
Termination Analysis of Programs with Complex Control-Flow

Análisis de Terminación de Programas
con Controles de Flujo Complejos

TESIS DOCTORAL

Jesús Javier Doménech Arellano

Director: Samir Genaim

Facultad de Informática
Universidad Complutense de Madrid

Madrid, octubre de 2020

Análisis de Terminación de Programas
con Controles de Flujo Complejos

TESIS DOCTORAL

Memoria presentada para obtener el grado de doctor en
Ingenieŕıa Informática por

Jesús Javier Doménech Arellano

Dirigida por el profesor:
Samir Genaim

Facultad de Informática
Universidad Complutense de Madrid

Madrid, octubre de 2020

Termination Analysis of Programs with Complex Control-Flow

Ph.D. Thesis Dissertation

Dissertation presented to obtain the degree of
Ph.D. in Computer Science by

Jesús Javier Doménech Arellano

Supervised by:
Samir Genaim

Facultad de Informática
Universidad Complutense de Madrid

Madrid, October 2020

Financial Support. This work was funded partially by the EU project FP7-ICT-610582

ENVISAGE: Engineering Virtualized Services, by the EU project RTI2018-094403-B-C31, by

the Spanish MICINN/FEDER, by the MINECO projects TIN2012-38137 and TIN2015-69175-

C4-2-R, by the CM projects S2013/ICE-3006 and S2018/TCS-4314, and by the pre-doctoral

UCM CT27/16-CT28/16 grant.

Resumen

El problema de la terminación de un programa es fundamental en la informática y ha
sido objeto de estudio de numerosas investigaciones. La técnica mejor conocida, y más
frecuentemente utilizada, para demostrar terminación es la del uso de funciones de clasi-
ficación (ranking functions). Estas funciones relacionan los estados del programa con los
elementos de un conjunto ordenado bien-fundado, tal que el valor desciende en estados
consecutivos del programa. Como descender en un conjunto ordenado bien-fundado no se
puede hacer de manera infinita se demuestra la terminación del programa. En esta tesis,
abordamos el problema de terminación para Sistemas de Transiciones (Transition Sys-
tems) con valores numéricos, que son una representación de programas muy comúnmente
utilizada en los análisis de programas. Los Sistemas de Transiciones están definidos por
Grafos de Control de Flujo (Control-Flow Graphs) donde las aristas están anotadas con
fórmulas describiendo las transiciones que hay entre los nodos correspondientes.

A diferencia de la terminación de programas en general, que es indecidible, los prob-
lemas algoŕıtmicos de detección y generación de funciones de clasificación pueden ser re-
sueltos dadas ciertas elecciones de la representación del programa y la clase de funciones
de clasificación. Numerosos investigadores han propuesto dichas clases; en algunos casos,
los problemas algoŕıtmicos han sido completamente resueltos, y se provee de algoritmos
eficientes, mientras que en otros casos permanecen todav́ıa como problemas abiertos.
Además de demostrar terminación, algunas clases de funciones de clasificación también
sirven para determinar la cota de la longitud de la ejecución, muy útil en aplicaciones
como el análisis de coste (cost analysis).

Debido a consideraciones prácticas, las herramientas de análisis de terminación suelen
centrarse en clases de funciones de clasificación que puedan ser sintetizadas eficientemente.
Normalmente, el análisis comienza con una clase simple y, si falla, se usan clases más ricas
y, posiblemente, más caras en ejecución. Aún aśı, entender los aspectos teóricos de estas
clases es importante incluso en la práctica porque comprender los ĺımites y las propiedades
de los problemas subyacentes ayuda en el diseño de mejores algoritmos.

El tema de esta tesis se basa en el campo de la demostración de terminación de sistemas
de transiciones numéricos usando funciones de clasificación, en concreto, sistemas de
transiciones con controles de flujo complejos y funciones de clasificación que son lineales
o tuplas de funciones lineales. Los principales objetivos son: (i) el estudio de propiedades
de las clases de funciones de clasificación que no han recibido todav́ıa suficiente atención y,
aśı, promover su uso para mejorar la precisión de los análisis de terminación en la práctica;
y (ii) desarrollar otras técnicas para mejorar la precisión de los análisis de terminación,
en particular, usando transformaciones de programas.

Las funciones de clasificación multi-fase (Multiphase ranking functions) son una clase
importante que no se ha estudiado lo suficiente en la literatura, y en esta tesis, nuestro
objetivo es estudiarlas. Este tipo de funciones de clasificación es usado para demostrar
la terminación de programas en los que la ejecución progresa por medio de un número
de fases. Estas funciones son tuplas de funciones lineales 〈ρ1, . . . , ρd〉 donde ρi decrece
durante la fase i-ésima. Nuestro trabajo proporciona nuevos conocimientos importantes
sobre las funciones de clasificación multi-fase para bucles definidos por la conjunción de
restricciones lineales, que son un caso especial de los sistemas de transiciones. Concre-
tamente, para el problema de decisión de la existencia de una función de clasificación
multi-fase que busca determinar si dado un bucle, este admite una o no; y el correspondi-
ente problema acotado de decisión que restringe la búsqueda a funciones de clasificación

i

multi-fase con una profundidad d, donde d es parte de la entrada. La decibilidad y com-
plejidad del problema cuando está restringido a d como parámetro de entrada han sido
resueltas, mientras que, en esta tesis, progresamos respecto al problema de existencia sin
una cota de profundidad dada.

Nuestro nuevo enfoque, aunque no llega a ser un procedimiento de decisión para el
caso general, revela información importante sobre la estructura de estas funciones. Cu-
riosamente, relaciona el problema de buscar una función de clasificación multi-fase con
el problema de encontrar conjuntos de recurrencia (usados para demostrar no termi-
nación). También, ayuda a identificar las clases de bucles para los que las funciones de
clasificación multi-fase son suficientes, y aśı tener cotas en tiempo de ejecución lineales.
Para el problema de existencia acotado por profundidad, obtenemos un nuevo método
de tiempo polinómico que puede proporcionar también pruebas para respuestas negati-
vas. Para obtener este método, introducimos una nueva representación para los bucles
que otorga nueva información importante sobre las funciones de clasificación multi-fase
y la terminación de los bucles en general, información que seŕıa dif́ıcil de ver usando las
representaciones estándar.

Otro enfoque habitual para mejorar la precisión en análisis de programas en general,
no solo en terminación, está basado en el uso de transformadores de programas para
simplificar el flujo de control, lo que también se conoce como técnicas de Refinamiento de
Controles de Flujo (Contro-Flow Refinement). Varias de estas técnicas han sido sugeri-
das para diferentes modelos de programación, pero están hechas a medida para análisis
concretos. En esta tesis, sugerimos el uso de técnicas de transformación de programas de
uso general para el refinamiento de controles de flujo, en particular sugerimos el uso de
Evaluación Parcial (Partial Evaluation).

Usar evaluación parcial para el refinamiento de los controles de flujo tiene la clara
ventaja de que la validez de la transformación se obtiene de las propiedades generales de la
evaluación parcial. Usamos un algoritmo de evaluación parcial que incorpora abstracción
basada en propiedades, y vemos cómo la correcta elección de propiedades nos permite
demostrar terminación e inferir el coste de programas complicados que no pueden ser
tratados por las herramientas del estado-del-arte. Aportamos una (profunda) integración
y evaluación de esta técnica en un analizador de terminación, y la usamos como un paso
de pre-proceso para varios análisis de coste. Además, proveemos de una implementación
independiente que puede ser usada con poco esfuerzo para añadir refinamiento del control
de flujo a herramientas de análisis de programas existentes.

Aportamos también iRankFinder, un analizador de terminación que implementa,
entre otras cosas, todas las técnicas desarrolladas en esta tesis. Aśı como, una evaluación
experimental de iRankFinder que demuestra la utilidad de las técnicas. iRankFinder
puede ser usado por medio de la ĺınea de comandos o v́ıa interfaz web. Sin embargo, en
lugar de construir una interfaz web hecha a medida para iRankFinder, en esta tesis,
hemos desarrollado un conjunto de herramientas de código abierto, llamado EasyIn-
terface, que simplifica el proceso de construir interfaces de usuario para prototipos
de herramientas de investigación, y aśı mejorar la difusión de la correspondiente investi-
gación.

Palabras Clave: Análisis de Terminación y de No terminación. Funciones de Clasifi-
cación. Conjuntos Recurrentes. Refinamiento de Controles de Flujo. Evaluación Parcial.

ii

Abstract

The problem of program termination is fundamental in Computer Science and has been
the subject of voluminous research. The best known, and often used technique for proving
termination is that of ranking functions. These are functions that map the program
states to the elements of a well-founded ordered set, such that the value descends on
consecutive program states. Since descent in a well-founded set cannot be infinite, this
proves termination. In this thesis, we address the termination problem for Transition
Systems with numerical variables, which is a very common program representation that
is often used in program analysis. They are defined by Control-Flow Graphs where edges
are annotated with formulas describing transitions between corresponding nodes.

Unlike termination of programs in general, which is undecidable, the algorithmic prob-
lems of detection or generation of a ranking function can well be solvable, given certain
choices of the program representation, and the class of ranking functions. Numerous re-
searchers have proposed such classes; in some cases, the algorithmic problems have been
completely settled, and efficient algorithms provided, while other cases remain as open
problems. Besides proving termination, some classes of ranking functions also serve to
bound the length of the computation, useful in applications such as cost analysis.

Due to practical considerations, termination analysis tools typically focus on classes
of ranking functions that can be synthesised efficiently. Typically, the analysis starts with
a simple class of ranking functions, and on failure, other richer classes, and possibly more
expensive, are used. Understanding the theoretical aspects of such classes is still impor-
tant even in practice because understanding the limits and properties of the underlying
problems helps in designing better algorithms.

The topic of this thesis lies in the field of proving termination of numerical transition
systems using ranking functions, in particular, transition systems with complex control-
flow and ranking functions that are linear or tuples of linear functions. The main goals
are: (i) study properties of classes of ranking functions that have not received enough
attention yet, and thus promote their use for improving the precision of termination
analysis in practice; and (ii) develop other techniques for improving the precision of
termination analysis, in particular using program transformations.

Multiphase ranking functions are important ranking functions that have not been
studied enough in the literature, and in this thesis, we aim to study this class. This kind
of ranking functions is used to prove termination of programs in which the computation
progresses through a number of phases. They consist of linear functions 〈ρ1, . . . , ρd〉 where
ρi decreases during the ith phase. Our work provides new important insights regarding
multiphase ranking functions for loops described by a conjunction of linear constraints,
which are a special case of transitions systems. In particular, for the decision problem
existence of a multiphase ranking function which asks to determine whether a given loop
admits a multiphase ranking function; and the corresponding bounded decision problem
that restricts the search to multiphase ranking functions of depth d, where d is part of
the input. The decidability and complexity of the problem when d is restricted by an
input parameter have been settled, while in this thesis, we make progress regarding the
existence problem without a given depth bound.

Our new approach, while falling short of a decision procedure for the general case,
reveals some important insights into the structure of these functions. Interestingly, it
relates the problem of seeking multiphase ranking functions to that of seeking recurrent
sets (used to prove non-termination). It also helps in identifying classes of loops for which

iii

multiphase ranking functions are sufficient, and thus have linear runtime bounds. For the
depth-bounded existence problem, we obtain a new polynomial-time procedure that can
provide witnesses for negative answers as well. To obtain this procedure, we introduce a
new representation for loops, which yields new important insights on multiphase ranking
functions and termination loops in general, that are very difficult to see when using the
standard representation.

Another common approach for increasing the precision in program analysis in general,
not only termination, is based on using program transformations to simplify the control-
flow, which is also known as Control-Flow Refinement. Several such techniques have
been suggested for different programming models, but they are typically tailored for
a particular analysis. In this thesis, we suggest the use of general-purpose program
transformation techniques for control-flow refinement, in particular partial evaluation.

Using partial evaluation for control-flow refinement has a clear advantage over other
approaches in that soundness follows from the general properties of partial evaluation.
We use a partial evaluation algorithm incorporating property-based abstraction, and
show how the right choice of properties allows us to prove termination and to infer the
complexity of challenging programs that cannot be handled by state-of-the-art tools. We
report on the (deep) integration and evaluation of the technique in a termination analyser,
and its use as a pre-processing step for several cost analysis. We also provide a stand-
alone implementation that can be used with little effort to add control-flow refinement
to existing program analysis tools.

We also report on iRankFinder, a termination analyser that implements, among
other things, all techniques developed in this thesis. We report on an experimental eval-
uation of iRankFinder that demonstrates the usefulness of the techniques developed
in this thesis. iRankFinder can be used from a command-line or via a web-interface.
However, instead of building a web-interface that is tailored for iRankFinder, in this
thesis, we have developed an open-source toolkit, called EasyInterface, that simpli-
fies the process of building GUIs for research prototypes tools, and thus improve the
dissemination of the corresponding research.

Keywords: Termination and Non-termination Analysis. Ranking Functions. Recur-
rent Sets. Control-Flow Refinement. Partial Evaluation.

iv

Agradecimientos

Esta tesis no habŕıa sido posible sin la compañ́ıa y colaboración de muchas personas que
han ido aportando granitos de arena e incluso grandes ladrillos en la edificación de este
trabajo.

Por eso, no puedo nombrar primero a otro que mi director Samir Genaim que ha
llevado sus funciones más allá del deber, ha sido paciente, accesible, dispuesto a gastar
horas y a no perder un segundo, ha sido compañero y gúıa desde el principio. Simplemente
gracias.

En segundo lugar, quiero agradecer todo el tiempo y dedicación otorgados por Elvira
Albert, la Investigadora Principal del grupo COSTA que decidió apostar por un estu-
diante de cuarto año y enseñarle los entresijos de la investigación en la universidad.
Junto a ella, quiero agradecer al resto de miembros del grupo que siempre que han
tenido oportunidad han aportado su granito de arena, ya sea preparando transparencias,
explicando los conceptos más básicos o tomando un café.

Quiero agradecer a John P. Gallagher, que me acogiera durante tres meses, y a Amir
M. Ben-Amram, dos investigadores con los que he tenido el honor de poder trabajar y
publicar.

El Aula 16 ese espacio donde tan pronto eramos cinco que cincuenta, ah́ı he descubierto
a verdaderos compañeros entre los que querŕıa mencionar especialmente a Marta Caro,
Cristina Alonso, Antonio Calvo y Joaqúın Gayoso. Ellos han sido una constante en el
d́ıa a d́ıa de estos cuatro años. Gracias también a Alicia Merayo, no ha sido una ni dos
peleas con su trabajo y el mı́o las que hemos batallado. Especialmente gracias a Pablo
Gordillo y Miguel Isabel compañeros de todo, carrera, máster y esta etapa que vamos
cerrando. Juntos nos hemos enfrentado a todo: clases, trabajo, papeleo imposible, copas
y cafés, sin vosotros esto habŕıa sido más dif́ıcil. Quiero mencionar aparte a Luisma
Costero que, siendo compañero como el resto, siempre ha sido más testigo de mi boda,
cervezas interminables, planes de cabras y montañas, un amigo.

Para el final dejo a quienes lo son todo, mis padres, que me han dado todo y me
han convertido en quien soy, y hermanos, los incansables, siempre juntos los que me
aguantaban d́ıa a d́ıa y me acompañaron cuando formé mi propia familia. Ana, esposa,
gracias por ser tú, por estar ah́ı, por quererme y aguantarme, por decirme SI, por iniciar
una aventura mayor conmigo, por ser mi esposa y madre de nuestros hijos, por tu paciencia
en las largas noches y cortos d́ıas.

A Quien lo baña todo y a todos ellos, gracias por hacer de esta tesis una experiencia
inolvidable.

v

Acknowledgments

This thesis would not have been possible without the collaboration of many people who
have supported me along these years.

I cannot name first other than my advisor Samir Genaim who has gone above and
beyond the duty, he has been patient, accessible, willing to spend hours but not to waste
a second. He has been a colleague and a guide from the beginning.

Secondly, I would like to thank all the time and dedication given by Elvira Albert, the
IP of the research COSTA group. She decided to bet on a fourth-year student and teach
him the ins and outs of the research at the university. I would also want to thank the rest
of the members of the group who have contributed with their expertise, whenever they
have had the opportunity, either by preparing slides, explaining the most basic concepts
or having a coffee.

I am also grateful to John P. Gallagher, who hosted me for three months, and Amir
M. Ben-Amram, two researchers with whom I have had the honor of being able to work
and publish results.

Mention apart requires Aula 16, that space where I have discovered trustworthy col-
leagues, among whom I would especially like to mention Marta Caro, Cristina Alonso,
Antonio Calvo and Joaquin Gayoso. They have been a constant in the day a day of these
four years. Thanks also to Alicia Merayo, it has not been one or two fights against our
works that we have battled. Thanks to Pablo Gordillo and Miguel Isabel colleagues from
everything degree, master, and this stage that we are closing now. Together we have
faced everything: classes, work, impossible paperwork, drinks and coffees, without you,
this would have been really difficult.

Thanks to Luisma Costero who, being a colleague in the studies, has always been
more. He was a witness of my wedding, the pair of endless beers, the crazy dreamer
planning to leave all and go to the mountains to care goats, a friend.

For the end, I have left those who are everything, my parents, who have given me
all and have made me who I am, and my siblings, the tireless and always together those
who supported me day by day. Ana, my wife, thank you for being you, for being there,
for loving me and taking me up, for saying YES and starting the most extraordinary
adventure building out own family, thank you for being my wife and mother of our
children, for your patience in the long nights and the short days, for your love.

Who permeates everything and all of them, thank you for making this thesis and
unforgettable experience.

vi

Contents

Resumen i

Abstract iii

Contents vii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Classes of (Linear-based) Ranking Functions 2

1.2 Control-Flow Refinement . 4

1.3 Objectives and Methodology . 4

1.4 Summary of Contributions and Outline 5

2 Preliminaries 9

2.1 Polyhedra . 9

2.2 Program Representations . 11

2.2.1 Transition Systems . 11

2.2.2 Single-path Linear-Constraint Loops 13

2.3 Termination and Non-termination Analysis 14

2.3.1 Termination Analysis Using Ranking Functions 16

2.3.2 Non-termination Analysis Using Recurrent Sets 22

3 Control-Flow Refinement of Transition Systems via Partial Evaluation 25

3.1 Partial Evaluation of Transition Systems 26

3.1.1 Constraint Horn-Clauses . 26

3.1.2 From Transition Systems to Constraint Horn-Clauses 26

3.1.3 Partial Evaluation of Constraint Horn-Clauses 28

3.1.4 Choice of Properties . 30

3.2 Application to Termination Analysis . 32

3.2.1 Control-Flow Refinement Schemes 33

3.2.2 Incorporating CFR into a Termination Algorithm 34

3.2.3 How CFR Benefits Termination Analysis 36

3.3 Application to Cost Analysis . 40

3.3.1 How CFR Benefits Cost Analysis 41

3.3.2 Using Ranking Functions as Properties 45

vii

CONTENTS

4 Multi-Phase Ranking Functions and Their Relation to Recurrent Sets 47
4.1 Multi-Phase Ranking Functions for SLC loops 49
4.2 Inferring Multi-Phase Ranking Functions 49

4.2.1 Deciding Existence of MΦRFs . 50
4.2.2 Inference of Recurrent Sets . 56
4.2.3 Recurrent Sets for Transition Systems 59
4.2.4 Cases in which Algorithm 3 does not Terminate 60

4.3 The Displacement Polyhedron . 61
4.3.1 Witnesses for Non-existence of MΦRFs of a Given Depth 64
4.3.2 Conditional Termination . 66
4.3.3 Termination and Non-termination of Bounded SLC Loops 67
4.3.4 New Directions for the General MΦRF Problem 67

4.4 Loops for Which MΦRFs are Sufficient 68
4.4.1 Finite Loops . 68
4.4.2 The Class RF(b) . 68
4.4.3 Loops with Affine-linear Updates 69

5 Implementation 73
5.1 iRankFinder . 73

5.1.1 Input Syntax . 73
5.1.2 Invariant Generation . 75
5.1.3 Control-Flow Refinement . 76
5.1.4 Termination and Non-termination Analysis 76
5.1.5 Handling Strict Inequalities . 77
5.1.6 Using iRankFinder . 77

5.2 EasyInterface . 79
5.2.1 General overview . 80
5.2.2 Using EasyInterface . 82

6 Experimental Evaluation 91
6.1 CFR for Termination Analysis . 91
6.2 CFR for Cost Analysis . 95
6.3 Non-Termination via Recurrent Sets (and CFR) 96
6.4 Other Experiments with CFR . 99

7 Related Work 101
7.1 Terminating Analysis Using Ranking Functions 101
7.2 Non-termination Analysis . 102
7.3 Control-Flow Refinement . 103

8 Conclusions and Future Work 105
8.1 Future Work . 106

Bibliography 109

Acronyms 117

viii

List of Figures

1.1 A program and its corresponding transition system T 2

2.1 A polyhedron P and its integer hull PI . 10
2.2 A TS that corresponds to the SLC loop (1.2). 13
2.3 A loop that has a linear ranking function. 16
2.4 A loop that has a lexicographic ranking function, but not a linear ranking

function. 18
2.5 A loop that has a LLRF according to the definition of [Bradley et al. 2005a]. 20
2.6 A loop that has a LLRF according to the definition of [Ben-Amram and

Genaim 2014]. 20
2.7 A loop that has a LLRF according to the definition of [Larraz et al. 2013]. 21
2.8 A loop that has a MΦRF. 22
2.9 A non-terminating TS. 23

3.1 A CHC program and a corresponfing call graph. 26
3.2 A loop with 2 phases. 27
3.3 A loop with 2 phases that are never executed together. 37
3.4 A loop that searches in a circular queue. 38
3.5 A loop that implements a random walk process. 40
3.6 A non-terminating loop. 41
3.7 Iterative McCarthy. 43
3.8 A loop that calculates the greatest common divisor by iterative subtracting. 44
3.9 A SLC loop with 3 phases. 45

5.1 An example of TS in flow-chart syntax. It corresponds to TS T of
Figure 3.2. 74

5.2 iRankFinder web-interface. 78
5.3 iRankFinder settings window. 79
5.4 The architecture of EasyInterface. 80
5.5 An example configuration file of a tool. 81
5.6 An example of a server request. 81
5.7 EasyInterface Web-Interface Client. 82
5.8 EIOL example. 83
5.9 EIOL stream command example. 83
5.10 EIOL download command example. 84
5.11 An example configuration file of two sets of examples. 85
5.12 EIOL general scheme. 87
5.13 Some EIOL commands. 88
5.14 EIOL actions examples. 89

ix

List of Tables

3.1 Summary of applying cost analysis on the examples of Section 3.2.3 with
and without CFR. 42

6.1 Summary of evaluation of CFR for termination analysis using LRFs. . . . 92
6.2 Summary of evaluation of CFR for termination analysis using LLRFs. . . 93
6.3 Total number of benchmarks for which each tool could prove termination. 95
6.4 Comparison of tools on individual benchmarks. Each cell indicates the

number of benchmarks the tool at the corresponding row could prove ter-
minating, and the tool at the corresponding column could not. 95

6.5 Evaluation of CFR for Cost Analysis. 96
6.6 Evaluation of the non-termination algorithm of Section 4.2.3. 97
6.7 Evaluation of CFR for Non-Termination. 98
6.8 The number of benchmarks for which each tool could prove Non-Termination. 98
6.9 Comparison of tools on individual benchmarks. Each cell indicates the

number of benchmarks the tool at the corresponding row could prove non-
terminating, and the tool at the corresponding column could not 98

xi

Chapter 1

Introduction

Proving that a program will eventually terminate, i.e., that it does not go into an infinite
loop, is one of the most fundamental tasks of program verification, and has been the
subject of voluminous research. Perhaps the best known, and often used, technique for
proving termination is that of ranking functions, which has already been used by Alan
Turing in his early work on program verification [Turing 1949]. This consists of finding a
function ρ that maps program states into the elements of a well-founded ordered set, such
that ρ(s) � ρ(s′) holds for any consecutive states s and s′. This implies termination since
infinite descent is impossible in a well-founded order. Besides proving termination, Turing
[1949] mentions that ranking functions can be used to bound the length computations as
well. This is useful in applications such as cost analysis and loop optimisation [Albert
et al. 2011; Alias et al. 2010; Brockschmidt et al. 2016b; Feautrier 1992].

