
Class-level Non-Interference 1

Class-level Non-Interference

Damiano ZANARDINI

CLIP, Universidad Polit́ecnica de Madrid
E-28660 Boadilla del Monte, Madrid, SPAIN

damiano@clip.dia.fi.upm.es

Received June 2nd, 2011

Abstract The Information-Flow property ofNon-Interferencewas recently
relaxed intoAbstract Non-Interference(ANI), a weakened version where at-
tackers can only observepropertiesof data, rather than their exact value. ANI
was originally defined on integers, where a property models the set of numbers
satisfying it. The present work proposes anObject-Oriented, Java-based for-
mulation of an instance of ANI where data take the form of objects, and the
observed property comes to be their type. The execution of a program is taken
to be the invocation of some method by an external user: a class issecureif, for
all its (non-private) methods, the type of theirlow-securitydata after the execu-
tion does not depend on the initial type of itshigh-securitydata (i.e., there are
no illicit flows). The relation to ANI theory (in itsabstractversion) can be seen
in the representation of abstract domains in terms of class hierarchies: anupper
closure operatormap an object into thesmallestclass it is an instance of. An
analyzer for a non-trivial subset of Java is illustrated. A sketch of asoundness
proof is provided: a program is never misclassified as secure, i.e., it is rejected
whenever the absence of illicit flows cannot be guaranteed.

§1 Introduction
Abstract Non-Interference(ANI) 10) provides a well-founded and parametric

framework where the standard information-flow notion ofNon-Interference(NI) 13, 20)

can be relaxed. Such a weakening can be useful because many programs which should

be regarded as reasonable do not satisfy NI, as the latter requires the separation between

2 Damiano ZANARDINI

low-security— i.e., information every user can observe — andhigh-security∗1 — i.e.,

data which have to be protected from unauthorized users — data to be complete. This

means that Non-Interference requests that the low-security part of the output must not

depend in any way on the high-security part of the input (in other words, there are no

illicit flows from high data tolow data). In practice, it is often the case that some flows

should be allowed, as long as (i) attackers cannot detect them; or (ii) there is no need to

protect someaspectsof the information which is leaked.

Several techniques have been proposed in order to weaken NI.Existing ap-

proaches either limit theobservational powerof attackers, ordeclassify27, 6) the re-

leased information. Abstract Non-Interference belongs tothe first family: it deals with

attackers which can only observepropertiesof data — instead of exact,concretedata.

Therefore, an illicit flow may be invisible to attackers since the property they can ob-

serve does not change: such a flow should be considered as harmless, and the program

should be safely accepted assecure. ANI describes properties as abstract domains8),

i.e., mappings which only distinguish between values if they differ with respect to the

property itself.

1.1 Main contribution
Abstract Non-Interference initially referred to a simple imperative language

IMP with global, static variables, and integers as the only data type. Data properties are

sets of values: e.g., “to be even” is the set of even numbers, so that the corresponding

abstract domain of parity maps a number to “even” or “odd” depending on its parity.

The present work defines information flow in an Object-Oriented (OO) framework,

modeled on a Java-like language, JavaIF (Section 2.1), where values take the form of

objects∗2. The main idea is to see a class, which represents a collection of objects with

the same internal structure, as anabstract property7): checking if an object satisfies a

property amounts to observing its type — or, equivalently, the class it is an instance of.

Accordingly, class hierarchiesdescribeabstract domains, the subclass relation being

the partial ordering on abstract values (i.e., abstract properties).

It must be pointed out that type/class information has always been very useful

in program analysis17, 22). Moreover, types are a powerful tool in program design, where

the developer often uses types as way to statically guarantee, to some extent, the correct

behavior of his or her code. E.g., in the Haskell functional language,type synonyms

∗1 Most works on Information-Flow analysis useprivate andpublic to denote the two levels of security.
However, in the present article, the termshigh-security, or high, and low-security, or low, are used
instead, in order to avoid confusion with Java modifiers (see Section 2.5).

∗2 A discussion onprimitive typescan be found in Section 3.2.

Class-level Non-Interference 3

and related techniques allow to build a very articulated type system which makes it

possible to check statically the absence of a number of runtime errors. Similarly, in

an Object-Oriented framework, classes can be used to represent the fact that a piece of

data satisfies a given property. To this end, it could be reasonable to declare two classes

C1 andC2 with the same internal structure, but such that an object is an instance of

C1 (resp.,C2) if and only if it satisfies the propertyP1 (resp.,P2). Reasoning about

classes in the context of Information-Flow analysis goes precisely in this direction: to

enforce the promising approach of Abstract Non-Interference by considering types as

properties of data. The presented framework is a special case of the parametric model

of Abstract Non-Interference, where the observational power of attackers is instantiated

to be the type of objects.

A second contribution is a model for Information Flow in Object-Oriented

languages (Section 2.5). The paper applies it to Abstract Non-Interference, but the

model can be, in principle, considered when dealing with standard Information Flow.

The model specifies what is a program, what is attacker, and how they are supposed to

interact with each other. Clearly, it is not the only model which can be conceived for

the study of this problem; yet, we believe it is a reasonable proposal.

A third contribution is the definition of analgorithmic approachto this spe-

cific instance of Abstract Non-Interference. An analyzer isshown, which checks ANI

relying on class-based dependenciesin JavaIF . Its purpose is to check whether the

output type of low-security fields depends on the initial type of high-security fields. If

this happens, then an illicitinformation flowis said to occur, and the program must be

rejected as insecure. The algorithm is sound (a sketch of thesoundness proof is pro-

vided), i.e., programs are always rejected if it is not possible to guarantee that illicit

flows will never occur. As shown in the examples, there are cases in which programs

are safely detected as secure even though the classical notion of NI is not satisfied (this

means that the security property of interest has been relaxed w.r.t. Non-Interference).

1.2 Related work
Standard Information Flow13, 20, 3) for an Object-Oriented programming lan-

guage considers data propagation fromhigh-security(often calledprivate) to low-

security(public) fields. This security property is enforced by means of types15) or logic
2), the latter approach being potentially more precise, at thecost of being more diffi-

cult and expensive. The present work enforces a different security property — which

can be seen as a weakening of Standard Information Flow; see the rest of this section

— for which, in some sense, a different approach is required.Unlike the type-based

4 Damiano ZANARDINI

technique, it is not alwayscompositional(Section 4.3); this is admitted in order to im-

prove the precision of the result by taking advantage of specific qualities of the security

property under study.

The foundational work on ANI10) provided a set-theoretic definition ofsecrecy

in a simple imperative language. Attempts have been made to make ANI algorithmi-

cally verifiable; a compositionalproof systemwas proposed11), which checks ANI by

inferring secrecy assertions viaHoare triples. Assertions are combined syntactically

to derive safety proofs, and the technique also outlines howto derive attackers which

do not violate a given security policy. ANI has been extendedto higher-order func-

tional languages23). In that work, some ideas for an analyzer were provided as a type

system: data were equipped withsecurity typesdescribing their location w.r.t. the high-

low boundary. Hence, the same discussion on compositionality holds when comparing

that idea with the present paper. Moreover, there are a number of issues concerning the

Object-Oriented paradigm which make a difference between the two works. For exam-

ple, the systemattacker+attacked programwas not described in the former work: in

that framework, a functional program simply runs at the sametime as an attacker tries

to somehow get information from spying its execution, but itis not specified where

the attacker “lives”. On the other hand, the latter approachprovides a reasonable char-

acterization of the execution environment where the program and the attacker interact

(Section 2.5). Finally, the earlier proposal deals with numerical and functional (on

numbers) values, while the new Object-Oriented approach takes program classes into

account and ignores primitive types. Overall, we believe that, on the strictly technical

side, the relation between the two papers is quite loose. Another previous paper by the

author24) deals with Java bytecode; however, that work was quite limited, since it only

used simple numerical domains and did not consider many features which are specific

to OO languages.

Type/class inference for Object-Oriented languages17, 22) aims at verifying that

data cannot belong, at runtime, to the wrong class, or at detecting that avirtual call can

be optimized by the compiler to anon-virtual (i.e., already resolved at compile-time)

one if the runtime class of the caller is statically decidable to be unique. The connection

between type information and data properties has been underlined 7) in the framework

of Abstract Interpretation8): a type is seen as an abstract property, and type systems can

be described as abstract semantics of programs.

Since Information Flow and Data Dependencies5, 1) are closely related, ANI

involves a notion ofabstract Data Dependency19), whose computation in the general

case has been recently discussed in the framework of ProgramSlicing 14, 26).

Class-level Non-Interference 5

To the best of our knowledge, the content of Section 2.5 is new.

A first version of the present article appeared in conferenceproceedings25). It

must be merely considered as a preliminary approach to the problem.

1.3 Introductory examples
This section introduces the problem by means of two examples. It must be

noted that such examples present scenarios where classes have been declared according

to design choices which were not driven by secrecy requirements — in other words,

the Information-Flow analysis works on preexisting classes which where designed for

other purposes. On the other hand (as mentioned in Section 1.1), one can think of a

design which considersfrom the beginningsecrecy requirements by enriching the class

hierarchy in order to enforce Non-Interference at the levelof the properties of interest.

