Inference of Linear Upper-Bounds on the
Expected Cost by Solving Cost Relations

Alicia Merayo! and Samir Genaim?

1 Universidad Complutense de Madrid, Spain
amerayoQucm.es

2 Universidad Complutense de Madrid, Spain
sgenaim@ucm.es

1 Introduction

Resource usage analysis (a.k.a. cost analysis) aims at statically determining the number of
resources required to safely execute a given program. A resource can be any quantitative
aspect of the program, such as memory consumption, execution steps, etc. Over the past
decade several cost analysis frameworks, for different programming languages, have been
developed [6, 8, 12, 14, 3, 9]. They can infer precise upper-bounds on the worst-case cost.

There are problems that involve probabilistic choices and for which worst-case cost is
not the adequate. For example, consider a program that transmits packets of data over the
network. Due to network failures, the transmission of a packet might fail and it has to be
transmitted again. Assuming that the probability of success (resp. failure) is % (resp. i),
our goal is to estimate the number of attempts required in order to successfully transmit n
packets. This problem can be modeled using the following loop:

while (n>0) {
n=n-1; @% skip;
tick(1);

}

where @ is a probabilistic choice operator and tick(1) is a cost annotation. Note that the
left-hand (resp. right-hand) side of @ represents a successful (resp. failed) transmission.

If we consider the probabilistic choice as a non-deterministic choice, and analyze this
program using a worst-case cost analyzer, we would not obtain an upper-bound since the
loop is considered non-terminating. The adequate notion of cost for this setting, i.e., in the
presence of such probabilistic operations, is the expected cost. Let S be an infinite sequence
of independent choices for the probabilistic operation (i.e., left or right), cost(n,.S) be the
cost of the execution when taking the choices as indicated in the sequence S, and Pr(S)
is the probability of taking such choices (i.e., multiplying the probabilities of all choices),
then the expected cost is defined as) ¢ Pr(S) * cost(n,S). Note that the sum is over all
possible sequences S, and that) ¢ Pr(S) = 1. In this case the expected cost can be reduced
to solving the following recurrence relation for n > 0 (for n < 0 we let C'(n) = 0):

Cn)=1+ ZC’(nf 1) + iC’(n)

The function max(0, $n) is a possible solution. Note that if we turn = to > in the above
equation, we get a definition for an upper-bound on the expected cost.

Cost analysis of probabilistic programs and term-rewriting has been recently considered
in several works [13, 7, 5, 11]. For example, the work of [13], which is based on an extension
of amortized cost analysis, is developed for a simple imperative language and able to infer
polynomial bounds on the expected cost of challenging problems.

m licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Inference of Linear Upper-Bounds on the Expected Cost by Solving Cost Relations

while (x<n) { 1= {x>n,2’ =z,n =n}
x=x+1;P2 x=x-1; Y2 = {ac < n,x’ = x,n’ = n}
‘cick(l);3 3= {2'=x+1,n =n}
b pa= {2’ =2—-1,n"=n}
o5 = {2’ =x,n =n}
cost(E) =1

Figure 1 Example 1

The goal of our work is to support the inference of expected cost in our cost analyzer
SACO [1], which infers upper-bounds on the worst-case cost of ABS programs [10] — an abstract
behaviour modeling language based on concurrent objects. The underlying techniques of
SACO for inferring cost are based on first generating a set of cost relations (a general form
of recurrence relations) that describes the cost of the program and then solving them into
closed-form upper-bounds using a dedicated solver [2]. Thus, we are interested in developing a
tool for inferring the expected cost for such cost relations, since it would make the integration
with SACO straightforward. In this extended abstract, we report on preliminary results in this
direction, in particular on a preliminary implementation that can infer linear upper-bounds
on the expected cost of simple control-flow graphs by solving corresponding cost relations.

2 An informal account to our approach

A program in our setting consists of a control-flow graph (CFG) and a tuple of integer variables
Z = {(x1, -+ ,xm). A CFG consists of a set of nodes N representing locations, and a set of
edges E representing transitions. Each node n is annotated with a non-negative cost, denoted
by cost(n), that corresponds to the resources consumed by each visit to n. Note that we
could also annotate transitions with cost, this requires no change in our approach. Each
edge ny —2+ no is annotated with a conjunction of linear constraints ¢ over variable Z and
primed variables 7', it defines the transition relation {(v,7") € Z*™ |z =0 AZ' =V = ¢}
between nodes n; and ns. For every node we assume that its outgoing transitions, if any,
cover the whole state space, i.e., it is always possible to advance. The set of nodes N
consists of regular nodes N, (we draw them as circles) and probabilistic nodes N, (we
draw them as squares). A probabilistic node represents a probabilistic choice, and thus its
outgoing edges are annotated with probabilities that sum to 1 (in addition to the transition
constraints). Moreover, we assume that such edges include only deterministic updates, i.e.,
the corresponding constraints include only equalities of the form =’ = ag + X;a;x; (we can
refine this to any non-deterministic update as far as it is always applicable, i.e., covers the
whole state space). The idea is that when the execution is at a probabilistic node, the choice
of the next node depends on the probabilities associated to the corresponding transitions,
and the next state is calculated using the corresponding deterministic update. On the other
hand, when the execution is at a regular node the next node is chosen in a non-deterministic
way from all applicable transitions. A simple program (taken from [13]) and a corresponding
CFG are depicted in Figure 1.

