,PC’,[Z|OS],L),FrS).

step(goto(PC),S,S’) :-

S = st(fr(M,_,OS,LV),FrS),

S’ = st(fr(M,PC,OS,LV),FrS).

step(load(I),S,S’) :-

S = st(fr(M,PC,OS,L),FrS),

next(M,PC,PC’), nth(L,I,V),

S’ = st(fr(M,PC’,[V|OS],L),FrS).

step(store(I),S,S’) :-

S = st(fr(M,PC,[V|OS],L),FrS),

next(M,PC,PC’), replace_nth(L,I,V,L’),

S’ = st(fr(M,PC’,OS,L’),FrS).

...

step(invoke(M’),S,S’) :-

S = st(fr(M,PC,OS,LV),FrS),

split_OS(M’,OS,Args,OS’’),

build_s0(M’,Args,st(fr(M’,PC’,OS’,LV’),_)),

S’ = st(fr(M’,PC’,OS’,LV’),

[fr(M,PC,OS’’,LV)|FrS]).

step(return,S,S’) :-

S = st(fr(_,_,[RV|_],_),[fr(M,PC,OS,LV)|FrS]),

next(M,PC,PC’),

S’ = st(fr(M,PC’,[RV|OS],LV),FrS).

Figure 1:Fragment of (small-step)Lbc interpreter

andneg perform the usual arithmetic operations, beingrem the division remainder andneg the
arithmetic negation;if andif0 are conditional branching instructions (with the special case of
comparisons with 0);goto is an unconditional branching;return marks the end of methods and
invoke invokes a method. For simplicity, all methods are supposed to return an integer value. A
methodm is uniquely determined by its name. We writecalls(m) to denote the set of all method
names invoked within the code ofm. We usedefs(Pbc) to denote the set ofinternal method
names defined inPbc. The remaining methods areexternal. We say thatPbc is self-containedif
∀m ∈ Pbc, calls(m) ⊆ defs(Pbc), i.e.,Pbc does not include calls to external methods.

Though very simple,Lbc will be enough for our purposes when presenting the main ideas of
the different decompilation schemes. Nevertheless it will be gradually extended as needed when
we present more advanced features until the point of covering the full Java bytecode language in
the experimental evaluation in Section 8.

4.2. Non-modular, Online Decompilation

We rely on the interpretive approach to compilation by PE described in Section 3. As it has
been already explained, the decompilation of aLbc-bytecode programPbc to LP (for short LP-
decompilation) might be obtained by specializing (with an LP partial evaluator) aLbc-interpreter
written in LP w.r.t. Pbc. In Fig. 1 we show a fragment of a (small-step)Lbc interpreter im-
plemented in Prolog, namedIntLbc. We assume that the code for every method in the bytecode
programPbc is represented as a set of factsbytecode/3 such that, for every pairpci : bci in the
code for methodm, we have a factbytecode(m,pci,bci). The state carried around by the in-
terpreter is of the formst(Fr,FrStack) whereFr represents the current frame (environment)
andFrStack the stack of frames (call stack) implemented as a list. Frames are of the form
fr(M,PC,OStack,LocalV), whereM represents the current method,PC the program counter,
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OStack the operand stack andLocalV the list of local variables. Predicatemain/3, given the
method to be interpretedMethod and a concrete input (method arguments)InArgs, first builds
the initial state by means of predicatebuild s0/3 and then calls predicateexecute/2. In turn,
execute/2 calls predicatestep/3, which producesS’, the state after executing the bytecode,
and then calls predicateexecute/2 recursively withS’ until we reach areturn instruction
with the empty stack. For brevity, we only show the definitionof step/3 for a selected set of
instructions and omit the code of some auxiliary predicates. Namelybuild s0/3, which was ex-
plained below,next/3, which produces the next program counter given the current one,nth/3
andreplace nth/4, which respectively get and set the i-th element of a list, and split OS/4,
which splits the current operand stack between the parameters list to be used in the called method
and the rest. By using this interpreter, we define anon-modulardecompilation scheme in terms
of the generic functionPE as follows:

Definition 4 (Lbc). Given a self-containedLbc-bytecode program Pbc, the (non-modular)
LP-decompilation of Pbc can be obtained as:

Lbc(Pbc) = PE(IntLbc ∪ Pbc, ∅,S)

where S is the set of calls{main(m, , ) |m ∈ defs(Pbc)}.

Observe in the above definition that the set of annotations isempty. Following the PE terminol-
ogy, the above definition corresponds toonlinePE as we have explained in Section 2.4.

Recent work in interpretive, online decompilation has focused on ensuring that the layer of
interpretation is completely removed from decompiled programs, i.e.,effectivedecompilations
are obtained. This requires the use of the following advanced control techniques. Type-based
homeomorphic embedding (ET) [4] has been used both at the local and global control to decide
when to stop derivations and when to generalize calls so thateffectiveness of the decompilation
can be obtained in the presence of integers without compromising termination. The unfolding
operator must also be able to accurately handle built-in predicates and to safely perform non-
leftmost unfolding steps as in [6]. The operatorabstract must incorporate a polyvariance control
mechanism [18] which avoids performing useless specializations that can introduce superfluous
decompiled code and thus degrade the decompilation effectiveness. Our starting point is thus a
state-of-the-art online partial evaluator based on an unfolding operatorunfoldET and abstraction
operatorabstractET which incorporate such advanced techniques and is able to remove the layer
of interpretation. Such advanced partial evaluator is usedin the following both for running
examples and experiments.

4.3. Limitations

This section illustrates by means of the bytecode example inFig. 2 that non-modular decom-
pilation does not ensure a satisfactory handling of issues(a) and(b) in Section 1. In the examples,
we often depict the Java source code for clarity, but the decompiler works directly on the byte-
code. The program consists of a set of methods that carry out arithmetic operations. Methodgcd
computes the greatest-common divisor,abs the absolute value,lcm the least-common multiple
andfact the factorial recursively. The LP-decompilation obtainedby applying Definition 4 is
shown in Fig. 3. The partial evaluator performs a post-processing of renaming and argument
filtering [16] for all calls except for calls to themain predicate (as they represent calls to meth-
ods whose name we want to preserve). We identify below four limitations, which we identify as
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int gcd(int x,int y){

int res;

while (y != 0){

res = x%y; x = y;

y = res;}

return abs(x);}

int abs(int x){

if (x < 0) return -x;

else return x; }

int lcm(int x,int y){

int gcd = gcd(x,y);

if (gcd == 0) return 0;

else return x*y/gcd;}

int fact(int x){

if (x == 0)

return 1;

else

return x*fact(x-1);}

Method gcd

0:load(1)

1:if0eq(11)

2:load(0)

3:load(1)

4:rem

5:store(2)

6:load(1)

7:store(0)

8:load(2)

9:store(1)

10:goto 0

11:load(0)

12:invoke(abs)

13:return

Method abs

0:load(0)

1:if0ge(5)

2:load(0)

3:neg

4:return

5:load(0)

6:return

Method lcm

0:load(0)

1:load(1)

2:invoke(gcd)

3:store(2)

4:load(2)

5:if0ne 8

6:push(0)

7:return

8:load(0)

9:load(1)

10:mul

11:load(2)

12:div

13:return

Method fact

0:load(0)

1:if0ne(4)

2:push(1)

3:return

4:load(0)

5:load(0)

6:push(1)

7:sub

8:invoke(fact)

9:mul

10:return

Figure 2:Source code andLbc-bytecode for working example

(L1). . . (L4), of non-modular decompilation. It is important to note thatsuch limitations, and the
way to avoid them which we propose in Section 5 below, are alsorelevant to the case of offline
PE.

(L1) Calls to methods areinlined within their calling contexts and, as a consequence, the
structure of the original code is lost. For example, method invocations fromlcm to gcd (index
2) and fromgcd to abs (index 12) do not appear in the decompiled code. As a result, the last
two rules in the decompilation forlcm, execute 1, correspond to thewhile loop ofgcd. This
happens because calls to methods are dealt with in asmall-stepfashion within the interpreter,
i.e., the code of invoked methods is unfolded as if it was inlined inside the “caller” method.

(L2) As a consequence, decompilation becomes very inefficient. E.g., ifn calls to the same
method appear within a code, such method will be decompiledn times. Even worse, if there is a
method invocation inside a loop, its code will be evaluated twice in the best case, as we have to
perform the corresponding generalizations in the global control before reaching a fixpoint, as in
the example of Section 2.2. This is worse in the case of nestedloops.

