Class-level Non-Interference 1

Class-level Non-Interference

Damiano ZANARDINI

CLIP, Universidad Poligcnica de Madrid
E-28660 Boadilla del Monte, Madrid, SPAIN

dam ano@l i p.dia.fi.upmes

Received June 2nd, 2011

Abstract The Information-Flow property dilon-Interferencavas recently
relaxed intoAbstract Non-InterferencéANI), a weakened version where at-
tackers can only obsernyopertiesof data, rather than their exact value. ANI
was originally defined on integers, where a property modesset of numbers
satisfying it. The present work proposes @bject-Oriented Javabased for-
mulation of an instance of ANI where data take the form of otgeand the
observed property comes to be their type. The execution cbgram is taken
to be the invocation of some method by an external user: a idascuref, for

all its (non-private) methods, the type of thieiw-securitydata after the execu-
tion does not depend on the initial type of itggh-securitydata (i.e., there are
noillicit flows). The relation to ANI theory (in itebstractversion) can be seen
in the representation of abstract domains in terms of clesardchies: ampper
closure operatormap an object into themallestclass it is an instance of. An
analyzer for a non-trivial subset of Java is illustrated. katsh of asoundness
proof is provided: a program is never misclassified as secereit is rejected
whenever the absence of illicit flows cannot be guaranteed.

§1 Introduction

Abstract Non-InterferencéANI) '@ provides a well-founded and parametric
framework where the standard information-flow notionNufn-InterferencegNI) ***)
can be relaxed. Such a weakening can be useful because nogmgmps which should
be regarded as reasonable do not satisfy NI, as the latt@resghe separation between

2 Damiano ZANARDINI

low-security— i.e., information every user can observe — dmgh-security’ — i.e.,
data which have to be protected from unauthorized users a-tddie complete. This
means that Non-Interference requests that the low-sgqait of the output must not
depend in any way on the high-security part of the input (leotvords, there are no
illicit flows from high data tolow data). In practice, it is often the case that some flows
should be allowed, as long as (i) attackers cannot detegt; thie(ii) there is no need to
protect somaspectf the information which is leaked.

Several techniques have been proposed in order to weakeBxisting ap-
proaches either limit thebservational poweof attackers, odeclassify”® the re-
leased information. Abstract Non-Interference belonghédfirst family: it deals with
attackers which can only obserpeopertiesof data — instead of exaotpncretedata.
Therefore, an illicit flow may be invisible to attackers grihe property they can ob-
serve does not change: such a flow should be considered akbsrand the program
should be safely accepted sscure ANI describes properties as abstract doma&ins
i.e., mappings which only distinguish between values if/ttéfer with respect to the
property itself.

1.1 Main contribution

Abstract Non-Interference initially referred to a simpieperative language
IMP with global, static variables, and integers as the oaladype. Data properties are
sets of valuese.g., “to be even” is the set of even numbers, so that theesponding
abstract domain of parity maps a number to “even” or “odd”eteping on its parity.
The present work defines information flow in an Object-Orenf(OO) framework,
modeled on a Java-like language, Jav&Section 2.1), where values take the form of
objects™®. The main idea is to see a class, which represents a colesftiobjects with
the same internal structure, asapstract property’: checking if an object satisfies a
property amounts to observing its type — or, equivalentig, d¢lass it is an instance of.
Accordingly, class hierarchieslescribeabstract domainsthe subclass relation being
the partial ordering on abstract values (i.e., abstraqigntces).

It must be pointed out that type/class information has ast@en very useful
in program analysi§***. Moreover, types are a powerful tool in program design, wher
the developer often uses types as way to statically guaatateome extent, the correct
behavior of his or her code. E.g., in the Haskell functiomalguagetype synonyms

*1 Most works on Information-Flow analysis upeivate and public to denote the two levels of security.
However, in the present article, the termmigh-security or high, andlow-security or low, are used
instead, in order to avoid confusion with Java modifiers (s=iGn 2.5).

*2 A discussion omprimitive typescan be found in Section 3.2.

Class-level Non-Interference 3

and related techniques allow to build a very articulatecetgpstem which makes it
possible to check statically the absence of a number ofmengrrors. Similarly, in
an Object-Oriented framework, classes can be used to myiré® fact that a piece of
data satisfies a given property. To this end, it could be restsle to declare two classes
C; and C> with the same internal structure, but such that an objech i;stance of
C1 (resp.,Cs) if and only if it satisfies the property; (resp.,P%). Reasoning about
classes in the context of Information-Flow analysis goegigely in this direction: to
enforce the promising approach of Abstract Non-Interfeeely considering types as
properties of data. The presented framework is a specialafthe parametric model
of Abstract Non-Interference, where the observationalgravf attackers is instantiated
to be the type of objects.

A second contribution is a model for Information Flow in Odj®riented
languages (Section 2.5). The paper applies it to Abstract-INterference, but the
model can be, in principle, considered when dealing withddad Information Flow.
The model specifies what is a program, what is attacker, andlney are supposed to
interact with each other. Clearly, it is not the only modeliethcan be conceived for
the study of this problem; yet, we believe it is a reasonaldegsal.

A third contribution is the definition of aalgorithmic approachto this spe-
cific instance of Abstract Non-Interference. An analyzestiswn, which checks ANI
relying onclass-based dependenciesJavar. Its purpose is to check whether the
output type of low-security fields depends on the initialeygd high-security fields. If
this happens, then an illicibformation flowis said to occur, and the program must be
rejected as insecure. The algorithm is sound (a sketch afahadness proof is pro-
vided), i.e., programs are always rejected if it is not palssio guarantee that illicit
flows will never occur. As shown in the examples, there ares@s which programs
are safely detected as secure even though the classicah mdtNI is not satisfied (this
means that the security property of interest has been ilaxd. Non-Interference).

1.2 Related work
Standard Information Flow***® for an Object-Oriented programming lan-

guage considers data propagation frbigh-security(often calledprivate) to low-
security(public) fields. This security property is enforced by means of types logic

2, the latter approach being potentially more precise, att® of being more diffi-
cult and expensive. The present work enforces a differesurig property — which
can be seen as a weakening of Standard Information Flowhseest of this section
— for which, in some sense, a different approach is requitgdlike the type-based

4 Damiano ZANARDINI

technique, it is not alwaysompositionalSection 4.3); this is admitted in order to im-
prove the precision of the result by taking advantage ofifipepialities of the security
property under study.

The foundational work on ANP provided a set-theoretic definition sécrecy
in a simple imperative language. Attempts have been madeai@ rANI algorithmi-
cally verifiable; a compositiongiroof systenwas proposed’, which checks ANI by
inferring secrecy assertions vidoare triples Assertions are combined syntactically
to derive safety proofs, and the technique also outlines tiooderive attackers which
do not violate a given security policy. ANI has been extenttetligher-order func-
tional language®. In that work, some ideas for an analyzer were provided apa ty
system: data were equipped witbcurity typeslescribing their location w.r.t. the high-
low boundary. Hence, the same discussion on composittgrradids when comparing
that idea with the present paper. Moreover, there are a nuofilisues concerning the
Object-Oriented paradigm which make a difference betwkertwo works. For exam-
ple, the systenattackertattacked progranwas not described in the former work: in
that framework, a functional program simply runs at the séime as an attacker tries
to somehow get information from spying its execution, businhot specified where
the attacker “lives”. On the other hand, the latter apprqachides a reasonable char-
acterization of the execution environment where the progaad the attacker interact
(Section 2.5). Finally, the earlier proposal deals with eugal and functional (on
numbers) values, while the new Object-Oriented approadastprogram classes into
account and ignores primitive types. Overall, we beliewa,tbn the strictly technical
side, the relation between the two papers is quite loosethngrevious paper by the
author® deals with Java bytecode; however, that work was quitedidhisince it only
used simple numerical domains and did not consider manyresatvhich are specific
to OO languages.

Typelclass inference for Object-Oriented languagé&saims at verifying that
data cannot belong, at runtime, to the wrong class, or attietethat avirtual call can
be optimized by the compiler toron-virtual (i.e., already resolved at compile-time)
one if the runtime class of the caller is statically deciéablbe unique. The connection
between type information and data properties has been limate? in the framework

of Abstract Interpretatiofi: a type is seen as an abstract property, and type systems can

be described as abstract semantics of programs.

Since Information Flow and Data Dependenciésare closely related, ANI
involves a notion ofabstract Data Dependency, whose computation in the general
case has been recently discussed in the framework of Progjiaimg ** *.

Class-level Non-Interference 5

To the best of our knowledge, the content of Section 2.5 is new
A first version of the present article appeared in confergmoeeedings®. It
must be merely considered as a preliminary approach to tit#em.