Termination of programs can be considered for all possible inputs, for a class of initial
inputs, or for a single initial input. The later is known as the halting problem. Throughout
this thesis, we will use the term termination for all these cases and explicitly state if an
input, or a class of inputs, is provided when needed. Unlike termination of programs
in general, which is undecidable, the algorithmic problems of detection (deciding the
existence) or generation (synthesis) of a ranking function can well be solvable, given
certain choices of the program representation, and the class of ranking functions. There
is a considerable amount of research in this direction, in which different kinds of ranking
functions for different kinds of program representations were considered. In some cases,
the algorithmic problems have been completely settled, and efficient algorithms provided,
while other cases remain open.

One of the program representations we study is Single-path Linear-Constraint (SLC)
loop, where a state is described by the values of numerical variables, and the effect of
a transition (one iteration) is described by a conjunction of linear constraints. Here is
an example of this loop representation; primed variables x′1 and x′2 refer to the state
following the transition:

while (x ≤ y) do x′ = x+ 1, y′ ≤ y (1.1)

Note that x′ = x + 1 is an equation, not an assignment. The description of a loop may
involve linear inequalities rather than equations, such as y′ ≤ y above, and consequently,
be non-deterministic. A more general program representation we study is Transition
Systems (TSs). They are defined by Control-Flow Graphs (CFGs) with numerical vari-
ables consisting of nodes representing program locations, and edges annotated with linear
constraints describing how values of variables change when moving from one location to

1

CHAPTER 1. INTRODUCTION

1 void phases1(int x, int y, int z) {
2 while(x >= 1) {
3 if (y <= z - 1) {
4 y = y + 1;
5 } else {
6 x = x - 1;
7 }
8 }
9 }

n0

n1 n2

n3 T

Q0

Q1

Q2

Q3

Q4

Q0 ≡{ x′ = x, y′ = y, z′ = z }
Q1 ≡{x ≥ 1, x′ = x, y′ = y, z′ = z }
Q2 ≡{x ≤ 0, x′ = x, y′ = y, z′ = z }
Q3 ≡{y ≤ z − 1, x′ = x, y′ = y + 1, z′ = z }
Q4 ≡{y ≥ z, x′ = x− 1, y′ = y, z′ = z }

Figure 1.1: A program and its corresponding transition system T .

another1. An example of a TS is depicted in Figure 1.1 and it corresponds to the pro-
gram to its left. Primed variables in the linear constraints refer to the state following the
transition, exactly as in the case of SLC loop. Note SLC loops are also TSs.

In both program representations mentioned above, the domain of variables is also
important as it typically affects the complexity of the underlying decision and synthesis
problems. We consider the settings of integer-valued variables and rational-valued (or
real-valued) variables, however, for simplicity, we mostly omit discussions on the domain
of variables in our examples, and when it is important we state it explicitly. Although
our program representations allow only numerical variables and linear constraints, data
structures can be handled using size abstractions, e.g., length of lists, depth of trees,
etc. [Bruynooghe et al. 2007; Giesl et al. 2017; Lee et al. 2001; Lindenstrauss and Sagiv
1997; Magill et al. 2010; Spoto et al. 2010]. In such case, variables represent sizes of
corresponding data structures.

1.1 Classes of (Linear-based) Ranking Functions

Due to practical considerations, termination analysis tools typically focus on classes of
ranking functions that can be synthesised efficiently. This, however, does not mean that
theoretical aspects of such classes are put aside, as understanding theoretical limits and
properties of the underlying problems is necessary for developing practical algorithms,
after all, “there is nothing as practical as a good theory”.

The most popular class of ranking functions in this context is probably that of Linear
Ranking Functions (LRFs). A LRF is a function ρ(x1, . . . , xn) = a1x1 + · · · + anxn + a0
such that any transition from ~x to ~x′ satisfies (i) ρ(~x) ≥ 0; and (ii) ρ(~x) − ρ(~x′) ≥
1. For example, ρ(x, y) = y − x is a LRF for Loop (1.1). Several polynomial-time
algorithms to find a LRF using linear programming exist [Alias et al. 2010; Colón and

1We use CFG and TS interchangeably, however, formally a CFG is part of the definition of a TS.

2

CHAPTER 1. INTRODUCTION

Sipma 2001; Feautrier 1992; Mesnard and Serebrenik 2008; Podelski and Rybalchenko
2004; Sohn and Gelder 1991]. These algorithms are complete2 for TSs with rational-
valued variables, but not with integer-valued variables. Ben-Amram and Genaim [2013]
showed how completeness for the integer case can be achieved, and also classified the
corresponding decision problem as co-NP complete.

Despite their popularity, LRFs do not suffice for all TSs, and a natural question is
what to do when an LRF does not exist; and a natural answer is to try a richer class of
ranking functions. Of particular importance is the class of Lexicographic Linear Ranking
Functions (LLRFs). These are tuples of linear functions that decrease lexicographically
over a corresponding well-founded ordered set. For example, the program depicted in
Figure 1.1 does not have a LRF, but it has the LLRF 〈z−y, x〉 since: for the then branch
z − y decreases and for the else branch x decrease while z − y does not change. LLRFs
might be necessary even for the simple loops. For example, the following SLC loop

while (x+ z ≥ 0) do x′ = x+ y, y′ = y + z, z′ = z − 1 (1.2)

does not have a LRF, but can be proved terminating using the LLRF 〈z, y, x〉.
There are several definitions for LLRFs in the literature [Alias et al. 2010; Ben-Amram

and Genaim 2014; Bradley et al. 2005a; Larraz et al. 2013] and they have different power,
i.e., some can prove termination of a program while others fail (see Section 2.3.1 for a
detailed discussion). They have corresponding polynomial-time synthesis algorithms for
the case of rational variables, and the underlying decision problems are co-NP complete
for the case of integer variables [Ben-Amram and Genaim 2014; Ben-Amram and Genaim
2015]. The definition of Larraz et al. [2013] is the most general in this spectrum of LL-
RFs, its complexity classification is not known yet and corresponding complete synthesis
algorithms do not exist.

The LLRF 〈z, y, x〉 used above for Loop (1.2) belongs to a class of LLRFs that is
know as Multi-Phase Linear Ranking Functions (MΦRFs). Ranking functions in this
class are characterised by the following behaviour: the first component always decreases,
and when it becomes negative the second component starts to decrease, and when it
becomes negative the third component starts to decrease, and so on. This behaviour
defines phases through which executions pass. This is different from LLRFs in general
since once a component becomes negative it cannot be used anymore.

Many problems related to algorithmic and complexity aspects of MΦRFs are still open,
even for the special case of SLC loops. They have mainly been studied for a special case in
which an upper-bound d on the length of the tuple is given as input. Leike and Heizmann
[2015] showed how to synthesise bounded MΦRFs by solving corresponding non-linear
constraints. Ben-Amram and Genaim [2017] settled the complexity of synthesising and
deciding the existence of bounded MΦRFs for SLC loops and showed that for SLC loops
MΦRFs are as powerful as the most general definition of LLRFs [Larraz et al. 2013].
Ben-Amram and Genaim [2017] show as well that, for SLC loops, MΦRFs induce a linear
bound on the number of iterations, which makes this class attractive for applications such
as cost analysis.

2Complete means that if there is a LRF, they will find one.

3

CHAPTER 1. INTRODUCTION

1.2 Control-Flow Refinement

In the previous section, we have seen that when failing to obtain a termination proof using
a simple class of ranking functions, one might resort to a richer class which typically comes
at the price of performance. This is common in program analysis in general, not only in
termination analysis. For example, in abstract interpretation [Cousot and Cousot 1977]
when we fail to prove a property using some abstract domain, e.g., octagons [Miné 2006],
we might resort to a less abstract one, e.g., polyhedra [Cousot and Halbwachs 1978].

Loss of precision is often caused by complex or implicit control-flow since for such
cases, abstract properties of several execution paths are merged. There are techniques
that overcome the loss of precision using program transformations to simplify the control-
flow, and thus makes it possible to infer the desired properties even with a weaker version
of the analysis. This is known as Control-Flow Refinement (CFR).

CFR can be useful to improve the precision of termination analysis as well. Consider
the program of Figure 1.1 again, and recall that it does not have a LRF and that for
proving termination we used LLRFs. Examining this program carefully, we can see that
any execution passes in two phases: in the first one, y is incremented until it reaches
the value of z, and in the second phase x is decremented until it reaches 0 (this is a
bit different from the notion of phases for MΦRFs since y does not continue decreasing
during the second phase). Lets us transform the program of Figure 1.1 into a semantically
equivalent one such that the two phases are separate and explicit:

1 while (x >= 0 and y <= z-1) y = y + 1;
2 while (x >= 0 and y >= z) x = x - 1;

Now we can prove termination of this program using LRFs only: for the first z − y is
a LRF, and for the second x is a LRF. Moreover, cost analysis tools that are based on
bounding loop iterations using LRFs would infer a linear bound for this program while
they would fail on the original one.

Apart from simplifying the termination proof, there are also cases where it is not
possible to prove termination without such transformations even when using LLRFs (see
Chapter 3). In addition, CFR can help in inferring more precise invariants, without
the need for expensive abstract domains, which can benefit any analysis that uses such
invariants, e.g., termination and cost analysis.

CFR has been considered before by Gulwani et al. [2009] and Flores-Montoya and
Hähnle [2014] to improve the precision of cost analysis, and by Sharma et al. [2011] to
improve invariants in order to prove assertions. While all these techniques can auto-
matically obtain the transformed program above, they are developed from scratch and
tailored to some analysis of interest. Recently, CFR has been considered by Albert et al.
[2019] to improve cost analysis as well, however from a different perspective that uses
termination witnesses to guide CFR.

1.3 Objectives and Methodology

Section 1.1 and 1.2 discussed two approaches to improve the precision of termination
analysis on failure. The first one relies on resorting to sophisticated classes of ranking
functions and more precise abstract domains for invariants, and the second relies on using
CFR techniques to simplify complex control-flow. The objectives of this thesis are guided
by these two approaches.

4

CHAPTER 1. INTRODUCTION

Our first objective is to explore the use of CFR in the context of termination analysis,
as well as other related areas such as invariant generation and cost analysis. However,
instead of developing dedicated new techniques from scratch, our methodology is based
on exploring the use of well-studied program specialisation techniques for this purpose.
We aim at adapting these techniques for TSs, and allow configuring them automatically
to suit different purposes. We also aim at exploring different strategies for applying them,
not only as a pre-processing step that transforms the whole program but also at different
levels of granularity. In addition, apart from using CFR for termination analysis, we aim
at providing independent tools for applying CFR on TSs, and thus to promote integrating
CFR in program analysis tools without additional effort.

Our second objective is to study the class of MΦRFs, in particular the general case
that does not impose a bound on the length of corresponding tuples. As we have men-
tioned before, this class of ranking functions has not received enough attention from the
community. We are interested in exploring theoretical properties of MΦRFs, as well as
their practical use for termination analysis of TSs with complex control-flow. We are par-
ticularly interested in the case of SLC loops, which are important for theoretical aspects
of termination, but also in generalising the results for TSs. We anticipate and note, as
we will see in Chapter 4, that this objective led us to unexpected research direction in
which we explored the relationship between MΦRFs and non-termination, and thus parts
of this thesis will also address non-termination analysis. The tools and methodology we
use to address this objective are similar to those used by Ben-Amram and Genaim [2017],
which are mainly based on using different aspects of linear programming theory.

Our third objective, which is a direct consequence of the other objectives, is to develop
a termination analyser that includes the techniques developed for the first two objectives,
as well as other state-of-the-art termination analysis techniques. We will also use this
tool to evaluate the practical effect of these techniques.

1.4 Summary of Contributions and Outline

In Chapter 2, we start this thesis by providing necessary background material which in-
cludes: definitions and some results related to polyhedra; formal definition of the program
representations that we use throughout this thesis; and a general termination analysis
algorithm and different notions of ranking functions and recurrent sets which are used
in the context of non-termination – the discussion on ranking functions, in particular
LLRFs, is made such that different existing notions of LLRFs fit in the same algorithmic
framework which makes describing and comparing them easier.

For program representations, we do not use programs directly, e.g., Java or C, but
rather all our research is presented using TSs that we informally described at the be-
ginning of this chapter. We prefer this representation since it is popular in the program
analysis community, and also can represent programs written in different programming
languages, and thus, in principle, analyses develop for TSs can be used in the context of
different programming languages. In addition, in some parts of the thesis, we use the spe-
cial case of SLC loops, which is common for studying theoretical aspects of termination
analysis.

5

CHAPTER 1. INTRODUCTION

Control-Flow Refinement via Partial Evaluation

Since CFR, as discussed in Section 1.2, is in principle a program transformation that
specialises programs to distinguish different execution scenarios, in Chapter 3 we explore
on the use of general-purpose specialisation techniques for CFR, in particular the partial
evaluation techniques of Gallagher [2019]. Basing CFR on such well-studied techniques
has the clear advantage that soundness comes for free because partial evaluation guar-
antees semantic equivalence between the original program and its transformed version.
Moreover, this way we obtain a CFR procedure that is not tailored for a particular
purpose, but rather can be tuned depending on the application domain.

We suggest heuristics for automatically configuring partial evaluation (i.e., inferring
properties to guides specialisation) in order to achieve the desired CFR, and also suggest
the use of termination witnesses (ranking functions) as properties for CFR in the context
of cost analysis. We integrate such a CFR procedure in the termination analysis algorithm
described in Chapter 2 in a way that allows applying CFR at different levels of granularity,
and thus controlling the trade-off between precision and performance. This is done by
suggesting different schemes for applying CFR, not only as a pre-processing step but also
on specific parts of the TS which we could not prove terminating. We discuss, using an
extensive series of examples, how CFR can benefit both termination and cost analysis.
This work has been reported in

Jesús J. Doménech, John P. Gallagher, and Samir Genaim. Control-Flow
Refinement by Partial Evaluation, and its Application to Termination and
Cost Analysis. Theory and Practice of Logic Programming, 19(5-6):990–1005,
2019. DOI: 10.1017/S1471068419000310

and has been presented at the 35th International Conference on Logic Programming as
well. Implementation and experimental evaluation, that demonstrates the usefulness of
our approach to CFR, are reported in corresponding dedicated chapters (see below).

A New Look at Multi-Phase Ranking Functions

As we have discussed in Section 1.1, many questions related to algorithmic and complexity
aspects of MΦRFs are still open. In Chapter 4, we turn our attention to MΦRFs for SLC
loops, and make progress towards solving the problem of existence of MΦRFs, i.e., seeking
(or deciding existence) MΦRFs without a given bound on the depth. This is how our
research on MΦRFs has started, however, it has led to unexpected directions that we
summarise below.

We present an algorithm for seeking MΦRFs that reveals new insights on the structure
of these ranking functions. Our algorithm starts from the set of transitions of the given
SLC loop, constructs the set of all linear functions that are non-negative on all enabled
states, and remove all transitions for which there is such a non-negative function that
is decreasing. This is applied iteratively since, after removing some transitions, more
functions may satisfy the non-negativity condition, and they may eliminate additional
transitions in the next iteration. When all transitions are eliminated in a finite number
of iterations, we can construct a MΦRF using the corresponding non-negative functions;
and when reaching a situation where no transition can be eliminated, we have actually
reached a recurrent set that witnesses non-termination. This reveals a surprising relation
between ranking functions and recurrent sets. We also show how it can be used to
compute recurrent sets for TSs in general. Our algorithm is not complete as it might not

6

http://dx.doi.org/10.1017/S1471068419000310

CHAPTER 1. INTRODUCTION

terminate in some cases, however, even in this case, it provides important insights that
raise some new questions and research directions.

Our research has, besides, led to a new representation for SLC loops that provides us
with new tools for studying the termination of SLC loops in general, and the existence
of a MΦRF in particular. As evidence on the usefulness of this new representation, we
also show that some non-trivial observations on termination of bounded SLC loops are
made straightforward in this representation, while they are not easy to see in the normal
representation. The results of this part have been published in

Amir M. Ben-Amram, Jesús J. Doménech, and Samir Genaim. Multiphase-
Linear Ranking Functions and Their Relation to Recurrent Sets, In Bor-
Yuh Evan Chang, editor, Proceedings of the 26th International Symposium
on Static Analysis (SAS’19), volume 11822 of Lecture Notes in Computer
Science, pages 459–480. Springer, 2019. DOI: 10.1007/978-3-030-32304-2 22

Besides, in a recent work that has not been published before and that we report for the
first time in Section 4.4, we show that the insights made by this work are useful for finding
classes of SLC loops for which, when terminating, there is always a MΦRF and thus have
linear runtime bound.

Implementation, Evaluation, and Dissemination

In Chapter 5, we present iRankFinder, a termination analyser that has been developed
in the context of this thesis and implements, among other things, the techniques developed
in chapters 3 and 4. In Chapter 6, we report an experimental evaluation of iRankFinder,
in particular, we evaluate the benefits of its CFR component and the use of the techniques
of Chapter 4 for non-termination analysis of TSs.

During PhD studies or the lifetime of a research project in general, providing the
community with easy access to research prototype tools is crucial to promote the research
or get feedback. This can be achieved by building Graphical User Interfaces (GUIs)
that facilitate trying tools; in particular, tools with web-interfaces can be tried without
the overhead downloading and installing them. However, researchers typically avoid
developing GUIs until tools are fairly stable since the tools change continuously, and also
because programming plug-ins for sophisticated frameworks and building web-interfaces
from scratch are tedious tasks.

In this thesis, we also wanted to make iRankFinder available via a web-interface
right from the beginning, but instead of building a dedicated web-interface we have opted
at solving a general problem and developed an open-source toolkit, called EasyInter-
face, that aims at simplifying the process of building GUIs for research prototypes tools,
and thus improve the dissemination of the corresponding research. EasyInterface pro-
vides an easy and almost immediate way to make existing (command-line) applications
available via a web-interface. This toolkit has been presented in the following publication

Jesús J. Doménech, Samir Genaim, Einar Broch Johnsen, and Rudolf
Schlatte. EasyInterface: A Toolkit for Rapid Development of GUIs for Re-
search Prototype Tools, In Marieke Huisman and Julia Rubin, editors, 20th
International Conference on Fundamental Approaches to Software Engineer-
ing (FASE’17), volume 10202 of Lecture Notes in Computer Science, pages
379–383. Springer, 2017. DOI: 10.1007/978-3-662-54494-5 22

7

http://dx.doi.org/10.1007/978-3-030-32304-2_22
http://dx.doi.org/10.1007/978-3-662-54494-5_22

CHAPTER 1. INTRODUCTION

Apart from the web-interface of iRankFinder, this toolkit has been used for building
web-interfaces for other tools developed in our research group, and also for tools developed
by other teams in the context of research projects in which our research group is involved.

Finally, in Chapter 7, we survey related work and, in Chapter 8, we draw our conclu-
sions and discuss possible future work.

8

Chapter 2

Preliminaries

In this chapter, we give necessary background on polyhedra, formally define the different
program representations that we will be using throughout this thesis, and provide some
necessary background related to termination and non-termination analysis.