[1] Hiding implementation details

Suppose anabstract classMySet be user-defined, which models aset con-

tainer. The declaration of this container leaves unspecified how to implement the inter-

nal data structuredata, which contains the elements of the set.

public abstract class MySet {
/ / the usual methods f o r ge t t i ng , se t t i n g , e tc .
. . .
/ / gets a l l elements i n the con ta ine r
public abstract Object getElems () ;

}

/ / hash−t ab l e implementat ion
public class MySet Hashtable extends MySet {

protected Hashtable data ;
. . .
public Enumeration getElems () { return data . elements () ; }

}

/ / l i nked− l i s t implementat ion
public class MySet L is t extends MySet {

protected Node data ; / / the node of the l i n k e d l i s t
. . .
public Array getElems () {

/ / r e tu rns a l l the elements as an ar ray
return data . elements () ;

}
}

The declaration of each subclass ofMySet decides howdata is implemented, and pro-

vides a specific implementation for the methodgetElems.

If the goal is tohide the implementationof the container from external users —

which amounts, in this case, to considering thedata field ashigh-security— then this

code is ill-designed. In fact, the return type ofgetElems isArray if data is aNode, and

6 Damiano ZANARDINI

Enumeration if data is aHashtable. An external user which calls this method would

be able, by observing the type of the return value — e.g., by means of theinstanceof

operation — to guess if the set has been implemented as an array or as a hash table.

public class At tacker {
public s t a t i c void main (S t r i n g args []) {

/ / the a t t acke r cannot d i r e c t l y access the conta iner , but can
/ / access the r e s u l t
Object r e t = getElems () ;

i f (r e t instanceof Enumeration) {
System . out . p r i n t l n (” I t ’ s implemented as a hash tab le ”) ;

} else i f (r e t instanceof Array) {
System . out . p r i n t l n (” I t ’ s implemented as a l i n k e d l i s t ”) ;

}
}

}

Note that the interest isnot in protecting the information stored in the set:

single elements can be directly fetched by callinggetElem with some key. Instead, the

information to be kept hidden is the implementation of the data structure: concretely,

the type of the high-securitydata field. As a matter of fact, observing the execution

time of some operations on the data structure (or other covert channels) may also leak

information about the implementation; however, this is outside the scope of this paper.

[2] Protecting confidential information

Consider the recruitment unit of an enterprise. People applying for a job should

fill in their personal data in a questionnaire. Since the evaluation is (partially or totally)

manually performed, only a subset of data (experience, skills, spoken languages, etc.)

can be used or made visible in the process, in order to preventthe human operator from

discriminating candidates on the basis of, say, gender or race. In this example, gender

discrimination is considered.

Let personal information be stored in objects of classCandidate (Figure 1).

Some data in this class are gender-dependent, and are going to be used, for bureau-

cratic reasons, onlyafter the candidates have been evaluated. This means that such

information is present from the beginning in the database ofcandidates, but should be

kept hidden from evaluators. In the spirit of Object-Oriented programming, it makes

sense to declare two subclassesFemaleCandidate andMaleCandidate of Candidate in

order to consistently and efficiently store gender-dependent data. Information which is

Class-level Non-Interference 7

Fig. 1 The introductory example

eval info

info
sex−dep eval info

Candidate
[releaseEvalData]

getEvalData
EvalData

MaleCandidate

FemaleCandidate
[releaseEvalData]

FemaleEvalData
getEvalData

supposed to be used during recruitment can be fetched by calling the method

getEvalData(CandidateID id)EvalData∗3

which accesses aCandidate object by itsid, and returns anEvalData object containing

data to be evaluated.

It cannot be excluded that the system has been previously designed for differ-

ent uses. Therefore, two subclassesFemaleEvalData andMaleEvalData of EvalData

may have been implemented. Also, a private method (to be invoked by the method

getEvalData(id))

Candidate.ReleaseEvalData()EvalData

can have been declared in the superclass, and overridden by

FemaleCandidate.ReleaseEvalData()FemaleEvalData

MaleCandidate.ReleaseEvalData()MaleEvalData

in subclasses. This choice is completely sensible in an Object-Oriented design. Yet,

the return type ofgetEvalData(id) would reveal gender information. Such code is not

ill-designed in itself, but is not adequate if security requirements are set which include

forbidding the gender of candidates to be revealed during recruitment.

§2 Preliminaries
This section gives the main notions which are necessary to understand the rest

of the paper. Since the language is basically a subset of Java, a basic knowledge of

Java is assumed. Section 2.4 merges the content of Sections 2.2 and 2.3 by applying

∗3 In this example and in the rest of the paper, the full notation for method signatures
will take the formmethodName(Param1class param1, ...,ParamKclass paramK)ReturnClass or
className.methodName(Param1class param1, ...,ParamKclass paramK)ReturnClass.

8 Damiano ZANARDINI

Abstract Interpretation to Information Flow. Section 2.5 argues about how to bring ANI

to a Java-like framework.

2.1 The JavaIF language
The programming language to which the presented framework is applied is a

subset JavaIF of sequential Java. Using a new name is not really meant to define a new

language, but only to distinguish a subset of an existing onefor the sake of the analysis.

JavaIF includesclasses, objects, and inheritance. Each class is declared to

containstatic fieldsand methods, and instancefields and methods. It is possible to

declareabstractclasses and abstract methods, with the usual behavior.Primitive types

comprise integers and booleans (Section 3.2 discusses how primitive types actually do

not play a role in the presented framework);arraysare also supported.

The public, private andprotected modifiersare included, with the usual se-

mantics; moreover, JavaIF admits two additionalsecurity modifiersflowH andflowL,

which are related to the security level of data. A security modifier can be set either

in the field declaration, as an additional modifier, or by means of a separateseclevel

declaration. The security level of fields can be readjusted in subclasses.

Example 2.1

class C {
E f ;
/ / f i s se t to be low−s e c u r i t y a f t e r being declared
seclevel f flowL ;
/ / the s e c u r i t y l e v e l can also be given at dec la ra t i on−t ime
private flowH E g ;

}
class D extends C {

seclevel f flowH ; / / f i s high−s e c u r i t y when accessed from D
seclevel g flowL ; / / g i s low−s e c u r i t y when accessed from D

}

This code states thatf is to be considered as low-security when accessed fromC,

and high-security when accessed fromD. As for g, it is the other way around. Both

declaration styles are semantically equivalent.

seclevel doesnotcreate a new field: in the example, the subclass will only haveone field

f and one fieldg, both inherited fromC, whose attached modifier is different w.r.t. the

superclass. On the other hand, it is also possible, as in Java, to declare a new field in

D which has the same namef (and, possibly, a different security level); in this case,

both fields can be accessed from an object ofD. This amounts to saying that a security

modifier can beoverridden, but the field itself cannot.

Class-level Non-Interference 9

Another feature of JavaIF is, as in Java, the possibility to retrieve theruntime

typeof an object by means of aninstanceof operation:objectReference instanceof

type returnstrue whenobjectReference can be cast totype. In the presented frame-

work, such an operation can be seen as something that an attacker can carry out in order

to discover the runtime type of objects and break their secrets (Section 2.5).

The language does not include advanced Java features asconcurrency, inter-

faces, inner classes, exceptions, and the support fornativecode.

2.2 Information Flow
It is a reasonable requirement for a computing system that a part of the manip-

ulated data must be kept hidden from the observation of external, untrusted agents. If a

user wants to keep these dataconfidentialduring the execution of a program, (s)he can

take as a requirement that information cannotflow at runtime from private (i.e., which

is only visible to trusted users) to public data. An untrusted user, which can only see

public data, should not be able, by observing the external behavior of the computing

system, to guess anything about what is hidden (private).

Such a policy permits programs to use and manipulate the private part of data,

as long as the visible output does not reveal information about it. In Non-Interference

(NI for short), introduced by Goguen and Meseguer13), a programP is secureif any

two runs only differing in theirprivate input (i.e., indistinguishable by an untrusted

user) cannot be distinguished by only observing thepublicoutput. Formally,

∀h1, h2, l1, l2. l1 = l2 =⇒ [[P]]L (h1, l1) = [[P]]L (h2, l2)

where[[P]]L (h, l) is the public (low-security∗4, marked asL) part of the semantics[[P]]

on the input(h, l), divided into a private (high-security, marked asH) part h and a

public partl. In other words, there must be noillicit information flow from h to l, or,

equivalently,h andl do not interfere. An Information-Flow analyzer should track all

the possible flows of information in the program execution, and reject the program if

there can exist flows from the private input to the public output.

Example 2.2

In the imperative paradigm, the assignmentl := h2, whereh is private andl is public,

generates a forbidden flow since the (allowed) observation of l gives information about

the (hidden) previous value ofh. This flow will lead to a rejection of the program,

unless its effects are canceled by the following part of the execution.

∗4 See also the first footnote in Section 1.