1.3 Introductory examples

This section introduces the problem by means of two examglesiwust be
noted that such examples present scenarios where clasedsden declared according
to design choices which were not driven by secrecy requingsne- in other words,
the Information-Flow analysis works on preexisting clasafich where designed for
other purposes. On the other hand (as mentioned in Sectigndhe can think of a
design which considefsom the beginningecrecy requirements by enriching the class
hierarchy in order to enforce Non-Interference at the lef¢he properties of interest.

[1] Hiding implementation details

Suppose anbstract classMySet be user-defined, which modelssat con-
tainer. The declaration of this container leaves unspeldif@v to implement the inter-
nal data structurdata, which contains the elements of the set.

public abstract class MySet {
// the usual methods for getting, setting, etc.

/1 gets all elements in the container
public abstract Object getElems();

}

/1 hash—table implementation
public class MySet_Hashtable extends MySet {
protected Hashtable data;

public Enumeration getElems() { return data.elements(); }

/1 linked—Ilist implementation
public class MySet_List extends MySet {
protected Node data; // the node of the linked list

public Array getElems() {
/1 returns all the elements as an array
return data.elements();
}
}

The declaration of each subclass\§Set decides howdata is implemented, and pro-
vides a specific implementation for the methgedElems.

If the goal is tohide the implementatioof the container from external users —
which amounts, in this case, to considering ¢hea field ashigh-security— then this
code is ill-designed. In fact, the return typegetElems is Array if data is aNode, and

6 Damiano ZANARDINI

Enumeration if data is aHashtable. An external user which calls this method would
be able, by observing the type of the return value — e.g., bgmaef theinstanceof
operation — to guess if the set has been implemented as gnoaraa a hash table.

public class Attacker {
public static void main(String args[]) {

/1 the attacker cannot directly access the container, but can
/] access the result
Object ret = getElems();

if (ret instanceof Enumeration) {

System.out. println ("It ’'s_.implemented_as.a_hash.table”);
} else if (ret instanceof Array) {

System.out. println ("It 's.implemented.as.a.linked.list”);
}

}
}

Note that the interest inot in protecting the information stored in the set:
single elements can be directly fetched by callreElem with some key. Instead, the
information to be kept hidden is the implementation of theaddructure: concretely,
the type of the high-securityata field. As a matter of fact, observing the execution
time of some operations on the data structure (or other tohannels) may also leak
information about the implementation; however, this issald the scope of this paper.

[2] Protecting confidential information

Consider the recruitment unit of an enterprise. Peopleyapgpfor a job should
fill in their personal data in a questionnaire. Since thewaiabn is (partially or totally)
manually performed, only a subset of data (experiencesskiboken languages, etc.)
can be used or made visible in the process, in order to prévettuman operator from
discriminating candidates on the basis of, say, genderaer. ri this example, gender
discrimination is considered.

Let personal information be stored in objects of cl@aadidate (Figure 1).
Some data in this class are gender-dependent, and are gobeyused, for bureau-
cratic reasons, onlafter the candidates have been evaluated. This means that such
information is present from the beginning in the databaseaoflidates, but should be
kept hidden from evaluators. In the spirit of Object-Orezhprogramming, it makes
sense to declare two subclasgemaleCandidate andMaleCandidate of Candidate in
order to consistently and efficiently store gender-dependata. Information which is

Class-level Non-Interference 7

Fig. 1 The introductory example

Candidate
[releaseEvalData] -
- N getEvalData

MaleCandidate L N

FemaleCandidate
[releaseEvalDatal]. .

(sex—dep eval info

info FemaleEvalData

getEvalData

supposed to be used during recruitment can be fetched bygtie method
getEvalData(CandidatelD id)EvalData*®

which accesses@andidate object by itsid, and returns aivalData object containing
data to be evaluated.

It cannot be excluded that the system has been previousigrdesfor differ-
ent uses. Therefore, two subclasgesialeEvalData andMaleEvalData of EvalData
may have been implemented. Also, a private method (to beked/dy the method
getEvalData(id))

Candidate.ReleaseEvalData()EvalData

can have been declared in the superclass, and overridden by

FemaleCandidate.ReleaseEvalData()FemaleEvalData
MaleCandidate.ReleaseEvalData()MaleEvalData

in subclasses. This choice is completely sensible in anddljeented design. Yet,
the return type ogetEvalData(id) would reveal gender information. Such code is not
ill-designed in itself, but is not adequate if security riegments are set which include
forbidding the gender of candidates to be revealed duriogiitenent.

§2 Preliminaries

This section gives the main notions which are necessaryderstand the rest
of the paper. Since the language is basically a subset of davasic knowledge of
Java is assumed. Section 2.4 merges the content of Sectasn@ 2.3 by applying

*3 In this example and in the rest of the paper, the full notatimr fmethod signatures
will take the formmethodName(Paramlclass paraml, ..., ParamKclass paramK)ReturnClass or
className.methodName(Paramlclass paraml, ..., ParamKclass paramK)ReturnClass.

8 Damiano ZANARDINI

Abstract Interpretation to Information Flow. Section 2t§ues about how to bring ANI
to a Java-like framework.

2.1 The Javgr language

The programming language to which the presented framevgoapplied is a
subset Javg of sequential Java. Using a new name is not really meant toedafnew
language, but only to distinguish a subset of an existingfonthe sake of the analysis.

Javar includesclasses objects andinheritance Each class is declared to
containstatic fieldsand methods andinstancefields and methods. It is possible to
declareabstractclasses and abstract methods, with the usual beha®iionitive types
comprise integers and booleans (Section 3.2 discusses firoitiye types actually do
not play a role in the presented framewordj;aysare also supported.

The public, private and protected modifiersare included, with the usual se-
mantics; moreover, Jaya admits two additionasecurity modifierslowH and flowlL,
which are related to the security level of data. A securitydifier can be set either
in the field declaration, as an additional modifier, or by nseaha separateeclevel
declaration. The security level of fields can be readjustesiibclasses.

Example 2.1

class C {
E f;
/I f is set to be low—security after being declared
seclevel f flowL;
// the security level can also be given at declaration—time
private flowH E g;

class D extends C {
seclevel f flowH; // f is high—security when accessed from D
seclevel g flowL; // g is low—security when accessed from D

}

This code states that is to be considered as low-security when accessed ftgm
and high-security when accessed frdm As for g, it is the other way around. Both
declaration styles are semantically equivalent.

seclevel doesnotcreate a new field: in the example, the subclass will only loaesfield

f and one fieldy, both inherited fromC, whose attached modifier is different w.r.t. the
superclass. On the other hand, it is also possible, as in ttadeclare a new field in
D which has the same nanfe(and, possibly, a different security level); in this case,
both fields can be accessed from an objedDofThis amounts to saying that a security
modifier can beverridden but the field itself cannot.

Class-level Non-Interference 9

Another feature of Java is, as in Java, the possibility to retrieve thmtime
typeof an object by means of dnstanceof operation:objectReference instanceof
type returnstrue whenobjectReference can be cast ttype. In the presented frame-
work, such an operation can be seen as something that akeattan carry out in order
to discover the runtime type of objects and break their $e¢8ection 2.5).

The language does not include advanced Java featur@asrrency inter-
faces inner classesexceptionsand the support fanativecode.

2.2 Information Flow

Itis a reasonable requirement for a computing system thattaopthe manip-
ulated data must be kept hidden from the observation of eateuntrusted agents. If a
user wants to keep these datanfidentialduring the execution of a program, (s)he can
take as a requirement that information canitmiv at runtime from private (i.e., which
is only visible to trusted users) to public data. An untrdsteer, which can only see
public data, should not be able, by observing the externadwier of the computing
system, to guess anything about what is hidden (private).

Such a policy permits programs to use and manipulate thatprpart of data,
as long as the visible output does not reveal informatioruatio In Non-Interference
(NI for short), introduced by Goguen and Mesegtiera progranP is secureif any
two runs only differing in theimprivate input (i.e., indistinguishable by an untrusted
user) cannot be distinguished by only observingghblic output. Formally,

Vhl,hg,ll,lg. ll = l2 — [[P]]L (hl,ll) = [[P]]L (hg,lg)

where[[P]L (h,1) is the public [ow-security?, marked ad.) part of the semanticfP]
on the input(h, (), divided into a private Kigh-security marked asH) parth and a
public partl. In other words, there must be iiticit information flow from & to [, or,
equivalently,h andl do notinterfere An Information-Flow analyzer should track all
the possible flows of information in the program executiand eeject the program if
there can exist flows from the private input to the public otitp

Example 2.2

In the imperative paradigm, the assignmént h%, whereh is private and is public,
generates a forbidden flow since the (allowed) observafidmives information about
the (hidden) previous value @f. This flow will lead to a rejection of the program,
unless its effects are canceled by the following part of ttexation.