The inference of a linear upper-bound on the expected cost of a given CFG is done in
two steps: (1) generation of cost relations from the CFG; and (2) solving the cost relations

Alicia Merayo and Samir Genaim

into a closed-form upper bound. Before solving the cost relations we typically simplify them
using unfolding as done in [2]. This simplification step usually has an impact on both the
performance and the precision of the solving process.

Generating cost relations. Each regular node n € N, with outgoing transitions n —— n;,
1 < i <k, contributes k cost relations of the form

C(Z) = cost(n) + Cp, (") | i
and each probabilistic node n € N,, with outgoing edges n Pty ny, for 1 <14 < k, contributes
one cost relation

k
Cn(2) = cost(n)+ Y pi-Co, (@) | ¢
i=1 i

where Wy; is the union of all ¢;, after renaming the primed variables Z’ of each ¢; to fresh
variables Z}. Note that we view a conjunction of linear constraints as a set, this is why we
use a union. For the CFG of Figure 1 we generate the following cost relations:

Ca(z,n) = Cg(a’',n) {zx >n, 2’ =z,n =n}

Ca(z,n)= Cpg(a',n) {z <n,2’ =z,n =n}

Cp(z,n) = 2-Co(af,n))+ % -Cp(ah,n) {2f=x+12h=2—1n] =n,nh=n}
Co(z,n) = Cg(z',n') {z/ =z,n =n}

Cp(xz,n) = Cg(z',n') {z/ =z,n =n}

Cp(z,n)= 14 Ca(z',n) {z/ =z,n =n}

CF(JS‘,’IL) =0

The meaning of a cost relation is as expected, it recursively defines the cost of node n in terms
of its successors in the context of some constraints (those of the corresponding transitions).
Note that, due to non-determinism, a query C'(0) might evaluate to several possible values,
and thus, an upper-bound is defined to be an upper-bound on the set of all such values. The
correctness follows from the weakest-precondition reasoning of [11].

Solving cost relations. Solving cost relations into an upper-bound, on expected cost of
the CFG, means seeking functions f, : Z™ ~ RT, for each node n, such that for each cost
relation (C;(z) = ¢+ >, p;C;(Z;) | ¢) the following formula is satisfied (here z is the set of
all variables that appear in the cost relation):

Vz.p = fi(Z) > chij - [i(Z5),

This formula states that f; is enough for paying the local cost ¢ of C; plus the cost of its
successors (taking into account the probabilities p;). The set of all resulting formulas is then
automatically solved as described in [4], with some modifications to take the multiplicands that
correspond to probabilities into account. This procedure is based on the use of Farkas’ lemma,
and SMT solving. Briefly, we first define a template function f,(Z) = max(0,ao + 3 a;x;)
for each node n (where a; are the template parameters) and substitute them in the formulas,
then Farkas’ lemma is used to transform each formula as the one above into a set of
(possibly non-linear) constraints over the template parameters a;, and finally by solving these
constraints using an SMT solver we obtain concrete values for the template parameters, i.e.,
we instantiate each template f,,. Note that the non-linearity in the generated constraints

4

Inference of Linear Upper-Bounds on the Expected Cost by Solving Cost Relations

while (x+3 <= n) {
if (y<m) {
skip; EB% y=y+1;
else
skip; @i x=x+1; EB% x= x+2;€B% x=x+3;
tick(1);
}
pr= {r+3<n}Ups
o= {z+3>n}Ugs
3= {y<m}Uys cost(F) = cost(M) =1
pa= {y =Zm}Ueps
o5 = {2’ =x,n =n,y =y,m =m}
e = {2'=x,n =ny =y+1,m =m}
or= {2'=x+1,n =n,y =y,m =m}
pvs= {2'=x+2,n =n,y =y,m =m}
o= {2’ =x+3,n =ny =y,m =m}

Figure 2 Example 2

comes from the fact that our templates are not linear, they include expressions like max(0, f).
In order to apply Farka’s lemma we need to eliminate the max first, which we do by splitting
the corresponding formula into two cases for f < 0 and f > 0. This introduce f < 0 and
f >0 to the left-hand of the formula, and since f has template variables we get non-linear
constraints when applying Farkas’ lemma.

In order to infer an upper-bound for the cost relations that we generated above, we first
simplify them using unfolding into the following:

Ca(z,n)= 0 {z >n}
Ca(z,n)= 1+ 2-Cu(zh,n)+ 3 -Calah,n') {z<nazi=z+lahb=z-1n =n}

and then solving them as described above, using the template f4(x,n) = max(0,ag + a1n +
agx), results in the upper-bound fa(z,n) = max(0,3n — 3z).