10 Damiano ZANARDINI

2.3 Abstract Interpretation
Abstract Interpretation (AI for short)8) is a theory for systematically deriving

approximated program semantics.Abstractionis the main notion in defining approxi-

mations: the abstractionα(x) of a piece of datax only keeps a subset of the information

related tox — for example, an integer number could be abstracted to its sign, thus los-

ing everything about its absolute value. Usually, anabstract semanticsis an abstraction

of thecollecting semantics, which, for every program point and for every variable, col-

lects all the possible values the variable can hold in any execution. For example, ifx can

have, depending on the input, (concrete) numerical values from the set{2k|k>0}, then

the abstract semantics obtained with the sign abstraction will assign tox the abstract

value “positive” at that program point. However, it must be noted that the process of

obtaining the abstract semantics may lose information, andx could fail to be detected

as positive (see Example 2.4).

An abstract domainis a mathematical object which describes the result of

abstractingconcretevalues. It can be worded either in terms of Galois connections or

upper closure operators9). The present discussion takes the latter alternative.

Given a setC of concrete values (the integer numbers, in the example above),

theconcrete domainis usually the power-set℘(C). Then, given the partially ordered

set〈℘(C),⊆〉 (where⊆ is just set inclusion), anupper closure operator(uco for short)

on〈℘(C),⊆〉 is a functionρ : ℘(C) 7→℘(C) which ismonotonic, idempotentandexten-

sive(i.e.,∀x. ρ(x) ⊇ x). For example, the ucoρs for the sign abstraction is such that

ρ({2, 3, 4}) = {n|n≥0} (i.e., all positive numbers plus0), ρ({−20,−5}) = {n|n<0}

(i.e., all negative numbers), andρ({−7, 3}) = Z (since concrete values include num-

bers with different sign).

The set of all ucos on℘(C) is UCO(℘(C)). An upper closure operator is

uniquely determined by the set of its fixpoints, calledabstract values: these are the

elementsx of ℘(C) such thatρ(x) = x. Such a set is isomorphic∗5 to the abstract

domainA which approximates the concrete domain℘(C). A setX ⊆ ℘(C) (i.e., a set

of sets of concrete values) is the set of fixpoints of a uco iff it is aMoore-family, i.e., if

X is equal to its Moore closureM(X) = {∩S | S ⊆ X} (where∩ is the intersection on

all elements ofS). In the following,ρ(v) will stand forρ({v}) whenever{v} ∈ ℘(C)

is a singleton.

A concrete computationf℘(C) on ℘(C) can be abstracted to an abstract one

fA onA by providing the abstraction of values (as exemplified before with the sign ab-

∗5 The use of ucos instead of Galois connections allows one to get rid of the abstract domain by using a
subset of the concrete domain, isomorphic to it.

Class-level Non-Interference 11

straction) and operators. The abstraction of such a computation is soundif the abstract

result is always a correct approximation of the concrete result: ∀x. f℘(C)(x) ⊆ fA(x),

where⊆meansmore concreteor more precise, i.e., identifying a smaller set of concrete

values.

Example 2.3

Let f℘(C)(x, y) = x+y, and letA represent the sign abstraction. Then,fA(x, y) will

take the abstraction ofx andy, and apply an abstract version⊕ of + to get the result.

Letpositive be{n|n≥0}, andnegative be{n|n<0}. The abstract operator is defined as

positive⊕positive = positive, negative⊕negative = negative, positive⊕negative =

negative⊕positive = Z. In this case,fA is a sound abstraction offC , since the abstract

result will always include the concrete result. For example, let x = 5 andy = 7; then

f℘(C)(x, y) = 12, andfA(x, y) = ρ({x})⊕ ρ({y}) = positive ⊕ positive = positive,

which includes12 sinceρ({12}) = positive.

Abstraction formalizes the idea thatA is simpler than℘(C), being (isomorphic to) a

subset of its. On the other hand, a computationfA onA can be less precise than its

corresponding concrete computationfC , since valuesV ∈ C \ A cannot be used.

Example 2.4

Consider the abstraction of Example 2.3: ifx = 5 andy = 7, thenf℘(C)(x, y) = 12

while fA(x, y) = positive, which is clearly less precise. Moreover, ifx = 5 and

y = −8, thenf℘(C)(x, y) = −3 andfA(x, y) = Z, which is even less precise than the

abstractionρ(−3)negative. This circumstance is calledincompleteness12).

If 〈C,⊤,⊥,∨,∧〉 is a complete lattice, then〈UCO(C) , TOP, ID,∨′,∧′〉, or-

dered point-wise, is also a complete lattice whereID = λx.x describes the identity

abstraction (i.e., the most concrete domainA = C, which does not lose any informa-

tion), andTOP= λx.⊤ is the trivial abstraction mappingC into a singletonA = {⊤}.

Thereduced product⊓ 9) of a set of domains{Ai} is the most abstract domain

which is at least as concrete as anyAi: formally,⊓iAi is the Moore closureM(∪iAi).

The intuition is that the reduced product collects all and only the information contained

in any of theAi.

Example 2.5

Let theparity abstractionρp obey, as expected,ρp({−2, 6, 8}) = {2n|n∈Z} (the even

numbers),ρp({−1, 3}) = {2n+ 1|n∈Z} (the odd numbers), andρp({1, 2}) = Z (any

number). Combining the sign abstraction with the parity abstraction by means of the

12 Damiano ZANARDINI

reduced product gives an abstract domain which can distinguish between positive even

numbers, positive odd numbers, negative even numbers, and negative odd numbers.

Notation will be often abused by referring toρ as the set of its fixpoints, i.e.,

x ∈ ρ if x belongs to the domainA generated byρ. In the present work, the role

of Abstract Interpretation is twofold: (i) it provides the basis for defining the security

property; and (ii) it gives the background for developing the static analyzer.

2.4 Abstract Non-Interference
Non-Interference can be weakened by modeling secrecy relatively to some ob-

servable property, orabstractionof data10). The observational power of an attacker is

limited to an abstraction, and asecureprogram is one which preserves confidentiality

(i.e., such that no illicit flows may arise) only w.r.t. the information the attacker can

observe. Let the concrete domain be the set℘(Z) of all properties on integers, where a

property is identified by the setP ⊆ Z of values satisfying it. Upper closure operators

describe the ability of an attacker in observing data: if theattacker has precisionρ, then

(s)he cannot distinguishv1 andv2 if ρ(v1) = ρ(v2) (i.e., if the values have the same

property w.r.t.ρ).

P is secure for two abstract domainsη andρ, written [η]P(ρ), if no flows are

detected by observing public input and output data only up toa precision characterized

by, respectively,η andρ:

∀hi, li. η(l1) = η(l2) =⇒ ρ([[P]]L (h1, l1)) = ρ([[P]]L (h2, l2))

whereli andhi are, respectively, values assigned to some public and private program

variables. This means that, ifl1 and l2 cannot be distinguished byη, then it is not

possible to guessh data from the (abstracted byρ) output. Standard NI is a special case

of ANI, corresponding to[ID]P(ID) (neither the input nor the output are approximated).

Unfortunately, flows may be detected, which are caused by a change in the

public instead of the private input. These flows are calleddeceptivesince they are not

really dangerous. A more general version of ANI, namely(η, φ, ρ)-secrecy∗6, rules out

deceptive flows by computing[[P]] on an abstraction of the input:

∀hi, li. η(l1) = η(l2) =⇒ ρ([[P]]L (φ(h1), η(l1))) = ρ([[P]]L (φ(h2), η(l2)))

Example 2.6

Consider Example 2.2: the assignmentl := h2 is no longer dangerous if the attacker

can only observe the sign of integers, since knowing the signof l does not give any

∗6 This version is calledabstract, opposed to thenarrowversion introduced in the previous definition.

Class-level Non-Interference 13

pub datapriv data attacker
can access public fields

about private data
wants to infer something

can call public methodsC1

m
1

1
(...)

m
k1

1
(...)

Fig. 2 The program and the attacker

information on the input sign ofh. Therefore, there is noabstract flowfrom h to l, and

the program can be accepted.

In the following, we deal with(ρ, ρ, ρ)-secrecy: the class hierarchy data may

belong to will identify the abstract domain to be considered. It is important to point out

that, in this case, the semantics[[P]] is an abstract one, which only keeps track of type

information, as in(η, φ, ρ)-secrecy.

2.5 A model of Object-Oriented Information Flow
Information Flow properties have been mostly defined on simple languages.

Yet, advanced features in present-day Object-Oriented languages make a correct defini-

tion much harder to achieve in such an arduous framework. Forexample, it is no longer

clear what a high-security or low-security variable is, since variables can be dynami-

cally declared. Particularly, in order to reasonably adaptthe Non-Interference notion

what an attacker can see of the output does not allow him or herto acquire

(abstract) information about the secret input

to JavaIF , it is necessary to clarify (i) what a running program is; (ii) what attackers are

and can do; (iii) which data have to be protected (Figure 2).