2.1 Polyhedra

In this section, we give some necessary background on polyhedra. The sets of integer
and rational numbers are denoted by Z and Q respectively. We use D to refer to either
Z or Q when the domain is not fixed. Column and row vectors of n elements (such as
variable, numbers, etc.) are written as follows

x =

x1...
xn

 ~x =
(
x1 . . . xn

)
We sometimes write x as a transposition of ~x, denote as ~x

T
, and vice versa. A linear

constraint (or linear inequality) ψ is of the form

n∑
i=1

aixi ≤ b

where xi are variables, and ai, b ∈ Q. We call ~a = (a1, . . . , an) the coefficients and b the
free constant. A mapping σ : ~x 7→ D is a satisfying assignment for ψ if the inequality∑n

i=1 aiσ(xi) ≤ b is true. For simplicity, strict inequalities
∑n

i=1 aixi < b are not allowed
explicitly, however, in Section 5.1.5 we discuss how they are handled in practice.

A (linear) formula ϕ is a Boolean formula where the atoms are linear constraints.
The set of variables of ϕ is denoted by VARS(t). A formula ϕ is satisfiable if there is
σ : VARS(ϕ) 7→ D such that the corresponding Boolean formula is satisfiable wrt. σ (each
linear constraint evaluates to true or false wrt. σ). We call σ a solution for ϕ.

We are particularly interested in formulas that are conjunctions of linear constraints,
i.e., of the form ψ1∧· · ·∧ψm, which we also write as a set ϕ = {ψ1, . . . , ψm}. The matrix
representation of ϕ is Ax ≤ b where A ∈ Qm×n is a rational matrix of n columns and m
rows such that the ith row consists of the coefficients of ψi, and b ∈ Qm such that the
ith row consists of the free constant of ψi. For simplicity, when writing linear constraints
explicitly, we use ≥ and = as well. Both cases can be normalised to a form with ≤ only.

9

CHAPTER 2. PRELIMINARIES

x

y

y−
x≤

3

−
x−
y≤−

4
1
2
x−y
≤1

7
2

1
2

2
3

10
3

P

x

y

y≥1

x
≥

1

y−
x≤

3

−
x−
y≤−

4
1
2
x−y
≤1

1

3

3

1

4

1

1

4

PI

Figure 2.1: A polyhedron P and its integer hull PI .

A rational convex polyhedron P ⊆ Qn (polyhedron for short) is the set of solutions of
a (linear) formula Ax ≤ b with rational variables, namely:

P = {x ∈ Qn | Ax ≤ b}

where x ∈ Qn. We say that P is specified by Ax ≤ b. If b = 0, then P is called a cone.
The set of the recession directions of a polyhedron P specified by Ax ≤ b, also known
as its recession cone, is defined by the following cone:

rec.cone(P) = {y ∈ Qn | Ay ≤ 0}

EXAMPLE 2.1. Consider the polyhedron P of Figure 2.1 (on the left). Points defined
by the grey area and the black borders are solutions to the system of linear constraints

{y − x ≤ 3 , −x− y ≤ −4 ,
1

2
x− y ≤ 1}

Note that we consider all rational points. 2

For a given polyhedron P ⊆ Qn we let I(P) be P∩Zn, i.e., the set of integer points of
P . The integer hull of P , commonly denoted by PI , is defined as the convex hull of I(P),
i.e., every rational point of PI is a convex combination of integer points. It is known that
PI is also a polyhedron and that rec.cone(P) = rec.cone(PI). An integer polyhedron is
a polyhedron P such that P = PI . An integer polyhedron is also called integral.

EXAMPLE 2.2. The integer hull PI of polyhedron P of Figure 2.1 (on the left) is given
in the same figure (on the right). It is defined by the dotted area and the black border
and is obtained by adding the inequalities x ≥ 1 and y ≥ 1 to P . The two grey triangles
next to the edges of PI are subsets of P that were eliminated when computing PI . 2

Polyhedra also have another important representation called the generator represen-
tation. It defines the polyhedron in terms of vertices and rays as follows:

P = conv.hull{x1, . . . ,xm}+ cone{y1, . . . ,yt} .

This means that x ∈ P iff

x =
m∑
i=1

ai · xi +
t∑

j=1

bj · yj

10

CHAPTER 2. PRELIMINARIES

for some rationals ai, bj ≥ 0, where
∑m

i=1 ai = 1. Note that y1, . . . ,yt are the recession
directions of P , i.e., y ∈ rec.cone(P) iff

y =
t∑

j=1

bj · yj

for some rationals bj ≥ 0. If P is integral, then there is a generator representation in
which all xi and yj are integers. An empty polyhedron is represented by an empty set of
vertices and rays.

EXAMPLE 2.3. The generator representations of P and PI of Figure 2.1 are

P = conv.hull{(1
2
, 7
2
), (10

3
, 2
3
)}+ cone{(1, 1), (7, 3)}

PI = conv.hull{(1, 3), (1, 4), (3, 1), (4, 1)}+ cone{(1, 1), (7, 3)}

The points in conv.hull are vertices, they correspond to the points marked with • in
Figure 2.1. The rays are the vectors (1, 1) and (7, 3); they describe a direction, rather
than a specific point, and are therefore represented in Figure 2.1 by the red arrows. Note
that the vertices of PI are integer points, while those of P are not. For example, in P
the point (3, 2) is defined as

5

17
· (1

2
,
7

2
) +

12

17
· (10

3
,
2

3
) +

1

2
· (1, 1) + 0 · (7, 3)

and in PI as

0 · (1, 3) +
1

3
· (1, 4) + 0 · (3, 1) +

2

3
· (4, 1) + 0 · (1, 1) + 0 · (7, 3)

2

Let P ⊆ Qn+m be a polyhedron, and let
(

x
y

)
∈ P be such that x ∈ Qn and y ∈ Qm.

The projection of P onto the x-space is defined as

projx(P) = {x ∈ Qn | ∃y ∈ Qm such that
(

x
y

)
∈ P}. (2.1)

This operation simply restricts P to some coordinates of interest. Note that this operation
is well defined for any subset of Qn, not only polyhedral subsets.

2.2 Program Representations

In this section, we describe the different program representations that we will be using
throughout this thesis.

2.2.1 Transition Systems

Programs in this thesis are defined using TSs, which is a very common representation
that is often used in program analysis. The advantage of using TSs is that they abstract
away from the particularities of a specific programming language, and thus, in principle,
analyses develop for such programs can be used in the context of different programming
languages. A TS is typically defined by a corresponding CFG that defines the possible
flows that executions can follow. We will use the terms CFGs are TSs interchangeably,
though CFG is used when referring to the graphical representation, and TS when referring
to the underlying mathematical object.

11

CHAPTER 2. PRELIMINARIES

Definition 2.4 (Transition System). A transition system T is a tuple

T = 〈V,N, n0, E〉

where

1. V = {x1, . . . , xn} is a set of program variables over some fixed domain D (we will
be using Q and Z);

2. N is a set of nodes;

3. n0 ∈ N is the entry node; and

4. E is a set of labelled edges. An edge has the form ns
Q−→ nt such that ns, nt ∈ N

and Q ⊆ Q2n is a polyhedron over variables V ∪ V ′ where V ′ = {x′i | xi ∈ V }. We
refer to Q as the transitions polyhedron of the edge.

We assume that the entry node n0 has no incoming edges. We say that a TS is a rational
TS if the variables take rational values, i.e. D = Q, and integer if the variables take
integer values, i.e., D = Z.

A program state is a pair (n, σ), where n ∈ N and σ : V 7→ D is a mapping. We often
view σ as a vector x = (σ(x1), . . . , σ(xn))T, and when it is clear from the context we call
x a state as well. There is a transition (i.e. a valid execution step) from s1 = (ns, σ)

to s2 = (nt, σ
′), denoted as s1 → s2, if there is an edge ns

Q−→ nt ∈ E such that the
point (σ(x1), . . . , σ(xn), σ′(x1), . . . , σ

′(xn))T is in the transitions polyhedron Q. We call
ns and nt source and target nodes of the transition respectively. When it is clear from the
context, we ignore the nodes and say that there is a transition from (σ(x1), . . . , σ(xn))T

to (σ′(x1), . . . , σ
′(xn))T.

A transition can be seen also as a point
(

x
x′
)
∈ Q, where its first n components

correspond to x and its last n components to x′. For ease of notation, we denote
(

x
x′
)

by
x′′. States in projx(Q) are called the enabled states of Q, i.e., states from which we can
make a transition. Note that the primed variables V ′ refer to the program state following
the transition. A trace is a sequence of states s0 → s1 → · · · such that si → si+1 is a
transition. We write si →∗ sj to indicate that state sj is reachable from state si. A trace
might be of finite or infinite length.

The definition of a transition system, in related literature, sometimes include a formula
over V that describes the set of valid initial states, however, for simplicity, we do not
include such a formula in the above definition since for our purposes it can always be
added to outgoing edges of n0.

EXAMPLE 2.5. The CFG T in Figure 1.1 defines a TS that corresponds to the program
phases1 to its left. The entry node is n0, from which we can move to n1 without changing
the value of any variable as specified by Q0. Nodes n1 and n2, and the edges between

them correspond to the loop body: edge n1
Q1−→ n2 corresponds to entering the loop when

the loop condition holds; edge n2
Q3−→ n1 corresponds the then branch; and edge n2

Q4−→ n1

corresponds to the else branch. Finally, edge n1
Q2−→ n3 corresponds to exiting the while

loop. 2

Throughout this thesis, we often rely on (polyhedral) invariants in order to improve the
precision of termination or non-termination analysis. An invariant for a given node n ∈ N

12

CHAPTER 2. PRELIMINARIES

1 void phases_xyz(int x, int y, int z) {
2 while(x + z >= 0) {
3 x = x + y;
4 y = y + z;
5 z = z - 1;
6 }
7 }

n0

n1

n2

T
Q0

Q1

Q2

Q0 ≡{ x′ = x, y′ = y, z′ = z }
Q1 ≡{x+ z ≥ 0, x′ = x+ y, y′ = y + z, z′ = z − 1 }
Q2 ≡{x+ z ≤ −1, x′ = x, y′ = y, z′ = z }

Figure 2.2: A TS that corresponds to the SLC loop (1.2).

is a polyhedron P ⊆ Qn, such that for any assignment σ0 and trace (n0, σ0)→∗ (n, σ) we
have (σ(x1), . . . , σ(xn))T ∈ P , i.e., when viewing P as a formula, it is guaranteed to hold
whenever node n is reached.

EXAMPLE 2.6. For the TS T of Figure 1.1, P ≡ {x ≥ 0} is an invariant for node n2
and P ≡ {x ≤ 0} is an invariant for node n3. 2

Termination of TSs. A TS is non-terminating if there is a trace of infinite length
starting in an initial state (n0, σ0) for some σ0, and is terminating otherwise, i.e., if all
possible traces are of finite lengths. Sometimes we restrict our interest to termination
wrt. initial states that satisfy some conditions, however, this can be modelled by adding
these conditions to the outgoing edges of n0.

Complexity of TSs. The complexity (also called cost) of a TS is typically defined in
terms of the maximum length of its traces, where each execution step contributes 1 to the
total cost. In order to model cost in a way that is amenable to program transformations,
where edges/nodes might be eliminated/added, we can add an extra auxiliary variable
xn+1 whose value is 0 in the initial state and is incremented by 1 in every transition (xn+1

can be modified in other ways to capture different cost models). The cost of a TS, wrt.
to an initial state, is then defined as the supremum of all values of xn+1 in all reachable
states. A function f : Dn 7→ Q is an upper-bound on the cost of T if for any possible
trace (n0, σ0)→∗ (n, σ), we have f(σ0(x1), . . . , σ0(xn)) ≥ σ′(xn+1).

2.2.2 Single-path Linear-Constraint Loops

In this thesis, we are particularly interested in TSs that consist of a single node and single
edge, in addition to the entry and exits nodes. This is the case of the TS depicted in
Figure 2.2, which corresponds to Loop (1.2) that we have seen in Chapter 1. This kind of
TSs is common when studying theoretical aspects of termination and non-termination,
and is often represented as follows.

13

CHAPTER 2. PRELIMINARIES

Definition 2.7 (Single-path Linear-Constraint Loop). A SLC loop over n variables has
the form

while (Bx ≤ b) do Ax + A′x′ ≤ c (2.2)

where for some p, q > 0, B ∈ Qp×n, A,A′ ∈ Qq×n, b ∈ Qp, c ∈ Qq, x = (x1, . . . , xn)T,
and x′ = (x′1, . . . , x

′
n)T.

The formula Bx ≤ b is called the loop condition (a.k.a. the loop guard) and the
formula Ax +A′x′ ≤ c is called the update. It is easy to see that Loop (2.2) represents a

TS with a single node n1 and an edge n1
Q−→ n1, where the transitions polyhedron Q is

specified by a set of inequalities A′′x′′ ≤ c′′ such that

A′′ =

(
B 0
A A′

)
c′′ =

(
b
c

)
We call Q the transitions polyhedron as in the case of TSs. The loop (and the corre-
sponding TS) is fully represented by this polyhedron, and thus we ignore node n1 when
writing a state, i.e., a state is simply x′′ ∈ Q. For integer loops, the set of transitions is
denoted by I(Q), i.e., the set of integer points of Q.

The update of Loop (2.2) is called deterministic if, for a given x satisfying the loop
guard there is at most one x′ satisfying the update formula. The update is called affine
linear if it can be rewritten as

x′ = Ux + c (2.3)

for a matrix U ∈ Qn×n and vector c ∈ Qn.

EXAMPLE 2.8. The TS depicted in Figure 2.2 corresponds to a SLC loop with deter-
ministic affine linear update defined by:

B =
(
−1 0 −1

)
b =

0
0
0

 U =

1 1 0
0 1 1
0 0 1

 c =

 0
0
−1

2

As in the case of TSs, we say that a loop is a rational loop if the variables take
rational values, i.e., x and x′ range over Qn, and that it is an integer loop if they take
integer values, i.e., x and x′ range over Zn. One could also allow variables to take any
real-number value, but for the problems we study, where the constraints are expressed
by rational numbers, this very rarely differs from the rational case (when it does, we
comment on that explicitly).

2.3 Termination and Non-termination Analysis

In this section, we describe general techniques and algorithms for proving termination
and non-termination that we will use throughout this thesis.

The pseudo-code depicted in Algorithm 1 corresponds to a general algorithm for
termination and non-termination analysis – it will be mainly used in Chapter 3. It
consists of procedure TerminationCFG that uses procedure TerminationSCC as a
black-box (details of TerminationSCC will be given in sections 2.3.1 and 2.3.2).

14

CHAPTER 2. PRELIMINARIES

Algorithm 1: Pseudocode of (Non)Termination Analysis.

TerminationCFG(T)
1 F := ∅
2 foreach SCC S of T do
3 〈Ans , FS〉 := TerminationSCC(S,T)
4 if Ans is NO then
5 return 〈NO,FS〉
6 F := F ∪ FS

7 if F 6= ∅ then
8 return 〈MAYBE,F 〉
9 else return 〈YES,F 〉

Procedure TerminationCFG traverses the Strongly Connected Components (SCCs)
of the CFG of T and attempts to prove termination or non-termination of each SCC S by
calling TerminationSCC. We may assume that only non-trivial SCCs, i.e., those with
at least one edge, are handled as others are trivially terminating. Let us first describe
the possible outcomes of calling TerminationSCC(S, T) to analyse the termination
behaviour of S:

� 〈NO,FS〉: in this case, procedure TerminationSCC succeeds to prove that S is
non-terminating, and that, moreover, there is a valid execution that starts in the
initial node n0 of T and reaches S – this is why we pass T as well. The second
component FS is supposed to be a witness for non-termination in this case (the
details are given in Section 2.3.2).

� 〈YES, ∅〉: in this case, procedure TerminationSCC succeeds to prove that S is
terminating. Note that the second component is ∅ in this case. The parameter T
might be used to understand how S is reached from the initial node n0, to infer
invariants, etc.

� 〈MAYBE,FS〉: in this case, procedure TerminationSCC did not succeed to prove
termination or non-termination of S, however, it might have succeeded to prove
that some of the edges (or individual transitions) in S cannot be taken infinitely
often, and, in such case, the second component FS is supposed to be the set of
all other edges (or reduced edges, i.e., after removing terminating transitions from
corresponding transition polyhedra). This set is used in Chapter 3 to apply program
transformations to those parts of S.

The output of TerminationCFG is similar to TerminationSCC, except in the case
of MAYBE where it returns the set of all edges (i.e, among all SCCs) that it could not prove
terminating (they are accumulated at Line 6).

In the next sections, we describe some common approaches used to implement pro-
cedure TerminationSCC, both for termination and non-termination analysis. In all
discussions and examples, we avoid technical details that are related to the domain of
variables (Z or Q). Technically, the domain might affect the complexity (and in some case
completeness) of the different techniques described below. Briefly, when variables range
over Q, the complexity is usually polynomial, but when they range over the Z it is usually
exponential since it requires computing the integer-hull of the transition polyhedra of all

15

CHAPTER 2. PRELIMINARIES

n0

n1 n2

n3

Q0 Q1

Q2Q3

Q0 ≡{ x′ = x }
Q1 ≡{x ≥ 0, x′ = x }
Q2 ≡{ x′ ≤ x− 1 }
Q3 ≡{x ≤ −1, x′ = x }

Figure 2.3: A loop that has a linear ranking function.

edges [Ben-Amram and Genaim 2014; Ben-Amram and Genaim 2017]. In what follows,
when we state complexity results we refer to the case of rational variables.

For the rest of this chapter, we fix a single SCC S that we are interested in analysing
its termination behaviour, and we use ES and NS to denote the set of edges and nodes
of S, respectively.

2.3.1 Termination Analysis Using Ranking Functions

Termination analysis is often based on the notion of ranking functions. These are func-
tions that map the program states to the elements of a well-founded ordered set, such
that the value descends on consecutive program states. Since descent in a well-founded
set cannot be infinite, this proves that the program must terminate.

Definition 2.9 (Ranking function). Let 〈W ,�〉 be a well-founded partial ordered set,

we say that ρ : NS×Dn 7→ W is a ranking function for SCC S, if for every ns
Q−→ nt ∈ ES

and x′′ ∈ Q we have

ρ(ns,x) � ρ(nt,x
′) (2.4)

Namely, function ρ decreases when applied to consecutive states (ns,x) and (st,x
′).

In what follows, for simplicity, we abuse notation and write ρn(x) instead of ρ(n,x),
and, moreover, we treat ρn as a function from Dn to W . We also abuse terminology and
refer to each ρn, as well as to the set of all such functions, as a ranking function.

EXAMPLE 2.10. Consider the TS depicted in Figure 2.3, in particular the SCC formed
by nodes n1 and n2. This SCC has a ranking function defined by

ρn1(x) = 2x+ 1
ρn2(x) = 2x

because ρn1(x)−ρn2(x′) ≥ 1 holds for the edge of Q1 and ρn2(x)−ρn1(x′) ≥ 1 holds for the
edge of Q2. This proves termination since ρn1(x) ≥ 0 holds for any enabled state of Q1,
and ρn2(x) ≥ 0 holds for any enabled state of Q2 (here we make use of an invariant x ≥ 0
for n2). This example also demonstrates the importance of using different functions for
the different nodes, since there is no ranking function for this SCC in which both nodes
have the same linear function. 2

16

CHAPTER 2. PRELIMINARIES

The ranking functions used in the example above are called LRFs since they have a
linear form ρn(x) = ~a · x + b. Formally, a set {ρn : Dn 7→ Q | n ∈ S} of linear functions is

a LRF if the following conditions hold1 for any ns
Q−→ nt ∈ ES and x′′ ∈ Q

ρns(x) ≥ 0 , (2.5)

ρns(x)− ρnt(x′) ≥ 1 . (2.6)

LRFs are very common in termination analysers since they have polynomial-time algo-
rithms that are easy to implement [Alias et al. 2010; Ben-Amram and Genaim 2013;
Colón and Sipma 2001; Feautrier 1992; Mesnard and Serebrenik 2008; Podelski and Ry-
balchenko 2004; Sohn and Gelder 1991]. Moreover, these algorithms are complete in the
sense that if there is a LRF for S, they will find one.

As the reader might have noticed, the functions used in conditions (2.5-2.6) might not
strictly satisfy the conditions of a ranking function as stated in Definition 2.9. This is
because the range of ρ, in this case, is the set of rationals Q (or integers Z), which is not
well-founded. This is the case of the ranking function we used in Example 2.10 because
ρn1(x

′) can be arbitrarily negative on
(
x
x′
)
∈ Q2. This, however, is just a technical detail

that can be solved as follow: each ρn is lifted to ρ̃n(x) = max(0, ρn(x) + 1), whose range
is the non-negative subset of Q which is well-founded when using the order a � b iff
a ≥ b+ 1; now the set of all ρ̃n is a ranking function as in Definition 2.9. This technical
issue arises in all types of ranking functions that we use in this thesis, and always can be
solved in a similar way. Thus, we will abuse terminology and call them ranking functions
and avoid lifting them as we just explained.

LRFs do not suffice for all SCCs, and in such case lexicographic ranking functions
is a natural extension. A lexicographic ranking function for S consists of a tuple τn =
〈ρ1,n , . . . , ρkn,n

〉 for each node n ∈ NS, where each ρ
i,n

is a function from Dn to a well-

founded ordered set W , such that for any ns
Q−→ nt ∈ ES and x′′ ∈ Q there exists

0 < i ≤ kns for which the following conditions hold

ρ
i,ns

(x) � ρ
i,nt

(x′) (2.7)

∀j < i. ρ
j,ns

(x) = ρ
j,nt

(x′) (2.8)

This means that the ith component decreases for x′′, while all components to its left do
not change their value. The tuples τn can be used to define a ranking function as in
Definition 2.9, simply by using a lexicographic extension of W which is well-founded.

EXAMPLE 2.11. Consider the TS depicted in Figure 2.4. The SCC formed by n1 does
not have a LRF, but it has a lexicographic ranking function τn1 = 〈x, y〉: for the edge of
Q1 the first component decreases, and for the edge of Q2 the second component decreases
while the first does not change its value. 2

The above example shows that lexicographic ranking functions are important in prac-
tice, however, seeking them directly can be technically challenging since, among other
things, it might require solving non-linear constraints [Leike and Heizmann 2015]. Thus,
instead of seeking them directly, there are lightweight approaches that construct them
incrementally using the notion of quasi-ranking function.