(L3) The non-modular approach does not work incrementally, in the sense that it does not
supportseparatedecompilation of methods but rather has to (re)decompile all method calls.
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main(lcm,[B,0],A) :- B>0, C is B*0,

A is C//B.

main(lcm,[0,0],0).

main(lcm,[B,0],A) :- B<0, D is B*0,

C is -B, A is D//C.

main(lcm,[B,C],A) :- C\=0, D is B rem C,

execute_1(C,D,B,C,A).

execute_1(A,0,B,C,D) :- A>0, E is B*C, D is E//A.

execute_1(0,0,_,_,0).

execute_1(A,0,B,C,D) :- A<0, E is -A,

F is B*C, D is F//E.

execute_1(A,B,C,D,I) :- B\=0, K is A rem B,

execute_1(B,K,C,D,I).

main(gcd,[A,0],A) :- A>=0.

main(gcd,[B,0],A) :- B<0, A is -B.

main(gcd,[B,C],A) :- C\=0,

D is B rem C,

execute_2(C,D,A).

execute_2(A,0,A) :- A>=0.

execute_2(A,0,C) :- A<0, C is -A.

execute_2(A,B,G) :- B\=0,

I is A rem B,

execute_2(B,I,G).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

Figure 3:Decompiled (non-modular) code for working example

Thus, decompiling a real language becomes unfeasible, as one needs to consider system libraries,
whose code might not be available. Limitation L2 together with L3 answer issue(a) negatively.

(L4) The decompiled code contains basically the whole interpreter when there are recursive
methods. This is why the decompiled program in Figure 3 does not contain the code correspond-
ing to the recursivefact method. The problem with recursion is as follows. Assume we want to
decompile methodm1 whose code is〈pc0 : bc0, . . . , pcj : invoke(m1), . . . , pcn : return〉. There
is an initial decompilation forAk = execute(st(fr(m1, pcj, os, lv), []) , Sf) in which the call
stack is empty. During its decompilation, a call of the formAl = execute(st(fr(m1, pcj, os′, lv′),
[fr(m1, pcj, os, lv)]), Sf) with the call stack containing the previous frame appears when we ar-
rive to the recursive call. At this point, the derivation must be stopped asAkET Al . In order to en-
sure termination, global control generalizes the above calls intoexecute(st(fr(m1, pcj, , ), ),
S f ), where denotes a fresh variable and thus the call-stack has become unknown. As a con-
sequence, after evaluating thereturn statement, the continuation obtained from the call-stack
is unknown and we produce the callexecute(st(fr( , , , ), ), Sf) to be decompiled. Here,
the fact that the method and the program counter are unknown prevents us from any chance of
removing the interpretation layer, i.e., the decompiled code will potentially contain the whole
interpreter. This indeed happens during the decompilationof fact. Partial solutions to the
recursion problem exist and will be discussed later. Limitations L1 and L4 answer issue(b)
negatively.

5. A Modular Decompilation Scheme

By modulardecompilation, we refer to a decompilation technique whosedecompilation unit
is the method, i.e., we decompile a method at a time. We show that this approach overcomes the
four limitations of non-modular decompilation described in Section 4.3 and answers issues(a)
and(b) positively. In essence, we need to: (i) Give a compositionaltreatment to method invo-
cations. We show that this can be achieved by considering abig-stepinterpreter. (ii) Provide a
mechanism to residualize calls in the decompiled program (i.e. do not unfold them and add them
without modifications to the residual code). We automatically generate program annotations for
this purpose. (iii) Study the conditions which ensure thatseparatedecompilation of methods is
sound.
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5.1. Big-step Semantics Interpreter to Enable Modularity

Traditionally, two different approaches have been considered to define language semantics,
big-step(or natural) semantics andsmall-step(or structural operational) semantics (see, e.g.,
[26]). Essentially, in big-step semantics, transitions relate the initial and final states for each
statement, while in small-step semantics transitions define thenextstep of the execution for each
statement. In the context of bytecode interpreters, it turns out that most of the statements execute
in a single step, hence making both approaches equivalent for such statements. This is the case
for ourLbc-bytecode interpreter for all statements except forcall. The transition forcall in small-
step defines the next step of the computation, i.e., the current frame is pushed on the call-stack
and a new environment is initialized for the execution of theinvoked method. Note that, after
performing this step, we do not distinguish anymore betweenthe code of the caller method and
that of the callee. This prevents us from having modularity in decompilation.

In the context of interpretive (de-)compilation of imperative languages, small-step inter-
preters are commonly used (see e.g. [39, 20, 5]). We argue that the use of a big-step interpreter
is a necessity to enable modular decompilation which scalesto realistic languages. In Fig. 4,
we depict the relevant part of the big-step interpreter forLbc-bytecode, namedIntbs

Lbc
. We can

see that thecall statement, after extracting the method parameters from theoperand stack, calls
recursively predicatemain/3 in order to execute the callee. Upon return from the method exe-
cution, the return value is pushed on the operand stack of thenew state and execution proceeds
normally. Also, we do not need to carry the call-stack explicitly within the state, but only the
information for the current environment, i.e., states are of the formst(M,PC,OStack,LocalV).
This is because the call-stack is already available by meansof the calls for predicatemain/3.

The compositional treatment of methods inIntbs
Lbc

is not only essential to enable modular
decompilation (overcome L1, L2 and L3) but also to solve the recursion problem in a simple
and elegant way. Indeed, the decompilation based on the big-step interpreterIntbs

Lbc
does not

present L4. E.g., the decompilation of a recursive methodm1 starts from the callmain(m1, , )
and then reaches a callmain(m1, args, ) whereargs represents the particular arguments in the
recursive call. This call is flagged as dangerous by local control and the derivation is stopped.
The important points are that, unlike before, no re-computation is needed as the second call is
necessarily an instance of the first one and, besides, there is no information loss associated to the
generalization of the call-stack, as there is no stack. The recursion problem was first detected
in [17] and a solution based on computing regular approximations during PE was proposed.
Although feasible in theory, such technique might be too inefficient in practice and problematic
to scale it up to realistic applications due to the overhead introduced by the underlying analysis.
Another solution is proposed in [20], where a simpler control-flow analysis is performed before
PE in order to collect all possible instructions which mightfollow the return. Such information
may then be used to recover information lost by the generalization. This solution turns out to be
also impractical for our purposes when considering realistic programs that make intensive use of
library code (e.g. Java bytecode) as many continuations canfollow. Our solution does not require
the use of static analysis and, as our experiments show, doesnot pose scalability problems.

It is important to note that the idea of using a big-step semantics for describing the interpreter
in order to achieve modular (de-)compilation is equally useful in the offline approach to inter-
pretive decompilation. Furthermore, to the best of our knowledge, our idea is novel and has not
been proposed before, neither in online nor in offline PE of interpreters.
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execute(S,S) :-

S = st(M,PC,[_Top|_],_),

bytecode(M,PC,return,_).

execute(S,Sf) :-

S = st(M,PC,_,_),

bytecode(M,PC,Inst,_),

step(Inst,S,S’),

execute(S’,Sf).

step(invoke(M’),S,S’) :-

S = st(M,PC,OS,LV),

next(M,PC,PC’),

split_OS(M’,OS,Args,OSRs),

main(M’,Args,RV),

S’ = st(M,PC’,[RV|OSRs],LV).

Figure 4:Fragment of big-stepLbc interpreterIntbs
Lbc

5.2. Guiding Online PE with Annotations

We now present the annotations we use to provide additional control information to PE.
They are instrumental for obtaining the quality decompilation we aim at. We use the annotation
schema: “[Precond] ⇒ Ann Pred” where Precond is an optional precondition defined as a
logic formula,Ann is the kind of annotation (Ann ∈ {memo, rescall}) andPred is a predicate
descriptor, i.e., a predicate name and distinct free variables. Such annotations are used by local
control when a call forPred is found as follows:

• memo: The current call is not further unfolded and is later transferred to the global control
to carry out its specialization separately. It is then replaced by a call to the specialized
version.

• rescall: The current call is not further unfolded. Unlike calls markedmemo, the current
call is not transferred to the global control. Therefore thecall is added to the residual code
without modification.

In the following, we denote byunfoldA
ET

the unfolding operator of Section 2.2 enhanced to use
the above annotations. We adopt the same names for the annotations as in offline PE [31] (rescall
stands for residual call whilememostands formemoise, i.e., pass the call to thememotable1).
However, in offline PE they are theonly means to control termination while in our method they
are only used to improve the accuracy in the local control. Asanother difference, in offline
PE, rescall annotations are used only for builtins. In principle, theiruse for internal predicates
could threaten PE-completeness if a call is residualized but it is not an instance of some call in
the final setLpe (i.e., it is not closed byLpe). In the next section, we illustrate the importance of
rescallannotations also for internal predicates to enableseparatePE. The role ofmemobecomes
important to control the structure of the decompiled programs as we will see in Section 6.