[1] Attacked programs

The JavaIF program whose secrecy we want to investigate is considered to

be a collection of cooperating classes, which can be directly accessed according to Java

access-control rules. The focus is on detecting whether thelegal interaction with a class

C may disclose its confidential data. An interaction can take the form of an invocation

of a public methodm of C, or the access to some public fieldf . A class is said to

be secureif all possible interactions are harmless, i.e., if it is notpossible to acquire

knowledge of its high-security data by interacting with itspublic (in the sense of the

Java access-control policy) part and reading low-securityinformation.

14 Damiano ZANARDINI

[2] Attackers

In this framework, attackers are programs which can interact with external

classesC and aim at breaking their secrets by calling their methods oraccessing their

fields. In other words, the systemattacker+attacked programis a complete program,

in the classic terminology, where themain method lies in the attacker, and the attacked

program is rather to be seen as a library.

An attacker can only readC data (by field accessing) before and after calling

any methodm. If a dangerous flow arises inm, then accessing data before and after its

execution should provide the attacker with confidential information. On the other hand,

it is not possible to observe extra information such as the amount of allocated memory

or the execution time, which would entail additional flows.

Example 2.7

LetP allow dynamic variable declaration, withh andh1 high-security.

i f (p (h)) {
h1 = x ;

} else {
C i = new C () ;
h1 = y ;

}

This fragment is secure if the observer can only see data before and after the statement.

In fact, i is no longer visible outside theelsebranch, so that it is not possible to guess

which path has been taken, and the value ofh. However, two executions with different

values forh could be told apart if, for example, the attacker could see the intermediate

value of variables, or the amount of public allocated memory— in fact, executing the

else branch results in allocating additional memory.

[3] The security level of data

Java comes with field modifierspublic, private andprotected, which model

security requirements by regulating the direct access to data. That is, a program is

rejected at compile time if, for example, aprivate field is accessed from an object of a

class which is not the one where it was declared. However,private information can be

indirectlypropagatedvia the return value of public methods. This is, indeed, one of the

keys of the idea ofdata encapsulation, wheregetYYYY methods are usually designed

to bring out internal (but not meant to be hidden completely)data.

Non-Interference analysis enforces the property that secret information should

not propagatethrough the computation. Because of encapsulation, secretinformation

Class-level Non-Interference 15

cannot be identified withprivate data; therefore, a different strategy is needed to iden-

tify high-security information. New, ad-hoc modifiers are added to the language as

code annotations:flowH andflowL specify, at the level of classes, that a field is to

be regarded, respectively, as high- or low-security (if no such information is provided,

then the field is considered as low-security). Our security policy requires that there

are no (abstract) flows fromflowH fields toflowL fields or return values. Thus,flowH

andflowL are somehow orthogonal toprivate andpublic, and program analysis must

enforce, say, that an attacker cannot access apublic flowH field∗7.

If f is declared asflowH in D, then all the data stored in the fieldf of D objects

are considered as secret. Due to this choice, it is easy to represent high and low data:

each class has a set of high-security fields and a set of low-security fields, and both can

be easily and statically decided from inspecting the program syntax. GivenD wheref

is flowH, if one wants some instanceo of D not to protect its fieldf , then a subclass

D′ of D, wheref is declared asflowL, must be added, ando must be an instance of

D′. This can be the case when the security policy requires to consider a subset ofD

instances in a special way as regards security, in spite of being structurally identical to

any otherD instances (note that, in OO languages, structural identityis usually what

makes two objects belong to the same class, so that, in the presented setting, classes

may acquire an additional meaning).

Example 2.8

In the classD above,{D.l} is the set of low data, while{D.h} is the set of high data.

(The content of) Any fieldo.h of an objecto of classD is considered as high-security.

Importantly, this representation loses information aboutwhich objects of a

given class flow into the observable part of the program. However, it automatically

(and soundly) deals withsharing21), since every object is somehow considered to im-

plicitly share with other objects in the same class.

§3 Class-Oriented Abstract Non-Interference
Abstract Non-Interference is parametric onhow data can be observed by un-

trusted users, i.e., the degree of precision attackers havewhen reading low-security

information. Given a universe of values, properties are sets of values which share some

common behavior. In an Object-Oriented framework,classeshave a similar purpose:

they identify collections ofobjectssharing the same internal structure. Therefore, mod-

∗7 As a matter of fact, this combination of access-control modifiers and security modifiers is legal but
somehow weird.

16 Damiano ZANARDINI

eling properties by means of classes is quite natural, the class being exactly the property

of interest for a given object. In the present setting, program classes are the kind of

properties an attacker can observe.

Identifying properties with classes reduces property checking to a sort of class-

directed program analysis17). Classes are ordered by the subclass relation: a class is

greater than any of its subclasses. A subclass models a sub-property, i.e., a more precise

property since it is “satisfied” (by instantiation) by a smaller set of values.

As for notation, depending on the context, namesC, D etc. will denote either

sets of semantic values, classes, or properties, whileo will stand for objects or values.

The subclass relationC ′
<C is basicallyC ′⊆C∗8 if C ′ andC are considered as prop-

erties or sets of values. The predicateo:C (or, sometimes,o∈C) holds if o has classC

(i.e., if o can be stored in a variable whose declared type isC). On the other hand,o::C

holds iff o is an instance ofC (typically, an object created by anew C() instruction):

this amounts to saying thato:C and there is noD<C s.t.o:D. Finally,C↓ is defined as

the set of subclasses{D|D⊑C} of C.

3.1 Class hierarchies as abstract domains
Consider a classC (which, as discussed above, can also be regarded as a set

of objects), and let the concrete domain be℘(C). A class hierarchyrooted atC (i.e.,

where the classC is a superclass of all the other classes in the hierarchy∗9) identifies a

subset of propertiesD ∈ ℘(C), i.e., an abstract domainρ.

Lemma 3.1

Let a class hierarchy rooted atC be given, and let the concrete domain be℘(O)whereO

is a set of instances of the classC or its subclasses. Let the functionρ : ℘(O) 7→ ℘(O)

be defined as follows:ρ(O) is the smallest setO′ ⊇ O of objects such thatO′ is the

set of all objects having classD for some classD in the hierarchy. Then,ρ is an upper

closure operator on℘(O).

Proof The functionρ is clearly monotone: the larger the object set, the greater

the minimal class such that every object has this class. It isalso idempotent since the

result of applyingρ once is a setO′ of values (all the values, actually) which have some

specific classD. Then, applyingρ once again gives the sameO′ because, trivially.

O′ ⊇ O′, and it already corresponds to the classD. Finally, ρ is extensive because of

∗8 Inclusion is not strict sinceC instances which are notC′ instances are not guaranteed to exist.
∗9 Usually, we may want to ignore theObject superclass, thus obtaining a set of hierarchies instead of a

single hierarchy rooted atObject.

Class-level Non-Interference 17

the conditionO′ ⊇ O.

Example 3.1

Let C be the set of integers. In Java or JavaIF , it can be modeled by the classInteger.

Let the semantic properties of sign be modeled byρs: this domain can be represented by

the class hierarchy{Integer, Pos<Integer, Neg<Integer}, where, for example, objects

of classPos should contain a positive number. Subclasses should be equipped with

methods which encode their behavior with respect to the abstract property. For example,

if o:Pos, the method invocationo.sum (new Pos(n)), which sumso andn, should be

declared to have return typePos, while o′.sum (new Neg(n)) should be declared to

return anInteger with no sign indication ifo′:Integer (since the sign of the return value

is not statically decidable). Clearly, the definition of these subclasses should avoid that,

say, a positive number is written in the value field of aNeg object, which would break

the required policy.

Given a set of valuesD ∈ ℘(C), ρ(D) is the smallest classD′ ∈ ρ such that

D ⊆ D′. Since no idea ofmultiple inheritanceis allowed (note that JavaIF does not

support interfaces), generally there is no subclassC of bothC1 andC2 which models

C1 ∩C2 (unlessC1<C2 orC2<C1). Therefore, to haveρ closed under intersection, as

required by the definition of upper closure operators, theBotρ empty class is supposed

to exist for every class hierarchyρ. As a consequence, abstract domains which are

representable in this model are those where classes are either related by<, or disjoint∗10.

The declaration of a class asabstract (i.e., which cannot be directly instanti-

ated) can give additional information to the class-based analysis. For example, given an

abstract classC with C↓ = {C,C1, C2}, the informationo:C boils down too::C1 ∨

o::C2 sinceo is guaranteed not to be an instance ofC. Although nothing changed from

the set-theoretic point of view, sinceC = C1 ∪C2, this additional information can help

in the inference of non-dependency results, as shown in Section 5.

3.2 Primitive types
Since values are identified with objects, the reader may ask whether primitive

types can be accounted for in this framework. Actually, focusing only on classes means

to abstract awaythe value of data with primitive types.

Example 3.2

Let the classC have fieldsf of typeD andg of typeint, ando be declared asC. In this

∗10 Languages like C++, which allow multiple inheritance, permitrepresenting a wider range of domains.