1The constant 1 in (2.6) can be replaced by any fixed rational constant δ > 0.

17

CHAPTER 2. PRELIMINARIES

n0

n1

n2

Q0

Q1 Q2

Q3 Q4

Q0 ≡{ x′ = x, y′ = y }
Q1 ≡{x ≥ 0, y ≥ 0, x′ = x− 1, y′ = y }
Q2 ≡{x ≥ 0, y ≥ 0, x′ = x, y′ = y − 1 }
Q3 ≡{x ≤ −1, x′ = x, y′ = y }
Q4 ≡{y ≤ −1, x′ = x, y′ = y }

Figure 2.4: A loop that has a lexicographic ranking function, but not a linear ranking
function.

Definition 2.12 (Quasi-ranking function). Let 〈W ,�〉 be a well-founded partial ordered
set. We say that ρ : NS × Dn 7→ W is a quasi-ranking function for SCC S, if for

any ns
Q−→ nt ∈ ES and x′′ ∈ Q Condition (2.9) holds, and for at least one such x′′

Condition (2.10) holds as well

ρ(ns,x) � ρ(nt,x
′) (2.9)

ρ(ns,x) � ρ(nt,x
′) (2.10)

Transitions that satisfy (2.10) are said to be ranked by ρ. The relation a � b is defined2

as a � b ∨ a = b.

A quasi-ranking function by itself does not imply termination, all it guarantees is that
transitions satisfying (2.10) cannot be used infinitely often in a single trace. However,
they can be used to incrementally construct a lexicographic ranking function by repeating
the following actions

1. Find a quasi-ranking function ρ for S.

2. Remove all x′′ that satisfy (2.10) from S.

These actions should be repeated until all transitions are eliminated from S, or no progress
is made, i.e., no quasi-ranking function is found at Step 1. If all transitions are eliminated,
the quasi-ranking functions inferred in Step 1 form a lexicographic ranking function (when
ordered from left to right). Note that during the iterations, S might be split into several
non-trivial (sub) SCCs that are probably connected (since complete edges are removed), in
such case it is also possible to seek a quasi-ranking function for each (sub) SCC separately.

The termination of this iterative process depends on the choice of ρ in each iteration,
however, if there is a lexicographic ranking function for S then there is a choice of ρ that
guarantees termination of this process. In what follows, we refer to this iterative process
as the incremental algorithm, and, like the case of ranking functions, we will use ρn(x)
instead of ρ(n,x) for quasi-ranking functions.

Termination analysers usually use quasi-linear ranking functions (QLRFs), i.e., each
ρn has the form ρn(x) = ~a · x + b, and thus they infer LLRFs. This restriction allows
inferring QLRFs using polynomial-time linear programming techniques. Different kinds

2We could use = instead of � as well.

18

CHAPTER 2. PRELIMINARIES

of QLRFs were suggested3 in the literature [Alias et al. 2010; Ben-Amram and Genaim
2014; Bradley et al. 2005a; Larraz et al. 2013] and they have different power, i.e., some
can prove termination of programs that others cannot. The main difference between these
notions of QLRFs is on how they classify transitions to be ranked (i.e., satisfy (2.10)) and
to be non-increasing (i.e., satisfy (2.9)). In what follows, we discuss these types of QLRFs
and compare their relative power, ignoring differences such as simultaneous inference of
invariants as done by Bradley et al. [2005a] and Larraz et al. [2013].

Alias et al. [2010] use a definition of QLRFs that requires4: (i) there is least one edge

ns
Q−→ nt ∈ ES such that for all x′′ ∈ Q conditions (2.11,2.13) hold; and (ii) for any

other x′′, that comes from other edges, conditions (2.11,2.12) hold.

ρns(x) ≥ 0 , (2.11)

ρns(x)− ρnt(x′) ≥ 0 . (2.12)

ρns(x)− ρnt(x′) ≥ 1 . (2.13)

Such QLRFs eliminate at least one edge in each iteration of the incremental algorithm,
and they can be synthesised in polynomial time using linear programming techniques.
Similarly to the case of LRFs, these QLRFs can be lifted to max(0, ρn(x) + 1) to satisfy
the conditions of Definition 2.12.

EXAMPLE 2.13. The LLRF of Example 2.11 is built using the incremental algorithm
and QLRFs of Alias et al. [2010] as follows: In the first iteration, it infers ρ1,n1

(x, y) =
ρ1,n2

(x, y) = x which eliminates the edge of Q1; and in the second iteration, it infers
ρ2,n1

(x, y) = ρ2,n2
(x, y) = y which eliminates the edge of Q2. 2

An important aspect of the algorithm of Alias et al. [2010] for inferring QLRFs,
is that it guarantees the completeness of the incremental algorithm, i.e., if there is a
LLRF (according to their restricted definition) then it will find one, and if there is no
LLRF the algorithm will report so. Moreover, the inferred LLRF has optimal depth
as well (minimal number of components, a.k.a. minimal length), this is because their
algorithm infers a QLRF that eliminates the maximum possible number of edges in each
iteration. Besides, the depth of the LLRF is bounded by the number of variables, which
induces a bound on the number of iterations of the incremental algorithm.

Bradley et al. [2005a] use a definition of QLRFs that is weaker (in the sense of more
general) than Alias et al. [2010]: their condition for the non-increasing transitions re-
quires only (2.12) instead of (2.11,2.12). Such QLRFs eliminate at least one edge in each
iteration of the incremental algorithm, and they can be synthesised in polynomial time
using linear programming techniques. However, while the incremental algorithm it is still
complete for this kind of QLRFs, it is not guaranteed to produces LLRFs of optimal
depth since the notion of ranking the maximal number of edges does not apply in this
case [Ben-Amram and Genaim 2015]. The depth of the LLRF is bounded by the number
of edges in this case.

EXAMPLE 2.14. Consider the TS of Figure 2.5, and let us apply the incremental
algorithm to the SCC of node n1 using the QLRFs of Bradley et al. [2005a]: In the first

3Some authors do not directly use the term quasi-ranking function, however, they are induced by
their definition of LLRF.

4They actually require (2.11) to hold for all transitions, even if they were eliminated by other QLRFs
in previous iterations. This requirements is not important for our purposes.

19

CHAPTER 2. PRELIMINARIES

n0

n1

n2

Q0

Q1 Q2

Q3 Q4

Q0 ≡{ x′ = x, y′ = y }
Q1 ≡{x ≥ 0, x′ = x− 1, y′ = y }
Q2 ≡{y ≥ 0, y′ = y − 1, x′ ≤ x }
Q3 ≡{x ≤ −1, x′ = x, y′ = y }
Q4 ≡{y ≤ −1, x′ = x, y′ = y }

Figure 2.5: A loop that has a LLRF according to the definition of Bradley et al. [2005a].

n0

n1

n2

Q0

Q1

Q2 Q3 Q4

Q0 ≡{ x′ = x, y′ = y, z′ = z }
Q1 ≡{x ≥ 0, y ≥ 0, x+ z ≥ 0, x′ = x, y′ = y − x, z′ = z + x− 2 }
Q2 ≡{x ≤ −1, x′ = x, y′ = y, z′ = z }
Q3 ≡{y ≤ −1, x′ = x, y′ = y, z′ = z }
Q4 ≡{x+ z ≤ −1, x′ = x, y′ = y, z′ = z }

Figure 2.6: A loop that has a LLRF according to the definition of Ben-Amram and
Genaim [2014].

iteration we use the QLRF ρ1,n1
(x, y) = x which eliminates the edge of Q1; and in the

second iteration we use the QLRF ρ2,n1
(x, y) = y which eliminates the edge of Q2. This

induces the LLRF τn1 = 〈x, y〉. Note that ρ1,n1
is not a QLRF according to Alias et al.

[2010] since it does not satisfy (2.11) for transitions of Q2, and thus using their definition
we would fail to prove termination. 2

Ben-Amram and Genaim [2014] suggested another definition for QLRFs that is more
general than Alias et al. [2010] and is not comparable to Bradley et al. [2005a]. Techni-

cally, they require (2.11,2.13) to hold for at least one x′′ ∈ Q of some edge ns
Q−→ nt ∈ ES,

and require (2.11,2.12) to hold for the rest of transitions, i.e., unlike Alias et al. [2010]
and Bradley et al. [2005a], they do not require a complete edge to be ranked. They sug-
gest a polynomial-time algorithm that guarantees the completeness of the incremental
algorithm and produces a LLRF of optimal depth since it infers a QLRF that eliminate
the maximum possible number of transitions in each iteration. The depth of the LLRF
is bounded by the number of variables.

EXAMPLE 2.15. Consider the TS of Figure 2.6, and let us apply the incremental
algorithm to the SCC of node n1 using the QLRFs of Ben-Amram and Genaim [2014]: In
the first iteration we use the QLRF ρ1,n1

(x, y, z) = y which eliminates transitions of Q1

for which y−y′ > 0; and in the second iteration we use the QLRF ρ2,n1
(x, y, z) = z which

eliminates the rest of Q1. This induces the LLRF τn1 = 〈y, z〉. It is easy to see that this
loop does not have a LLRF according to the definitions of Alias et al. [2010] and Bradley
et al. [2005a], because for those definitions a SCC with a single edge has a LLRF iff it

20

CHAPTER 2. PRELIMINARIES

n0

n1 n2

n3

Q0 Q1

Q2

Q3Q4

Q0 ≡{ x′ = x, y′ = y, z′ = z }
Q1 ≡{y ≥ 1, x′ = x− 1, y′ = y, z′ = z }
Q2 ≡{y ≤ z − 1, x′ = x+ 1, y′ = y, z′ = z − 1 }
Q3 ≡{y ≥ z, x′ = x, y′ = y + x, z′ = z }
Q4 ≡{y ≤ 0, x′ = x, y′ = y, z′ = z }

Figure 2.7: A loop that has a LLRF according to the definition of Larraz et al. [2013].

has a LRF (since QLRFs eliminate complete edges).
Note that while the QLRFs of Ben-Amram and Genaim [2014] are more general

than Alias et al. [2010], they are not comparable to Bradley et al. [2005a]. For example,
the SCC analysed in Example 2.14 does not have a QLRF according to Ben-Amram and
Genaim [2014]. 2

Larraz et al. [2013] provide the most general definition for QLRFs5. It is similar to
the one of Ben-Amram and Genaim [2014] except that for the non-increasing transitions
it requires only (2.12) instead of (2.11,2.12). The question whether there is an algorithm
to infer such QLRFs that makes the incremental algorithm complete is still open6. The
(incomplete) algorithm of Larraz et al. [2013] for inferring such QLRFs is based on the
use of Max-SMT.

EXAMPLE 2.16. Consider the TS depicted in Figure 2.7 [Larraz et al. 2013, Fig. 1],
and let us apply the incremental algorithm to the SCC of node n1 and n2 using QLRFs
of Larraz et al. [2013]: In the first iteration, they use the QLRF z for both nodes which
eliminates the edge of Q2 (with the help of an invariant y ≥ 1 for n2); in the second
iteration, they use the QLRF x for both nodes which eliminates transitions of Q1 for
which x ≥ 0; and in the third iteration, they use the QLRF y that eliminates Q3 (since
now x < 0) and thus breaks the cycle so there is no need to rank the rest of Q1. This
induces the LLRF 〈z, x, y〉 for both nodes. Note that this TS does not have a LLRF
according to other definitions. 2

In this thesis, we are particularly interested in a special kind of LLRFs that are called
MΦRFs [Ben-Amram and Genaim 2017; Leike and Heizmann 2015]. They have not been
defined using QLRFs and the incremental algorithm before. However, one can obtain
such a definition by strengthening QLRFs of Larraz et al. [2013] to require non-increasing
transitions to satisfy (2.13) instead of (2.12). They are called multi-phase since, unlike
LLRFs in general, once a component of the MΦRF becomes negative it will continue
decreasing and thus cannot be used anymore. This means that the different components
define phases through which the execution passes as we have explained in Section 1.1. For
example, the TS depicted in Figure 2.2 admits the MΦRF 〈z, y, x〉 which defines three
phases: z always decreases and when it becomes negative y starts to decrease as well,

5Technically, they are induced by their definition of LLRF
6With current implementations the incremental algorithm might not terminate and thus we need to

impose a bound on the number of its iterations.

21

CHAPTER 2. PRELIMINARIES

n0

n1

n2

Q0

Q1 Q2

Q3 Q4

Q0 ≡{ x′ = x, y′ = y }
Q1 ≡{x ≥ 0, x′ = x+ y, y′ = y − 1 }
Q2 ≡{x ≥ 0, y ≥ 0, x′ = x, y′ = y − 1 }
Q3 ≡{x ≤ −1, x′ = x, y′ = y }
Q4 ≡{y ≤ −1, x′ = x, y′ = y }

Figure 2.8: A loop that has a MΦRF.

and when y becomes negative x starts to decrease as well, and when x becomes negative
the loop terminates.

EXAMPLE 2.17. Consider the TS depicted in Figure 2.8, and let us use the incremental
algorithm with the notion of a QLRF that strengthen that of Larraz et al. [2013] as
explained above: In the first iteration we use ρ1,n1

(x, y) = y to eliminate the edge of Q2

and the part of Q1 for which y ≥ 0; and then we use ρ2,n1
(x, y) = x to eliminate the rest

of Q1. This induces the MΦRF τn1(x, y) = 〈y, x〉. 2

All types of QLRFs that we have discussed above use a single linear function for each
node. However, one could also use other kinds of functions as far as there are effective
techniques for inferring them. In Chapter 5, we define a new kind of QLRF that assigns
to each node a tuple of linear functions. It is a kind of quasi-lexicographic linear ranking
function that generalises the notion of poly-ranking [Bradley et al. 2005c] and is based
on what is called nested ranking functions [Ben-Amram and Genaim 2017; Bradley et al.
2005c; Leike and Heizmann 2015].

2.3.2 Non-termination Analysis Using Recurrent Sets

Proving non-termination of S is often based on the notion of recurrent sets. Roughly, a
recurrent set is a set of states such that from any state in the set we can only make a
transition to another state in the set using an edge from S.

Definition 2.18 (Recurrent Set). A set of states ΩS ⊆ N×Qn is a recurrent set for S if,

for each (n1,x) ∈ ΩS there is n1
Q−→ n2 ∈ ES such (x,x′) ∈ Q and (n2,x

′) ∈ ΩS. When
the domain of variables is Z, we require ΩS ⊆ N × Zn.

In order to prove that S is non-terminating in the context of a TS T , in addition to
finding a recurrent set ΩS, one should also prove that at least one state (n,x) ∈ ΩS is
reachable from an initial state (n0, σ0).

EXAMPLE 2.19. Consider the TS of Figure 2.9, which is non-terminating for any
initial state that implies x ≥ 0: it continuously execute the else branch inside the loop,
which corresponds to the edges of Q2 and Q4 in the TS. The SCC S formed by nodes n1
and n2 has the recurrent set

ΩS = {(n1, (x, y)T) | x ≥ 0, y ≤ 0} ∪ {(n2, (x, y)T) | x ≥ 0, y ≤ 0}

It is reachable from any initial state that implies x ≥ 0. 2

22

CHAPTER 2. PRELIMINARIES

1 void multi(int x, int y) {
2 if (y >= 0)
3 y = -1;
4 while(x >= 0) {
5 if (y >= 1)
6 x = x + y;
7 else

8 x = x - y;
9 }

10 }

n0

n1

n2

n3

T
Q0 Q1

Q2Q3Q4

Q5

Q0 ≡{y ≤ −1, x′ = x, y′ = y }
Q1 ≡{y ≥ 0, x′ = x, y′ = −1 }
Q2 ≡{x ≥ 0, x′ = x, y′ = y }
Q3 ≡{y ≥ 1, x′ = x+ y, y′ = y }
Q4 ≡{y ≤ 0, x′ = x− y, y′ = y }
Q5 ≡{x ≤ −1, x′ = x, y′ = y }

Figure 2.9: A non-terminating TS.

23

Chapter 3

Control-Flow Refinement of
Transition Systems via Partial
Evaluation

In Section 1.2, we have discussed the use of CFR as a technique for improving the precision
of program analysis in general, and termination and cost analysis in particular. We have
seen an example where CFR simplifies the termination proof in a way that allows using
LRFs, instead of LLRFs that are required without CFR. This also benefits cost analysis
since tools based on bounding loop iterations using LRFs would be able to infer the cost
of the transformed program, while they would fail on the original one. We have also
mentioned that CFR can help in inferring more precise invariants, and thus benefit any
program analysis that makes use of invariants. In this chapter, we will see more examples
in this direction, for which proving termination, inferring complexity bounds, or inferring
precise invariants is not possible without CFR (wrt. some fixed analysis techniques).

There are CFR techniques that developed for very particular contexts [Albert et al.
2019; Flores-Montoya and Hähnle 2014; Gulwani et al. 2009; Sharma et al. 2011]. How-
ever, since CFR is, in principle, a program transformation that specialises a program
to distinguish different execution scenarios, a natural question to ask is whether such
specialisation can be achieved by partial evaluation, which is a general-purpose speciali-
sation technique. In particular, the partial evaluation technique of Gallagher [2019] that
specialises Horn clause programs wrt. a set of predefined properties.

Using partial evaluation for CFR has the clear advantage that soundness comes for free
and that it is not tailored for a particular purpose but rather can be tuned depending on
the application domain. It can almost be used in any program analysis since it generates
semantically equivalent programs, while techniques developed for a specific purpose might
not have this property. Moreover, developing a CFR procedure for TSs would allow using
it in other tools, that analyse TSs, without any additional effort.

The rest of this chapter is organised as follows.

� In Section 3.1, we describe a CFR procedure for TSs that is based on partial eval-
uation and suggest heuristics for automatically inferring properties that guide spe-
cialisation.

� In Section 3.2, we discuss the use of CFR for termination analysis, by modifying
Algorithm 1 to apply CFR at different levels of granularity (as a pre-processing
step, only on parts that we could not prove their termination, etc).

25

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

q0(x, y)← q1(x, y).
q1(x, y)← {x ≥ 0}, q2(x, y).
q1(x, y)← {x ≤ −1}.
q2(x, y)← {x ≥ y, y′ = y + 1}, q1(x, y′).
q2(x, y)← {x ≤ y − 1, x′ = x− 1}, q1(x′, y).

q0

q2

q1

Figure 3.1: A CHC program and a corresponfing call graph.

� In Section 3.3, we discuss the use of CFR for cost analysis, as a pre-processing step,
and suggest the use of ranking functions as bases for inferring properties.

Implementation and experimental evaluation are discussed in chapters 5 and 6.

3.1 Partial Evaluation of Transition Systems

In this section, we describe the partial evaluation technique of Gallagher [2019], which is
developed for Horn clauses, and discuss its use for CFR of TSs.

3.1.1 Constraint Horn-Clauses

A Constrained Horn Clause (CHC) has the form

q0(~x0)← ϕ, q1(~x1), . . . , qk(~xk)

where qi are predicate names (all of arity n for simplicity), ~xi are tuples of variables,
and ϕ is a formula over these variables. We call q0(~x0) the head of the clause, and
“ϕ, q1(~x1), . . . , qk(~xk)” the body of the clause. In our case, formulas ϕ will be transition
polyhedra coming from corresponding TSs. As in the case of TSs, the domain of variables
is left parametric and we mention it explicitly when needed. Our techniques work both
for Q and Z, it is just a matter of requiring the partial evaluation of Gallagher [2019] to
use SMT queries over the corresponding domain.

A CHC program is a set of CHCs such that one predicate is marked as the entry. We
say that the set of CHCs with head predicate qi defines qi. The call graph induced by a
CHC program is a directed graph whose nodes are the predicate names, and there is an
edge from qi to qj if qi is defined by a CHC including qj in its body. We say that qi is a
loop head if it has a back edge in the corresponding call-graph wrt. depth-first traversal
from the entry predicate.

EXAMPLE 3.1. Figure 3.1 includes a CHC program and a corresponding call graph.
Node q0 is the initial node and q1 is a loop head. 2

3.1.2 From Transition Systems to Constraint Horn-Clauses

A TS T can be translated into a semantically equivalent1 CHC program HC(T) by trans-

lating each edge ni
Q−→ nj into a CHC “qni(~x) ← Q, qnj(~x′)”, and marking qn0 as the

entry predicate. The CFG of T is equivalent to the call-graph of HC(T). Observe that

1CHC programs are basically constraint logic programs, so corresponding semantics can be used.

26

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 void phases1(int x, int y, int z) {
2 while(x >= 1){
3 if (y <= z - 1) {
4 y = y + 1;
5 } else {
6 x = x - 1;
7 }
8 }
9 }

n0

n1 n2

n3 T

Q0

Q1

Q2

Q3

Q4

n0 n31 n23

n22n21 Tpe

n12 n13n11

Q0

Q1

Q2

Q6

Q5

Q7 Q8

Q6

Q1

Q0 ≡{ x′ = x, y′ = y, z′ = z }
Q1 ≡{x ≥ 1, x′ = x, y′ = y, z′ = z }
Q2 ≡{x ≤ 0, x′ = x, y′ = y, z′ = z }
Q3 ≡{y ≤ z − 1, x′ = x, y′ = y + 1, z′ = z }
Q4 ≡{y ≥ z, x′ = x− 1, y′ = y, z′ = z }
Q5 ≡{x ≥ 1, y ≤ z − 1, x′ = x, y′ = y + 1, z′ = z }
Q6 ≡{x ≥ 1, y ≥ z, x′ = x− 1, y′ = y, z′ = z }
Q7 ≡{x ≥ 1, y ≥ z, x′ = x, y′ = y, z′ = z }
Q8 ≡{x ≤ 0, y ≥ z, x′ = x, y′ = y, z′ = z }

Figure 3.2: A loop with 2 phases.