5.3. Modular Decompilation

In order to achieve modular decompilation, it is instrumental to allow performingseparate
decompilation. In the interpretive approach this requiresbeing able to perform separate PE,
i.e., to be able to specialize parts of the program independently and then join the specializations

1This is how the list of atoms to be partially evaluated, namedLpe in Section 2.2, is usually denoted in offline PE.
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together to form the residual program. For instance, consider a self-contained logic program
P partitioned in a set{P1, . . . ,Pn} of mutually disjoint subprograms which preserve predicate
boundaries, i.e., for any predicatepred in P we have that all rules forpred are in the same
partitionP j , for somej ∈ {1, . . . ,n}. Consider also the sets of termsS1, . . . ,Sn such that all calls
in Si correspond to predicates defined inPi , i = 1, . . . ,n. We can now defineS = S1∪· · ·∪Sn and
the usual notions of closedness and independence are applicable. Aseparatepartial evaluation
for P andS is obtained as the union of the individual specializations w.r.t. each corresponding
set of calls, i.e.,

⋃

Pi∈P PE(Pi , ∅,Si). One additional difficulty for separate PE is related to the use
of renaming for guaranteeing independence (see Definition 3), since renaming requires a global
table which is not available when generating code for the individual subprograms. A simple
strategy which we will use in our modular decompilation is toallow polyvariant specialization
(i.e. multiple specialized versions per predicate) for calls to predicates locally defined in the
subprogramPi being partially evaluated, but to resort to monovariant specialization (i.e. only
one specialized version per predicate) for predicates usedacross subprogram boundaries. Then,
the renaming can use a local renaming table, which must guarantee that there will be no name
clash with renamed calls from other subprograms.

We present now a modular decompilation scheme which, by combining the big-step inter-
preter with the use ofrescall annotations, enables separate decompilation and ensurescorrect-
ness(i.e., it is sound and complete w.r.t. internal methods).

Definition 5 (-Lbc). Given aLbc-bytecode program Pbc, a modular LP-decompilation
of Pbc can be obtained as:

-Lbc(Pbc) =
⋃

∀m∈defs(Pbc)

PE(Intbs
Lbc
∪code(m),Amod(m),S(m))

where the set of annotationsAmod(m) = {(m ∈ calls(m)) ⇒ rescall main(m, , )} and the initial
set of calls S(m) = {main(m, , )}.

Let us briefly explain the above definition. Now the function PE is executed once per method
defined inPbc, starting each time from a set of calls,Sm, which contains a call of the form
main(m, , ) for methodm. The setAmod contains arescall annotation which affects all methods
invoked (but not necessarily internal) insidePbc. When a method invocation is to be decompiled,
the callstep(invoke(m’), , ) occurs during unfolding. We can see that, by using the big-
step interpreter in Fig. 4, a subsequent callmain(m’, , ) will be generated. As there is arescall
annotation which affects all methods invoked in the program, such call is not unfolded but rather
remains residual. Ifm’ is internal, a corresponding decompilation from the callmain(m’, , )

will be, or has already been, performed since function PE is executed for every method inPbc.
Thus, completeness is ensured for internal predicates.

Example 1. By applying function-Lbc to theLbc-bytecode program in Fig. 2 we
execute PE once for each of the four methods in the program. Ineach execution we spe-
cialize the interpreter w.r.t. the callsmain(fact, , ), main(gcd, , ), main(lcm, , ), and
main(abs, , ). We obtain the following LP-decompilation:

17



main(lcm,[B,C],A) :- main(gcd,[B,C],D),

D\=0,

E is B*C,

A is E//D.

main(lcm,[A,B],0) :- main(gcd,[A,B],0).

main(gcd,[B,0],A) :- main(abs,[B],A).

main(gcd,[B,C],A) :- C\=0,

D is B rem C,

execute_1(C,D,A).

execute_1(A,0,C) :- main(abs,[A],C).

execute_1(A,B,F) :- B\=0, H is A rem B,

execute_1(B,H,F).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[B],A) :- B\=0, C is B-1,

main(fact,[C],D), A is B*D.

main(fact,[0],1).

The structure of the original program w.r.t. method calls ispreserved, as the residual predicate for
lcm contains an invocation to the definition ofgcd, which in turn invokesabs, as it happens in the
original bytecode. Moreover, we now obtain an effective decompilation for the recursive method
fact where the interpretive layer is completely removed withoutthe need of any analysis. Thus,
L1 and L4 have been successfully solved.

The following theorem ensures the correctness of modular decompilation for the big-step
bytecode interpreter. Completeness can be ensured by excluding calls to external methods not
defined in the bytecode. It is independent of the way the interpreter is defined, as the closedness
condition for the internal methods is enforced by our definitions ofAmod andSm. Soundness
holds in the case of our interpreter, because the only calls which are transferred to the global
control are instances ofmain/3 andexecute/2 and their first argument is the method’s name,
which makes them mutually exclusive. A post-processing of renaming is thus optional, but it can
be necessary to ensure that the independence condition is met for other interpreters.

Theorem 2 (correctness).Consider aLbc-bytecode program Pbc, a concrete input I and the
Lbc-bytecode interpreterIntbs

Lbc
. Let P′bc be the result of-Lbc(Pbc). Then, A is an

answer for P′bc∪ {I } iff A is an answer obtained running Pbc on Intbs
Lbc

with input I.

Proof 1. Let us first prove the completeness of modular decompilation. This requires to prove
the closedness condition as stated in Definition 2. We first have to exclude calls toexternal
predicates not defined in the bytecode for which we do not obtain an answer inP′bc. Thus, we
need to ensure closedness for the calls which haverescall annotations and are internal. For
the remaining internal calls, closedness is already ensured by traditional PE (Theorem 1). We
reason by contradiction. Consider a method invocation tom′ which has arescall annotation
true⇒ rescall main(m′, , ) but it is not covered byLpe. This leads to a contradiction because,
function PE is executed∀m ∈ defs(Pbc), includingm′. Thus, there is an initial callmain(m′, , )
in Sm′ and hence it is covered by the final setLpe.

In order to prove the correctness of our modular decompilation scheme, the full code of the
interpreter must be studied. Here we focus on proving independence as stated in Definition 3.
In the case ofIntbs

Lbc
, it is implied by the facts that: 1) the only recursive definitions aremain/3

andexecute/2 and the remaining predicates are always evaluable (in the sense of [41]), 2) thus
every call manipulated by the global control is an instance of main/3 or execute/2 and 3) all
such instances include the method name in some of their (sub-)arguments, which makes them
mutually exclusive and hence independent. Since we have proved independence and closedness
of the resulting terms, by Theorem 1, we have the correctnessof modular decompilation.

�
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We now characterize the notion ofmodular-optimalityin decompilation which ensures that
(1) only the code associated to internal methods is decompiled, thus, we can have external calls
(e.g., to libraries) which are not decompiled and overcome L3; (2) and each method is decom-
piled only once and thus we overcome L2.

Proposition 1 (modular-optimality). Given aLbc-bytecode program Pbc, function-Lbc

only decompiles the code corresponding to internal methodsdefined in Pbc, and the code of each
method is decompiled once.

Proof 2. Only internal methods ofPbc are decompiled because all calls are annotated asrescall
and hence they are not transferred to the global control. Then, we must prove that each method
is decompiled once. The proof follows by contradiction. Assume that a methodm is decom-
piled n > 1 times. This means that during the PE process, there have been n calls of the form
main(m, , ) that have been unfolded. This leads to a contradiction as there is arescall annota-
tion which affects every method which is called in the programmain(m, , ). This prevents from
unfoldingmain(m, , ) and the result follows.

�

Note that modular decompilation gives a monovariant treatment to methods in the sense
that it does not allow creating specialized versions of method definitions. This is against the
usual spirit in PE, where polyvariance is a main goal to achieve further specialization. However,
in the context of decompilation, we have shown that a monovariant treatment is necessary to
enable scalability and to preserve program structure. It naturally raises the question whether a
polyvariant treatment could achieve, even if at the cost of efficiency and loss of structure, a better
quality decompilation. Note that enabling polyvariant specialization in the modular setting can
be trivially done by not introducingrescallannotations for certain selected methods which should
be treated in a polyvariant manner. Our experience indicates that there is often a small quality
gain at the price of a highly inefficient decompilation.