18 Damiano ZANARDINI

case, asking the runtime type ofo means asking if the object belongs to some subclass

of C. Also, asking the type ofo.f gives information about which subclass ofD the

stored value belongs to. However, there is no way to know, with such questions, the

value ofo.g nor any internal values of primitive type ino.f .

Clearly, it is possible to describe properties on primitivedata by encapsulating

them into classes. For example,int can be embedded intoInteger, and properties of

numbers can be represented by subclasses, as shown in Example 3.1.

3.3 The link to the Abstract Non-Interference theory
This section describes how ANI is related to the present work, and provides

basic ideas in order to understand how the analyzer works. The programP whose

secrets are to be broken takes the form, at runtime, of a collectionO of objects andC of

classes which are available in the execution environment.E denotes the set ofexecution

states, containing theactivation stackand theheapaccording to the concrete semantics.

Thevisible part(form the point of view of an attacker) ofε ∈ E consists of low-security

instance fields of objects inO, and low-security static fields of classes inC.

Let ε1, ε2 ∈ E ; the indistinguishability conditionIC (ε1, ε2) holds if

• for every classC, objectso1, o2:C (note the use of: instead of::) and low field

f , valueso1.f in ε1 ando2.f in ε2 belong to the same class (ε(o.f) is the value

of the fieldf of the objecto in the stateε):

∃D. ε1(o1.f)::D ∧ ε2(o2.f)::D

• for every classD and low static fieldg, D.g is an instance of the same class in

both states.

Given two sequences of valuesv1 andv2, the indistinguishability conditionIC (v1, v2)

is taken to be class equality for every two corresponding elements.

The meaning of the condition is that two states cannot be distinguished by

someone who can only check the class of low-security data. Anattacker may try to

break the secrets ofP by invokingo.m of o ∈ O (or a staticC.m ofC ∈ C), and observe

the final state of the execution. TheAbstract Non-Interference conditionANI (m) holds

for m if

IC (ε1, ε2) ∧ IC (v1, v2) ⇒ IC ([[o.m (v1)]] (ε1), [[o.m (v2)]] (ε2))

where[[o.m (v)]] (ε) is the state obtained by executingo.mwith parametersv in ε (return

value included). This means that, after executingm in two states only differing (at

the abstract level) in their high-security part, the low-security part of the output states

Class-level Non-Interference 19

cannot be distinguished. The attacked programP is secure (writtenANI (P)) if this

condition holds for every possible interaction between theprogram and the attacker.

This definition is a special case of (an Object-Oriented adaptation of) the Ab-

stract Non-Interference original setting. Next section will describe how the analyzer

tries to proveANI (m).

§4 Analysis of Non-Interference for class information
This section describes the analysis (calledclass-flow analysis) in its main fea-

tures. It is basically a formalization based on Abstract Interpretation, implemented as a

prototype in theCiao 4) Prolog system. The algorithm performs anabstract execution

of a method which could be called from outside the program under study (possibly by

an untrusted user), and tries to detect illicit abstract flows from high-security fields to

low-security fields or the returned value. As pointed out before, a program is secure if

no method execution provokes illicit flows.

The abstract semantics relies on the notion ofabstract statesσ ∈ S. An

abstract stateσ consists of two parts: (1) aglobal environmentmaps each static or

instance fieldf of the classC to an abstract value; and (2) a frame-stack stores the

abstract value of local variables in the usual way (i.e., maps a local variable in the

frame on top of the stack to an abstract value).

An abstract valueV takes the formXφ ∈ V, whereX is a set of classes, and

φ ∈ {H, L} is a security flagindicating the security level (high or low) of the corre-

sponding piece of data. Before starting the execution, fields which are considered as

flowH by the policy are given the value(C↓)H, whereC is the declared class (remem-

ber thatC↓ isC plus all its subclasses), whileflowL fields are given the value(C↓)L. As

regards notation,σ(C.f) is the abstract value of the fieldf of the classC in σ, while

σ(x) refers to the abstract value of the variablex in the active frame ofσ. Saying that

σ(x) (resp.,σ(C.f)) is (D↓)L means thatx (resp., the content of the fieldf of some

instance ofC) can be instance of any class inD↓, and does not contain any informa-

tion which has been propagated from high-security data. On the other hand, saying

thatσ(x) (resp.,σ(C.f)) is (D↓)H means, again, that the class is guaranteed to be one

amongD↓, but does not guarantee anything about the security level (the individual

piece of data could also be low, butH is taken as a sound approximation).

20 Damiano ZANARDINI

Ordering≤ andleast upper bound⊔ on abstract values are defined as

X ′
φ′ ≤ X ′′

φ′′ ≡ X ′ ⊆ X ′′ ∧ φ′ ≤ φ′′

φ′ ≤ φ′′ ≡ φ′=L ∨ φ′′=H

X ′
φ′ ⊔ X ′′

φ′′ = (X ′ ∪ X ′′)φ′⊔φ′′

φ′ ⊔ φ′′ =

{

L if φ′ = φ′′ = L

H otherwise

In standard type theory, types are a partial order. A type canbe seen as an abstraction

of a set of values7). Whenx is given typeτ , andτ has several subtypesτ1, .., τk, it is

not possible, from the type representation, to guess whichτi the variablex belongs to.

On the other hand, our choice of representing abstract values as sets of classes can be

more precise, and also allows us to exploitabstract declarations.

Example 4.1

Let D be declared asabstract, and the (instantiable) classesD1 andD2 be its sub-

classes. Suppose the abstract value{D1, D2}φ be computed for an objecto. This

means that the analysis cannot infer which subclasso belongs to. Nevertheless, this

is more precise than the typingD obtained with a type-based representation, but still

correct sinceD has no direct instances. In other words, both approaches identify the

same set of values. In fact, a typingD for o implies that, according to the information

provided by the type representation, the object can belong to any type amongD, D1

andD2. This type models the abstract value(D↓)φ = {D,D1, D2}φ, which is less

precise than{D1, D2}φ since it also includesD. See Section 5 for an application.

Remark 4.1

We note that, due to how high- and low-security data are defined (Section 2.5), there

is no need to keep a representation of the concrete heap (i.e., anabstract heap) in the

abstract states. In fact, consider two objectso1 ando2, instances of the classC, such

that the objects stored in the fieldf of both are instances of the same class, buto1.f

is high while o2.f is low. The security policy does not distinguish betweeno1 and

o2: to its purposes, all instances ofC have a fieldf which has to be (conservatively)

considered as high, since there is at least one object whose fieldf is actually high — or

cannot guaranteed to be low. In other words, the security level is a property which refers

to the fieldf of the classC, rather thanthe fieldf of an instanceo of the classC, and

the abstract state does not need an abstract heap in order to represent this information

accordingly.

Class-level Non-Interference 21

[[x]]
♯
φ (σ) =

〈

σ(x)φ, σ
〉

[[o.f]]
♯
φ (σ) = LS

(〈

⊔{σ′(C.f) | C ∈ X o}
φ
, σ′

〉)

where 〈X o
φo
, σ′〉 = [[o]]

♯
φ (σ)

[[C.f]]
♯
φ (σ) = LS

(〈

σ(C.f)φ, σ
〉)

[[new C(p1, .., pk)]]
♯
φ (σ) = (ANALYZE σk

(C(V1, .., Vk)))
φ

where σ0 = σ

〈Vi, σi〉 = [[pi]]
♯
φ (σi−1)

[[o.m (p1, .., pk)]]
♯
φ (σ) = LS

(

(ANALYZE σk
(Vo.m(V1, .., Vk)))

φ
)

where 〈Vo, σ0〉 = [[o]]
♯
φ (σ) and 〈Vi, σi〉 = [[pi]]

♯
φ (σi−1)

[[C.m (p1, .., pk)]]
♯
φ (σ) = LS

(

(ANALYZE σk
(({C}L).m(V1, .., Vk)))

φ
)

where σ0 = σ and 〈Vi, σi〉 = [[pi]]
♯
φ (σi−1)

Fig. 3 Rules for analyzing expressions

In Java and most imperative or Object-Oriented languages, illicit flows come

from (i) assigning a high-security value to a low variable orfield (explicit flows); or (ii)

executing conditional statements or loops whose guard depends on high data (implicit

flows). In detecting explicit flows, the main issue comes to be the computation of the

security level of expressions. An illicit flow is soundly assumed to exist if a high-

security value is computed for an expression which will be assigned to a low-security

field or variable. Implicit flows are dealt with by means of aglobal analysiswhich

remembers the security level under which a command is executed: if an assignment to

low data depends on a high-security guard, then its effects may lead to an illicit flow

even if the assigned value is low-security.

Next sections illustrate the formalization in its main parts.

4.1 The computation of Abstract Values
In the assignmentx = e, the structure of the expressione might be quite

intricate: e.g., it can be a method call with side effects. Therefore, computing the

security levelφe of an expression is not trivial at all. Figure 3 shows how abstract

values can be computed. Theexpression semantics[[]]♯ takese, σ∈S, andφ, and returns

a pair(value, resulting state). The goal of this abstract semantics is to find out whether

an expression contains information which must be regarded as confidential.