HC(T) is linear, that is, each clause has only one call in the body. Linearity guarantees
that the specialised version is also linear, and thus can be converted back into a TS Tpe in
a similar way. Soundness of partial evaluation guarantees equivalence between the traces
of T and Tpe, in particular, there is an infinite trace in T iff there is one in Tpe. The
complexity is preserved as well when modelled using an auxiliary variable as discussed in
Section 2.2.

EXAMPLE 3.2. Consider the method phases1 of Figure 3.2 and its corresponding TS
T . Translating this TS into a CHC program results in:

qn0(x, y, z)← qn1(x, y, z).
qn1(x, y, z)← {x ≥ 1}, qn2(x, y, z).
qn1(x, y, z)← {x ≤ 0}, qn3(x, y, z).
qn2(x, y, z)← {y ≤ z − 1, y′ = y + 1}, qn1(x, y

′, z).
qn2(x, y, z)← {y ≥ z, x′ = x− 1}, qn1(x

′, y, z).

The only loop head predicate is qn1 (n1 since it has a back edge when traversing T starting
at node n0. 2

27

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

3.1.3 Partial Evaluation of Constraint Horn-Clauses

The technique of Gallagher [2019] takes as input a CHC program and a constraint on
the entry predicate, and returns a partially evaluated CHC program that preserves the
computational behaviour of the original program with the given entry. In particular, it
preserves termination and complexity of the original program. In our case, the initial
condition of the entry will be true. It is an online partial evaluation algorithm, meaning
that control decisions are made on the fly, and it yields a poly-variant partially evaluated
program, meaning that a single predicate qi from the input program can result in several
“versions” of qi in the output program.

It is not possible to create versions for all reachable possibilities as there may be
infinitely many. During partial evaluation, when reaching a call q(~x) with some context
ϕ (i.e., some constraints on variables ~x) the algorithm decides whether to create a version
of q(~x) for this context, and replace the corresponding call by one to this version, or to
abstract the context.

Gallagher [2019] suggests the use of property-based abstraction in order to guarantee
the generation of a finite number of versions. For a predicate q(~x), it assigns beforehand a
finite set of properties {γ1, . . . , γk}, where each γi is a formula over ~x, and when reaching
q(~x) with a context ϕ, instead of creating a version for ϕ it creates one for

α(ϕ) = ∧{γi | ϕ |= γi} (3.1)

where |= stands for logical implication. This guarantees that there are at most 2k versions
for q(~x).

EXAMPLE 3.3. Suppose a predicate f(x, y, z) is assigned properties x ≥ 1 and y ≥ z,
it would then have up to 4 versions corresponding to (abstract) contexts x ≥ 1, y ≥ z,
x ≥ 1 ∧ y ≥ z and true. 2

In practice, to guarantee termination of partial evaluation, it is enough to apply
property-based abstraction to loop head predicates as they cut all cycles; other predicates
can be specialised wrt. to all contexts that are encountered during the evaluation. In
addition, partial evaluation might unfold deterministic sequences of calls into a single
clause. Next, we describe the partial evaluation algorithm for CHC programs using
a worked example, assuming, for simplicity, that the clauses are linear since they are
generated from a TS. A more detailed presentation of the algorithm for arbitrary clauses
can be found in Gallagher [2019].

Consider the CHC program of Example 3.2, that corresponds to TS T of Figure 3.2.
The execution of this TS has two implicit phases:

� in the first one, y is incremented until it reaches the value of z; and

� in the second phase x is decremented until it reaches 0.

Our aim is to use partial evaluation to split the loop into two explicit phases as we have
done in Section 1.2, in particular to automatically obtain Tpe of Figure 3.2. This would
allow proving termination of Tpe, and thus T , using LRFs only.

The first step is to assign properties to the different predicates. Let us manually fix
the properties of qn1(x, y, z) to be

Γ = {x ≥ 1, y ≥ z} (3.2)

28

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

which are the properties of the variables at loop entry that determine which loop path
or loop exit is taken. Note that this set does not represent a conjunction, its elements
are separate constraints that represent properties. In Section 3.1.4 we discuss how these
properties are inferred automatically.

The partial evaluation algorithm performs a sequence of iterations. The input to each
iteration is a set of “versions” of predicates, where each version is a pair 〈q(~x), ϕ〉, where
q is a program predicate and ϕ is a constraint on its arguments. Each iteration performs
an unfolding for each version, followed by a property-based abstraction of the resulting
calls using Γ, yielding a new set of versions that is input to the following iteration. The
iterations end when no new versions are produced by an unfolding. The unfold operation
for a version 〈q(~x), ϕ〉 consists of expanding calls in the body of clauses with head q(~x),
so long as the call is deterministic and not a loop head, and the constraint ϕ is satisfied.

Let the initial version be 〈qn0(x, y, z), true〉. Then, the iterations of the algorithm
yield the following sequence of new versions:

1. {〈qn1(x, y, z), true〉}.

2. {〈qn2(x, y, z), x ≥ 1〉, 〈qn3(x, y, z), x ≤ 0〉}.

3. {〈qn1(x, y, z), x ≥ 1〉, 〈qn1(x, y, z), y ≥ z〉}.

4. {〈qn2(x, y, z), x ≥ 1, y ≥ z〉, 〈qn3(x, y, z), x ≤ 0, y ≥ z〉}}.

5. ∅.

We look in detail at iteration 3; the versions 〈qn2(x, y, z), x ≥ 1 〉 and 〈qn3(x, y, z), x ≤ 0〉
resulting from iteration 2 are unfolded. The latter yields no clauses since there is no
clause with head predicate qn3 . The version 〈qn2(x, y, z), x ≥ 1 〉 is unfolded giving the
clauses:

qn2(x, y, z)← {x ≥ 1, y ≤ z − 1, y′ = y + 1}, qn1(x, y
′, z)

qn2(x, y, z)← {x ≥ 1, y ≥ z, x′ = x− 1}, qn1(x
′, y, z).

The constraints on the body calls are then collected. The constraints on the first call
qn1(x, y

′, z), projected onto {x, y′, z}, are x ≥ 1. The constraints on the second call
qn1(x

′, y, z), projected onto {x′, y, z}, are x′ ≥ 0∧y ≥ z. Using property-based abstraction
with Γ, the set of properties for qn1 , we obtain (after renaming x′ to x)

α(x ≥ 1) = x ≥ 1
α(x ≥ 0 ∧ y ≥ z) = y ≥ z.

Note that the constraint x ≥ 0∧y ≥ z entails y ≥ z but no other member of Γ and hence
the constraint x ≥ 0 is abstracted away. This yields the two versions 〈qn1(x, y, z), x ≥ 1〉
and 〈qn1(x, y, z), y ≥ z〉 that are shown as the result of iteration 3. Note that with-
out abstraction, an infinite number of iterations could result. In this example, versions
〈qn1(x, y, z), x ≥ 0, y ≥ z〉, 〈qn1(x, y, z), x ≥ −1, y ≥ z〉, . . . would be generated.

For each version, a new predicate is generated. We use predicate names that carry
information on the different versions: qnji is the jth version of predicate qni .The entry

29

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

predicate qn0 is not renamed. For our example a suitable renaming is as follows.

〈qn1(x, y, z), true〉 ⇒ qn31(x, y, z)
〈qn2(x, y, z), x ≥ 1〉 ⇒ qn22(x, y, z)
〈qn1(x, y, z), x ≥ 1〉 ⇒ qn21(x, y, z)
〈qn2(x, y, z), x ≥ 1 ∧ y ≥ z〉 ⇒ qn12(x, y, z)
〈qn1(x, y, z), y ≥ z〉 ⇒ qn11(x, y, z)
〈qn3(x, y, z), x ≤ 0〉 ⇒ qn23(x, y, z)
〈qn3(x, y, z), x ≤ 0, y ≥ z〉 ⇒ qn13(x, y, z)

The head and body calls of the unfolded clauses for each version are then renamed,
yielding the following set of clauses as the result of partial evaluation:

qn0(x, y, z)← qn31(x, y, z).
qn31(x, y, z)← {x ≤ 0}, qn23(x, y, z).
qn31(x, y, z)← {x ≥ 1}, qn22(x, y, z).
qn22(x, y, z)← {x ≥ 1, y ≤ z − 1, y′ = y + 1}, qn21(x, y

′, z).
qn22(x, y, z)← {x ≥ 1, y ≥ z, x′ = x− 1}, qn11(x

′, y, z).
qn21(x, y, z)← {x ≥ 1}, qn22(x, y, z).
qn11(x, y, z)← {x ≤ 0, y ≥ z}, qn13(x, y, z).
qn11(x, y, z)← {x ≥ 1, y ≥ z}, qn12(x, y, z).
qn12(x, y, z)← {x ≥ 1, y ≥ z, x′ = x− 1}, qn11(x

′, y, z).

Translating this CHC program back to an TS results in Tpe, depicted in Figure 3.2.

3.1.4 Choice of Properties

In the example above, the properties were chosen manually to give the appropriate ver-
sions and achieve CFR. While any choice of properties gives a sound partial evaluation,
heuristics are typically needed to infer appropriate properties automatically, i.e., proper-
ties that lead to the desired versions.

We observe that properties relevant to CFR are closely related to the conditions in the
loop head and within the loop body. This leads to the following heuristics that extract
properties of qni from the constraints of incoming and outgoing edges of node ni:

Propsh(qni)= {ψ | qni(~x)← Q, qnj(~x′) ∈ HC(T), ψ = proj~x(Q)}
Propshv(qni)= {x` � c | qni(~x)← Q, qnj(~x′) ∈ HC(T), ` ∈ [1..n], � ∈ {≤,≥},Q |= x` � c}
Propsc(qni)= {ψ[~x′/~x] | qnj(~x)← Q, qni(~x′) ∈ HC(T), ψ = proj~x′(Q)}
Propscv(qni)= {x` � c | qnj(~x)← Q, qni(~x′) ∈ HC(T), ` ∈ [1..n], � ∈ {≤,≥},Q |= x′` � c}

Let us explain the different heuristics:

� Propsh infers properties by extracting conditions from the CHCs defining qni (i.e.,
outgoing edge of ni); this is done by projecting the corresponding constraints on
~x. This also captures implicit conditions that do not appear syntactically in the
constraints defining Q.

� Propshv infers properties by extracting bounds, for each variable xi, from the CHCs
defining qni . Inferring the minimal/maximal value for xi is done in practice using
linear programming.

30

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

� Propsc is like Propsh, but it uses calls to qni , i.e., incoming edge of ni.

� Propscv is like Propshv, but it uses calls to qni , i.e., incoming edge of ni.

Inference of properties can be done at the level of T or HC(T). Let us see how these
heuristics infer the properties that we have chosen before manually.

EXAMPLE 3.4. Let us compute properties for qn1 . Node n1 has outgoing edges labelled
withQ1 andQ2 and incoming edges labelled withQ0, Q3 andQ4. Recall that ~x = (x, y, z)
and ~x′ = (x′, y′, z′). Then the corresponding properties are:

Propsh(qn1) = {proj~x(Q1), proj~x(Q2)} = {x ≥ 1, x ≤ 0}
Propshv(qn1) = {x ≥ 1, x ≤ 0}
Propsc(qn1) = {proj~x′(Q0), proj~x′(Q3), proj~x′(Q4)}[~x′/~x] = {y ≤ z, y ≥ z}
Propscv(qn1) = ∅.

Note that they are the ones used manually in (3.2). 2

The above heuristics suffice for many cases in practice, but they may be inadequate
when conditions in a loop body are not directly implied by the formulas of incoming/out-
going edges of the loop head. For example, assume method phase1 of Figure 3.2 includes
has an additional statement w=w+1 at the end of the loop body. In this case, the outgoing
edges of n2 will not go directly to n1, but to a new node connected to n1 with the formula
{w′ = w + 1, x′ = x, y′ = y, z′ = z}. Thus, the constraints y ≤ z and y ≥ z are not
implied by the constraints of incoming/outgoing edges of n1.

To overcome this limitation, we developed a new heuristic Propsdh that propagates all
constraints in the loop bodies backwards to loop heads as follows:

1. we remove all back-edges (in HC(T)), that is, we replace each

qnj(~x)← Q, qni(~x′) ∈ HC(T)

by “qnj(~x)← Q” if qni is a loop head, which results in a recursion-free CHC program.

2. we compute the set of answers (the minimal model) of the resulting CHC program
and take them as properties, i.e., if γ1, . . . , γl are the answers for qni(~x), we define
Propsdh(qni) = {γ1, . . . , γl}.

For the modification of the program of Figure 3.2 just described, we would get

Propsdh = {y ≤ z − 1, y ≥ z, x ≥ 1}.

We could propagate conditions in the loop bodies to loop heads forwards as well;
however, we do not do it since in practice we add invariants to all transitions (which has
the effect of propagating conditions forward) before inferring properties.

From now on, we assume that we have a procedure PE that receives an TS T and
applies CFR via partial evaluation as follows:

1. optionally, it computes invariants for all nodes, and adds them to their outgoing
edges, which makes more properties visible as discussed above;

31

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

2. generates the CHC program HC(T);

3. computes properties for each loop head;

4. applies partial evaluation as described above;

5. translates the specialised CHCs into a new TS;

6. optionally, computes invariants again in order to eliminate unreachable nodes in
the new TS; and

7. returns the new TS.

For simplicity, we assume that the choice of properties at step 3 above is provided via
global configuration, and not received as a parameter.

We might also call PE with a list of nodes N as a second argument to indicate that
properties should be assigned to a loop head qni only if ni ∈ N , this is used to apply CFR
only to a subset of the TS, because predicates without properties are be specialised.

Finally, procedure PE can be applied iteratively on its output, which might achieve
further refinements, but also risks increasing the size of the resulting TS. In practice, we
have few examples that benefit from such iterative application of PE.

3.2 Application to Termination Analysis

In this section, we discuss how CFR via partial evaluation, as described in Section 3.1,
can improve the precision of termination analysis of TSs. In particular, we present an
algorithm for termination analysis incorporating the CFR procedure of Section 3.1, and
discuss the different aspects of the algorithm using representative examples. Before pre-
senting our algorithm, we briefly recall some of the details on how a typical termination
analyser works using Algorithm 1 (for more details see the discussion in Section 2.3).

A termination analyser receives a TS T , and separately proves termination or non-
termination of each of its SCCs using a procedure that we called TerminationSCC.
Proving termination of a SCC S is done by inferring a ranking function. A practical alter-
native is to incrementally infer quasi-ranking functions and then use them to construct
a corresponding lexicographic-ranking function. In Section 2.3.1, we have seen several
kinds of ranking functions and quasi-ranking functions, all are based on the use of linear
functions since there are efficient algorithms for inferring them. Proving non-termination
is done by inferring a corresponding recurrent set that witnesses non-termination, and
proving that it is actually reachable from the initial node.

An important aspect of TerminationSCC is that when it fails to prove that a SCC
S is terminating or non-terminating, it might prove that some of its edges (or individual
transitions) cannot be taken infinitely. This implies that any infinite trace in S must have
a suffix that uses only the other transitions, which are returned by TerminationSCC
as the second component of the returned value 〈MAYBE, FS〉. This is important since
our CFR approach is based on refining these transitions in order to make inference of
termination or non-termination witnesses possible.

As we have mentioned in Section 2.3, procedure TerminationSCC makes use of
invariants as well, this increases precision since they propagate constraints between the
different nodes. For simplicity, we assume that invariants are added to the input TS,
either as annotations or directly to the transition polyhedra, so TerminationSCC can

32

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

make use of them, and that procedure PE of Section 3.1 adds such invariants to the
refined TS as well. The inference of invariant is treated as a black-box, as it can be done
using off-the-shelf tools.

The effectiveness of TerminationSCC is directly affected by the kind of ranking
functions and invariants used. Some termination analysers might succeed to prove ter-
mination of a given TS while others fail, mainly because they implement different kinds
of (quasi-)ranking functions. Apart from considerations like performance, some ranking
functions might induce bounds on the length of traces within a SCC, which is fundamental
for applications like cost analysis. For example, LRFs induce such bounds while LLRFs
cannot always do so (depending on the kind of QLRF used). For invariants, analysers
often use abstract domains that are based on conjunctions of linear constraints; such as
convex polyhedra [Cousot and Halbwachs 1978], and Octagons [Miné 2006], however, they
cannot capture more expressive, but expensive disjunctive invariants (i.e., disjunctions of
conjunctions of linear constraints).

CFR splits complex control-flow into phases/cases which can improve termination
analysis in several ways:

1. simplify the termination witnesses, e.g., make it possible to use LRFs where without
CFR one would need LLRFs;

2. due to case splitting, it might make it possible to infer ranking functions of some
kind, while without CFR it is not possible at all; and

3. improve the precision of invariants, e.g., eliminate the need for disjunctive invari-
ants, and thus enable automatic termination and non-termination proofs where
without CFR one would need disjunctive invariants.

Later we will see examples for all these scenarios.

3.2.1 Control-Flow Refinement Schemes

CFR is typically used as a pre-processing step. Although simple, this can perform unnec-
essary refinements and generate large TSs that are more expensive to analyse. A better
approach is to apply CFR selectively; however, that requires deeper modifications to the
analyser. We suggest the following schemes for adding CFR to a termination analyser,
trading off ease of implementation with performance and precision:

� (CFRB): in this scheme CFR is applied directly to the input TS. This is easy to
implement but can perform unnecessary refinements that cause overhead in analysis.

� (CFRS): in this scheme, CFR is applied at the level of SCCs, i.e., when Termina-
tionSCC fails to prove termination of a SCC, CFR is applied only to the part of
the SCC for which the termination proof has failed.

� (CFRA): this scheme first collects all edges (from all SCCs) on which Termination-
SCC has failed, and applies CFR to the input TS taking into account those edges
only.

For CFRS and CFRA schemes, CFR can be applied iteratively so that refinement is inter-
leaved with termination proof attempts. In this way, each step might introduce further
refinements that could not be done in previous steps. The precision and performance of
these schemes are compared experimentally in Chapter 6.

33

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

Algorithm 2: Pseudo-code of Termination Analysis with Control-Flow Refinement

Termination(T ,CFRB,CFRA,CFRS)
1 if CFRB then T := PE(T)
2 〈Ans , F 〉 := TerminationCFG(T , CFRS)
3 while Ans = MAYBE and CFRA > 0 do
4 N := nodes(F)
5 T := DelNonReaching(T ,N)

6 T := PE(T ,N)

7 T ′ := DelTerminating(T ,N)

8 CFRA := CFRA − 1
9 〈Ans , F 〉 := TerminationCFG(T ′,CFRS)

10 return 〈Ans , F 〉

TerminationCFG(T ,CFRS)
11 F := ∅; Q := [〈T , CFRS〉]
12 while Q 6= ∅ do
13 〈T ′, i〉 := Q .getFirst()
14 foreach SCC S of T ′ do
15 〈Ans ,FS 〉 := TerminationSCC(S,T ’)
16 if Ans is NO then
17 return 〈NO,FS〉
18 else if Ans is MAYBE and i > 0 then
19 T ′′ = ConITS(FS ,T ′)
20 T ′′′ = PE(T ′′)
21 Q .add(〈T ′′′, i− 1〉)
22 else F := F ∪ FS

23 if F 6= ∅ then
24 return 〈MAYBE,F 〉
25 else return 〈YES, ∅〉

3.2.2 Incorporating CFR into a Termination Algorithm

Algorithm 2 shows the pseudo-code of a termination analysis algorithm that uses the CFR
schemes discussed in the previous section. It consists of two procedures Termination
and TerminationCFG, and uses TerminationSCC as a black box. It also uses some
auxiliary procedures that we explain below.

Procedure Termination receives a TS T , a Boolean CFRB indicating whether CFRB
should be applied, and integers CFRA and CFRS giving the number of times that the
respective schemes can be applied. At Line 1 it calls PE(T) if CFRB is true, and at Line 2
it calls TerminationCFG to analyses the SCCs of T for the first time. Afterwards, it
executes a while loop (lines 4-9) that alternates CFR and calls to TerminationCFG as
long as CFRA can be applied (CFRA > 0) and (non)termination has not been proven (Ans =
MAYBE). Note that if at Line 2 the returned value for Ans is different from MAYBE, then
the loop is not executed since there is no need for (further) CFR in such case. The return
value of procedure Termination (at Line 10) is basically equal to the return value of the
last call to TerminationCFG (either at Line 2 or at Line 9), which indicates whether
it has succeeded to prove (non)termination or not.

34

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

In each iteration of the refine/analyse loop (lines 4-9) we apply CFR only to the parts
corresponding to F (the edges returned by the last call to TerminationCFG, i.e., those
it could not prove terminating) as follows:

1. at Line 4 it computes the set of nodes N that appear in F ;

2. at Line 5 it removes from T nodes that do not reach nodes in N . These correspond
to parts of T that have been proven terminating and they do not affect the CFR
of any node in N ;

3. at Line 6 it applies CFR considering only loop heads in N (nodes that do not
correspond to loop heads are assumed to a have an empty set of properties);

4. at Line 7 it removes from T nodes not in N . These correspond to parts that they
have been proven terminating already; and

5. at Line 8 it decreases the CFRA scheme counter.

Once CFR is applied, it calls TerminationCFG (at Line 9) to analyse T ′. Note that
the nodes removed at Line 7 are not removed before at Line 5 in order to: (a) guarantee
soundness, as CFR must consider all possible ways in which nodes in N are reached;
(b) allow CFR to benefit from context information; and (c) allow other parts reachable
from nodes in N to benefit from refinements.

Procedure TerminationCFG analyses the SCCs of T , and applies CFR at the level
of SCCs if needed. At Line 11 it initialises local variables F and Q, where F is used
to accumulate the edges that it fails to prove terminating, and Q is a queue of pending
(sub) TSs to be analysed. The elements of Q are pairs 〈T ′, i〉, where T ′ is a TS to be
analysed and i is the number of times left to apply CFR to its SCCs.