*4 See also the first footnote in Section 1.

10 Damiano ZANARDINI

2.3 Abstract Interpretation

Abstract Interpretation (Al for short) is a theory for systematically deriving
approximated program semantigsbstractionis the main notion in defining approxi-
mations: the abstractian(z) of a piece of data only keeps a subset of the information
related tar — for example, an integer number could be abstracted togts #ius los-
ing everything about its absolute value. Usuallyalstract semanticis an abstraction
of thecollecting semantigsvhich, for every program point and for every variable, col-
lects all the possible values the variable can hold in angui@n. For example, ik can
have, depending on the input, (concrete) numerical vahoes the sef 2k|k>0}, then
the abstract semantics obtained with the sign abstractibmsgign tox the abstract
value “positive” at that program point. However, it must kated that the process of
obtaining the abstract semantics may lose information,xacwmiild fail to be detected
as positive (see Example 2.4).

An abstract domains a mathematical object which describes the result of
abstractingconcretevalues. It can be worded either in terms of Galois connestan
upper closure operatots The present discussion takes the latter alternative.

Given a seC of concrete values (the integer numbers, in the exampleggpov
the concrete domaiis usually the power-sgt(C'). Then, given the partially ordered
set(p(C), C) (whereC is just set inclusion), anpper closure operatofuco for short)
on(p(C), C)is afunctionp : p(C)—p(C) which ismonotoni¢cidempotenaindexten-
sive(i.e.,Vz. p(x) D x). For example, the ucp, for the sign abstraction is such that
p({2,3,4}) = {n|n>0} (i.e., all positive numbers plu®, p({—20, —5}) = {n|n<0}
(i.e., all negative numbers), and{—7,3}) = Z (since concrete values include num-
bers with different sign).

The set of all ucos op(C) is uco(p(C)). An upper closure operator is
uniquely determined by the set of its fixpoints, calkdktract values these are the
elementse of p(C') such thatp(z) = . Such a set is isomorphicto the abstract
domain.A which approximates the concrete domaifC). A setX C p(C) (i.e., a set
of sets of concrete values) is the set of fixpoints of a ucd iff aMoore-family i.e., if
X isequal to its Moore closutd1(X) = {nS| S C X} (wherenis the intersection on
all elements of5). In the following, p(v) will stand for p({v}) whenever{v} € p(C)
is a singleton.

A concrete computatiorf,y on p(C') can be abstracted to an abstract one
fa on A by providing the abstraction of values (as exemplified befwith the sign ab-

*® The use of ucos instead of Galois connections allows onettddyef the abstract domain by using a
subset of the concrete domain, isomorphic to it.

Class-level Non-Interference 11

straction) and operators. The abstraction of such a coriputa soundif the abstract
result is always a correct approximation of the concreteltegz. f,cy(z) C fa(z),
whereC meansnore concret®r more precisgi.e., identifying a smaller set of concrete
values.

Example 2.3

Let fo(cy(z,y) = z+y, and letA represent the sign abstraction. The¢n(z,y) will
take the abstraction af andy, and apply an abstract versienof + to get the result.
Let positive be{n|n>0}, andnegative be{n|n<0}. The abstract operator is defined as
positive® positive = positive, negativenegative = negative, positived negative =
negative ® positive = Z. In this casef 4 is a sound abstraction ¢, since the abstract
result will always include the concrete result. For examlger = 5 andy = 7; then
foo)(@,y) = 12, andfa(x,y) = p({z}) ® p({y}) = positive © positive = positive,
which includesl2 sincep({12}) = positive.

Abstraction formalizes the idea that is simpler thanp(C'), being (isomorphic to) a
subset of its. On the other hand, a computatfonon A can be less precise than its
corresponding concrete computatifin since valued” € C \ A cannot be used.

Example 2.4

Consider the abstraction of Example 2.3zif= 5 andy = 7, then f,c)(z,y) = 12
while f4(x,y) = positive, which is clearly less precise. Moreover,if = 5 and

y = =8, thenf,c)(z,y) = =3 and f4(z,y) = Z, which is even less precise than the
abstractiorp(—3)negative. This circumstance is callddcompletenes?.

If (C,T,L,V,A) is a complete lattice, thetuco(C),Tor, 1D, V', A’), or-
dered point-wise, is also a complete lattice where= A\z.z describes the identity
abstraction (i.e., the most concrete domdin= C, which does not lose any informa-
tion), andtop = Ax.T is the trivial abstraction mappinginto a singletond = {T}.

Thereduced product1 * of a set of domain$.A4; } is the most abstract domain
which is at least as concrete as aty formally, 1,.4; is the Moore closuréV (U; A;).
The intuition is that the reduced product collects all anly ¢ime information contained
in any of theA;.

Example 2.5

Let theparity abstractionp,, obey, as expected, ({—2, 6,8}) = {2n|n€Z} (the even
numbers)p,({—1,3}) = {2n + 1|n€Z} (the odd numbers), ang,({1,2}) = Z (any
number). Combining the sign abstraction with the parityti@zsion by means of the

12 Damiano ZANARDINI

reduced product gives an abstract domain which can disEhdretween positive even
numbers, positive odd numbers, negative even numbers,egalive odd numbers.

Notation will be often abused by referring toas the set of its fixpoints, i.e.,
x € p if z belongs to the domaiml generated by. In the present work, the role
of Abstract Interpretation is twofold: (i) it provides thadis for defining the security
property; and (ii) it gives the background for developing atic analyzer.

2.4 Abstract Non-Interference

Non-Interference can be weakened by modeling secrecyvediato some ob-
servable property, asbstractionof datd”. The observational power of an attacker is
limited to an abstraction, andsecureprogram is one which preserves confidentiality
(i.e., such that no illicit flows may arise) only w.r.t. thefdrmation the attacker can
observe. Let the concrete domain be thegs@t) of all properties on integers, where a
property is identified by the sdt C Z of values satisfying it. Upper closure operators
describe the ability of an attacker in observing data: ifdtiacker has precisign then
(s)he cannot distinguisty andwvs if p(vy) = p(vs2) (i.e., if the values have the same
property w.r.t.p).

P is secure for two abstract domainsndp, written []P(p), if no flows are
detected by observing public input and output data only wppeecision characterized
by, respectivelyy andp:

Vhi,li. 1(l) =n(z) = p([P]" (hi, 1)) = p([P]" (h2,12))

wherel; andh; are, respectively, values assigned to some public andtenpragram
variables. This means that, if andl, cannot be distinguished hy, then it is not
possible to guess data from the (abstracted by output. Standard NI is a special case
of ANI, corresponding tdiD]P(1D) (neither the input nor the output are approximated).

Unfortunately, flows may be detected, which are caused byaagsin the
public instead of the private input. These flows are cafledeptivesince they are not
really dangerous. A more general version of ANI, namely, p)-secrecy’, rules out
deceptive flows by computinfi°] on an abstraction of the input:

Vhili. n(l) =n(a) = p([P]" (¢(h1),n(1))) = p(IP]" ((ha),n(I2)))

Example 2.6
Consider Example 2.2: the assignmént= h? is no longer dangerous if the attacker
can only observe the sign of integers, since knowing the sfgndoes not give any

*6 This version is calle@bstract opposed to thearrow version introduced in the previous definition.

Class-level Non-Interference 13

C1 m’fl (..) can call public methods

(_privdata Y pub data

attacker

can access public fields

wants to infer something
about private data

Fig. 2 The program and the attacker

information on the input sign of. Therefore, there is nabstract flowfrom & to [, and
the program can be accepted.

In the following, we deal with(p, p, p)-secrecy: the class hierarchy data may
belong to will identify the abstract domain to be considefeds important to point out
that, in this case, the semantif8] is an abstract one, which only keeps track of type
information, as in(n, ¢, p)-secrecy.

2.5 A model of Object-Oriented Information Flow

Information Flow properties have been mostly defined on Engnguages.
Yet, advanced features in present-day Object-Orientegliages make a correct defini-
tion much harder to achieve in such an arduous frameworkeXample, it is no longer
clear what a high-security or low-security variable is,cgirvariables can be dynami-
cally declared. Particularly, in order to reasonably adaptNon-Interference notion

what an attacker can see of the output does not allow him otdecquire
(abstract) information about the secret input

to Javar, it is necessary to clarify (i) what a running program ig\{ihat attackers are
and can do; (iii) which data have to be protected (Figure 2).