The operator[]φ raisesthe security level of a value:(Xφ′)
φ′′

= Xφ′⊔φ′′ . The

flagφ in [[e]]
♯
φ (σ) means thate is computed under the security levelφ. The level under

which a computation is performed depends on whether executing the piece of code is

22 Damiano ZANARDINI

conditional on a high guard.φ comes to be the highest level of any guard the code

depends on (i.e., the guard of any conditional or iterative construct which surrounds

the program point under study). Every updating of low data underH has to be seen

as an illicit implicit flow (see above). Note that the least upper bound which is per-

formed in evaluating instance fields (second equation in thefigure) is not necessary in

the case of static fields, since the classC in C.f is statically decided. The function

(ANALYZE σ (V.m(. . .)))
φ is defined in the next section.

The functionLS (where the name stands forlower singleton) is only applied

to the first element of the pair (i.e., the abstract value); itlowers the security flag of

a value when the class set is a singleton:LS (〈Xφ, σ〉) is 〈XL, σ〉 if X is a singleton,

and〈Xφ, σ〉 otherwise. This operation is important since it shows how abstract data

dependencies may differ w.r.t. their concrete counterpart.

Example 4.2

Let {C}φ be the result of computing[[e]]♯φ′ (σ), ando be the object computed by runtime

(concrete) execution. Thus,o::C certainly holds by soundness of the abstract seman-

tics. Since type information is all an attacker can see, the security content ofo can be

considered asL even ife contains high data. In fact, illicit flows do not occur since the

class ofo is constant, so that it is indistinguishable by the attacker. This is consistent

with the definition of Abstract Non-Interference for Object-Oriented programs, since

the uniqueness of the class implies that the right-hand sideof the indistinguishability

condition (Section 3.3) is trivially satisfied. Typically,X is a singleton{C} if C has no

subclasses; however, it can be the case, as innew C(), that the class is unique although

C does have subclasses.

As an example, consider the[[o.f]]♯φ (σ) rule in Figure 3. In this case, the object

o is first evaluated to get a set of classesX o (the classeso might belong to at runtime)

and a security flagφo. For every class inX o, the abstract stateσ contains information

about the security of the fieldf . Since it is not known statically which class will be

needed, a least upper bound of all instances is computed. Theflag of the result is

possibly raised if the computation is performed under a highguard. Finally,LS lowers

the flag toL if everyC.f can be statically said to be instance of the same, unique class.

4.2 The analysis of Statements
The analysis of a method body needs to execute abstract statements and com-

pute abstract expressions. In the following,σ [x← V] is theupdatedstateσ′ such that

σ′(x) = V andσ′(y) = σ(y) for everyy 6= x. Similarly, σ [C.f ← V]) is the up-

Class-level Non-Interference 23

EXECσ (C x) = σ
[

x← (C↓)L
]

EXECσ (x = e)
φ
= σ′ [x← Xφ′]

where 〈Xφ′ , σ′〉 = [[e]]
♯
φ (σ)

EXECσ (o.f = e)
φ
= σ′′ [X .f և X ′

φ′]

where 〈Xφ, σ
′〉 = [[o]]

♯
φ (σ) and 〈X ′

φ′ , σ′′〉 = [[e]]
♯
φ (σ

′)

EXECσ (S1; S2)
φ
= EXECσ′ (S2)

φ

where σ′ = EXECσ (S1)
φ

EXECσ (if(b) s1 else s2)
φ
= EXECσ1

(s1)
φ⊔φb ⊔ EXECσ2

(s2)
φ⊔φb

where (φb, σ1, σ2) = [[b]]
♯
(σ)

Fig. 4 Some rules for analyzing statements

dated state obtained by storingV in C.f . The set extensionσ [X .f ← V] is also easily

defined. Moreover, theupgradedstateσ′ = σ [v և V] satisfiesσ′(v) = σ(v) ⊔ V

andσ′(w) = σ(w) for anyw 6= v. Figure 4 shows how statements are executed at the

abstract level, instead of being replaced. State upgrading(instead of simple updating) is

used since it is not known which instancesC.f will be actually assigned to at runtime.

Therefore, the initial value of any field must be kept for the sake of soundness, and

combined with the assigned value.

Example 4.3

Let o be given statically a value{D,D1} with D1<D. Let o.f beH before the assign-

mento.f = e, ande beL. Updating the state would result in a finalL flag for both

D.f andD1.f . This is unsound if the runtime class ofo is D1, sinceD.f would be

harmfully considered asL. Yet, upgradingis sound since theH flag is kept forD.f as

a result of the least upper bound.

For a guardb, the function[[b]]♯ (σ) computes its flagφ in σ, giving also two

abstract states corresponding to the two branches. The stateσ1 includes the information

which can be extracted from assuming, as in the “then” branch, thatb was evaluated to

true, whileσ2 is the dual forfalse. Statesσ1 andσ2 are different only when something

can inferred from the truth value of the guard. For example, if b is x instanceof C,

assuming¬b means that its class is not a subclass ofC. The instanceof guards are

the only case where this additional information can be obtained. Otherwise, class in-

formation is not enough for correctly describing the conditional. Therefore,σ1 and

σ2 are both (conservatively) assumed to be the least upper bound of the abstract states

computed for each branch. In some cases, this improves the precision of the analysis;

24 Damiano ZANARDINI

however, it can be simply ignored if a simpler analysis is needed.

Example 4.4

Let b be (h == null), and the class set inferred at this program point for the high

identifierh be{D}. If the definition of[[]]♯ is followed, then the flag ofh should beL,

thus computingL as the final flag ofb. However, it is easy to see that this treatment

is unsound. In fact, the (concrete) boolean value of the guard is far from being totally

determined by the class ofv, since{null} is a strict subset of the set of possible runtime

values forv. Consequently, knowing thath has classD does not give information about

the branch which is taken, and no additional hypothesis can be used when examining

each of the branches.

The superscript in the expressionEXECσ (s)
φ means that the effects ofs onσ

will be raised byφ (similarly to the definition of[[]]♯): whenV is computed inσ, its flag

φV is raised toφV ⊔ φ. This is important in dealing with implicit flows, originating

from a high-security guard, whereφ = H.

4.3 The analysis of Methods
The function(ANALYZE σ (V.m(. . .)))

φ, already used in Figure 3, deals with

the security analysis ofmethods. A method can be either invoked as a statement —

when there is no return value, or it is ignored — or as part of anexpression. LetV

andV1..Vk be abstract values obtained for the calling object and the actual parameters

by previous abstract computations. The result of(ANALYZE σ (V.m(V1..Vk)))
φ′

is ob-

tained by the least upper bound of the abstract execution inσ of each instanceC.m

such thatV = Xφ andC ∈ X . More formally:

(ANALYZE σ (Xφ.m(V1, .., Vk)))
φ′

= ⊔C∈X

(

(ANALYZE σ (Cφ.m(V1, .., Vk)))
φ′
)

where⊔ works on both the return value and (by point-wise extension)the final state:

〈X1φ1
, σ1〉 ⊔ 〈X2φ2

, σ2〉 = 〈X1φ1
⊔ X2φ2

, σ1 ⊔ σ2〉

(σ1 ⊔ σ2)(id) = σ1(id) ⊔ σ2(id)

Importantly, when static methods and constructors are concerned, only one instance

C.m needs to be considered since the classC is fixed.

The notationCφ means that the flagφ of the caller is kept in the analysis

of eachC method instance (it is stored in the local variablethis). This is another

difference with respect to standard Information-Flow analysis, and it is also applied

to field access. Usually, in a compositional, syntax-based type-system approach, the

Class-level Non-Interference 25

analysis ofo.f or o.m (. . .) leads to anH flag whenevero is H. On the contrary, in

the present formulation, theH content ofo is not a sufficient condition for considering

o.f or o.m (. . .) as high-security. For example, leto:C be high-security, andC↓ =

{C,C1, C2}. In all classes,f has classD, andD↓ = {D} (i.e.,D has no subclasses).

In this case, regardless of whetherf is declared as high or low,o.f is to be considered

asL since its class is constant.

When a developer or a user wants to analyze a methodm∗11 in the classC with

respect to class-based Information Flow, she or he will call

(ANALYZE σ0
({C}L.m(V1, .., Vk)))

L

where:

• the initial abstract stateσ0 is such that (1) every field of every class is assigned to

an abstract value according to its declared type and the security policy (Section

4); and (2) there are no local variables (since we are entering a method);

• {C} is a singleton because the analysis focuses on a specific instance ofm;

• the abstract value{C}L corresponding to the caller has the flagL because, in

principle, it will be “provided” by the attacker when calling m;

• for the same reason, everyVi is (Di
↓)L whereDi is the class of the corresponding

formal parameter;

• the abstract execution will be carried out under the flagL, since the attacker is

supposed to have access tom.