The while loop is executed as long as there are pending (sub) TSs in Q: at Line 13
it takes a TS T ′ from Q, and in the loop at lines 14-22 it analyses each SCC S. This is
done by first calling TerminationSCC on S at Line 15 and depending on the result it
proceeds as follows:

1. if it proves that S is non-terminating (Ans = NO), it returns a corresponding answer
at Line 17;

2. if it fails (Ans = MAYBE) and CFRS can be applied (i > 0), then at Line 19 it builds
a new TS T ′′ from the problematic part FS, by calling ConITS(FS), and then at
Line 20 it is passed to PE to apply CFR and obtain a new TS T ′′′. At Line 21 T ′′′
is added to Q with a corresponding CFRS counter;

3. otherwise, it adds FS to F at Line 22 (FS is empty if Ans is YES and non-empty if
Ans is MAYBE).

Building a TS from FS at Line 19 is done as follows: ConITS builds a TS that consists
of the nodes and edges of FS, together with a new entry node that has edges to all nodes
of FS that are reachable from nodes not in FS. This is because CFR must consider all
possible ways in which nodes of FS are reached (we assume that ConITS has access to
the original TS T ′).

35

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

3.2.3 How CFR Benefits Termination Analysis

In this section, we present case studies of how Algorithm 2 can benefit termination
analysis using the different CFR schemes. For all examples, we give programs and TSs,
but we omit CHCs as they are similar to TSs. TSs are sometimes simplified (e.g. by
joining chains of nodes) for simplifying the presentation; however, they are very similar
to what we actually get in practice.

We start with an example that demonstrates how CFR can simplify the termination
witness from LLRFs to LRFs, which is useful if the underlying analyser does not use
LLRFs, and can help in making cost analysis feasible as well.

EXAMPLE 3.5. Consider method phases1 of Figure 3.2 and its corresponding TS T .
It is easy to prove that T terminates using the LLRF 〈z−y, x〉 for nodes n1 and n2, but it
is not possible if we restrict ourselves to the use of LRFs. Using CFR (e.g., with Propsh)
refines T in a way that makes proving termination using LRFs possible. Calling procedure
Termination(T , true, 0, 0) applies CFR at Line 1 before trying to prove termination,
yielding the TS Tpe of Figure 3.2. The two loop phases are now explicit: nodes n21 and
n22 correspond to the first phase, and nodes n11 and n12 to the second phase. Using this
refined TS, TerminationCFG finds LRFs z − y and x for the corresponding SCCs. 2

The next example shows a special case of the notion of phases, where the different
phases are actually cases that are never used in the same execution.

EXAMPLE 3.6. Consider the program depicted in Figure 3.3. Note that the loop guard
is translated into two case: x ≤ y − 1 in Q1 and x ≥ y + 1 in Q2. The loop terminates
when x = y holds. It is easy to see that only one branch will be used during an execution.
iRankFinder cannot handle this loop, not with LRFs nor LLRFs, and thus we resort
to CFR. Applying CFR (using Propsc) both branches are separate as shown in the TS
Tpe in Figure 3.3. Now iRankFinder can find LRFs: y−x for the SCC of nodes n21 and
n22; and x− y for the SCC of nodes n12 and n11. 2

The next example discusses cases for which CFR is essential for proving termination,
not only for simplifying the form of the termination witness.

EXAMPLE 3.7. Consider method search of Figure 3.4. It receives an array q repre-
senting a circular queue, the size of the array n, the indexes h and t of the head and
tail, and a value v to search for. The assert instruction guarantees the validity of the
input. Note that when h ≤ t, the elements of the queue lie in the interval [h..t], and when
h ≥ t + 1 the elements lie in intervals [h..n − 1] and [0..t]. The loop first (if h ≥ t + 1)
searches for v in the interval [h..n− 1] and then in [0..t]. This defines two phases where
moving from the first to the second is done, when h is equal to n− 1, by setting h to 0.
For h ≤ t the first phase is not executed.

It is easy to see that (a) in the first phase, n− h is non-negative and decreasing in all
iterations except the last, i.e., when setting h to 0 , and thus, in principle, can be used to
argue that the first phase is terminating; and (b) in the second phase, n−h is decreasing
and non-negative, and thus can be used to argue that this phase is terminating. The
last iteration of the first phase makes automatic proofs suitable, because it breaks the
conditions that a LRF or a LLRF has to satisfy as function n−h increases when setting h
to 0. On the other hand, if we succeed in splitting these phases into separate loops, such
that the last iteration of the first phase is a transition that connects them, then proving
termination should be possible with LRFs only. Unlike method phases1 of Figure 3.2,

36

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 void PastaA10(int x, int y) {
2 while (x != y) {
3 if (x >= y + 1)
4 y++;
5 else

6 x++;
7 }
8 }

n0

n1

n2

n3

T

Q0

Q1 Q2

Q3

Q4 Q5

n0

n11n21

n31 n12n22

n13

Tpe

Q0

Q1 Q2

Q3

Q3 Q3

Q5 Q1 Q4 Q2

Q0 ≡{ x′ = x, y′ = y }
Q1 ≡{x ≤ y − 1, x′ = x, y′ = y }
Q2 ≡{x ≥ y + 1, x′ = x, y′ = y }
Q3 ≡{x = y, x′ = x, y′ = y }
Q4 ≡{x ≥ y + 1, x′ = x, y′ = y + 1 }
Q5 ≡{x ≤ y, x′ = x+ 1, y′ = y }

Figure 3.3: A loop with 2 phases that are never executed together.

in this one the two phases execute the same code, i.e., the then branch at Line 4,which
make things more challenging.

The TS T of this program is shown in Figure 3.4. Node n1 corresponds to the loop
head, and n2 to the if statement. Assume that this loop is the only loop in a larger
program that we cannot prove terminating, so as to take advantage of applying CFR
at the level of SCCs. Calling Termination(T , false, 0, 1) we eventually reach Line 15
with SCC S containing nodes n1 and n2. TerminationSCC fails to prove termination
of any edge of S and returns the set of all edges of S (via FS). The new TS T ′′ built at
Line 19 is like the TS T of Figure 3.4, but without the exit node n3. Applying CFR at
Line 20 using properties {h = 0, h ≤ t} (or Propsc and Propscv) we obtain T ′′′ as Tpe of
Figure 3.4, which is added at Line 21 to Q in order to analyse it again. Node n1 of T
now has 2 versions in Tpe:

� n21 is for the first phase which excludes the last step that sets h to 0, which is now

handled by the edge n22
Q7−→ n11; and

� node n11 is for the second phase.

Note that node n2 has 2 versions as well even if it is not a loop head, this is due to the
split of n1. When Tpe is analysed, TerminationSCC finds LRFs for both SCCs of Tpe
since the phases have been split as discussed above. 2

37

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 int search(int q[], int n, int h, int t, int v) {
2 assert(n>=1 && h<=n-1 && t<=n-1 && h>=0 && t>=0);
3 while (h != t && q[h] != v) {
4 if (h <= n-2) h++;
5 else h = 0;
6 }
7 return q[h] == v;
8 }

n0

n3

n1 n2

T

Q1

Q2

Q0

Q5

Q3

Q4

n0

Tpe n11n22

n12n21

Q3

Q0

Q6

Q7

Q2Q1

Q2

Q0 ≡{h ≥ 0, h ≤ n− 1, t ≥ 0, t ≤ n− 1, n ≥ 1, h′ = h, t′ = t, n′ = n }
Q1 ≡{h ≥ t+ 1, h′ = h, t′ = t, n′ = n }
Q2 ≡{h ≤ t− 1, h′ = h, t′ = t, n′ = n }
Q3 ≡{h ≤ n− 2, h′ = h+ 1, t′ = t, n′ = n }
Q4 ≡{h ≥ n− 1, h′ = 0, t′ = t, n′ = n }
Q5 ≡{h = t, h′ = h, t′ = t, n′ = n }
Q6 ≡{h ≤ n− 2, h ≥ t+ 1, h′ = h+ 1, t′ = t, n′ = n }
Q7 ≡{h = n− 1, h′ = 0, t′ = t, n′ = n }

Figure 3.4: A loop that searches in a circular queue.

The next example shows (i) how CFR is useful for inferring precise invariants, without
using disjunctive abstract domains; and (ii) the importance of the scheme CFRA, i.e., the
scheme that refines all parts of the TS that TerminationSCC failed to prove terminat-
ing together.

EXAMPLE 3.8. Let us modify method search (and its TS T) to include another
variable w, that is initialised to t−h+ 1 before the loop and is set to 1 in the else branch
at Line 5. The initial value of w is at least 1 if h ≤ t, and it is at most 0 if h ≥ t + 1.
However, in the later case the execution eventually passes through the else branch and
sets w to 1. This means that w ≥ 1 holds after the loop. Using the TS T of this program,
invariant generators would fail to infer this information without relying on disjunctive
invariants, e.g., (h ≤ t ∧ w ≥ 1) ∨ (h ≥ t+ 1 ∧ w ≤ 0) for node n1. However, when using
Tpe they succeed using only conjunctions of linear constraints, because in Tpe it is explicit
that the second phase is reached, in either way, with w ≥ 1.

Precise invariants are essential for the precision of termination analysis. Assume
that the loop of method search is followed by a second loop “while (x>=1) x=x-w;”,
then termination analysis of this loop would fail without the invariant w ≥ 1 since
the loop is non-terminating for w ≤ 0. Note that in order to propagate w ≥ 1 from

38

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

the first loop to the second, we cannot use the scheme CFRS since it analyses the SCCs
independently, and thus after applying CFR to the SCC of the first loop the new invariants
are not propagated to the SCC of the second loop. Instead, we can use CFRA by calling
Termination(T , false, 1, 0). In this case, the first call to TerminationCFG at Line 2
fails to prove any of the two loops terminating, and then CFR at Line 1 is applied on
both loops together and now the constraint w ≥ 1 is propagated to the second loop. One
could also use CFRB, but it might be less efficient if the program is part of a larger one
that does not need CFR to handle other SCCs. 2

Next we discuss one of the examples that no tool could handle in the termination
competition 20192 neither 20203, except iRankFinder when using the CFR techniques
of this thesis.

EXAMPLE 3.9. Consider method randomwalk of Figure 3.5. It simulates a random
walk process where w is repeatedly increased or decreased at Line 9 depending on the
random choice for c at Line 4. The code at Line 5-8 ensures termination, let us explain
how. Assuming that n ≥ 1, the loop passes through the following phases:

1. z ≥ 1, so z is decremented at Line 5 until it reaches 0;

2. since now z = 0 and i = 1, it either executes Line 8 and exits the loop, or executes
Line 7 which decrements i to 0 and in the next iteration executes Line 5 and sets i
to 2 and z back to n;

3. since now z ≥ 1, it is decremented at Line 5 until it reaches 0;

4. since now z = 0 and i = 2, it either executes Line 7 twice, which means that c = 0
and thus at Line 9 w is decremented twice to 0 and exits the loop, or it executes
Line 8 at least once and exits the loop.

The case of n ≤ 0 passes in steps 2 and 4 only. Applying CFR to T of Figure 3.5, e.g.,
using properties Propscv and Propsdh, we obtain the TS Tpe sketched in Figure 3.5 (each
box is a SCC with several nodes and a single cycle that decrements z). Calling Termi-
nation on T with any of the schemes refines the graph to something like Tpe, and proves
termination with LRF z for both SCCs. 2

The next example demonstrates how CFR can simplify non-termination proofs, in
particular the part that proves that a recurrent set is actually reachable.

EXAMPLE 3.10. Consider the TS T depicted in Figure 3.6. The while loop has two
phases: the first increments y by 2 until condition x ≥ y + 1 is violated, and the second
increments y by 1. Note that the second phase is non-terminating since y ≥ x will
always hold. The non-termination analysis technique implemented iRankFinder (see
Chapter 5) finds a recurrent set

Ω = {(n1, (x, y, x′, y′)T) | y ≥ x, y′ = y + 1, x′ = x}

which corresponds to taking the edge of Q2 repeatedly. However, it fails to prove reach-
ability because it uses a very simply reachability analysis that does not unroll loops.
Applying CFR using properties Propsc we obtain to TS Tpe depicted in Figure 3.6, and
now iRankFinder can prove the reachability of Ω. 2

2http://termination-portal.org/wiki/Termination_Competition_2019
3http://termination-portal.org/wiki/Termination_Competition_2020

39

http://termination-portal.org/wiki/Termination_Competition_2019
http://termination-portal.org/wiki/Termination_Competition_2020

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 void randomwalk(int n) {
2 int w=1, i=1, z=n, c=0;
3 while (1 <= w && w <= 2) {
4 c=nondet(); assert(0<=c && c<=1);
5 if (z >= 1) z--;
6 else if (i <= 0) { i=2; z=n; }
7 else if (i >= 1 && c <= 0) i--;
8 else break;
9 if (c <= 0) w--; else w++;

10 }
11 }

n3

n0 n1

T

n2

n5

n4

n6

Q10

Q1

Q6

Q5

Q11

Q2

Q4

Q7 Q8 Q9

Q0

Q3

n0 (a) (c)

n26 n16Tpe

(b) (d)

(b)

Q0 ≡{ c′ = 0, i′ = 1, n′ = n,w′ = 1, z′ = n }
Q1 ≡{w ≤ 2, c′ = c, i′ = i, n′ = n,w′ = w, z′ = z }
Q2 ≡{w ≥ 1, c′ ≥ 0, c′ ≤ 1, i′ = i, n′ = n,w′ = w, z′ = z }
Q3 ≡{z ≤ 0, c′ = c, i′ = i, n′ = n,w′ = w, z′ = z }
Q4 ≡{z ≥ 1, c′ = c, i′ = i, n′ = n,w′ = w, z′ = z − 1 }
Q5 ≡{i ≥ 1, c ≤ 0, c′ = c, i′ = i− 1, n′ = n,w′ = w, z′ = z }
Q6 ≡{i ≤ 0, c′ = c, i′ = 2, n′ = n,w′ = w, z′ = n }
Q7 ≡{c ≤ 0, c′ = c, i′ = i, n′ = n,w′ = w − 1, z′ = z }
Q8 ≡{c ≥ 1, c′ = c, i′ = i, n′ = n,w′ = w + 1, z′ = z }
Q9 ≡{i ≥ 1, c ≥ 1, c′ = c, i′ = i, n′ = n,w′ = w, z′ = z }
Q10 ≡{w ≥ 3, c′ = c, i′ = i, n′ = n,w′ = w, z′ = z }
Q11 ≡{w ≤ 0, c′ = c, i′ = i, n′ = n,w′ = w, z′ = z }

Figure 3.5: A loop that implements a random walk process.

3.3 Application to Cost Analysis

In this section, we discuss the use of CFR for cost analysis, namely the inference of
upper-bound functions (in terms of the input variables) on the length of traces. There are
several cost analysis tools for (variants of) TSs, and they are based on similar techniques
to those used in termination analysis. In particular, they use ranking functions to infer
visit-bounds, which are upper-bounds on the number of visits to edges in the TS. These
tools are typically used as a back-end for cost analysis of different programming languages.
Next, we briefly describe some of these tools.

KoAT [Brockschmidt et al. 2016b] is a tool that works directly on TSs as defined in
Section 2.2.1 and uses the QLRFs of Alias et al. [2010] to infer visit-bounds. KoAT uses
visit-bounds to also bound the values that a variable can take, for example, if a variable x
is incremented by 2 in a SCC, and y is a visit-bound for the edge that increments x, then

40

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 void nonter(int x, int y) {
2 assert(x >= y + 1);
3 while(x != y) {
4 if(x >= y + 1)
5 y = y + 2;
6 else

7 y = y + 1
8 }
9 }

n0

n1

n2

T

Q0

Q1 Q2

Q3

n0 n31

n21

n11n2

Tpe
Q0

Q1

Q1

Q2

Q2

Q3

Q0 ≡{x ≥ y + 1, x′ = x, y′ = y }
Q1 ≡{x ≥ y + 1, x′ = x, y′ = y + 2 }
Q2 ≡{x ≤ y − 1, x′ = x, y′ = y + 1 }
Q3 ≡{x = y, x′ = x, y′ = y }

Figure 3.6: A non-terminating loop.

the value of x would be at most x0 + 2y when leaving the SCC where x0 is the value of
x when entering the SCC. CoFloCo [Flores-Montoya 2017] is a tool that works on a form
of TSs that is called Cost Relations (CRS), which are similar to recurrence relations. It
mainly uses LRFs to infer visit-bounds, and it applies CFR (directly to CRSs) to increase
precision. The CFR techniques of CoFloCo are very similar to those of Gulwani et al.
[2009]. PUBs [Albert et al. 2011] is the first tool to infer upper-bounds for CRSs, actually
it is the one that introduced the notion of CRSs. It uses LRFs to infer visit-bounds and
it does not apply any kind of CFR. In terms of precision, CoFloCo can handle anything
that PUBs can, and it is not directly comparable to KoAT as there are cases where one
succeed and the other fail to infer upper-bounds.

3.3.1 How CFR Benefits Cost Analysis

In the context of cost analysis, CFR can improve the precision of inferring visit-bounds in
a way that is similar to simplifying the witness of a termination proof. The next example
shows this for all programs that we have discussed so far. For CFR in this context we
simply apply procedure PE of Section 3.1 to the input TS.

EXAMPLE 3.11. For Example 3.5, KoAT infers a linear upper-bound without CFR
thanks to the use of QLRFs, which allows the inference of x and z− y as visit-bounds for

n2
Q4−→ n1 and n2

Q3−→ n1, respectively; CoFloCo infers a linear upper-bound since it applies

41

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

Without CFR With CFR
KoAT CoFloCo PUBs KoAT CoFloCo PUBs

Example 3.5: phases1 O(n) O(n) Fail O(n) O(n) O(n)
Example 3.6: PastaA10 O(n2) O(n) Fail O(n) O(n) O(n)
Example 3.7: search Fail O(n) Fail O(n) O(n) O(n)
Example 3.8: search (w) Fail Fail Fail O(n) O(n) O(n)
Example 3.9: randomwalk Fail Fail Fail O(n) O(n) O(n)

Table 3.1: Summary of applying cost analysis on the examples of Section 3.2.3 with and
without CFR.

CFR that splits the loop into phases; PUBs fails to infer any upper-bound, however, it
infers a linear upper-bound when applied to the TS after CFR. For Example 3.6, without
CFR KoAT infer a quadratic bound, CoFloCo a linear bound and PUBs fails. Recall that
CoFloCo uses its own CFR. After applying CFR also KoAT and PUBs infer a linear bound.
For Example 3.7, KoAT and PUBs fail to infer any upper-bound, but they infer a linear
upper-bound after applying CFR; CoFloCo infers a linear upper-bound since it applies its
own CFR that splits the loop into two phases. For Example 3.8, all tools fail to infer an
upper-bound, and all infer a linear upper-bound after applying CFR (note that CoFloCo’s
own CFR is insufficient here). For Example 3.9, all tools fail to infer any upper-bound,
and they infer a linear upper-bound for the refined TS. These results are summarized in
Table 3.1. 2

Let us now consider another example for which CFR can improve the precision, and
where the phases of the loop share instructions.

EXAMPLE 3.12. Consider the program of Figure 3.7, which is a variation of the
classical iterative McCarthy-91 in which the value of c is not restricted to 1. The loop
has two phases:

1. for x ≥ 101, the then branch is executed repetitively until x ≤ 100 (or c ≤ −1);
and

2. for x ≤ 100 the else branch is executed repetitively until the value of x reaches the
interval x ∈ [101..111], and then the execution alternates between the then and else
branches until c reaches 0.

The complexity of this program is linear. All cost analysis tools that we have considered
above fail to infer any upper-bound for the corresponding TS T that is depicted in
Figure 3.7. We noticed that the problem is actually in that the value of x is unbounded,
and that when bounding x by a maximum value the SCC of T has a LRF and all tools
succeed to infer a linear upper-bound then.

If we consider the two phases discussed above, we can see that in the second phase
the value of x is actually bounded by x ≤ 111, therefore, if we succeed to split the phases
then inferring a linear upper-bound should be possible since the first phase clearly has a
LRF. Applying CFR to T using the property {x ≤ 111} results in Tpe of Figure 3.7 (we
get similar results when using Propscv for example). We can see that the loop has been
split into two loops: the SCC of nodes n21 and n22 corresponds to the first phase, and the
SCC of nodes n11 and n12 to the second one. All tools that we dicussed above succeed to
infer a linear bound for Tpe. 2

42

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 int McCarthy(int x, int c){
2 while (c >= 1) {
3 if (x >= 101) {
4 x -= 10; c--;
5 } else {
6 x += 11; c++;
7 }
8 }
9 return x;

10 }

Tn0

n1

n2

n3

Q0

Q1

Q2

Q3Q4

Tpen0

n11n21

n12

n22

n13n23

Q0

Q1

Q5
Q6

Q7

Q5

Q8 Q9Q7

Q0 ≡{ c′ = c, x′ = x }
Q1 ≡{c ≥ 1, c′ = c, x′ = x }
Q2 ≡{c ≤ 0, c′ = c, x′ = x }
Q3 ≡{x ≥ 101, c′ = c− 1, x′ = x− 10 }
Q4 ≡{x ≤ 100, c′ = c+ 1, x′ = x+ 11 }
Q5 ≡{c = 0, c′ = c, x′ = x }
Q6 ≡{c ≥ 1, x ≥ 101, c′ = c− 1, x′ = x− 10 }
Q7 ≡{c ≥ 1, x ≤ 100, c′ = c+ 1, x′ = x+ 11 }
Q8 ≡{c ≥ 1, x ≤ 111, c′ = c, x′ = x }
Q9 ≡{c ≥ 1, x ≤ 111, x ≥ 101, c′ = c− 1, x′ = x− 10 }

Figure 3.7: Iterative McCarthy.