6. An Optimal Decompilation Scheme

The main issue is whether it is possible to obtain, by means ofinterpretive decompilation,
programs whosequality is equivalent to that obtained by dedicated decompilers; issue(c) in
Section 1. We will show now that, using the most effective unfolding strategies of PE, code for the
same program point can be emitted (i.e. it can be decompiled)several times, which degrades both
the efficiency and the quality of decompilation. In order to obtain results which are comparable
to that of dedicated decompilers, it makes sense to use similar heuristics. Since decompilers first
build a control flow graph(CFG) for the method, which guides the decompilation process, we
now study how a similar notion can be used for controlling PE of the interpreter.

Let us explainblock-leveldecompilation by means of an example. Consider the method
mbl in Fig. 5. The source code is shown to the left, the relevant bytecode in the center and its
CFG to the right. As customary, the CFG [1] consists of basic blocks which contain a sequence
of non-branching bytecode instructions and which are connected by edges which describe the
possible flows originated from the branching instructions (like conditional jumps, exceptions,
virtual method invocation, etc.). In our small languageLbc, conditional jumps (i.e.,if⋄ and
if0⋄) are the only branching instructions. Adivergence point(D point) is a program point
(bytecode index) from which more than one branch originates; likewise, aconvergence point
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int mbl(...){

· · ·

A

· · ·

if (cond){ B }
else{ C }

. . .

D

. . .

}

Method mbl
pc0 : bc0
...

pci : if ⋄ (pcj)
pci+1 : bci+1
...

pcj−1 : goto(pck)
pcj : bcj
...

pck−1 : bck−1
pck : bck
pcn : return

pc j−1:goto(pck)

. . .

pci+1:bci+1 pc j:bc j

pck−1:bck−1

. . .

pc0:bc0

. . .

pci:if⋄(pc j)

pck:bck

. . .

pcn:return

condi

Block A

Block B

Block D

Block Ccondi

Figure 5:Source code,Lbc-bytecode and CFG ofmbl method

main(mbl, , )

��

execute(st(mbl, 0, os0, lv0), )
{resA}

��

execute(st(mbl, pci, osi, lvi), )
condi

tthhhhhhhh

condi
**VVVVVVVV

execute(st(mbl, pci+1, osi+1, lvi+1), )
{resB}

��

execute(st(mbl, pcj, osj, lvj), )
{resC}

��

execute(st(mbl, pck, osk, lvk), )
{resD}

��

execute(st(mbl, pck, osk, lvk), )
{res
′

D}��

execute(st(mbl, pcn, osn, lvn), )

��

execute(st(mbl, pcn, osn, lvn), )

��

true true

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res
′

D}.

Figure 6:Unfolding SLD-tree and decompiled code ofmbl method

(C point) is a program point where two or more branches merge.In the CFG ofmbl, the only
divergence (resp. convergence) point ispci (resp.pck).

By using the decompilation scheme presented so far, we obtain the SLD-tree shown in Fig. 6,
in which all calls are completely unfolded as there is no termination risk (norrescallannotation).
The decompiled code is shown under the tree. We use{resX} to refer to the residual code emitted
for BlockX andcondi to refer to the condition associated to the branching instruction atpci
(condi denotes its negation). The quality of the decompiled code isnot optimal due to:

D. Decompiled code{resA} for BlockA is duplicated in both rules. During PE, this code is
evaluated once but, due to the way resultants are defined (seecodegen in Section 2.2),
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each rule contains the decompiled code associated to the whole branch of the tree. This
code duplication brings in two problems: it increases considerably the size of decompiled
programs and also makes their execution slower. For instance, whencondi holds, the
execution goes unnecessarily through{resA} in the first rule, fails to provecondi and,
then, attempts the second rule.

C. Decompiled code ofBlockD is again emitted more than once. Each rule for the de-
compiled code contains a (possibly different) version,{resD} and{res

′

D}, of the code of
BlockD. Unlike above, at PE time, the code ofBlockD is actually evaluated in the context
of {condi, {resB}} and then re-evaluated in the context of{condi, {resC}}. Convergence
points thus might degrade both efficiency (and endanger scalability) and quality of decom-
pilation (due to larger residual code).

The amount of repeated residual code grows exponentially with the number of C and D points
and the amount of re-evaluated code grows exponentially with the number of C points. Thus, we
now aim for anoptimal, block-leveldecompilation that helps overcome problems D and C above.
Intuitively, a block-level decompilation must produce a residual rule for each block in the CFG.
This can be achieved by building SLD-trees which correspondto each single block, rather than
expanding them further. Note that this idea is against the typical spirit of PE which, in order to
maximize the propagation of static information, tries to build SLD-trees as large as possible and
only stops unfolding when there is termination risk.

The memo annotations presented in Section 5.2 facilitate the designof the optimal inter-
pretive decompilation scheme. In particular, we can easilyforce the unfolding process to stop
at D points by including amemo annotation forexecute/2 calls whosePC corresponds to a
D point. In the example, unfolding stops atpci as desired. Regarding C points, an additional
requirement is to partially evaluate the code on blocks starting at these points at most once. The
problem is similar to the polyvariant vs monovariant treatment in the decompilation of methods
in Section 5.3, by viewing entries to blocks as method calls.Not surprisingly, the solution can be
achieved similarly in our setting by: (1) stopping the derivation atexecute/2 calls whosePC
corresponds to C points and (2) passing the call to the globalcontrol, and ensuring that it is eval-
uated in a sufficiently generalized context which covers all incoming contexts. The former point
is ensured by the use ofmemoannotations and the latter by including in the initial set ofatoms a
generalized call of the formexecute(st(mbl, pck, , ), ) for all C points, which forces such gen-
eralization. The next definition presents the optimal decompilation scheme wherediv points(m)
andconv points(m) denote, respectively., the set of D points and C points of a methodm.

Definition 6 (-Lbc). Given aLbc-bytecode program Pbc, an optimal, modular LP-
decompilation of Pbc can be obtained as:

-Lbc(Pbc) =
⋃

∀m∈defs(Pbc)

PE(Intbs
Lbc
∪ code(m),Aopt(m),S(m))

Ablocks(m) = {pc ∈ div points(m) ∪ conv points(m)⇒ memoexecute(st(m, pc, , ), )}
S(m) = {main(m, , )} ∪ {execute(st(m, pc, , ), ) | pc ∈ conv points(m)}
Aopt(m) = Amod(m) ∪Ablocks(m)

An important point is that, unlike annotations used in offline PE [29] which are generated by only
taking the interpreter into account, our annotations for the optimal decompilation are generated
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by taking into account the particular program to be decompiled. Importantly, both the annota-
tions and the initial set of calls can be computed automatically by performing two passes on the
bytecode (see, e.g., [2, 43]).

The result of performing an optimal decompilation onmbl is:

main(mbl,Args,Out) :- {resA}, execute1(. . .).
execute1(. . .) :- condi, {resB}, execute2(. . .).
execute1(. . .) :- condi, {resC}, execute2(. . .).
execute2(. . .) :- {resD}.

Now, the residual code associated to each block appears oncein the code. This ensures that the
optimal decompilation preserves the CFG shape as dedicateddecompilers do. Thus, the quality
of our decompiled code is as good as that obtained by state-of-the-art decompilers [2, 35] but
with the advantages of interpretive decompilation (see Section 1). We formally prove the quality
of our proposed decompilation scheme in the next proposition.

Proposition 2 (block-optimality). Given a bytecode program Pbc, the optimal decompilation
function-Lbc ensures that: (I) residual code for each bytecode instruction in Pbc

is emitted once in the decompiled program, (II) each bytecode instruction in Pbc is evaluated at
most once during PE and (III) there is at most one residual rule for each block in the bytecode.

Proof 3. The proof follows easily by contradiction.
In order to prove (I), consider that two resultants contain residual code for the same bytecode

instruction. This can be due to two reasons. (a) There is in the SLD-tree a D point which leads
to two derivations. This is not possible because D points areannotated asmemoand hence the
derivation must have been stopped. (b) There are two separate trees which contain derivations
for instructions of the same block. Then, this block must be aC block. Hence, it is not possible
because C points are annotated asmemoand hence the derivation must have stopped before.

We focus now on D blocks to prove (II). Consider that there have been two evaluations of an
instructionpcx within a D blockB starting atpc1 ∈ conv points(M). Then, there must have been
two different instancesexecute(st(M, pc1, A, B), C)) and, later,execute(st(M, pc1, D, E), F)).
This is not possible because there exists the initial callexecute(st(M, pc1, , ), )) in Sm which
does not allow the evaluation ofexecute(st(M, pc1, D, E), F)).