Such abstract execution computes adenotationδm for m, i.e., the behavior of

the method with respect to the security property. This is well known in many areas of

semantics and static analysis: basically,δm maps states to states (plus the return value),

andδm(σ) is the final abstract state (plus the return value) when executingm in σ. If m

calls another methodm′, then it is not possible to provide a denotation form without

first analyzingm′ (or many instances of it, if the class of the caller is not statically

decidable). Therefore, the analysis needs to

• studyingm using abottom value〈∅L, σ⊥〉 as the temporary denotation form′

— i.e., in the place of
(

ANALYZE σ

(

Xφ.m
′(V)

))φ′

— whereσ⊥(id) = ∅L for

everyid ; here,σ, X , φ, φ′ and the abstract valuesV for the actual parameters

refer to the program point wherem′ is invoked in the body ofm;

• analyzem′ starting fromσ, X , φ, φ′, andV , thus giving a new resultδm′ for

(ANALYZE σ (Xφ.m
′(...)))

φ′

;

• going back tom and recomputing its denotation with the newly obtainedδm′

∗11 Even if there is more than onem declared inC, they are different by their signature.

26 Damiano ZANARDINI

instead of the bottom value used in the first step.

Sincem′ may, in turn, call other methods, and evenm itself (mutual recur-

sion), the analyzer needs to implement afixpoint, as usual in similar analysis techniques.

A queueis kept to manage the evaluation order of method instances. An element of

the queue is a pair〈method description, initial information〉, where the method de-

scription is basically the method signature, and the initial information is the abstract

information corresponding to the calling point of the method. When the call tom′ is

found inm, the signature ofm′ and the abstract information at the call point (i.e.,σ,X ,

φ, φ′, andV as defined above) are inserted in the queue (in other words,m′ is marked

as “to-be-analyzed”). When the analysis ofm has finished (but is still incomplete be-

cause there was no final denotation form′), the algorithm extracts a signature from the

queue and analyzes it starting from the corresponding initial information. Afterm′ is

extracted and analyzed (which can involve inserting other methods, possiblym, in the

queue, and iterating the process), a denotationδm′ is computed. If the new denotation

is not smaller (point-wise, w.r.t. the ordering on abstractstates) than the previous one

obtained form′, then the system inserts in the queue all the methods which called m′

with the same initial information, because the new denotation obtained form′ can lead

to a change in the denotation of such methods. On the other hand, if the new denotation

is smaller than or equal to the old one (i.e., nonew information was acquired), then

nothing is inserted in the queue. More formally:

δ′ ≤ δ′′ ≡ ∀σ. δ′(σ) ≤S δ′′(σ)

σ′ ≤S σ′′ ≡ ∀id . σ′(id) ≤ σ′′(id)

The process goes on until the queue is empty, i.e., when no denotation has to be re-

computed due to a change in another denotation. This means that a fixpoint has been

reached. Termination is guaranteed because denotations are always increasing (mono-

tonicity) with respect to the ordering above, and abstract domains are finite (since the

number of classes cannot be infinite).

4.4 Soundness
In order to discuss the soundness of the formalization, it isnecessary to under-

stand what the security level of data meansin the concrete world. We concentrate on

the evaluation of expressions, depicted in Section 4.1.

Let ρ be the upper closure operator which maps a valueo to the smallest class

C containing it (i.e., such thato::C). It can be easily extended point-wise to sequences.

As for states, the abstractionσ = ρ(ε) of a concrete execution stateε maps every local

Class-level Non-Interference 27

variablev to its smallest class, and, for a fieldC.f ,

σ(C.f) = ∪{D | ∃ε.σ = ρ(ε) ∧ ∃o in the heap ofε. ε(o)::C ∧ ε(o.f)::D}

Consider two concrete statesε1 andε2, and their abstract counterpartsσ1 =

ρ(ε1) andσ2 = ρ(ε2). The Abstract-Non-Interference condition (derived from defini-

tions in Section 3.3) for an expressione amounts to saying that evaluatinge in σ1 and

σ2 yields two objects (o1 ando2, respectively) of the same class (i.e., there exists a class

D such thato1::D ando2::D), provided alllow fieldsC.f have the same class inε1 and

ε2. More formally: for everyε1 andε2, σ1 = ρ(ε1) andσ2 = ρ(ε2)

(∀C.f low . (σ1)(C.f) = (σ2)(C.f))⇒ JeKσ1 = JeKσ2

If the above condition holds, thene is said to beexp-low. It must be pointed out that, in

the spirit of theabstractversion of ANI (Section 2.4), the semanticsJK which is used

to evaluatee is an abstract one, only dealing with class information. Thesoundness of

the analysis of (terminating) expressions is stated in the following proposition.

Proposition 4.1

Let Xφ be the result of computing[[e]]♯φ0
(σ). Then, for every concrete stateε whose

abstractionρ(ε) is σ, the following holds forJeK (ε) provided the concrete computation

actually terminates:

1. there existsD ∈ X such thatJeK (ε)::D (here, the semantics is concrete); and

2. φ is L only if e is exp-low.

Proof

• First,φ0 is taken to beL, so that there is no need to consider the operator[]φ0 .

This choice does only affect item 2. of the proposition.

– Item 1. holds easily by observing that, as far as the computation of the class

set is concerned, the algorithm describes a standard class analysis, which

over-approximates the set of runtime classes.

– Item 2. follows from observing thatφ = L may hold if (i) e has only low

sub-expressions, so that combining them is low; or (ii) the class of thee is

unique and decidable. In both cases,e is clearlyexp-low.

• In the case ofφ0 = H, the operator[]φ0 must also be taken into account. Here,

there two possibilities:

– LS does not lower the result toL: then soundness is trivially guaranteed;

– the result, which was raised by[]H, is lowered byLS: in this case, the class of

e is guaranteed to be fixed, so thate is e-low.

28 Damiano ZANARDINI

If e is or contains a method call, then the proof needs soundness for the analysis

of method execution (see below).

This amounts to saying that (1) the set of classes inferred bythe abstract se-

mantics includes the real, concrete class of the expressionin any compatible concrete

state (where “compatible” means that the abstraction ofǫ is included inσ); and (2) the

analyzer considers the expression as low-security (i.e., where no high-security informa-

tion has been propagated) only if the expression really is.

The rest of the soundness proof comes from the the soundness of standard

AI-based tools for program analysis, mentioned in the discussion of Section 4.3 about

the interprocedural part of the formalization (combining denotations). In particular, the

analysis of statements and method execution obeys the general definition of a sound

abstract semantics for an Object-Oriented language18, 22).

§5 An example
The code in Figure 5 shows an important main feature of the analysis: it is

possible to accept programs which would be rejected by a standard Non-Interference

analyzer. We focus onAclass.flow(Dsup,Dsub1)Esup: it computes an expression by

calling three methods. We study whether the return value depends on high information

whend1 andd2 are high.

First, we note thatd1 may belong to any of theDx classes, except the abstract

classesDsup andDsub2sub. Therefore,getC() must be evaluated for all non-abstract

classes. The key point ingetC() is that, although the declared return class isCsup,

it can be statically inferred to be eitherCsub1 or Csub2. Therefore, by least upper

bound, the abstract evaluation ofd1.getC() yields{Csub1,Csub2}L. This was possible

sinceDsup is abstract, so thatCsup — i.e., the return type ofDsup.getC — is not to

be dealt with. Here, it is possible to see how using sets of classes can indeed make a

difference (see Section 4): excludingCsup.getE() from the computed instances allows

one to get rid ofCsup.getE, which returnsEsup. On the other hand, bothCsub1.getE()

andCsub2.getE() returnEsub2 (in the former, analysis of guards permitted to exclude

theelsebranch).

Consequently,Esub2.chooseOne() is the onlychooseOne instance to be con-

sidered. This shows another use of using class sets: we do notneed to consider the

downward closure ofEsub2 — as it would have happened using a less expressive rep-

resentation of abstract values — which would have involved aflow from the high-

security fieldoneHighCfield via Esub2sub.chooseOne(). Instead, no illicit flows are

Class-level Non-Interference 29

class Aclass {
Esup f low (Dsup d , Dsub1 d1) { return ((d . getC ()) . getE (d1)) . chooseOne () ; } }

class Csup {
flowL Esup oneLowEfield ; flowH Esup oneHighEf ie ld ;
Esup getE (Dsup d) { return oneHighEf ie ld ; } }

class Csub1 extends Csup {
Esup getE (Dsup d) { i f (d instanceof Dsub1)

{ return new Esub2 (d) } else { return oneHighEf ie ld }}}

class Csub2 extends Csup {
Esup n (Dsup d) { return new Esub2 (d) ; } }

class Csub3 extends Csup {
Esup getEaux (Esup e) { return new Esup () ; }
Esup getE () { return getEaux (oneHighEf ie ld) ; } }

abstract class Dsup {
abstract Csup getC () ; }

class Dsub1 extends Dsup {
Csup getC () { return new Csub1 () ; } }

class Dsub1sub1 extends Dsub1 {}

class Dsub1sub2 extends Dsub1 {}

class Dsub2 extends Dsup {
Csup getC () { return new Csub2 () ; } }

abstract class Dsub2sub extends Dsub2 {}

class Dsub2subSub1 extends Dsub2sub {
Csup getC () { return new Csub2 () ; } }

class Dsub2subsub2 extends Dsub2sub {
Csup getC () { return new Csub2 () ; } }

class Esup {
flowH Csup oneHighCf ie ld ; flowL Csup oneLowCfield ;
Csup chooseOne () { return oneLowCfield ; } }

class Esub1 extends Esup {}

class Esub2 extends Esup {
Esub2 (Dsup d) {} }

class Esub2sub extends Esub2 {
Csup chooseOne () { return oneHighCf ie ld ; } }

Fig. 5 The JavaIF code

30 Damiano ZANARDINI

Dsub1

Csub1 Csub3

Dsub2

getE
Dsub1sub1

Dsub1sub2

(Dsup)

(Dsub2sub)

Dsub2subSub1
Dsub2subSub2 getC

getC
Csup

Csub2

public

Esup

Esub1 Esub2

Esub2sub

chooseOne

Csub3
Csub2
Csub1
Csup

Fig. 6 The abstract behavior of methods

detected because the low-securityoneLowCfield is returned by theEsub2 instance of

chooseOne(); the final value comes to be{Csup,Csub1,Csub2,Csub3}L. Figure 6

shows the analysis in its main steps.