The following example demonstrates that CFR can improve precision of invariant
generation, which in turn improves the precision of cost analysis.

EXAMPLE 3.13. Consider the GCD program depicted in Figure 3.8. It calculates the
GCD of two positive integers using iterative subtracting. This program terminates and
has a linear runtime complexity.

The TS T depicted in Figure 3.8 (middle) is automatically obtained using LLVM2KTTEL4.

Note that edge n2
Q7−→ n1, which corresponds to the else branch, includes the constraint

x ≥ y while at runtime it will always be the case that x ≥ y + 1. This happens be-
cause LLVM2KTTEL translates the if-statement independently from the context (the while-
condition), and thus for the else branch it takes the negation of the if-condition.

iRankFinder fails to prove termination of this TS. The reason is that proving ter-
mination requires the invariant {x ≥ 1, y ≥ 1} for node n2 in order to rank transitions

4A tool for converting C programs into TSs https://github.com/s-falke/llvm2kittel

43

https://github.com/s-falke/llvm2kittel

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 int gcd(int x, int y){
2 assert(x>=1 && y>=1);
3 while(x != y){
4 if(x<=y-1)
5 y = y-x;
6 else

7 x = x-y;
8 }
9 return x;

10 }

n0

n1

n2

n3

T

Q0

Q1

Q2

Q3

Q4 Q5 Q6 Q7

n0

n11n12 n22

n13

n23 n33

Tpe

Q0

Q1 Q2

Q3

Q4

Q6

Q5

Q8

Q0 ≡{x ≥ 1, y ≥ 1, x′ = x, y′ = y }
Q1 ≡{x ≤ 0, x′ = x, y′ = y }
Q2 ≡{y ≤ 0, x′ = x, y′ = y }
Q3 ≡{x = y, x′ = x, y′ = y }
Q4 ≡{x ≤ y − 1, x′ = x, y′ = y }
Q5 ≡{x ≥ y + 1, x′ = x, y′ = y }
Q6 ≡{x ≤ y − 1, x′ = x, y′ = y − x }
Q7 ≡{x ≥ y, x′ = x− y, y′ = y }
Q8 ≡{x ≥ y + 1, x′ = x− y, y′ = y }

Figure 3.8: A loop that calculates the greatest common divisor by iterative subtracting.

n2
Q6−→ n1 and n2

Q7−→ n1. iRankFinder fails to infer this invariant mainly due to the
constraint x ≥ y, which at some point in the fixpoint computation introduces x ≥ 0
at node n1, and then the widening operation loses the lower bound of x (a more clever
widening would have solved the problem). In order to solve this problem, it is enough
to unfold transitions in the corresponding SCC, and thus collapse the two nodes into

one (n1
Q4−→ n2 followed by n2

Q6−→ n1, and n1
Q5−→ n2 followed by n2

Q7−→ n1) which then
will eliminate x ≥ y. Unfolding is the basic operation in partial evaluation. KoAT and
PUBs fail to infer any bound, while CoFloCo infers the expected linear bound.

Applying CFR to this TS results in Tpe depicted in Figure 3.8 on the right. We can see
that CFR actually did not collapse the nodes of the recursive SCC into one, which would
have solved the problem. It actually splits the two phases of the loop into separated ones
– nodes n11 and n22 correspond to the else branch and nodes n11 and n12 correspond to the
then branch. In addition, it has merged transitions so that x ≥ y disappeared.

Applying iRankFinder of this TS infers a LRF for all components. This is possible

44

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

1 void phases_xyz(int x, int y, int z) {
2 while(x+z >= 0){
3 x = x + y;
4 y = y + z;
5 z = z - 1;
6 }
7 }

n0

n1

n2

T

Q1

Q2

Q0

n0

n1a

T ′

n1

n2

Q0

Q3

Q4 Q6

Q5

Q1

Q2

n41a

n31a

T ′pe

n0

n22 n11a n12

n32

n21a

Q3 Q4

Q5

Q5

Q5

Q4

Q0

Q4

Q2

Q2

Q6

Q3

Q5

Q0 ≡{ x′ = x, y′ = y, z′ = z }
Q1 ≡{x+ z ≥ 0, x′ = x+ y, y′ = y + z, z′ = z − 1 }
Q2 ≡{x+ z ≤ −1, x′ = x, y′ = y, z′ = z }
Q3 ≡{z ≥ 0, x′ = x, y′ = y, z′ = z }
Q4 ≡{z ≤ −1, y ≥ 0, x′ = x, y′ = y, z′ = z }
Q5 ≡{z ≤ −1, y ≤ −1, x ≥ 0, x′ = x, y′ = y, z′ = z }
Q6 ≡{z ≤ −1, y ≤ −1, x ≤ −1, x′ = x, y′ = y, z′ = z }

Figure 3.9: A SLC loop with 3 phases.

since now it infers the invariant x ≥ 1 ∧ y ≥ 1 where needed. Applying KoAT or PUBs on
this TS we get the desired bound O(|x|+ |y|). 2

3.3.2 Using Ranking Functions as Properties

Sometimes, we can prove termination of a TS but cannot infer an upper-bound on its
cost. The reason is that in termination analysis we can use ranking functions that do
not necessarily imply an upper-bound on the length of traces, e.g., LLRFs, while in cost
analysis we typically need ranking functions that imply such upper-bounds.

For some kind of LLRFs, e.g., MΦRFs, even if they do not imply an upper-bound,
they provide useful information about the control-flow. Our goal is to use these ranking
functions to help CFR to make this control flow explicit, which in turn helps cost analysis
to infer upper-bounds. We first explain the idea using an example, and then explain the
general case.

EXAMPLE 3.14. Consider the program phases_xyz in Figure 3.9. Termination anal-
ysis succeeds in proving termination, assigning to node n1 the MΦRF 〈z, y, x〉 which,
as we have seen already, has the following behaviour (considering consecutive visits to
n1): z decreases always, and when it becomes negative y starts to decrease, and when

45

CHAPTER 3. CONTROL-FLOW REFINEMENT VIA PARTIAL EVALUATION

y becomes negative x starts to decrease. This means that whenever n1 is reached one
of the following must hold: z ≥ 0, z ≤ −1 ∧ y ≥ 0, z ≤ −1 ∧ y ≤ −1 ∧ x ≥ 0 or
z ≤ −1 ∧ y ≤ −1 ∧ x ≤ −1. The TS T ′ of Figure 3.9 is a modification of T making this
information explicit: we added a new node n1a, changed all incoming edges of n1 to go to
n1a, and added 4 edges from n1a to n1, each annotated with one of the above constraints.
Applying CFR to T ′ results in the TS T ′pe in which the phases are explicit (nodes n11a,
n21a, and n31a). Cost analysis tools can infer a linear upper-bound for T ′pe. The addition of
node n1a is essential, applying CFR directly to T would not do any refinement. 2

The above example can be generalized as follows. If a loop-head node ni is assigned
a MΦRF 〈ρ1, . . . , ρk〉 during termination analysis: we add a new node nia and change all
incoming edges of ni to nia; and add k + 1 edges from nia to ni where the ith edge has
the constraints

ρ1(~x) < 0 ∧ · · · ∧ ρi−1(~x) < 0 ∧ ρi(~x) ≥ 0 ∧ ID(x).

Applying CFR to the new TS takes advantage of the new edges, and splits the loop into
corresponding phases. Finally, note that this technique, to some extension, can be see as
a special case of the techniques of Albert et al. [2019] for cost analysis.

46

Chapter 4

Multi-Phase Ranking Functions and
Their Relation to Recurrent Sets

In Chapter 1, we have discussed ranking functions as a fundamental tool for proving
termination, in particular, in Section 1.1, we have seen examples for which termination
can be proven using LRFs, and examples for which LRFs do not suffice and one has
to use a more sophisticated class of ranking functions such as LLRFs. In Section 2.3.1,
we have seen several definitions for LLRFs, discussed their properties, and compared
their relative power. Section 2.3.1, ended by a discussion on a subclass of LLRFs called
MΦRFs, that have not been explored enough in the literature. In this chapter, we study
this class of ranking functions for the case of SLC loops, where some of the results are
then generalised to TSs as well.

The formal definition of MΦRFs has been given in Section 2.3.1 and will be specialised
for SLC loops in the next section to simplify the presentation. But recall that a MΦRF
is a tuple 〈ρ1, . . . , ρd〉 of linear functions that define phases of the loop (or SCC in TS)
that are linearly ranked, where d is the depth of the MΦRF, intuitively the number of
phases. The decision problem Existence of a MΦRF asks to determine whether a SLC
loop has a MΦRF. The bounded decision problem restricts the search to MΦRFs of depth
d, where d is part of the input. The complexity and algorithmic aspects of the bounded
version of the MΦRF problem were completely settled by [Ben-Amram and Genaim
2017]. The decision problem is PTIME for SLC loops with rational-valued variables, and
coNP-complete for SLC loops with integer-valued variables; synthesising MΦRFs, when
they exist, can be performed in polynomial and exponential time, respectively. Besides,
Ben-Amram and Genaim [2017] show that for SLC loops MΦRFs have the same power
as general lexicographic-linear ranking functions, and that, surprisingly, MΦRFs induce
linear iteration bounds. The problem of deciding if a given SLC loop admits a MΦRF,
without a given bound on the depth, is still open.

In practice, termination analysis tools search for MΦRFs starting by depth 1 and
increase the depth until they find one, or reach a predefined limit, after which the returned
answer is don’t know. Finding a theoretical upper-bound on the depth of a MΦRF, given
the loop, would also settle this problem. As shown by Ben-Amram and Genaim [2017],
such bound must depend not only on the number of constraints or variables as in other
classes of LLRFs [Alias et al. 2010; Ben-Amram and Genaim 2014; Bradley et al. 2005a]
but also on the coefficients used in the constraints.

In this chapter, we make progress towards solving the problem of existence of a MΦRF,
i.e., seeking a MΦRF without a given bound on the depth. In particular, we present an

47

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

algorithm for seeking MΦRFs that reveals new insights on the structure of these ranking
functions. In a nutshell, the algorithm starts from the set of transitions of the given
SLC loop, which is a polyhedron, and iteratively removes transitions

(
x
x′
)

such that
ρ(x) − ρ(x′) > 0 for some function ρ(x) = ~a · x + b that is non-negative on all enabled
states. The process continues iteratively, since after removing some transitions, more
functions ρ may satisfy the non-negativity condition, and they may eliminate additional
transitions in the next iteration. When all transitions are eliminated in a finite number of
iterations, we can construct a MΦRF using the ρ functions; and when reaching a situation
in which no transition can be eliminated, we prove that we have reached a recurrent set
that witnesses non-termination.

The algorithm always finds a MΦRF if one exists, and in many cases, it finds a
recurrent set when the loop is non-terminating, however, it is not a decision procedure
as it diverges in some cases. Nonetheless, our algorithm provides important insights into
the structure of MΦRFs. Apart from revealing a relation between seeking MΦRFs and
seeking recurrent sets, these insights are useful for finding classes of SLC loops for which,
when terminating, there is always a MΦRF and thus have linear run-time bound.

Our research has, in addition, led to a new representation for SLC loops, that we
refer to as the displacement representation, that provides us with new tools for studying
termination of SLC loops in general, and the existence of a MΦRF in particular. In this
representation, a transition

(
x
x′
)

is represented as
(

x
y

)
where y = x′ − x. Using this

representation our algorithm can be formalised in a simple way that avoids computing
the ρ functions mentioned above (which might be expensive), and reduces the existence
of a MΦRF of depth d to unsatisfiability of a certain linear constraint system. Moreover,
any satisfying assignment is a witness that explains why the loop has no MΦRF of depth
d. As evidence on the usefulness of this representation in general, we also show that some
non-trivial observations on termination of bounded SLC loops are made straightforward
in this representation, while they are not easy to see in the normal representation.

The rest of this chapter is organised as follows.

� In Section 4.1, we describe our algorithm and its possible outcomes, in particular:
Section 4.2.1 describes the algorithm; Section 4.2.2 describes how it can be used to
infer recurrent sets for SLC loop; Section 4.2.3 describes how it can also be used
for inferring recurrent sets for TSs; and Section 4.2.4 discusses cases for which the
algorithm does not terminate and raises some interesting questions.

� In Section 4.3, we describe the displacement representation for SLC loops and its
benefits, in particular: Section 4.3.1 describes how it can be used to generate wit-
nesses against the existence of MΦRFs; Section 4.3.2 describes how it can be used for
conditional termination; Section 4.3.3 uses it to make some non-trivial observations
on termination in general; and Section 4.3.4 discusses some new directions, that are
a direct consequence of this representation, for addressing the MΦRF problem .

� In Section 4.4, we discuss the usefulness of our algorithm for characterising classes
of SLC loops for which when terminating, there is always a MΦRF. The content of
this section is not published and appears for the first time in this thesis.

Implementation and experimental evaluation, in particular for the use of our algorithm
in the context of non-termination, are discussed in chapters 5 and 6.

48

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

4.1 Multi-Phase Ranking Functions for SLC loops

In the rest of this chapter, we assume that our TS is given as a SLC loop specified by a
transition polyhedra Q. Variables are assumed to range over the rationals, and we always
discuss the case of integers after considering the rationals case.

In Section 2.3.1, we have already provided a definition for MΦRF, which are a special
case of LLRFs, using the notion of QLRFs. However, since now our interest is in SLC
loops only, we start by giving an explicit definition for the case of SLC loops. For brevity,
we use ∆ρ(x′′) for ρ(x)− ρ(x′).

Definition 4.1. Given a SLC loop Q ⊆ Q2n, we say that τ = 〈ρ1, . . . , ρd〉 is a MΦRF (of
depth d) for Q if for every x′′ ∈ Q there is an index i such that:

ρi(x) ≥ 0 , (4.1)

∀j ≤ i . ∆ρj(x
′′) ≥ 1 , (4.2)

∀j < i . ρj(x) ≤ 0 . (4.3)

We say that x′′ is ranked by ρi (for the minimal such i).

It is not hard to see that a MΦRF 〈ρ1〉 of depth d = 1 is a LRF. If the MΦRF is of
depth d > 1, it implies that if ρ1(x) ≥ 0, transition x′′ is ranked by ρ1, while if ρ1(x) < 0,
〈ρ2, . . . , ρd〉 becomes a MΦRF. This agrees with the intuitive notion of “phases.” that
we have mentioned before. Moreover, the definition above coincides with the explanation
used in Section 2.3.1: ρ1 is a QLRF for Q, ρ2 is a QLRF for Q ∧ ρ(x) < 0, and so on.
We say that τ is irredundant if removing any component invalidates the MΦRF. Finally,
it is convenient to allow an empty tuple as a MΦRF, of depth 0, for the empty set.

4.2 Inferring Multi-Phase Ranking Functions

In this section, we describe an algorithm for deciding the existence of MΦRFs and how
to construct them, this algorithm is also able to find recurrent sets for certain non-
terminating SLC loops without any extra computation.

Let us start with an intuitive description of the algorithm and its possible out-
comes. Our algorithm is based on the following crucial observation: given linear functions
ρ1, . . . , ρl such that

� ρ1, . . . , ρl are non-negative over projx(Q), i.e., over all enabled states;

� for some ρi, we have ∆ρi(x
′′) > 0 for at least one transition x′′ ∈ Q; and

� Q′ = Q∧∆ρ1(x
′′) ≤ 0 ∧ · · · ∧∆ρl(x

′′) ≤ 0 has a MΦRF of depth d

then Q has a MΦRF of depth at most d+1. The proof of this observation is constructive,
i.e., given a MΦRF τ ′ for Q′, we can construct a MΦRF τ for Q using conic combinations
of the components of τ ′ and ρ1, . . . , ρl.

Let us assume that we have a procedure F (Q) that picks some candidate functions
ρ1, . . . , ρl, i.e., non-negative over projx(Q), and computes

F (Q) = Q∧∆ρ1(x
′′) ≤ 0 ∧ · · · ∧∆ρl(x

′′) ≤ 0.

49

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Clearly, if F d(Q) = ∅, for some d > 0, then using the above observation we can conclude
that Q has a MΦRF of depth at most d. Obviously, the difficult part in defining F is
how to pick functions ρ1, . . . , ρl, and, moreover, how to ensure that if Q has a MΦRF of
optimal depth d then F d(Q) = ∅, i.e., to find the optimal depth. For this, we observe
that the set of all non-negative functions over projx(Q) is a polyhedral cone, and thus
it has generators ρ1, . . . , ρl that can be effectively computed. These generators ρ1, . . . , ρl
turn out to be the right candidates to use. In addition, when using these candidates,
we prove that if we cannot make progress, i.e., we get F i−1(Q) = F i(Q), then we have
actually reached a recurrent set that witnesses non-termination.

The rest of this section is organised as follows: in Section 4.2.1 we present the al-
gorithm and discuss how it is used to decide existence of MΦRFs; in Section 4.2.2 we
discuss how the algorithm can infer recurrent sets; in Section 4.2.3 we discuss how to
infer recurrent sets for general CFGs and not only SLC loops; and in Section 4.2.4 we
discuss cases where the algorithm does not terminate and raise some questions on what
happens in the limit.

4.2.1 Deciding Existence of MΦRFs

We start by formally defining the set of all non-negative functions over a given polyhedron
S ⊆ Qn, which is crucial for picking up the candidate functions ρ1, . . . , ρl that we have
discussed above.

Definition 4.2. The set of all non-negative functions, over a polyhedron S ⊆ Qn, is
defined as S# = {(~a, b) ∈ Qn+1 | ∀x ∈ S. ~a · x + b ≥ 0}.

It is known that S# is a polyhedral cone [Schrijver 1986, p. 112]. Equivalently, it is
generated by a finite set of rays (~a1, b1), . . . , (~al, bl). The cone generated by ~a1, . . . ,~al is
known as the dual of the cone rec.cone(S) – we make use of this in Section 4.3. These rays
are actually the ones that are important for the algorithm, as can be seen in the definition
below, however, in the definition of S# we included the bi’s as they makes some statements
smoother. Since S is a closed convex set, it is known that it is equal to the intersection
of all half-spaces defined by the elements of S#, i.e., S = ∧{~a · x + b ≥ 0 | (~a, b) ∈ S#}.
In what follows we are interested in the set of non-negative functions over the enabled
stated projx(Q), namely in the set projx(Q)#.

Definition 4.3. Let Q be a SLC loop, and define

F (Q) = Q ∧ ~a1 · x− ~a1 · x′ ≤ 0 ∧ · · · ∧ ~al · x− ~al · x′ ≤ 0

where (~a1, b1), . . . , (~al, bl) are the generators of projx(Q)#.

It is easy to see that each ~ai · x − ~ai · x′ ≤ 0 above is actually ∆ρi(x
′′) ≤ 0 where

ρi = ~ai · x + bi. Intuitively, F (Q) removes from Q all transitions x′′ for which there is
(~a, b) ∈ projx(Q)# such that ~a ·x−~a ·x′ > 0. This is because any (~a, b) ∈ projx(Q)# is a
conic combination of (~a1, b1), . . . , (~al, bl), and thus for some i we must have ~ai·x−~ai·x′ > 0,
otherwise we would have ~a · x− ~a · x′ = 0.

EXAMPLE 4.4. Consider the SLC loop of Figure 2.2 whose transition polyhedron is
defined by

Q = {x+ z ≥ 0, x′ = x+ y, y′ = y + z, z′ = z − 1}.

50

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

The generators of projx(Q)# are {(1, 0, 1, 0), (0, 0, 0, 1)}. That is, the corresponding
non-negative functions are ρ1(x, y, z) = x + z and ρ2(x, y, z) = 1 (the last component of
each generator corresponds to the free constant b, and the rest to ~a). Computing F (Q),
following Definition 4.3, results in:

Q′ = Q∧∆ρ1(x
′′) ≤ 0 ∧∆ρ2(x

′′) ≤ 0 = Q∧ (x+ z)− (x′ + z′) ≤ 0 (4.4)

This eliminates any transition for which the quantity x+ z decreases. 2

The reader might have noticed that function ρi above are similar, but not quite the
same, to the notion of QLRFs described in Section 2.3.1. In fact, they have a similar
role, but they will be used in another way to construct the MΦRF.

In what follows, we aim at showing that Q has a MΦRF of optimal depth d iff we
have F d(Q) = ∅. We first state some auxiliary lemmas.

The following lemma is fundamental, it basically states that if we have a finite set of
linear functions where each is positive on some parts of a given polyhedron P , and that
any point of P is covered by one of these functions, then it is possible to construct a
single function that is positive over all P .

LEMMA 4.5. Given a polyhedron P 6= ∅, and linear functions ρ1, . . . , ρk such that

(i) x ∈ P → ρ1(x) > 0 ∨ · · · ∨ ρk−1(x) > 0 ∨ ρk(x) ≥ 0

(ii) x ∈ P 6→ ρ1(x) > 0 ∨ · · · ∨ ρk−1(x) > 0

There exist non-negative constants µ1, . . . , µk−1 such that

x ∈ P → µ1ρ1(x) + · · ·+ µk−1ρk−1(x) + ρk(x) ≥ 0.

Proof. Let P be Bx ≤ c, ρi = ~ai · x− bi, then (i) is equivalent to infeasibility of

Bx ≤ c ∧ Ax ≤ b ∧ ~ak · x < bk (4.5)

whereA consists of the k−1 rows ~ai, and b of corresponding bi. However, Bx ≤ c∧Ax ≤ b
is assumed to be feasible.