For (III) to be false there must exist a block in the CFG which includes a sequence of bytecode
instructions〈pc1 : b1, . . . , pci : bi , . . . , pcn : bn〉, with i ≥ 2 andn ≥ i such that the residual
program contains a rule for the subsequence of bytecode instructions〈pci : bi , . . . , pcj : b j〉

with i ∈ {2, . . . ,n} and j ∈ {i, . . . ,n}. This requires that the local control stops unfolding for a
call of the formexecute(st(M, pci, A, B), C)). According to our optimal local control strategy,
execution of a bytecode instruction is only left residual ifthe instruction at positionpci in method
M is aC point or aD point, which contradicts the assumption that the sequence of instructions
〈pc1 : b1, . . . , pci : bi , . . . , pcn : bn〉 belongs to the same block in the CFG.

�

After taking into account the central observation from Section 5 that the interpreter should be
written in big-step semantics, each of the optimality criteria above is simpler or more complicated
to achieve depending on the local control strategy we use. For example, if we start from a
modular decompiler as discussed in Section 5 above, optimality criterion (III) will in general
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be satisfied, but not criteria (I) nor (II) since the local control rule tends to over-specialize calls
which results in re-evaluating expressions and emitting code multiple times.

Conversely, if we use an offline partial evaluator, the natural local control rule to useis to
residualize all calls toexecute and then filter out all information other than the method signature
and program counter when transferring the atom to the globalcontrol method. This control
strategy trivially guarantees optimality criteria (I) and(II) since it guarantees that each bytecode
instruction is decompiled independently of the others. However, it tends to under specialize and
namely it does not satisfy the optimality criterion (III): as soon as there is a block with more than
one bytecode instruction, which is almost always the case, the specialized program will contain
a separate rule for each and every bytecode instruction in the block. As a result, the residual
program thus obtained is high-level in the sense that it is written in Prolog. However, its control
strategy is heavily influenced by the fact that we decompile JBC (instead of converting, e.g.
from Java source) and the decompiled program is not at all similar to the Prolog program which
a Prolog programmer would write for performing the same task. Since an important objective of
decompilation is to enable program understanding and analysis, we argue that programs which
satisfy this optimality criterion (III), like the ones we generate, are easier to reason about.

Another important observation is that the costly mechanisms, namely the type-based homeo-
morphic embedding [4] and the polyvariance control from [18], used for controlling the PE that
were used earlier to achieve the results in Sections 4.2 and 5.3 are not needed anymore using
the optimal decompilation scheme. Instead, the following trivial control operators can be used:
unfold unfolds all calls except those matching amemoor rescallannotation, andabstract adds to
the setSi+1 every call inLpe which is not an instance of any call inSi . It can be easily proved that
termination is ensured both at the local and at the global control level thanks to the annotations
and the initial set of atoms provided to the PE in Definition 6.Intuitively, in the local control, the
only source of potential non-termination is a loop in the bytecode program, and there is always
a convergence point associated with it, therefore termination is guaranteed as the corresponding
memoannotation associated with the divergence point will forceunfolding to stop. In the global
control, we have to ensure that the set of atoms to be specialized does not grow infinitely. The
only atoms which can potentially occur in the set are those ofthe formexecute(st(m, pc, , ), ))
with pc ∈ div points(m) ∪ conv points(m). Those withpc ∈ conv points(m) are always an in-
stance of an atom already present in the set thus they are never added. As regards those with
pc ∈ div points(m), it can be derived from Proposition 2 that only one single version of the atom
can be added to the set, otherwise the corresponding bytecode will be traversed more than once.
The complete proof of termination will require a complete formalisation of the control rules and
a complete definition of the bytecode interpreter used, and is not given in this paper.

7. Decompiling Object-Oriented Bytecode

In this section we present the main extensions that are needed to apply interpretive decom-
pilation to a bytecode language with object-oriented features. Such features include: dynamic
memory allocation, arrays, classes and objects, inheritance and polymorphism. We first present
an extension ofLbc, denoted asLO

bc, which includes all these features in the spirit of Java byte-
code. AnLO

bc-bytecode programPbc consists of a set of classesclasses(Pbc) = C, partially
ordered w.r.t the subclass relation. The class is the basic (de-)compilation unit ofLO

bc. Each class
c ∈ C contains information about the class it extends2 and the fields and methods it declares.

2If a class does not explicitly extend any class, it implicitlyextends classObject.
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A method (field) is uniquevocally identified by its method (field) signature which is of the form
c : mn (c : f n), wherec is the class in which it is declared andmn ( f n) the method (field) name.
The nameinit is reserved for the class initialization methods (constructors). We writedefs(c)
to denote the set ofinternalmethod signatures defined in the classc. Some other features of Java
bytecode like interfaces, static methods and static fields,exceptions, access control and types
besides integers and references are not yet considered to simplify the presentation. We show
later in Section 8 that they do not add any complication to thedecompilation process. As inLbc,
the code associated to a methodm, denotedcode(m), consists of a sequence of indexed bytecode
instructions. TheLO

bc instruction set is:

InstLO
bc

::= push(x) | load(v) | store(v) | add | sub | mul | div | rem | neg |

if ⋄ (pc) | if0 ⋄ (pc) | goto(pc) | return | invoke(ms)

newarray(τ) | arrload | arrstore | arraylength

new(c) | getfield(fs) | putfield(fs) | dup | ifnull | ifnonnull

whereτ is a type signature,τ ∈ C ∪ {int}, c is a class,c ∈ C, ms a method signature andfs
a field signature. The first two rows correspond to the instructions inLbc, which are already
described in Section 4.1. The third row comprises the instructions to manipulate arrays: creation
(newarray(τ)), loading and storing an element (resp.arrload andarrstore), and consulting
the array length (arraylength). The last row contains instructions to manipulate objects: object
creation (new), accessing and modifying fields (resp.getfield andputfield), thedup instruc-
tion duplicates the reference stored on top of the operand stack and new conditional branching
instructions for referencesifnull and ifnonnull. As we are omitting static methods, the
invoke instruction always corresponds to virtual invocations. For simplicity, all methods are
supposed to return a value (except for constructors).

7.1. Handling the Heap during Decompilation

An LO
bc-bytecode program manipulates both integers and references to objects and arrays3.

Therefore, besides using an operand stack and an array of local variables, it uses aheapwhere
objects and arrays are allocated. Thus, the first design decision which we have to take is how
to represent theLO

bc heap in Prolog. A first alternative would be to represent objects as Prolog
terms. Each object could have as main functor an identifier for its class and as many arguments
as fields there are in the corresponding class. The problem with this approach is that, though
apparently simple, logic programs do not allow destructiveupdates, i.e., once an argument (vari-
able) gets associated (unified) to a functor, it cannot be associated to a different functor, as the
subsequent unification would fail. A possible way out would be the use of the non-pure Prolog
predicatesetarg, which allows overwriting values. However, the programs thus obtained are
not very amenable to static analysis since the use ofsetarg breaks the declarative nature of
logic programs and introduces all difficulties associated to the analysis of shared mutable data
structures, which is well-known to pose major difficulties to static analysis. Since one of our
main motivations is to analyze the programs obtained by our decompilation, we opt for another
alternative which produces declarative programs. In this other alternative, the heap is passed as
an explicit argument which is not overwritten, but rather modified as needed. We now describe
how theIntbs

Lbc
interpreter is extended to handle the heap, denotedIntLO

bc
. The extensions include:

3We use the special functorref/1 to distinguish references in the Prolog representation.
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• The main predicate of the interpreter is now of the formmain(M,InArgs,Hin,Top,Hout),
where the new additional parametersHin andHout stand, respectively, for the input and
the output heap of the method. Note that nowM is not just a method name but a method
signature.

• The state carried out by the interpreter has to include an extra argument for the heap. Thus,
it is of the formst(M,PC,OS,LV,H), whereH is the current heap. Again,M is a method
signature.

• The corresponding rules for thestep/3 associated with the new added bytecode instruc-
tions have to be provided. As an example, consider the implementation in our Prolog
interpreter of thegetfield(f) operation:

step(getfield(F),S,S’) :-

S = st(M,PC,[ref(R)|S],L,H),

S’ = st(M,PC’,[V|S],L,H),

next(M,PC,PC’),

getfield(H,R,F,V).

There is an important difference between the heap and the operand stack which affects the
decompilation process. While the operand stack is a local data structure of each method execu-
tion, the heap is a global entity which stores objects that can be created at any point during a
program’s execution and besides objects can be aliased. Basically, the consequence is that the
heap becomes unknown at PE time (typically it is a logic variable) and, hence, most operations
involving the heap cannot be fully evaluated and have to appear residual in the decompiled code.
Essentially, we treat the heap during decompilation as an abstract data type with a set of oper-
ations which manipulate it. For instance, this is the case ofthe atomgetfield(H,R,F,V) in
the code above. In Figure 7 we list all the predicates used in the interpreter, which use the heap,
together with a description of their functionality. Outputarguments are underlined (the rest are
input). Note that these are exactly the set of predicates that can appear residual in our decom-
piled programs besides arithmetic operations, calls tomain/5 (bytecode methods) and calls to
execute i/n (bytecode blocks). Figure 8 depicts to the right side an example of a decompiled
program containing heap operations.