[1] Attacked programs

The Javar program whose secrecy we want to investigate is considered t
be a collection of cooperating classes, which can be dyracttessed according to Java
access-control rules. The focus is on detecting whethdegfa interaction with a class
C may disclose its confidential data. An interaction can talkeform of an invocation
of a public methodn of C, or the access to some public fiefd A class is said to
be secureif all possible interactions are harmless, i.e., if it is possible to acquire
knowledge of its high-security data by interacting with pigblic (in the sense of the
Java access-control policy) part and reading low-securitrmation.

14 Damiano ZANARDINI

[2] Attackers

In this framework, attackers are programs which can intenaih external
classes” and aim at breaking their secrets by calling their methodscoessing their
fields. In other words, the systeattacker-attacked programs a complete program,
in the classic terminology, where th&in method lies in the attacker, and the attacked
program is rather to be seen as a library.

An attacker can only rea@' data (by field accessing) before and after calling
any methodn. If a dangerous flow arises i, then accessing data before and after its
execution should provide the attacker with confidentiadinfation. On the other hand,
it is not possible to observe extra information such as theusrnof allocated memory
or the execution time, which would entail additional flows.

Example 2.7
Let P allow dynamic variable declaration, withandh1 high-security.

if (p(h)) {
hl = x;

} else {
C i = new C();
hi =vy;

}

This fragment is secure if the observer can only see datadaefal after the statement.
In fact, i is no longer visible outside thelsebranch, so that it is not possible to guess
which path has been taken, and the valué.dflowever, two executions with different
values forh could be told apart if, for example, the attacker could sedartermediate
value of variables, or the amount of public allocated memeryn fact, executing the
else branch results in allocating additional memory.

[3] The security level of data

Java comes with field modifiefsublic, private and protected, which model
security requirements by regulating the direct access ta. d@hat is, a program is
rejected at compile time if, for example péivate field is accessed from an object of a
class which is not the one where it was declared. Howevetyte information can be
indirectly propagatedvia the return value of public methods. This is, indeed, drth®
keys of the idea oflata encapsulationvheregetYYYY methods are usually designed
to bring out internal (but not meant to be hidden completdath.

Non-Interference analysis enforces the property thaes@diormation should
not propagatethrough the computation. Because of encapsulation, siefoemation

Class-level Non-Interference 15

cannot be identified witlprivate data; therefore, a different strategy is needed to iden-
tify high-security information. New, ad-hoc modifiers amdad to the language as
code annotationsflowH and flowL specify, at the level of classes, that a field is to
be regarded, respectively, as high- or low-security (if nchsinformation is provided,
then the field is considered as low-security). Our securilcp requires that there
are no (abstract) flows frolowH fields toflowL fields or return values. ThufipwH
andflowlL are somehow orthogonal f@ivate and public, and program analysis must
enforce, say, that an attacker cannot accessbhc flowH field*”.

If fisdeclared aowH in D, then all the data stored in the fiefdf D objects
are considered as secret. Due to this choice, it is easy tesept high and low data:
each class has a set of high-security fields and a set of lourisgefields, and both can
be easily and statically decided from inspecting the pnogsgintax. GivenD where f
is flowH, if one wants some instaneeof D notto protect its fieldf, then a subclass
D’ of D, wheref is declared aflowl, must be added, andmust be an instance of
D’. This can be the case when the security policy requires teidena subset oD
instances in a special way as regards security, in spitein§structurally identical to
any otherD instances (note that, in OO languages, structural ideigtibsually what
makes two objects belong to the same class, so that, in tisemqiea setting, classes
may acquire an additional meaning).

Example 2.8
In the clas®D above,{D.I} is the set of low data, whil¢D.h} is the set of high data.
(The content of) Any field.h of an object of classD is considered as high-security.

Importantly, this representation loses information abwhich objects of a
given class flow into the observable part of the program. Hewdt automatically
(and soundly) deals witeharing®, since every object is somehow considered to im-
plicitly share with other objects in the same class.

63 Class-Oriented Abstract Non-Interference

Abstract Non-Interference is parametric lbow data can be observed by un-
trusted users, i.e., the degree of precision attackers Wwaea reading low-security
information. Given a universe of values, properties arg sttalues which share some
common behavior. In an Object-Oriented framewarksseshave a similar purpose:
they identify collections obbjectssharing the same internal structure. Therefore, mod-

*7 As a matter of fact, this combination of access-control modifsard security modifiers is legal but
somehow weird.

16 Damiano ZANARDINI

eling properties by means of classes is quite natural, #ssdieing exactly the property
of interest for a given object. In the present setting, progclasses are the kind of
properties an attacker can observe.

Identifying properties with classes reduces property kimgdto a sort of class-
directed program analysi8. Classes are ordered by the subclass relation: a class is
greater than any of its subclasses. A subclass models aspbtpy, i.e., a more precise
property since it is “satisfied” (by instantiation) by a steaket of values.

As for notation, depending on the context, nar6ed) etc. will denote either
sets of semantic values, classes, or properties, whilél stand for objects or values.
The subclass relatio’ =C is basicallyC’CC*? if ¢’ andC are considered as prop-
erties or sets of values. The predicat€ (or, sometimesyeC) holds if o has clasg”
(i.e., if o can be stored in a variable whose declared tyge)isOn the other hand::C
holds iff o is an instance of” (typically, an object created byrew C() instruction):
this amounts to saying thatC' and there is ndCC s.t.o:D. Finally, C| is defined as
the set of subclassd®|DCC} of C.

3.1 Class hierarchies as abstract domains

Consider a clas€’ (which, as discussed above, can also be regarded as a set
of objects), and let the concrete domaingi&'). A class hierarchyrooted atC (i.e.,
where the clas€’ is a superclass of all the other classes in the hierarjhgientifies a
subset of propertie® € p(C), i.e., an abstract domajn

Lemma 3.1

Let a class hierarchy rooted@tbe given, and let the concrete domaindi€©) whereOQ
is a set of instances of the claSor its subclasses. Let the functipn p(O) — ©(O)
be defined as followsp(O) is the smallest sed’ 2 O of objects such thad’ is the
set of all objects having clagds for some clas® in the hierarchy. Them is an upper
closure operator op(O).

Proof The functionp is clearly monotone: the larger the object set, the greater
the minimal class such that every object has this class.dlsis idempotent since the
result of applying once is a se®’ of values (all the values, actually) which have some
specific classD. Then, applyinge once again gives the sant® because, trivially.

O’ D 0/, and it already corresponds to the cldgsFinally, p is extensive because of

*8 Inclusion is not strict sinc€” instances which are nét’ instances are not guaranteed to exist.

9 Usually, we may want to ignore th@bject superclass, thus obtaining a set of hierarchies instead of a
single hierarchy rooted &@bject.

Class-level Non-Interference 17

the conditionO’ 2 O. [|

Example 3.1

Let C be the set of integers. In Java or Javat can be modeled by the clabgeger.
Let the semantic properties of sign be modeleg hythis domain can be represented by
the class hierarch{integer, PosCInteger, NegCInteger}, where, for example, objects
of classPos should contain a positive number. Subclasses should b@mepliwith
methods which encode their behavior with respect to theadtigiroperty. For example,
if 0:Pos, the method invocation.sum (new Pos(n)), which sums> andn, should be
declared to have return tygeos, while o’.sum (new Neg(n)) should be declared to
return aninteger with no sign indication ito":Integer (since the sign of the return value
is not statically decidable). Clearly, the definition ofseesubclasses should avoid that,
say, a positive number is written in the value field digg object, which would break
the required policy.

Given a set of value® € o(C'), p(D) is the smallest clas®’ € p such that
D C D’. Since no idea ofmultiple inheritancds allowed (note that Jaya does not
support interfaces), generally there is no subctdss both C; andCs which models
C1 N Cs (unlessC, CCy or CoCY). Therefore, to have closed under intersection, as
required by the definition of upper closure operators Bbt, empty class is supposed
to exist for every class hierarchy As a consequence, abstract domains which are
representable in this model are those where classes age rithted by—, or disjoint .

The declaration of a class abstract (i.e., which cannot be directly instanti-
ated) can give additional information to the class-basedlyais. For example, given an
abstract classC with C| = {C, C1, Cs}, the informationo:C' boils down too::C; v
0::Cy sinceo is guaranteed not to be an instanc&bfAlthough nothing changed from
the set-theoretic point of view, sin€e = C U Cs, this additional information can help
in the inference of non-dependency results, as shown inddest

3.2 Primitive types

Since values are identified with objects, the reader may dsthver primitive
types can be accounted for in this framework. Actually, &g only on classes means
to abstract awaythe value of data with primitive types.