§6 Conclusions and future work
The present work introduces an application of Abstract Non-Interference to

a non-trivial subset of Java, where the class of data is the property of interest. By

defining abstract properties as classes, the task of detecting illicit information flows

can be reduced to finding low-security (orpublic, as in most part of the literature) data

whose type after a method execution depends on the initial type of some high-security

(private) data. This is a sort of type-based dependency analysis, which tracks how

class information propagates. The result is substantiallydifferent from standard Non-

Interference verification, since

- it models a weaker property; i.e., it does not distinguish between any two in-

stances of the same class;

- it is not completely syntax-based, so that data can be considered as low-security

even if they are (syntactically) made of high-security sub-parts (e.g., considero

andf in o.f : usual type systems are typically syntax-based, so thato.f cannot

be low-security unlesso is).

As shown in examples (Section 1.3), this security frameworkcan model requirements

such as hiding the implementation details of a data structure, or preventing external

Class-level Non-Interference 31

users from observing information contained in the class of data.

6.1 Future work
The main direction of future work is towards the implementation of a real

analyzer; the current tool is a prototype which can be improved and optimized in several

ways (e.g., the efficiency of the fixpoint, the internal representation of abstract values,

etc.). This would lead to a more efficient and possibly more precise analysis, capable

of soundly accepting (i.e., proving the correctness of) a wider set of programs.

Moreover, a larger subset of Java would be worth considering, in particular the

use of exceptions, which can be an important source of illicit flows. The definition of

Abstract Non-Interference in such an enlarged context deserves further work, also from

the theoretical point of view.

Finally, the present framework could be part of aProof-Carrying-code16) ar-

chitecture. In a Proof-Carrying-code schema for Java, the code user may want to be

sure that the bytecode program (s)he receives is safe, and the program is not executed

unless the producer provides a correctness proof for the desired (and required) security

property. The inclusion in a Proof-Carrying-code architecture would involve translating

the analysis — or its result on source code, if the soundness of the compiling process

w.r.t. the security property is also proven — to the level of bytecode, since the user will

be interested in verifying low-level programs rather than source code.

Acknowledgment This work was funded in part by the Information & Com-

munication Technologies program of the European Commission, Future and Emerg-

ing Technologies (FET), under the IST-15905MOBIUS project and the ICT-231620

HATSproject, by the Spanish Ministry of Science and Innovation (MICINN) under the

TIN-2005-09207MERIT and the TIN-2008-05624DOVESproject, the HI2008-0153

(Acción Integrada) project, the UCM-BSCH-GR58/08-910502 Research Group and by

the Madrid Regional Government under the S-0505/TIC/0407PROMESASproject and

the S2009TIC-1465PROMETIDOSproject.

References
1) M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus ofdependency. In

Proc. ACM Symp. on Principles of Programming Languages, pages 147–160, San Anto-
nio, Texas, USA, January 1999. ACM Press.

2) T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-
oriented programs. In S. Jones, editor,Proc. ACM Symp. on Principles of Programming
Languages, Charleston, South Carolina, USA, January 2006. ACM Press.

32 Damiano ZANARDINI

3) A. Banerjee and D. Naumann. Stack-based access control and secure information flow.
Journal of Functional Programming, 2(15):131–177, March 2005.

4) F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and G. Puebla. The
Ciao System. Reference Manual (v1.13). Technical report, School of Computer Science
(UPM), 2006. Available athttp://www.ciaohome.org.

5) I. Cartwright and M. Felleisen. The semantics of program dependence. InProc. SIG-
PLAN Conf. on Programming Language Design and Implementation, pages 13–27, Port-
land, Oregon, USA, 1989. ACM Press.

6) S. Chong and A. Myers. End-to-end enforcement of erasure and declassification. In
Proc. IEEE Computer Security Foundations Symposium, Pittsburgh, Pennsylvania, USA,
June 2008.

7) P. Cousot. Types as abstract interpretations, invited paper. InProc. ACM Symp. on Prin-
ciples of Programming Languages, pages 316–331, Paris, France, January 1997. ACM
Press.

8) P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. InProc. ACM Symp. on
Principles of Programming Languages, pages 238–252, Los Angeles, California, USA,
1977. ACM Press.

9) P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProc.
ACM Symp. on Principles of Programming Languages, pages 269–282, San Antonio,
Texas, USA, 1979. ACM Press.

10) R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In N. Jones and X. Leroy, editors, Proc. ACM
Symp. on Principles of Programming Languages, pages 186–197, Venice, Italy, January
2004. ACM Press.

11) R. Giacobazzi and I. Mastroeni. Proving abstract non-interference. InProc. Conf. on
Computer Science Logic, volume 3210 ofLecture Notes in Computer Science, pages 280–
294, Karpacz, Poland, 2004. Springer-Verlag.

12) R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete.
Journal of the Association for Computing Machinery, 47(2):361–416, 2000.

13) J. Goguen and J. Meseguer. Security policies and security models.In Proc. IEEE Symp.
on Security and Privacy, pages 11–20. IEEE Computer Society Press, 1982.

14) I. Mastroeni and D. Zanardini. Data Dependencies and Program Slicing: from Syntax to
Abstract Semantics. InProc. Workshop on Partial Evaluation and Program Manipula-
tion, pages 125–134, San Francisco, California, USA, January 2008. ACM Press.

15) A. Myers. JFlow: practical mostly-static information flow control. InProc. ACM Symp.
on Principles of Programming Languages, pages 228–241, San Antonio, Texas, USA,
January 1999. ACM Press.

16) G. Necula. Proof-Carrying Code. InProc. ACM Symp. on Principles of Programming
Languages, Paris, France, January 1997. ACM Press.

17) J. Palsberg and M. Schwartzbach. Object-oriented type inference. In A. Paepcke, edi-
tor, Proc. Conf. on Object-Oriented Programming Languages, Systems, and Applications,
volume 26 ofACM SIGPLAN Notices, pages 146–161, Phoenix, Arizona, USA, Novem-
ber 1991. ACM Press.

18) Uday S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In
In Proc. ACM Conference on Lisp and Functional Programming, pages 289–297. ACM
Press, 1988.

Class-level Non-Interference 33

19) X. Rival. Abstract dependences for alarm diagnosis. In K. Yi, editor, Proc. Asian Symp.
on Programming Languages and Systems, volume 3780 ofLecture Notes in Computer
Science, pages 347–363, Tsukuba, Japan, November 2005. Springer-Verlag.

20) A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1):5–19, January 2003.

21) S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In C. Han-
kin, editor,Proc. Symp. on Static Analysis, volume 3672 ofLecture Notes in Computer
Science, pages 320–335, London, UK, August 2005. Springer-Verlag.

22) F. Spoto and T. Jensen. Class Analyses as Abstract Interpretations of Trace Semantics.
ACM Transactions on Programming Languages and Systems, 25(5):578–630, September
2003.

23) D. Zanardini. Higher-Order Abstract Non-Interference. In P.Urzyczyn, editor,Proc.
Int. Conf. on Typed Lambda Calculi and Applications, volume 3461 ofLecture Notes in
Computer Science, Nara, Japan, April 2005. Springer-Verlag.

24) D. Zanardini. Abstract Non-Interference in a fragment of Javabytecode. InProc. ACM
Symp. on Applied Computing, Dijon, France, April 2006.

25) D. Zanardini. Analyzing Non-Interference with respect to Classes. In Proc. Italian Conf.
on Theoretical Computer Science, Roma, Italy, October 2007. World Scientific.

26) D. Zanardini. The Semantics of Abstract Program Slicing. InProc. Int. Workshop on
Source Code Analysis and Manipulation, Beijing, China, September 2008. IEEE Com-
puter Society Press.

27) S. Zdancewic and A. Myers. Robust declassification. InProc. IEEE Computer Security
Foundations Workshop, pages 15–23, Cape Breton, Nova Scotia, Canada, June 2001.