7.2. Decompilation with Classes

Object-oriented programs, both high-level and bytecode, are structured as a set of classes.
It makes sense then to devise a decompilation scheme where the decompilation is done at the
level of classes: we decompile one class at a time, and withineach class, we decompile each
declared method at a time. Clearly, it is convenient to structure decompiled programs at a similar
level. A natural choice in a module-structured language like Prolog is to make use of modules
such that each class is decompiled in a corresponding module. A Prolog module consists of a
module name, a list of exported predicates, a list of imported modules (optionally together with
the list of predicates imported from each module) and the code (set of clauses) of the exported
and auxiliary predicates. We propose a decompilation scheme with the following characteristics:

1. There is a Prolog module per class in the bytecode program,with the same name.
2. A Prolog predicate is associated with each declared method, with the same name. As we

will see later this is done via a simple post-renaming of themain/5 atoms.
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Creation operations:
new(H,C,R,H’) H’ is the heap obtained from the heap H by creating a new object

of type C. The new object is stored at location R.
newarray(H,T,N,R,H’) H’ is the heap obtained from the heap H by creating a new array

with N elements of type T. The new array is stored in location R.
Accessing operations:
getfield(H,R,F,V) Field F of object at location R in the heap H has the value V.
arrload(H,R,I,V) The element at index I of the array at location R

in the heap H has the value V.
arraylength(H,R,N) The length of the array at location R in the heap H is N.

Setting operations:
putfield(H,R,F,V,H’) The heap H’ results from setting the field F of object

at location R in the heap H with the value V.
arrstore(H,R,I,V,H’) The heap H’ results from setting the element at index I

of the array at location R in the heap H with the value V.

Figure 7:Residual heap operations

3. Each Prolog module: 1) exports all predicates corresponding to the methods declared in the
corresponding class and, 2) imports all needed external predicates from the corresponding
modules.

The decompilation scheme with classes is formalized as follows:

Example 2. Definition 7 (-LO
bc

). Given a class of anLO
bc-bytecode program, an op-

timal, LP-decompilation of c is defined as:

-LO
bc

(c) = φ(
⋃

∀m∈defs(c)

PE(IntLO
bc
∪ code(m),Aclass(m),S(m)))

whereAclass(m) = Aopt(m)∪Aheap, beingAopt(m) and S(m) the sets in Definition 6 adapted for
the new interpreterIntLO

bc
. The setAheapdenotes the set ofrescall annotations to residualize the

heap operations in Figure 7.
The functionφ denotes a simple post-processing which is applied over the set of predicates re-

sulting from the successive PEs, producing a Prolog module with the characteristics enumerated
above. Basically, 1) it produces the corresponding module header, with the lists of imported and
exported predicates, and 2) it renames all atoms of the formmain(c:mn,Args,Hin,Out,Hout)

asc:Mn(Args,Hin,Out,Hout). This is interpreted in Prolog as a module-qualified call, i.e., a
call to predicatemn of modulec.

We can now define an object-oriented decompilation of anLO
bc-bytecode program as follows.

-LO
bc

(Pbc) =
⋃

∀c∈classes(Pbc)

-LO
bc

(c).

Observe that-LO
bc

takes a set ofLO
bc classes and produces a set of Prolog modules. An

example of the application of-LO
bc

is shown in Figure 8. On the left side, we show the

Java-like source code of our example program, together withtheLO
bc-bytecode which is shown

within brackets. Again, we show the source code for clarity but the decompilation works on
the bytecode. It has three classes,A, B andFoo. B extendsA inheriting fieldn and re-defining
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class A {

public int n;

public A(){this.n=1;}
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0:load(0)

1:invoke(Object:init)

2:load(0)

3:push(1)

4:putfield(A:n)

5:return
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int m(){return n+1;}
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0:load(0)

1:getfield(A:n)

2:push(1)

3:add

4:return
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




















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
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}

class B extends A {




















0:load(0)

1:invoke(A:init)

2:return





















int m(){return n+2;}








































0:load(0)

1:getfield(A:n)

2:push(1)

3:add

4:return









































}

class Foo {

int foo(A a){return a.m();}




















0:load(1)

1:invoke(A:m)

2:return





















}

:- module(’A’,[init/4,m/4]).

:- use module(’Object’,[init/4]).

init([ref(T)],H0, Out,H2) :-

’Object’:init([ref(T)],H0, ,H1),

putfield(H1,T,’A’:n,1,H2).

m(ref(T),H0,N’,H0) :-

getfield(H0,T,’A’:n,N),

N’ is N+1.

:- module(’B’,[init/4,m/4]).

:- use module(’A’,[init/4]).

init([ref(T)],H0, ,H1) :-

’A’:init([ref(T)],H0, ,H1).

m(ref(T),H0,N’,H0) :-

getfield(H0,T,’A’:n,N),

N’ is N+2.

:- module(’Foo’,[foo/4]).

:- use module(’A’,[m/4]).

:- use module(’B’,[m/4]).

foo([ ,Ref],H0,Out,H1) :-

resolve(Ref,H0,C),

C:m([Ref],H0,Out,H1).

Figure 8:Example of decompilation with classes

methodm. Methodfoo of Foo invokes methodm on an object declared of typeA. TheLO
bc-

bytecode of each declared method is shown within brackets. On the right side, we show the
Prolog decompiled program. It has three modulesA, B andFoo. Note that, in Prolog, strings
starting with an uppercase letter are interpreted as variables and the rest as functors or constants.
Thus, if one wants to use the special constantA, the notation′A′ has to be used. TheFoo module
will be explain in the next section. The corresponding predicates are exported/imported. See
for example how moduleA exports predicatesinit/4 andm/4, and imports predicateinit/4
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from moduleObject4. Note that all predicates have four arguments as they come from the
corresponding instance ofmain/5. There are several calls in the decompiled program which are
module-qualified call, e.g., the call toinit/4 inside moduleB.

7.3. Virtual Invocations

An important feature of object-oriented languages ispolymorphismin the presence of vir-
tual invocations. In a virtual invocation, the method to be executed is determined at run-time
depending on the actual type of the corresponding object. Asit happens with heap operations,
the operation toresolvethe method to be called cannot be performed at PE time, and then has
to be residualized. In fact, the information needed (objecttype) for the resolution is in the heap
which is in general unknown at PE time as we saw in Section 7.1.In the following we show the
code corresponding to theinvoke operation for virtual invocations in ourIntLO

bc
interpreter:

step(invoke(C:M’),S,S’) :-

S = st(M,PC,OS,LV,H), next(M,PC,PC’),

split OS(M’,OS,[Ref|Args],OSRs),

resolve(Ref,H,C’), main(C’:M’,[Ref|Args],H,RV,H’),

S’ = st(M,PC’,[RV|OSRs],LV,H’).

Predicateresolve/3 is encharged of performing the above method resolution. Given the call
resolve(Ref,H,C’) it proceeds as follows: 1) the class of the current object at locationRef in
the heapH is obtained, and 2) due to inheritance, it can happen that themethod is not declared
in such class, then it has to go up in the classes hierarchy until reaching a class in which the
method is declared. This class is finally returned inC’. Then, the call tomain/4 is done with
the method signatureC’:M’. As with heap operations, the correspondingrescall annotation has
to be provided to make the correspondingresolve/3 atom appear in the decompiled code. It
always appears immediately before calls corresponding to method invocations (except calls to
constructors5).

Example 3. As an example, consider methodfoo of classFoo in Fig. 8. The methodm is
invoked on an object declared of typeA. However, variablea can actually store at run-time a
reference to an object of classA or of any class extendingA, in this caseB. Whether to execute
methodm of classA or of classB is thus determined at run-time. In the Prolog code, we can
observe the call toresolve/3 immediately before the call to predicatem/4, which is module-
qualified with the obtained module.