Let us now consider the program depicted in Figure 2, taken from [13], and its correspond-
ing CFG that is depicted in the same figure. Generating the cost relations and simplifying
them using unfolding we obtain the following cost relations:

Calz,y,m,n)= 0 [{z+3>n}

Ca(z,y,mn) = 1+ 1oL -Cr(z,yfn,m) [{e+3<ny>muyy=yy, =y+1}

Ca(z,y,mn) = 1+30 oL -Ce(al,y,n,m) |[{z+3<ny>ma)=uz,
y=z+1l,ahb=c+42,25 =2+ 3}

The first one corresponds to the loop exit, and the second (resp. third) one to executing the
then (resp. else) branch of the if-condition. Now in order to solve these cost relations we
start by choosing the template fa(z,y, m,n) = max(0, ap + a1z + asy + agn + agm), however,
the solver fails to find a solution using this template. In such case we refine our template to
include one more component, namely we use fa(z,y,m,n) =max(0,a0 + a1z + asy + asn +
agm) + max(bg + b1z + boy + bgn + bym). Now the solver succeeds to find the upper bound
fa(z,y,m,n) = max(0,2m — 2y) + max(0, 2n — 2x). Note that, this example required a
more complicated template since the loop executes in two independent phases. In the first
one we increase y until ¥ > m holds, and in the second we increase x until = 4+ 3 > n holds.

Alicia Merayo and Samir Genaim

3 Concluding remarks

We described a preliminary work on inferring upper-bounds on the expected cost for CFGs
via cost relations, with the goal of integrating this process in the SACO tool. It can also
be used to prove almost sure termination. Our approach generates a set of cost relations
from a given CFG and solves them using a technique similar to the one described in [4]. It is
currently limited to linear upper-bounds and can handle small examples, e.g., most of the
examples with a linear cost that are described in [13].

Out tools is still not as powerful as [13]. We plan to carry on this research direction,
mainly to improve the implementation to handle larger programs and handle cases where
complex invariants are needed which we do not support yet. We plan to extend the ABS
language [10] with probabilistic constructs and integrate our implementation in the SACO.

—— References

1 E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gémez-Zamalloa, E. Martin-
Martin, G. Puebla, and G. Romén-Diez. SACO: Static Analyzer for Concurrent Objects.
In Proc. of TACAS’14, volume 8413 of LNCS, pages 562-567. Springer, 2014.

2 E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static
Cost Analysis. Journal of Automated Reasoning, 46(2):161-203, 2011.

3 E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Object-
Oriented Bytecode Programs. Theoretical Computer Science (Special Issue on Quantitative
Aspects of Programming Languages), 413(1):142-159, 2012.

4 D.E. Alonso-Blas and S. Genaim. On the Limits of the Classical Approach to Cost Analysis.
In Proc. of SAS 2012, volume 7460 of LNCS, pages 405-421. Springer, 2012.

5 M. Avanzini, U. Dal Lago, and A. Yamada. On probabilistic term rewriting. In In Proc.
of FLOP’18, volume 10818 of LNCS, pages 132-148. Springer, 2018.

6 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size
complexity of integer programs. ACM Trans. Program. Lang. Syst., 38(4):13:1-13:50, 2016.

7 K. Chatterjee, H. Fu, and A. Murhekar. Automated recurrence analysis for almost-linear
expected-runtime bounds. In In Proc. of CAV’17, volume 10426 of LNCS, pages 118-139.
Springer, 2017.

8 S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static Estim-
ation of Program Computational Complexity. In Proc. of POPL’09, pages 127-139. ACM,
2009.

9 J. Hoffmann, K. Aehlig, and M. Hofmannn. Multivariate Amortized Resource Analysis.
ACM Trans. Program. Lang. Syst., 34(3):14:1-14:62, 2012.

10 E. B. Johnsen, R. Hahnle, J. Schafer, R. Schlatte, and M. Steffen. ABS: A Core Language
for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised Papers), volume 6957
of LNCS, pages 142-164. Springer, 2012.

11 B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest precondition reasoning
for expected run-times of probabilistic programs. In In Proc. of ESOP’16, volume 9632 of
LNCS, pages 364—-389. Springer, 2016.

12 7. Kincaid, J. Breck, A.F. Boroujeni, and T. W. Reps. Compositional recurrence analysis
revisited. In In Proc. of PLDI’17, pages 248-262. ACM, 2017.

13 V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. Bounded expectations: Resource analysis
for probabilistic programs. In In Proc. of PLDI’18, 2018. To appear.

14 M. Sinn, F. Zuleger, and H. Veith. Complexity and resource bound analysis of imperative
programs using difference constraints. J. Autom. Reasoning, 59(1):3-45, 2017.

	Introduction
	An informal account to our approach
	Concluding remarks