Example 3.2
Let the clas€” have fieldsf of type D andg of typeint, ando be declared a€'. In this

*10 anguages like C++, which allow multiple inheritance, pemajiresenting a wider range of domains.

18 Damiano ZANARDINI

case, asking the runtime type @means asking if the object belongs to some subclass
of C. Also, asking the type o0é.f gives information about which subclass bfthe
stored value belongs to. However, there is no way to know siifch questions, the
value ofo.g nor any internal values of primitive type inf.

Clearly, it is possible to describe properties on primithega by encapsulating
them into classes. For examplet can be embedded intateger, and properties of
numbers can be represented by subclasses, as shown in EXahpl

3.3 The link to the Abstract Non-Interference theory
This section describes how ANI is related to the present wankl provides
basic ideas in order to understand how the analyzer worke prbgramP whose
secrets are to be broken takes the form, at runtime, of actiafeO of objects and’ of
classes which are available in the execution environntdenotes the set @xecution
states containing thectivation stackand theheapaccording to the concrete semantics.
Thevisible part(form the point of view of an attacker) efe £ consists of low-security
instance fields of objects i@, and low-security static fields of classe<in
Letey, e € &; theindistinguishability conditionc (£1, €2) holds if
e for every class”, objectsoy, 02:C' (note the use of instead of::) and low field
f,valueso;.f in ey andos. f in £2 belong to the same class(¢. f) is the value
of the field f of the objecb in the state):

AD. e1(01.f)::D Aea(oa.f):D

e for every classD and low static fieldy, D.g is an instance of the same class in
both states.
Given two sequences of values andvs, the indistinguishability conditiorc (7, 7)
is taken to be class equality for every two correspondinmelds.

The meaning of the condition is that two states cannot béndisished by
someone who can only check the class of low-security dataatfatker may try to
break the secrets @ by invokingo.m of o € O (or a statiaC.m of C' € C), and observe
the final state of the execution. TAdstract Non-Interference conditiemi (m) holds
for m if

IC (e1,82) ANIC (T1,T2) = IC (Joom (T1)] (1), [o-m (T2)] (g2))

where[o.m (v)] (¢) is the state obtained by executing with parameters in ¢ (return
value included). This means that, after executingn two states only differing (at
the abstract level) in their high-security part, the lowetgéty part of the output states

Class-level Non-Interference 19

cannot be distinguished. The attacked progfars secure (writteraNi (P)) if this
condition holds for every possible interaction betweengitigram and the attacker.

This definition is a special case of (an Object-Oriented tadam of) the Ab-
stract Non-Interference original setting. Next sectioi describe how the analyzer
tries to proveant (m).

84 Analysis of Non-Interference for class information

This section describes the analysis (calitaks-flow analysjsin its main fea-
tures. Itis basically a formalization based on Abstractiptetation, implemented as a
prototype in theCi ao ® Prolog system. The algorithm performs apstract execution
of a method which could be called from outside the progranmeustudy (possibly by
an untrusted user), and tries to detect illicit abstract $lékem high-security fields to
low-security fields or the returned value. As pointed oubbefa program is secure if
no method execution provokes illicit flows.

The abstract semantics relies on the notiorab$tract statesr € S. An
abstract stater consists of two parts: (1) global environmentmaps each static or
instance fieldf of the classC' to an abstract value; and (2) a frame-stack stores the
abstract value of local variables in the usual way (i.e., snapgocal variable in the
frame on top of the stack to an abstract value).

An abstract valuel” takes the formt, € V, whereX' is a set of classes, and
¢ € {H,L} is asecurity flagindicating the security level (high or low) of the corre-
sponding piece of data. Before starting the execution,ieldich are considered as
flowH by the policy are given the valug’,),,, whereC'is the declared class (remem-
ber thatC', is C plus all its subclasses), whifwL fields are given the valug”,), . As
regards notationy(C. f) is the abstract value of the fielfiof the clas<” in o, while
o(x) refers to the abstract value of the variablen the active frame of. Saying that
o(x) (resp.,o(C.f)) is (D;), means that (resp., the content of the fiell of some
instance ofC') can be instance of any class i, and does not contain any informa-
tion which has been propagated from high-security data. H@rnother hand, saying
thato(x) (resp.,o(C.f)) is (D), means, again, that the class is guaranteed to be one
amongD,, but does not guarantee anything about the security lefelifidividual
piece of data could also be low, Hdtis taken as a sound approximation).

20 Damiano ZANARDINI

Ordering< andleast upper boundl on abstract values are defined as

X/¢’ S X”¢// X/ g X”/\QS/ S ¢//
¢l S ¢// = ¢I:L Vi ¢//:H

X/¢/ u XI/¢// = (X/ U X//)¢/u¢//
o UG = {L ifd)/:(b/lzl-

H otherwise

In standard type theory, types are a partial order. A typebeaseen as an abstraction
of a set of valued. Whenz is given typer, andr has several subtypes, .., 7, it is
not possible, from the type representation, to guess whitie variabler belongs to.
On the other hand, our choice of representing abstract valseets of classes can be
more precise, and also allows us to exphtistract declarations.

Example 4.1

Let D be declared asbstract, and the (instantiable) classé¥ and D, be its sub-
classes. Suppose the abstract vaﬂmq,Dg}¢ be computed for an objeet This
means that the analysis cannot infer which subctabslongs to. Nevertheless, this
is more precise than the typing obtained with a type-based representation, but still
correct sinceD has no direct instances. In other words, both approachesfidéhe
same set of values. In fact, a typidgfor o implies that, according to the information
provided by the type representation, the object can belorany type amond, D,
andD,. This type models the abstract valub,), = {D, D1, D2}, which is less
precise thaq D1, D } 4 since it also include®). See Section 5 for an application.

Remark 4.1

We note that, due to how high- and low-security data are d&f{Section 2.5), there
is no need to keep a representation of the concrete hegpati.abstract heapin the
abstract states. In fact, consider two objegt@nd o, instances of the clags, such
that the objects stored in the fiefdof both are instances of the same class,uf
is high while o,.f is low. The security policy does not distinguish betwegnand
09: to its purposes, all instances ©fhave a fieldf which has to be (conservatively)
considered as high, since there is at least one object whedd¢ fis actually high — or
cannot guaranteed to be low. In other words, the securigl Is\a property which refers
to the fieldf of the clasq”, rather tharthe fieldf of an instance of the class”, and
the abstract state does not need an abstract heap in oraggrésent this information
accordingly.

Class-level Non-Interference 21

[+]}, (0) = (o(2)?, o)
.15 (o) =1s ((U{o'(C.f) | C € X7, "))
where (X%, . o') = [o]}, (o)
[C-f1E (o) = Ls ({a(C.£)?, o))
[new C(p1, ... pi)]% (0) = (ANALYZE 5, (C(VA,.., Vi)))?
where og=o0
Vi, i) = [pil}y (0i-1)
lo.m (p1, -, pi)]}, (0) = LS ((ANALYZEUk (Vom(V4, .., Vk)))¢)
where (V,, 00) = [0l (0) and (Vi ;) = [nill, (05-1)
[Cm (b1, s)], (0) = LS ((ANALYZE o ({C})m(Vas - Vi)))*)
where op=0 and (V;, o;) = [[p,;]]fﬁ (oi1)

Fig. 3 Rules for analyzing expressions

In Java and most imperative or Object-Oriented languadies, flows come
from (i) assigning a high-security value to a low variabldield (explicit flows; or (ii)
executing conditional statements or loops whose guardndispen high dataiplicit
flows. In detecting explicit flows, the main issue comes to be traputation of the
security level of expressions. An illicit flow is soundly assed to exist if a high-
security value is computed for an expression which will beigreed to a low-security
field or variable. Implicit flows are dealt with by means ofjlbal analysiswhich
remembers the security level under which a command is exdciftan assignment to
low data depends on a high-security guard, then its effeeig lpad to an illicit flow
even if the assigned value is low-security.

Next sections illustrate the formalization in its main gart

4.1 The computation of Abstract Values

In the assignment: = e, the structure of the expressienmight be quite
intricate: e.g., it can be a method call with side effects.erEfore, computing the
security levelp. of an expression is not trivial at all. Figure 3 shows how st
values can be computed. Thepression semanti@ﬁ takese, c€8, andg, and returns
a pair(value, resulting state). The goal of this abstract semantics is to find out whether
an expression contains information which must be regardedafidential.