8. Experimental Evaluation

We report on two different implementations of a decompiler for full (sequential) Java Byte-
code into Prolog. For the first one we extend an already existing powerful online PE, the one
integrated in theCiaoPP analysis and specialization system [21]. This partial evaluator imple-
ments several unfolding rules and abstraction operators. This allows us to compare the different
decompilation schemes explained in the paper, in particular, to compare to the non-optimal ones.
Such comparison is presented in Section 8.1. However, the overhead introduced by using such

4Constructor methods first call the constructor of its super-class, in this caseObject.
5Invocations to constructors are never virtual. They can be statically resolved.
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Figure 9:Evaluating the scalability ofoptimaldecompilation with theJOlden Suite

generic and powerful tool prevents us from competing with ad-hoc decompilers as regards ef-
ficiency (decompilation times). For this reason, we have carried out a second implementation
for which we have written a stand-alone PE which only contains the local and global strategies
required by an optimal decompilation. This partial evaluator is integrated into a decompilation
tool calledjbc2prolog which also includes a Java bytecode interpreter. This makesit possible to
both obtain optimal decompilation and be competitive in terms of efficiency with ad-hoc decom-
pilers. A thorough comparison against the decompiler in theCOSTA [3] system and against the
JDec [8] decompiler is presented in Section 8.2.

Both implementations consider full sequential Java bytecode. The extensions needed to han-
dle the features not considered inLO

bc (exceptions, static fields and methods, access control, etc.)
do not add any special complication to the decompilation scheme. For instance, exception han-
dling is simply dealt with as another source of branching. This certainly makes the size of our
decompiled programs grow considerably, although this is something every decompiler of a real-
life language has to deal with. Solutions based on static analysis exist which allow avoiding
some exception branches. E.g.,nullity analysis can be used to avoid considering branches corre-
sponding to null-pointer exceptions which are proved to be non-null, which reduces the size of
the code considerably. These analyses can be easily incorporated in our decompilation tool and
it is indeed a subject of future work.

8.1. Assessing the Scalability of Decompilation

For the experimental evaluation, we have used the standardized set of benchmarks in the
JOlden suite [22]. In particular, our first goal is to compare the scalability of the optimal de-
compilation scheme (see Definition 7) against that of themodular (non-optimal) one (see Def-
inition 5). Here it comes the need to use the partial evaluator of CiaoPP, as it combines the
power of online control operators like type-based homeomorphic embedding [4], with the ability
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of adding conditional annotations as described in Definition 6. As most programs in theJOlden
suite make an extensive use of library methods, non-modulardecompilation cannot be assessed
as we run into memory problems when trying to decompile the code of library calls. Figure 9
depicts four charts measuring different aspects of the decompilation. In order to reason about
scalability, we assess the differences between the non-optimal and the optimal approaches, as
well as how the size of the programs affects the decompilation. The times are computed as the
arithmetic mean of five runs on an Intel Core 2 Duo at 1.86GHz with 2GB of RAM, running
Linux 2.6.24-21. We measure two aspects of the decompilation: the decompilation time (in mil-
liseconds) and the decompiled program size (in bytes). It should be noticed that absolute data
are not required to assess scalability issues. We rather need relative data per instruction in order
to prove that it does not increase with the size of the programs. The relative decompilation time
indicates the efficiency of the process and the size of decompiled programs is directly related to
the decompilation quality. Each point [X,Y] in the charts corresponds to the decompilation of a
single method in theJOlden suite, whereX represents the number of instructions of the method
andY the measured data (time per instruction or decompiled program size per instruction). The
charts in the left-hand side show the data obtained (times inthe top chart and sizes in the bot-
tom one) for both the non-optimal and the optimal decompilation. The variations in the optimal
decompilation cannot be appreciated when combined with thenon-optimal. Thus, we include in
the charts on the right-hand side the figures for the optimal decompilation in isolation such that
we adjust the scale on the Y-axis to the domain of the data.

From the charts, we conclude: (1) Times per instruction are notably larger for the smallest
methods, as can be seen by looking at the initial curve in the charts. This is because the overhead
introduced for starting a new decompilation is more noticeable when the time for decompilation
itself is small, while it becomes negligible for larger methods. The same happens for the size of
the decompiled programs. (2) The optimal decompilation achieves important speedups in gen-
eral (for all methods with more than 40 instructions). Besides, it obtains significantly smaller
decompiled programs. The speedups per package range from 3.36 inpower to 31.4 in bisort for
the decompilation times; and from 2.5 times smaller inpower to 9 times smaller inbisort for
the decompiled program sizes. Note that there is a clear correspondence between both measures,
since C points introduce both inefficiency and size increase in decompilation, as explained in
Section 6. Moreover, modular decompilation runs out of memory for some of the largest meth-
ods. This is again related to code duplication (C and D points) and (re-)evaluation (C points),
which grow exponentially. (3) The most important conclusion is that, while in the non-optimal
decompilation both the times and the sizes per instruction greatly increase with the size of the
benchmarks, this does not happen in the optimal scheme. In the optimal decompilation, these
figures are totally stable (mostly constant) for all methodswith more than 40 instructions. This
shows that both the decompilation times and the decompiled program sizes arelinear with the
size of the input bytecode program, thus demonstrating the scalability of our optimal decompi-
lation. One might wonder why there are still small variations in the ratio. In our experience,
the following points also matter: 1) the complexity of the control flow of the methods, 2) the
relative complexity of the bytecode instructions used, e.g., instructions which operate in the heap
tend to produce more residual code, 3) the structure w.r.t. methods of the program, e.g., classes
with methods of medium size tend to result in better decompilations than those with few large
methods or many small ones.
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Benchmark jbc2prolog COSTA JDec
Pack Ncls Nmths Nins Tbl Tsps Tge Tpe Tcg T j2p Tcosta T jdec

bisort 2 15 554 10 10 0 147 10 177 170 1802
bh 9 73 2012 57 28 0 652 70 807 860 7394
em3d 4 22 713 27 7 0 184 26 243 347 3386
health 6 27 973 37 13 0 224 26 300 420 4822
mst 5 31 703 14 4 0 173 20 210 317 3958
perimeter 9 46 838 37 9 0 134 13 193 363 6564
power 6 32 1927 43 24 4 566 64 701 693 5330
treeadd 2 12 308 6 3 0 67 14 90 143 1600
tsp 2 16 946 17 13 4 367 26 427 380 1948
voronoi 6 73 1781 50 19 7 673 62 810 1023 5270

overall 51 347 10755 297 131 14 3186 330 3958 4717 42074

Table 1: Efficiency of jbc2prolog

8.2. Efficiency: Comparing against other Decompilers

To assess the efficiency of our approach we compare the decompilation times weget us-
ing our tool jbc2prolog w.r.t. those obtained using the decompiler in the COSTA system [3]
and those of the well-known Java decompilerJDec [8]. COSTA is a COSt and Termination
analysis tool for Java bytecode. It performs a decompilation of the bytecode into a rule-based
representation before the actual analysis phase with the aim of making the analysis design sim-
pler. This decompilation basically consists of two parts. First, the CFG for each method is
built and then, for each block in the CFG, an associated rule is produced. We have chosen the
COSTA decompiler to compare the efficiency of interpretive decompilation because COSTA is
also implemented in Prolog and hence the underlying implementation language performance is
identical. The resulting decompiled program is a set of rules which resemble our Prolog clauses
in several aspects: recursion is the only form of iteration and conditional instructions are cap-
tured by guarded rules. However, there are still some differences w.r.t. our decompiled programs:
a) in COSTA the operand stack is explicitly flattened and represented by means of local variables
whereas injbc2prolog PE together with argument filtering automatically achieve this effect, and
b) we represent the heap explicitly in the residual programsas explained in Section 7.1. These
two features together are important since in the programs decompiled using COSTA (orCiaoPP)
all bytecode instructions remain residual and have to be taken as builtins, i.e., predefined pro-
cedures by analysis. In contrast, injbc2prolog bytecode instructions are interpreted at decom-
pilation time and converted into basic Prolog instructionssuch as unifications and arithmetic or
into the ADT operations in Figure 7 for those instructions involving the heap. As a result, ex-
tending an existing Prolog analyzer to analyze JBC decompiled programs is simpler using our
decompiler than using those in COSTA [2] orCiaoPP [35], since the decompiled programs are
executable and the analysis does not need to be extended withany further builtins.