The operatof]? raisesthe security level of a vaIue(:X¢/)d’” = Xy4. The
flag ¢ in [[e]]i (o) means that is computed under the security level The level under
which a computation is performed depends on whether exegtitie piece of code is

22 Damiano ZANARDINI

conditional on a high guard¢ comes to be the highest level of any guard the code
depends on (i.e., the guard of any conditional or iteratimestruct which surrounds
the program point under study). Every updating of low datdenid has to be seen
as an illicit implicit flow (see above). Note that the leaspapbound which is per-
formed in evaluating instance fields (second equation iritjuge) is not necessary in
the case of static fields, since the cl&$sn C.f is statically decided. The function
(ANALYZE , (Vom(...)))? is defined in the next section.

The functionLs (where the name stands flmwer singletol is only applied
to the first element of the pair (i.e., the abstract valuelpters the security flag of
a value when the class set is a singletosa((X,, o)) is (X, o) if X is a singleton,
and (X, o) otherwise. This operation is important since it shows hostralst data
dependencies may differ w.r.t. their concrete counterpart

Example 4.2

Let{C}, be the result of computin[ga]]i, (o), ando be the object computed by runtime
(concrete) execution. Thus;:C' certainly holds by soundness of the abstract seman-
tics. Since type information is all an attacker can see, ¢oeréty content ob can be
considered ak even ife contains high data. In fact, illicit flows do not occur sinbe t
class ofo is constant, so that it is indistinguishable by the attacKéiis is consistent
with the definition of Abstract Non-Interference for Objé&atiented programs, since
the uniqueness of the class implies that the right-handdidiee indistinguishability
condition (Section 3.3) is trivially satisfied. Typically; is a singletor{ C'} if C has no
subclasses; however, it can be the case, asunC'(), that the class is unique although
C does have subclasses.

As an example, consider tiﬂe.f]]i (o) rule in Figure 3. In this case, the object
o is first evaluated to get a set of classes (the classes might belong to at runtime)
and a security flag,. For every class itk’?, the abstract state contains information
about the security of the field. Since it is not known statically which class will be
needed, a least upper bound of all instances is computed.fldgef the result is
possibly raised if the computation is performed under a lgigdrd. FinallyLs lowers
the flag toL if every C. f can be statically said to be instance of the same, uniqus.clas

4.2 The analysis of Statements

The analysis of a method body needs to execute abstraanstatie and com-
pute abstract expressions. In the followindz < V] is theupdatedstates’ such that
o'(x) = V ando’'(y) = o(y) for everyy # x. Similarly, o [C.f + V1) is the up-

Class-level Non-Interference 23

EXEC, (C z) =0 [z + (C}),]

EXEC, (v = ¢)® =o' [z + Xy
where (Xy, o) = [e]’, (o)
EXEC, (0.f = €)® = 0" [X.f « X'y]

where (X,, o) = [o]}, (0) and (X'y, o) = [e]’, (o)
EXEC, (S1; S2)” = EXEC, (92)°
where o' = EXEC, (51)?
EXEC, (if(b) 51 else s5)? = EXEC,, (s1)?7" L EXEC,, (s2)?""
where (¢, 01, 02) = [b]* (o)

Fig. 4 Some rules for analyzing statements

dated state obtained by storifgin C. f. The set extension [X.f « V] is also easily
defined. Moreover, thepgradedstates’ = o [v « V] satisfieso’ (v) = o(v) UV
ando’(w) = o(w) for anyw # v. Figure 4 shows how statements are executed at the
abstract level, instead of being replaced. State upgrddiatead of simple updating) is
used since it is not known which instana@sf will be actually assigned to at runtime.
Therefore, the initial value of any field must be kept for tlaes of soundness, and
combined with the assigned value.

Example 4.3

Let o be given statically a valugD, D} with D;CD. Leto.f beH before the assign-
mento.f = e, ande be L. Updatingthe state would result in a finél flag for both
D.f andD;.f. This is unsound if the runtime class ofis D, sinceD.f would be
harmfully considered ak. Yet, upgradingis sound since th#l flag is kept forD. f as
a result of the least upper bound.

For a guard, the function[[b]]ﬁ (o) computes its flag in o, giving also two
abstract states corresponding to the two branches. Tlestaicludes the information
which can be extracted from assuming, as in the “then” braiettb was evaluated to
true, while o is the dual forfalse. Statesr; ando,, are different only when something
can inferred from the truth value of the guard. For examgl®,is = instanceof C,
assuming—b means that its class is not a subclass’of The instanceof guards are
the only case where this additional information can be okt Otherwise, class in-
formation is not enough for correctly describing the coiodial. Therefores; and
oo are both (conservatively) assumed to be the least upperdbafuhe abstract states
computed for each branch. In some cases, this improves #oesjom of the analysis;

24 Damiano ZANARDINI

however, it can be simply ignored if a simpler analysis isdeek

Example 4.4

Let b be (h == null), and the class set inferred at this program point for the high
identifierh be { D}. If the definition of[]* is followed, then the flag of should bel,
thus computingd. as the final flag ob. However, it is easy to see that this treatment
is unsound. In fact, the (concrete) boolean value of thedjisafar from being totally
determined by the class of since{null} is a strict subset of the set of possible runtime
values forv. Consequently, knowing thathas clas9 does not give information about
the branch which is taken, and no additional hypothesis eansked when examining
each of the branches.

The superscript in the expressiarec, (s)¢ means that the effects efon o
will be raised by (similarly to the definition oi[]]ﬁ): whenV is computed iy, its flag
¢y is raised topy U ¢. This is important in dealing with implicit flows, originai
from a high-security guard, whete= H.

4.3 The analysis of Methods

The function(ANALYZE , (V.m(...)))?, already used in Figure 3, deals with
the security analysis ahethods A method can be either invoked as a statement —
when there is no return value, or it is ignored — or as part oégoression. Lel”
andV;..Vy be abstract values obtained for the calling object and theahparameters
by previous abstract computations. The resultofALYzE (V.m(Vl..Vk.)))(b, is ob-
tained by the least upper bound of the abstract executiendheach instanc€’.m
such that’” = X, andC € X. More formally:

(ANALYZE o (X5.m(Vi, ., Vi))? = Ucex ((ANALYZEU (Cy.m(V4, ..,Vk)))‘z’/)
wherell works on both the return value and (by point-wise extensioa¥inal state:

(Xrg,,01) U(Xoy,,00) = (X1y, UAoy, , o1lo3)
(01 L|O'2)(id) = Ul(Zd) udg(id)

Importantly, when static methods and constructors are eroied, only one instance
C.m needs to be considered since the clags fixed.

The notationCy means that the flag of the caller is kept in the analysis
of eachC' method instance (it is stored in the local variabiés). This is another
difference with respect to standard Information-Flow gsigl, and it is also applied
to field access. Usually, in a compositional, syntax-bagpd-system approach, the

Class-level Non-Interference 25

analysis ofo.f or o.m (...) leads to arH flag whenevew is H. On the contrary, in
the present formulation, thte content ofo is not a sufficient condition for considering
o.f oro.m(...) as high-security. For example, letC' be high-security, and’, =
{C,C1,Cs}. Inall classesf has clasdD, andD; = {D} (i.e., D has no subclasses).
In this case, regardless of whethfis declared as high or low, f is to be considered
asL since its class is constant.

When a developer or a user wants to analyze a methatn the clas<” with
respect to class-based Information Flow, she or he will call

(ANALYZE ,, ({C}.m(V1, .., Vk)))L

where:
e theinitial abstract statg, is such that (1) every field of every class is assigned to
an abstract value according to its declared type and theigepalicy (Section
4); and (2) there are no local variables (since we are egtermethod);
e {C} is asingleton because the analysis focuses on a specifimaesofmn;
e the abstract valu¢C'}, corresponding to the caller has the flagpecause, in
principle, it will be “provided” by the attacker when calgjmn;
o forthe samereason, evelryis (Dj)L whereD! is the class of the corresponding
formal parameter;
e the abstract execution will be carried out under the Hagince the attacker is
supposed to have accessito
Such abstract execution computedeaotations,,, for m, i.e., the behavior of
the method with respect to the security property. This id Wwabwn in many areas of
semantics and static analysis: basically,maps states to states (plus the return value),
ando,, (o) is the final abstract state (plus the return value) when et in o. If m
calls another methodh’, then it is not possible to provide a denotation fewithout
first analyzingm’ (or many instances of it, if the class of the caller is notisly
decidable). Therefore, the analysis needs to
e studyingm using abottom value((), , o,) as the temporary denotation for’
—i.e., in the place of ANALYZE, (X¢.m’(V)))¢/ — whereo | (id) = 0 for
everyid; here,o, X, ¢, ¢’ and the abstract valués for the actual parameters
refer to the program point where’ is invoked in the body ofn;
e analyzem’ starting fromo, X, ¢, ¢’, andV/, thus giving a new resutt,, for
(ANALYZE, (X(b.m’(...)))“b/;
e going back tom and recomputing its denotation with the newly obtainggd

*11 Even if there is more than one declared inC, they are different by their signature.

26 Damiano ZANARDINI

instead of the bottom value used in the first step.

Sincem’ may, in turn, call other methods, and evenitself (mutual recur-
sion), the analyzer needs to implemeribgoint as usual in similar analysis techniques.
A queueis kept to manage the evaluation order of method instanceselédment of
the queue is a paifmethod description, initial information), where the method de-
scription is basically the method signature, and the inititormation is the abstract
information corresponding to the calling point of the methaVvhen the call ton’ is
found inm, the signature ofz” and the abstract information at the call point (icg.&t’,
®, ¢, andV as defined above) are inserted in the queue (in other wordis, marked
as “to-be-analyzed”). When the analysisrofhas finished (but is still incomplete be-
cause there was no final denotationef), the algorithm extracts a signature from the
gueue and analyzes it starting from the correspondingalriitformation. Afterm’ is
extracted and analyzed (which can involve inserting othethods, possiblyn, in the
queue, and iterating the process), a denotafjpnis computed. If the new denotation
is not smaller (point-wise, w.r.t. the ordering on abststates) than the previous one
obtained form/’, then the system inserts in the queue all the methods whit#doa’
with the same initial information, because the new denmtadbtained forn’ can lead
to a change in the denotation of such methods. On the other ldne new denotation
is smaller than or equal to the old one (i.e., mawinformation was acquired), then
nothing is inserted in the queue. More formally:

§y < = Vo.d (o) <sd"(0)
o' <so’ = Vid. o'(id) < o"(id)

The process goes on until the queue is empty, i.e., when notatém has to be re-
computed due to a change in another denotation. This meanha fixpoint has been
reached. Termination is guaranteed because denotatierdveays increasingiono-
tonicity) with respect to the ordering above, and abstract domamérate (since the
number of classes cannot be infinite).

4.4 Soundness

In order to discuss the soundness of the formalization rietessary to under-
stand what the security level of data me@mshe concrete world We concentrate on
the evaluation of expressions, depicted in Section 4.1.

Let p be the upper closure operator which maps a valteethe smallest class
C containing it (i.e., such that:C). It can be easily extended point-wise to sequences.
As for states, the abstractian= p(e) of a concrete execution statenaps every local

Class-level Non-Interference 27

variablev to its smallest class, and, for a figld f,
o(C.f) =U{D | Je.oc = p(e) A Join the heap of. £(0)::C ANe(o.f)::D}

Consider two concrete states ande,, and their abstract counterpatts =
p(e1) andos = p(es). The Abstract-Non-Interference condition (derived froeafini-
tions in Section 3.3) for an expressieramounts to saying that evaluatiagn o, and
o yields two objectsd; ando-, respectively) of the same class (i.e., there exists a class
D such thab,::D andos:: D), provided alllow fieldsC. f have the same classédn and
9. More formally: for everye; andes, o1 = p(e1) andos = p(e2)

(VC.f low. (01)(C.f) = (02)(C.f)) = [e] o1 = [€] o2

If the above condition holds, thenis said to beexp-low It must be pointed out that, in
the spirit of theabstractversion of ANI (Section 2.4), the semantifswhich is used

to evaluate: is an abstract one, only dealing with class information. 3tiendness of
the analysis of (terminating) expressions is stated inaheviing proposition.

Proposition 4.1

Let X, be the result of computin@]]io (o). Then, for every concrete statewhose
abstractiorp(¢) is o, the following holds forfe] (¢) provided the concrete computation
actually terminates:

1. thereexistD € X suchthafe] (¢)::D (here, the semantics is concrete); and
2. ¢isLonlyif eisexp-low

Proof
e First, ¢ is taken to be., so that there is no need to consider the operftor
This choice does only affect item 2. of the proposition.

— Item 1. holds easily by observing that, as far as the comipuataf the class
set is concerned, the algorithm describes a standard atedgses, which
over-approximates the set of runtime classes.

— Item 2. follows from observing that = L may hold if (i) e has only low
sub-expressions, so that combining them is low; or (i) tles< of thee is
unique and decidable. In both casess clearlyexp-low

e Inthe case ofy, = H, the operatof]*® must also be taken into account. Here,
there two possibilities:

— Ls does not lower the result ta then soundness is trivially guaranteed,;

— the result, which was raised i, is lowered byLs: in this case, the class of
e is guaranteed to be fixed, so thast e-low.

28 Damiano ZANARDINI

If e is or contains a method call, then the proof needs soundoetsefanalysis
of method execution (see below).
[

This amounts to saying that (1) the set of classes inferretthéwabstract se-
mantics includes the real, concrete class of the expregsiany compatible concrete
state (where “compatible” means that the abstractionigfincluded ino); and (2) the
analyzer considers the expression as low-security (ileey@&no high-security informa-
tion has been propagated) only if the expression really is.

The rest of the soundness proof comes from the the soundhesanalard
Al-based tools for program analysis, mentioned in the disimn of Section 4.3 about
the interprocedural part of the formalization (combinirgndtations). In particular, the
analysis of statements and method execution obeys theaeatefimition of a sound
abstract semantics for an Object-Oriented languaie

85 An example

The code in Figure 5 shows an important main feature of théysisa it is
possible to accept programs which would be rejected by alatdriNon-Interference
analyzer. We focus oAclass.flow(Dsup, Dsubl)Esup: it computes an expression by
calling three methods. We study whether the return valuengpon high information
whendl andd?2 are high.

First, we note thatil may belong to any of thBx classes, except the abstract
classedDsup andDsub2sub. ThereforegetC() must be evaluated for all non-abstract
classes. The key point igetC() is that, although the declared return clas€ssp,
it can be statically inferred to be eith€subl or Csub2. Therefore, by least upper
bound, the abstract evaluationdif.getC() yields {Csub1, Csub2}, . This was possible
sinceDsup is abstract, so thafsup — i.e., the return type obsup.getC — is not to
be dealt with. Here, it is possible to see how using sets aselacan indeed make a
difference (see Section 4): excludifgup.getE() from the computed instances allows
one to get rid ofCsup.getE, which return€sup. On the other hand, botBsubl.getE()
andCsub2.getE() returnEsub?2 (in the former, analysis of guards permitted to exclude
theelsebranch).

Consequentlyfsub2.chooseOne() is the onlychooseOne instance to be con-
sidered. This shows another use of using class sets: we doeedtto consider the
downward closure oEsub2 — as it would have happened using a less expressive rep-
resentation of abstract values — which would have involvdtba from the high-
security fieldoneHighCfield via Esub2sub.chooseOne(). Instead, no fillicit flows are

Class-level Non-Interference

29

class Aclass {
Esup flow (Dsup d,Dsubl d1) { return ((d.getC()).getE(dl)).chooseOne(); } }

class Csup {
flowL Esup oneLowEfield; flowH Esup oneHighEfield;
Esup getE(Dsup d) { return oneHighEfield; } }
class Csubl extends Csup {
Esup getE(Dsup d) { if (d instanceof Dsubl)
{ return new Esub2(d) } else { return oneHighEfield }}}

class Csub2 extends Csup {
Esup n(Dsup d) { return new Esub2(d); } }

class Csub3 extends Csup {
Esup getEaux(Esup e) { return new Esup(); }
Esup getE() { return getEaux(oneHighEfield); } }

abstract class Dsup {
abstract Csup getC(); }

class Dsubl extends Dsup {
Csup getC() { return new Csubl(); } }

class Dsublsubl extends Dsubl {}
class Dsublsub2 extends Dsubl {}

class Dsub2 extends Dsup {
Csup getC() { return new Csub2(); } }

abstract class Dsub2sub extends Dsub2 {}

class Dsub2subSubl extends Dsub2sub {
Csup getC() { return new Csub2(); } }

class Dsub2subsub2 extends Dsub2sub {
Csup getC() { return new Csub2(); } }

class Esup {
flowH Csup oneHighCfield; flowL Csup oneLowCfield;
Csup chooseOne() { return oneLowCfield; } }

class Esubl extends Esup {}

class Esub2 extends Esup {
Esub2(Dsup d) {} }

class Esub2sub extends Esub2 {
Csup chooseOne() { return oneHighCfield; } }

Fig. 5 The Javar code

30 Damiano ZANARDINI

(Dsub2sub)

Dsublsubl / \
Dsub2subSub

Dsub2subSub2

Esub2sub

Fig. 6 The abstract behavior of methods

detected because the low-securibeLowCfield is returned by thésub2 instance of
chooseOne(); the final value comes to bECsup, Csubl, Csub2, Csub3},. Figure 6
shows the analysis in its main steps.