Again we use the set of benchmarks in theJOlden suite [22]. Table 1 shows the times taken
(in milliseconds) by each of the different phases ofjbc2prolog together with the total time used by
the COSTA andJDec decompiler for each package of theJOlden suite. All times are computed
as the arithmetic mean of five runs, in this case on a Intel Core2 Quad Q9300 at 2.5GHz with
1.95GB of RAM, running Linux 2.6.27-9. In particular, for each JOlden package we measure:
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the total number of classes, methods and instructions in thepackage (columnsNcls, Nmths and
Nins), the time taken by the different phases ofjbc2prolog, namely, the parsing and loading time
of the.class file (columnTbl), the pre-processing time to infer the divergence and convergence
points of the bytecode program (columnTsps), the generation of the entries to the PE (column
Tge), the actual specialization time (columnTpe) and the time taken by the code generation phase
(columnTcg). Finally, last three columns show respectively the total times taken byjbc2prolog
(columnT j2p), the COSTA decompiler (columnTcosta) and theJDec decompiler (columnT jdec).
The last row shows the overalls of all measurements. We can see that the wholeJOlden suite
is decompiled byjbc2prolog in less than 4 seconds versus the 4.7 secs in COSTA and the 42
secs inJDec. It can be concluded that our results our competitive with those of an ad-hoc
decompiler. In particular, we see that they are similar to those obtained in COSTA. Furthermore,
in most examples,jbc2prolog is more efficient than COSTA, especially invoronoi, perimeter
andtreeAdd. On the other hand we can see thatjbc2prolog is about ten times faster thanJDec.
Our conclusion in this regard is that it is very difficult to compare with decompilers written in
other programming languages, since the performance of the implementation language heavily
influences the decompilation time.

9. Related Work

Previous work ininterpretative(de-)compilation has mainly focused on proving that the ap-
proach is feasible for small interpreters and medium-sizedprograms. The focus has been on
demonstrating itseffectiveness, i.e., that the so-called interpretation layer can be removed from
the compiled programs. To achieve effectiveness, offline [29], online [5, 20, 39] and hybrid [30]
PE techniques have been assessed and novel control strategies have been proposed and proven
effective [18, 4]. Our work starts off from the premise that interpretive decompilation is feasible
and effective as proved by previous work and studies further issueswhich have not been explored
yet. Let us review now related work both in the field of decompilation of low-level code. Related
work on on the PE of interpreters has been already compared inSection 1 and in several places
throughout the paper.

The work by Breuer and Bowen [9] is only tangentially relatedto ours. They propose a
general method for compiling decompilers from the specifications of (non-optimizing) compil-
ers. The main idea is that a data type specification for a programming-language grammar can
be remolded into a functional program that enumerates all ofthe abstract syntax trees of the
grammar. It is showed that by relying on this technique a decompiler can be generated from a
simple Occam-like compiler specification. The only similarity with our work is that decompiled
programs are somehow obtained from specifications (in our case of the interpreter and in their
case of the compiler). However, the underlying methods are technically different and also they
do not provide a practical solution for ensuring applicableconditions for their technique.

As regards (direct) decompilation of low-level back to source code, it has been the subject
of a good amount of research. Decompilation can be attemptedat different levels, with different
levels of success. The most complicated case is when decompiling binary executables. There are
a good number of associated complications, such as recovering the control flow. One intrinsic
problem in this approach is that it is not possible in generalto distinguish code from data stati-
cally. See e.g. [10, 42] and their references for a discussion on the problems and techniques for
binary decompilation. The next level is decompilation of assembly, see e.g. [11]. This shares
many of the complications associated to the decompilation of binaries, since current hardware
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architectures are rather complex, but at least it is possible to separate code from data. The fol-
lowing level is decompilation of code to be run on a virtual machine. This is in general easier
to perform since virtual machines are usually simpler than current hardware architectures and
because often the code for this virtual machines (bytecode)must satisfy certain behavior restric-
tions (must beverifiable[27]) and types of variables are available. As a result, in the particular
case of decompilation of Java bytecode back to Java source, anumber of successful commercial
and free software decompilers exist which are able to handlea large class of bytecode programs,
especially those generated by common Java compilers, i.e.,javac. Nevertheless, things become
more complicated when the Java bytecode has been generated by an obfuscator, and especially
when an optimizing compiler, or a compiler from other programming languages such as Haskell,
Eiffel, ML, Ada, and Fortran is used. See e.g. [37] and its references for a good account on the
existing Java bytecode decompilers and the difficulties associated to its decompilation.

As already mentioned, there exist several analyzers for Java bytecode which use a higher-
level intermediate representation and which can be seen as ad-hoc decompilers. In particular,
both the COSTA [3] andCiaoPP [21] systems have a front-end which converts bytecode into
an intermediate representation which is then the input to the subsequent analysis. Though in
both cases the intermediate representation is similar, in the case of COSTA it is formalized as a
rule-based representation [2], whereas inCiaoPP it is formalized as Horn clauses, i.e., a logic
program [35]. The reason for doing that inCiaoPP is that, at least in principle, that allows
using the analysis which are already available inCiaoPP. However, there is a crucial difference
between the logic programs generated in [35] and those generated by our decompiler. Whereas
the programs generated by [35] are only meant to be the subject of static analysis and are not
executable, the programs we generate can both be subject to analysis or be executed. The reason
why the programs in [35] nor those in [2] are executable is because they basically capture the
control-flow of the bytecode program, but the basic bytecodeinstructions themselves remain as
builtins, i.e., predefined predicates, to the analysis. Analysis results are correct as long as the
behavior of such bytecode instructions is safely approximated by the analysis. Producing fully
executable logic programs as the result of decompilation isnot trivial since many of the bytecode
instructions operate on the heap in a way or another. Thus, inorder to make an executable
decompiled program we need to introduce the JVM heap explicitly in the logic program. All this
is done automatically in our approach.

10. Conclusions

We argue thatdeclarative languagesand the technique ofpartial evaluationhave nowadays
a large application field within the development of analysis, verification, and model checking
tools for modern programming languages. On one hand, declarative languages provide a conve-
nient intermediate representation which allows (1) representing all iterative constructs (loops) as
recursion, independently of whether they originate from iterative loops (conditional and uncon-
ditional jumps) or recursive calls, and (2) all variables inthe local scope of the methods (formal
parameters, local variables, fields, and stack values in low-level languages) can be represented
uniformly as explicit arguments of a declarative program. On the other hand, the technique of PE
enables the automatic (de-)compilation of a (complicated)modern program to a simple declar-
ative representation by just writing an interpreter for themodern language in the corresponding
declarative language and using an existing partial evaluator.

The resulting intermediate representation greatly simplifies the development of the above
tools for modern languages and, more interestingly, existing advanced tools developed for declar-
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ative programs (already proven correct and effective) can be directly applied on it. In previous
work [5], by reasoning on our decompiled residual programs,we have automatically proved
in theCiaoPP system some non-trivial properties of Java bytecode programs such as termina-
tion, run-time error freeness and infer bounds on its resource consumption. In order to prove
run-time error freeness, we have proposed an enhanced bytecode interpreter which computes,
in addition to the return value of the method called, also thetrace which captures the computa-
tion history. Such traces represent the semantic steps usedand therefore do not only represent
instructions, as the context has also some importance. Theyhave allowed us to distinguish, for
example, for a same instruction, the step that throws an exception from the normal behavior. E.g.,
invokevirtual step ok andinvokevirtual step NullPointerException represent, re-
spectively, a normal method call and a method call on a null reference that throws an exception.
Such additional flexibility of interpretive decompilationhas allowed to prove run-time error free-
ness in a straightforward way by simply specifying the property of being error-free as verifying
that the corresponding trace in the decompiled program doesnot contain an exceptional step.

A unique feature of our decompiled programs is that they represent the whole program state,
i.e., in contrast to [35, 2, 43], our decompiled programs contain a representation of the heap in ad-
dition to the operand stack. The advantage is decompiled programs are fullyexecutablewhich in
turn broadens their application field. As an example, recently we have developed a novel frame-
work for test case generation[45] of bytecode by relying on our decompiled Prolog programs.
Basically, the standard approach to generating test-casesstatically is to perform asymbolicexe-
cution of the program [12, 36, 38, 24, 19], where the contentsof variables are expressions rather
than concrete values. The symbolic execution produces a system ofconstraintsconsisting of the
conditions to execute the different paths. This happens, for instance, in branching instructions,
like if-then-else, where we might have to generate test-cases for the two alternative branches
and hence accumulate the conditions for each path as constraints. The fact that our decompiled
program are executable Prolog programs allows us to directly rely on available techniques for
constraint logic programs (where backtracking is inherent to the language) to carry out such
symbolic execution.

Finally, a main objective of our work has been to investigate, and provide the necessary tech-
niques, to make interpretive decompilation scale in practice. A further goal has been to ensure,
and provide the techniques, that decompiled programs preserve the structure of the original pro-
grams and that their quality is comparable to that obtained by dedicated decompilers. We believe
that the techniques proposed in this paper, together with their experimental evaluation, provide
for the first time actual evidence that the interpretive theory proposed by Futamura in the 70s
is indeed an appealing and feasible alternative to the development of ad-hoc decompilers from
modern languages to intermediate representations.
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