§6 Conclusions and future work

The present work introduces an application of Abstract Ndarference to
a non-trivial subset of Java, where the class of data is thpepty of interest. By
defining abstract properties as classes, the task of degedicit information flows
can be reduced to finding low-security mublic, as in most part of the literature) data
whose type after a method execution depends on the inipal &f some high-security
(private) data. This is a sort of type-based dependency analysisshwihacks how
class information propagates. The result is substantififfgrent from standard Non-
Interference verification, since

- it models a weaker property; i.e., it does not distinguishMeen any two in-
stances of the same class;

- itis not completely syntax-based, so that data can be deresi as low-security
even if they are (syntactically) made of high-security galots (e.g., consider
andf in o.f: usual type systems are typically syntax-based, sodttfatannot
be low-security unlessis).

As shown in examples (Section 1.3), this security frameveark model requirements
such as hiding the implementation details of a data stractoir preventing external

Class-level Non-Interference 31

users from observing information contained in the classatd.d

6.1 Future work

The main direction of future work is towards the implemeiotatof a real
analyzer; the current tool is a prototype which can be imgdand optimized in several
ways (e.g., the efficiency of the fixpoint, the internal reyeretation of abstract values,
etc.). This would lead to a more efficient and possibly moexise analysis, capable
of soundly accepting (i.e., proving the correctness of) dewset of programs.

Moreover, a larger subset of Java would be worth considgiingarticular the
use of exceptions, which can be an important source oftiflimivs. The definition of
Abstract Non-Interference in such an enlarged contextrdesdurther work, also from
the theoretical point of view.

Finally, the present framework could be part odPeof-Carrying-code® ar-
chitecture. In a Proof-Carrying-code schema for Java, tite eiser may want to be
sure that the bytecode program (s)he receives is safe, amaralgram is not executed
unless the producer provides a correctness proof for theedggnd required) security
property. The inclusion in a Proof-Carrying-code architeg would involve translating
the analysis — or its result on source code, if the soundniebea@ompiling process
w.r.t. the security property is also proven — to the level yiloode, since the user will
be interested in verifying low-level programs rather thaarse code.

Acknowl edgment This work was funded in part by the Information & Com-
munication Technologies program of the European Commisdtoture and Emerg-
ing Technologies (FET), under the IST-1590BBIUS project and the ICT-231620
HATSproject, by the Spanish Ministry of Science and InnovatidhQINN) under the
TIN-2005-09207MERIT and the TIN-2008-0562®OVESproject, the HI2008-0153
(Accion Integrada) project, the UCM-BSCH-GR58/08-910502 Rese@roup and by
the Madrid Regional Government under the S-0505/TIC/BBDMESA®roject and
the S2009TIC-146®ROMETIDOSoroject.

References

1) M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculusependency. In
Proc. ACM Symp. on Principles of Programming Languageges 147-160, San Anto-
nio, Texas, USA, January 1999. ACM Press.

2) T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for informationwflm object-
oriented programs. In S. Jones, edifdrpc. ACM Symp. on Principles of Programming
LanguagesCharleston, South Carolina, USA, January 2006. ACM Press.

32

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)
13)

14)

15)

16)

17)

18)

Damiano ZANARDINI

A. Banerjee and D. Naumann. Stack-based access control eme: $eformation flow.
Journal of Functional Programmin@(15):131-177, March 2005.

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, Bpéz, and G. Puebla. The
Ciao System. Reference Manual (v1.13). Technical report, Sdid@omputer Science
(UPM), 2006. Available aht t p: / / www. ci aohone. or g.

I. Cartwright and M. Felleisen. The semantics of program depem=detn Proc. SIG-
PLAN Conf. on Programming Language Design and Implementgbtages 1327, Port-
land, Oregon, USA, 1989. ACM Press.

S. Chong and A. Myers. End-to-end enforcement of eraswledanlassification. In
Proc. IEEE Computer Security Foundations SymposiRittsburgh, Pennsylvania, USA,
June 2008.

P. Cousot. Types as abstract interpretations, invited pap&romn ACM Symp. on Prin-
ciples of Programming Languagegages 316-331, Paris, France, January 1997. ACM
Press.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice favdgatic analysis
of programs by construction or approximation of fixpoints. Aroc. ACM Symp. on
Principles of Programming Languagegages 238-252, Los Angeles, California, USA,
1977. ACM Press.

P. Cousot and R. Cousot. Systematic design of program analysieviarks. InProc.
ACM Symp. on Principles of Programming Languageages 269—-282, San Antonio,
Texas, USA, 1979. ACM Press.

R. Giacobazzi and |. Mastroeni. Abstract non-interferencerarReterizing non-
interference by abstract interpretation. In N. Jones and X. LeraggredProc. ACM
Symp. on Principles of Programming Languageages 186—197, Venice, Italy, January
2004. ACM Press.

R. Giacobazzi and |. Mastroeni. Proving abstract non-interéere InProc. Conf. on
Computer Science Logigolume 3210 of ecture Notes in Computer Scienpages 280—
294, Karpacz, Poland, 2004. Springer-Verlag.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstracpiiatations complete.
Journal of the Association for Computing Machine4y (2):361-416, 2000.

J. Goguen and J. Meseguer. Security policies and security mddd®soc. IEEE Symp.
on Security and Privagypages 11-20. IEEE Computer Society Press, 1982.

I. Mastroeni and D. Zanardini. Data Dependencies and ProgliamgS from Syntax to
Abstract Semantics. IRroc. Workshop on Partial Evaluation and Program Manipula-
tion, pages 125-134, San Francisco, California, USA, January 2008l Press.

A. Myers. JFlow: practical mostly-static information flow control. Aroc. ACM Symp.
on Principles of Programming Languagesages 228-241, San Antonio, Texas, USA,
January 1999. ACM Press.

G. Necula. Proof-Carrying Code. Rroc. ACM Symp. on Principles of Programming
LanguagesParis, France, January 1997. ACM Press.

J. Palsberg and M. Schwartzbach. Object-oriented type infereimcA. Paepcke, edi-
tor, Proc. Conf. on Object-Oriented Programming Languages, Systerd#\pplications
volume 26 ofACM SIGPLAN Noticepages 146-161, Phoenix, Arizona, USA, Novem-
ber 1991. ACM Press.

Uday S. Reddy. Obijects as closures: Abstract semantics of asjented languages. In
In Proc. ACM Conference on Lisp and Functional Programmipages 289-297. ACM
Press, 1988.

Class-level Non-Interference 33

19)

20)

21)

22)

23)

24)
25)

26)

27)

X. Rival. Abstract dependences for alarm diagnosis. In K. YtpedProc. Asian Symp.
on Programming Languages and Syster@ume 3780 ofLecture Notes in Computer
Sciencepages 347-363, Tsukuba, Japan, November 2005. SpringagVe

A. Sabelfeld and A. Myers. Language-based information-flawursy. IEEE Journal
on Selected Areas in Communicatip8%(1):5-19, January 2003.

S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Orientegr&mns. In C. Han-

kin, editor, Proc. Symp. on Static Analysigolume 3672 ofLecture Notes in Computer
Sciencepages 320-335, London, UK, August 2005. Springer-Verlag.

F. Spoto and T. Jensen. Class Analyses as Abstract Interprstafidinace Semantics.
ACM Transactions on Programming Languages and Syst25{5):578-630, September
20083.

D. Zanardini. Higher-Order Abstract Non-Interference. IfJByczyn, editor,Proc.
Int. Conf. on Typed Lambda Calculi and Applicatiprelume 3461 olecture Notes in
Computer SciencéNara, Japan, April 2005. Springer-Verlag.

D. Zanardini. Abstract Non-Interference in a fragment of Jasacode. IrProc. ACM
Symp. on Applied ComputinBijon, France, April 2006.

D. Zanardini. Analyzing Non-Interference with respect to ClastePBroc. Italian Conf.
on Theoretical Computer Sciend@oma, Italy, October 2007. World Scientific.

D. Zanardini. The Semantics of Abstract Program Slicing.Pioc. Int. Workshop on
Source Code Analysis and ManipulatjdBeijing, China, September 2008. IEEE Com-
puter Society Press.

S. Zdancewic and A. Myers. Robust declassificationPrbt. IEEE Computer Security
Foundations Workshgmpages 15-23, Cape Breton, Nova Scotia, Canada, June 2001.