According to Motzkin’s transposition theorem [Schrijver 1986, Corollary 7.1k, p. 94],

this implies that there are row vectors ~λ,~λ′ ≥ 0 and a constant µ ≥ 0 such that the
following is true:

~λB + ~λ′A+ µak = 0 ∧ ~λc + ~λ′b + µbk ≤ 0 ∧ (µ 6= 0 ∨ ~λc + ~λ′b + µbk < 0) (4.6)

Now, if (4.6) is true, then for all x ∈ P ,

(
∑
i

λ′iρi(x)) + µρk(x) = ~λ′Ax− ~λ′b + µakx− µbk

= −~λBx− ~λ′b− µbk ≥ −~λc− ~λ′b− µbk ≥ 0

where if µ = 0, the last inequality must be strict. However, if µ = 0, then ~λB + ~λ′A = 0,
so by feasibility of Bx ≤ c and Ax ≤ b, this implies ~λc + ~λ′b ≥ 0, a contradiction.
Thus, (

∑
i λ
′
iρi) + µρk ≥ 0 on P and µ > 0. Dividing by µ we get the conclusion of the

lemma.

51

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

The following lemma shows how to construct a MΦRF for Q, from a MΦRF for
Q′ = F (Q). It also clarifies how the approach of this chapter is different from QLRFs
and the incremental algorithm of Section 2.3.1.

LEMMA 4.6. If Q′ = F (Q) has a MΦRF of depth at most d, then Q has a MΦRF of
depth at most d+ 1.

Proof. Consider the generators (~a1, b1), . . . , (~al, bl) used in Definition 4.3, and let ρi(x) =
~ai · x + bi. We have Q′ = Q∧∆ρ1(x

′′) ≤ 0 ∧ · · · ∧∆ρl(x
′′) ≤ 0. We assume that no ρi is

redundant, otherwise we take an irredundant subset.
Let τ = 〈g1, . . . , gd〉 be a MΦRF for Q′, and w.l.o.g. assume that it is of optimal

depth, we show how to construct a MΦRF τ ′ = 〈g′1 + 1, . . . , g′d + 1, gd+1〉 for Q. Note that
simply appending ρ1, . . . , ρl to a MΦRF τ of Q′ does not always produce a MΦRF, since
the components of τ are not guaranteed to decrease over Q \ Q′. Instead, we construct
the components of τ ′ one by one.

If g1 is decreasing over Q, we define g′1(x) = g1(x), otherwise we have

x′′ ∈ Q →∆ρ1(x
′′) > 0 ∨ · · · ∨∆ρl(x

′′) > 0 ∨∆g1(x
′′)− 1 ≥ 0 (4.7)

x′′ ∈ Q 6→∆ρ1(x
′′) > 0 ∨ · · · ∨∆ρl(x

′′) > 0 (4.8)

and by Lemma 4.5 there are non-negative constants µ1, . . . , µl such that

x′′ ∈ Q → ∆g1(x
′′)− 1 +

l∑
i=1

µi∆ρi(x
′′) ≥ 0. (4.9)

Define g′1(x) = g1(x) +
∑l

i=1 µiρi(x). Clearly, x′′ ∈ Q → ∆g′1(x
′′) ≥ 1. Moreover, since

ρ1, . . . , ρl are non-negative on all enabled states, g′1 is non-negative on the states on which
g1 is non-negative. If d > 1, we proceed with

Q(1) = Q∩ {x′′ | g′1(x) ≤ (−1)}. (4.10)

If g2 is decreasing over Q(1), let g′2 = g2, otherwise, since transitions in Q′ ∩ Q(1) are
ranked by 〈g2, . . . , gd〉 we have

x′′ ∈ Q(1) → ∆ρ1(x
′′) > 0 ∨ · · · ∨∆ρl(x

′′) > 0 ∨∆g2(x
′′)− 1 ≥ 0 (4.11)

x′′ ∈ Q(1) 6→ ∆ρ1(x
′′) > 0 ∨ · · · ∨∆ρl(x

′′) > 0 (4.12)

and again by Lemma 4.5 we can construct the desired g′2 as we did for g′1. In general, for
any j ≤ d we construct g′j+1 such that ∆g′j+1(x

′′) ≥ 1 over

Q(j) = Q∩ {x′′ ∈ Q2n | g′1(x) ≤ (−1) ∧ · · · ∧ g′j(x) ≤ (−1)} (4.13)

and x′′ ∈ Q ∧ gj(x) ≥ 0→ g′j(x) ≥ 0. Finally we define

Q(d) = Q∩ {x′′ ∈ Q2n | g′1(x) ≤ (−1) ∧ · · · ∧ g′d(x) ≤ (−1)} (4.14)

and note that
x′′ ∈ Q(d) → ∆ρ1(x

′′) > 0 ∨ · · · ∨∆ρl(x
′′) > 0 (4.15)

We have assumed that no ρi is redundant in (4.15), otherwise we take an irredundant
subset. Now from (4.15) we get

x′′ ∈ (Q(d) ∧∆ρ1(x
′′) ≤ 0 ∧ · · · ∧∆ρl−1(x

′′) ≤ 0)→ ∆ρl(x
′′) > 0 (4.16)

52

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Algorithm 3: Deciding existence of MΦRFs and inferring recurrent sets.

DecideMLRF(Q)
1 if (Q is empty) then return ∅
2 else

3 Compute the generators (~a1, b1), . . . , (~al, bl) of projx(Q)#

4 Q′=Q ∧ ~a1 · x− ~a1 · x′ ≤ 0 ∧ · · · ∧ ~al · x− ~al · x′ ≤ 0
5 if (Q′ == Q) then return Q
6 else return DecideMLRF (Q′)

and since the left-hand side is a polyhedron, there is a constant c > 0 such that

x′′ ∈ (Q(d) ∧∆ρ1(x
′′) ≤ 0 ∧ · · · ∧∆ρl−1(x

′′) ≤ 0)→ ∆ρl(x
′′) ≥ c. (4.17)

W.l.o.g. we may assume that c ≥ 1, otherwise we divide ρl by c. Then we have

x′′ ∈ Q(d) →∆ρ1(x
′′) > 0 ∨ · · · ∨∆ρl−1(x

′′) > 0 ∨∆ρl(x
′′)− 1 ≥ 0 (4.18)

x′′ ∈ Q(d) 6→∆ρ1(x
′′) > 0 ∨ · · · ∨∆ρl−1(x

′′) > 0 (4.19)

By Lemma 4.5, we can construct gd+1 = ρl +
∑l−1

i=1 µiρi such that

x′′ ∈ Q(d) → ∆gd+1(x
′′) ≥ 1. (4.20)

Moreover, gd+1 is non-negative over Q(d) and thus it ranks all Q(d). Now, by construction,
τ ′ = 〈g′1 + 1, . . . , g′d + 1, gd+1〉 is a MΦRF for Q.

LEMMA 4.7. If Q has a MΦRF of depth d then Q′ = F (Q) has a MΦRF of depth at
most d− 1.

Proof. Let τ = 〈ρ1, . . . , ρk〉 be an MΦRF for Q, of optimal depth k ≤ d. Without
lose of generality we may assume that ρk is non-negative on all projx(Q), this follows
immediately from the definition of nested MΦRF [Leike and Heizmann 2015], which is a
special case of MΦRF in which the last component is non-negative, and the fact that for
the case of SLC loops existence of a MΦRF implies the existence of a nested MΦRF [Ben-
Amram and Genaim 2017] of the same optimal depth. Clearly τ ′ = 〈ρ1, . . . , ρk−1〉 is a
MΦRF for Q∧∆ρk(x′′) ≤ 0 since transitions that are ranked by ρk are eliminated. Now
since ρk is a conic combination of the generators of projx(Q)# we have

Q′ = F (Q) ⊆ Q ∧∆ρk(x′′) ≤ 0

and thus τ ′ is a MΦRF for Q′ as well.

LEMMA 4.8. Q has a MΦRF of depth d iff F d(Q) = ∅.

Proof. For the first direction, suppose that Q has a MΦRF of depth at most d, then
applying Lemma 4.7 iteratively we must reach F k(Q) = ∅ for some k ≤ d, thus F d(Q) = ∅.
For the other direction, suppose F d(Q) = ∅, then using Lemma 4.6 we can construct a
MΦRF of depth d. It is easy to see that if F d(Q) = ∅ and F d−1(Q) 6= ∅, then d is the
optimal depth.

53

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Procedure DecideMLRF(Q) of Algorithm 3 implements the above idea, it basically
applies F (Lines 3-4) iteratively until it either reaches an empty set (Line 1) or sta-
bilises (Line 5). If it returns ∅ then Q has a MΦRF and we can construct one simply
by invoking the polynomial-time procedure for synthesising nested MΦRFs as described
by Ben-Amram and Genaim [2017], or construct one as in the proof of Lemma 4.6. Note
that, by Lemma 4.8, if we bound the recursion depth by a parameter d, then the algo-
rithm is actually a decision procedure for the existence of MΦRFs of depth at most d.
The case in which it returns a non-empty set is discussed in Section 4.2.2.

The complexity of Algorithm 3 is exponential since computing the generators at Line 3
might take exponential time. In Section 4.3, we provide a polynomial-time implemen-
tation that does not require computing the generators. For implementation purposes, it
is worth mentioning as well that computing the generators of projx(Q)# at Line 3 can
be done without computing projx(Q) as follows. Assume that Q ≡ [A′′x ≤ c′′], using

Farkas’ lemma [Schrijver 1986, p. 93] we get that (~a, b) ∈ projx(Q)# iff it satisfies

C ≡ [~λA′′ = (−~a,~0) ∧ ~λc ≤ b ∧ ~λI ≥ ~0]

for some ~λ where I is the identity matrix of appropriate dimension. C defines a cone over
the coordinates ~λ,~a and b. We can compute its generators using a standard algorithm,
and then take the coordinates that correspond to (~a, b).

EXAMPLE 4.9. Let us apply Algorithm 3 to the loop of Figure 2.2. We start by
calling DecideMLRF with the transition polyhedron Q = {x + z ≥ 0, x′ = x + y, y′ =
y+ z, z′ = z− 1} and proceed as follows (Qi represents the polyhedron passed in the ith
call to DecideMLRF):

Qi Generators of projx(Qi)
#

Q0=Q {(1,0,1,0), (0,0,0,1)}
Q1=Q0 ∧ (x+ z)− (x′ + z′) ≤ 0 {(0,1,0,−1), (1, 0, 1, 0), (0, 0, 0, 1)}
Q2=Q1 ∧ y − y′ ≤ 0 {(0,0,1,0), (0, 1, 0,−1), (1, 0, 1, 0), (0, 0, 0, 1)}
Q3=Q2 ∧ z − z′ ≤ 0 = ∅

Let us explain the above steps:

� Q0 is not empty, so we compute the generators of projx(Q0)
#, which define the

non-negative functions ρ1(x, y, z) = x + z and ρ2(x, y, z) = 1, and then compute
Q1 = Q0 ∧∆ρ1(x

′′) ≤ 0 ∧∆ρ2(x
′′) ≤ 0; and since it differs from Q0 we recursively

call DecideMLRF(Q1).

� Q1 is not empty, so we compute the generators of projx(Q1)
#, which define the

non-negative function ρ3(x, y, z) = y−1, and then compute Q2 = Q1∧∆ρ3(x
′′) ≤ 0;

and since it differs from Q1 we recursively call DecideMLRF(Q2). Note that the
only new generator wrt. the previous iteration is the one in bold font, the others
can be ignored since they have been used already when computing Q1.

� Q2 is not empty, so we compute the generators of projx(Q2)
#, which define the

non-negative function ρ4(x, y, z) = z, and then compute Q3 = Q2 ∧ ∆ρ4(x
′′) ≤ 0;

and since it differs from Q2 we recursively call DecideMLRF(Q3).

� Q3 is empty, so we return ∅.

54

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Since we have reached an empty set in 3 iterations, we conclude that the loop of Figure 2.2
has a MΦRF of optimal depth 3, e.g., 〈z + 1, y + 1, x+ z + 1〉. 2

Let us discuss now the case in which the variables range over the integers, i.e., the set
of integer transitions I(Q). It is know that I(Q) has a MΦRF iff the integer hull QI of
Q has a MΦRF (over the rationals) [Ben-Amram and Genaim 2017, Sect. 5]. This leads
to the following lemma.

LEMMA 4.10. I(Q) has a MΦRF of depth d iff F d(QI) = ∅.

EXAMPLE 4.11. Consider a SLC loop defined [Ben-Amram and Genaim 2017] by the
transition polyhedron:

Q = {x ≥ y, x+ y ≥ 1, z ≥ 0, y′ = y − 2x+ 1, z′ = z + 10y + 9}

When interpreted over the rationals, the loop does not terminate, e.g. for (1
2
, 1
2
, 0). When

interpreted over the integers, computing the integer hull of the transition polyhedron
results in QI = Q∧ x ≥ 1. Calling DecideMLRF(QI) proceeds as follows

Qi Generators of projx(Qi)
#

Q0=QI=Q∧ x ≥ 1 {(1,0,0,−1), (1,1,0,−1),
(1,−1,0,0), (0,0,1,0), (0,0,0,1)}

Q1 = Q0 ∧ x− x′ ≤ 0∧
(x+ y)− (x′ + y′) ≤ 0∧ {(0,10,0,9), (1, 0, 0,−1), (1, 1, 0,−1),
(x− y)− (x′ − y′) ≤ 0∧ (1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

z − z′ ≤ 0
Q2=Q1 ∧ 10y − 10y′ ≤ 0 = ∅

Let us explain the above steps:

� Q0 is not empty, so we compute the generators of projx(Q0)
#, which define the

non-negative functions ρ1(x, y, z) = x−1, ρ2(x, y, z) = x+y−1, ρ3(x, y, z) = x−y,
ρ4(x, y, z) = z and ρ5(x, y, z) = 1, and then compute

Q1 = Q0 ∧∆ρ1(x
′′) ≤ 0 ∧ · · · ∧∆ρ5(x

′′) ≤ 0

and since it differs from Q0 we recursively call DecideMLRF(Q1).

� Q1 is not empty, so we compute the generators of projx(Q1)
#, which define the non-

negative function ρ6(x, y, z) = 10y + 9, and then compute Q2 = Q1 ∧∆ρ6(x
′′) ≤ 0;

and since it differs from Q1 we recursively call DecideMLRF(Q2).

� Q2 is empty, so we return ∅.

Since we have reached an empty set in 2 iterations, we conclude that the loop defined by
Q, when interpreted over the integers I(Q), has a MΦRF of optimal depth 2. Indeed QI

has the MΦRF 〈10y, z〉. 2

55

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

4.2.2 Inference of Recurrent Sets

Next, we discuss the case in which DecideMLRF(Q) returns a non-empty set of tran-
sition S ⊆ Q (Line 5), and show that S is actually a set of transitions that witnesses
non-termination ofQ. In Chapter 6, we discuss practical aspects of the use of Algorithm 3
for proving non-termination by means of experimental evaluation.

Let us start by specialising Definition 2.18 of a recurrent set to the case of SLC loops,
which will simplify the presentation below. Since a SLC loop represents a TS with a

single non-trivial SCC formed by the edge n
Q−→ n, all tuples of a recurrent set Ω as in

Definition 2.18 will include the same value n in the first component, and thus, we can
identify Ω with the set of states S = {x | (n,x) ∈ Ω}. The next definition goes one step
further, and treat S as a set of transitions instead of a set of states.

Definition 4.12. We say S ⊆ Q is a recurrent set of transitions, if projx′(S) ⊆ projx(S).

Clearly this new notion of recurrent sets is equivalent to that based on states, which
can be obtained from this one by projecting on x, i.e., projx(S) is a recurrent set of
states. We prefer to use this new notion since it makes some claims smother.

LEMMA 4.13. Let S ⊆ Q2n be a polyhedron, if S = F (S) then S is a recurrent set.

Proof. According Definition 4.12, we need to show that projx′(S) ⊆ projx(S). Since
projx(S) and projx′(S) are closed convex sets in this particular case, each is an inter-

section of half-spaces that are defined by projx(S)# and projx′(S)#, namely

projx(S) = ∧{~a · x + b ≥ 0 | (~a, b) ∈ projx(S)#}
projx′(S) = ∧{~a · x + b ≥ 0 | (~a, b) ∈ projx′(S)#}

Thus, to show that projx′(S) ⊆ projx(S) it is enough to show that projx(S)# ⊆
projx′(S)#.

Let (~a, b) ∈ projx(S)#, we show that (~a, b) ∈ projx′(S)# as well. Define the function
ρ(x) = ~a · x + b. Since S = F (S), by definition of F we have

x′′ = (x,x′) ∈ S ⇒ ρ(x)− ρ(x′) ≤ 0 (4.21)

which together with the fact that ρ is non-negative over projx(S) implies that ρ(x′) ≥ 0

holds for any x′ ∈ projx′(S), and thus (~a, b) ∈ projx′(S)#.

Corollary 4.14. If DecideMLRF(Q) returns S 6= ∅ then S is a recurrent set, and thus
Q is non-terminating.

Proof. This follows from Lemma 4.13, since the algorithm returns a non-empty set S ⊆ Q
iff it finds one such that S = F (S) (Line 5 of DecideMLRF).

EXAMPLE 4.15. Let us apply Algorithm 3 to the following loop [Tiwari 2004]:

while (x− y ≥ 1) do x′ = −x+ y, y′ = y (4.22)

This loop does not terminate, e.g., for x = −1, y = −2. We call DecideMLRF with
Q = {x− y ≥ 1, x′ = −x+ y, y′ = y}, and proceed as in Example 4.9:

Qi Generators of projx(Qi)
#

Q0=Q {(1,−1,−1), (0,0,1)}
Q1=Q0 ∧ (x− y)− (x′ − y′) ≤ 0 {(−2,1,0), (1,−1,−1), (0, 0, 1)}
Q2=Q1 ∧ (−2x+ y)− (−2x′ + y′) ≤ 0 {(2,−1,0), (−1,0,−1), (−2, 1, 0), (0, 0, 1)}
Q3=Q2 ∧ (2x− y)− (2x′ − y′) ≤ 0∧

(−x)− (−x′) ≤ 0

56

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Let us explain the above steps:

� Q0 is not empty, so we compute the generators of projx(Q0)
#, which define the

non-negative functions ρ1(x, y) = x − y − 1 and ρ2(x, y) = 1, and then compute
Q1 = Q0 ∧∆ρ1(x

′′) ≤ 0 ∧∆ρ2(x
′′) ≤ 0; and since it differs from Q0 we recursively

call DecideMLRF(Q1).

� Q1 is not empty, so we compute the generators of projx(Q1)
#, which define the non-

negative function ρ3(x, y) = −2x + y, and then compute Q2 = Q1 ∧∆ρ3(x
′′) ≤ 0;

and since it differs from Q1 we invoke DecideMLRF(Q2).

� Q2 is not empty, so we compute the generators of projx(Q2)
#, which define the

non-negative functions ρ4(x, y) = 2x− y and ρ5(x, y) = −x− 1, and then compute
Q3 = Q2 ∧ ∆ρ4(x

′′) ≤ 0 ∧ ∆ρ5(x
′′) ≤ 0; and since it is equal to Q2 (because

∆ρ4(x
′′) ≤ 0 and ∆ρ5(x

′′) ≤ 0 are implied by Q2) we return Q2.

Thus, Q2 is a recurrent set of transitions and we conclude that Loop (4.22) is not termi-
nating. Projecting Q2 on x and y we get {x ≤ −1, 2x−y = 0}, which is the corresponding
recurrent set of states.

We remark that Loop (4.22) has a fixed point (−1,−2), i.e., from state x = −1, y = −2
we have a transition to x = −1, y = −2. The algorithm also detects non-termination of
loops that do not have fixed points. For example, if we change y′ = y in Loop (4.22)
by y′ = y − 1, we obtain a recurrent set of transitions S such that projx(S) = {−2y ≥
3, 4x− 2y = 1}. 2

Now that we have seen the possible outcomes of the algorithm (in case it terminates),
we see that this approach reveals an interesting relation between seeking MΦRFs and
seeking recurrent sets. A possible view is that the algorithm seeks a recurrent set (of a
particular form) and when it concludes that no such set exists, i.e., reaching ∅, we can
construct a MΦRF.

The recurrent sets inferred by Algorithm 3 belong to a narrower class than that of
Definition 4.12. For a polyhedral set S to be a recurrent set, Definition 4.12 requires that
projx′(S) ⊆ projx(S), i.e., any ρ(x) ≥ 0 that is satisfied by projx(S) is also satisfied
by projx′(S). On the other hand, in our recurrent sets, ρ is required to be monotonic as
well, i.e., ρ(x′) ≥ ρ(x) for any (x,x′) ∈ S.

EXAMPLE 4.16. Consider the following SLC loop:

while (x ≥ 0) do x′ = 1− x (4.23)

The largest recurrent set of transitions for this loop is {x ≥ 0, x ≤ 1, x′ = 1−x}, and it is
not monotonic. Algorithm 3 infers the largest monotonic recurrent set {x = 1

2
, x′ = 1

2
},

where in the first iteration it eliminates all transitions for which x − x′ > 0, i.e., those
for which x ∈ (1

2
,∞), and in the second those for which (−x)− (−x′) > 0, i.e., those for

which x ∈ [0, 1
2
). 2

At this point, it is natural to explore the difference between the two kinds of recurrent
sets. The most intriguing question is if non-terminating SLC loops always have monotonic
recurrent sets (either polyhedral or closed convex in general). This is clearly true for loops
that have a fixed point, i.e., there is x such that (x,x) ∈ Q, however, this question is
left open for the general case. We note that the geometric non-termination argument

57

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

introduced by Leike and Heizmann [2018] is also related to monotonic recurrent sets.
Specifically, it is easy to show that in some cases (when the non-negative coefficients
µi and λi of Definition 5 of Leike and Heizmann [2018], are either 0 or at least 1), we
can construct a monotonic recurrent set. Moreover, for the case in which µi and λi are
between 0 and 1, we believe that the loop must have a fixpoint which in turn defines a
monotonic recurrent set.

Let us discuss now the case of integer loops. First, we note that the difference between
the two kinds of recurrent sets is clear in the integer case: Example 4.16 shows that the
Loop (4.23) has a recurrent set {(0, 1), (1, 0)}, but does not have a monotonic recurrent
set. Apart from this difference, a natural question is whether the recurrent set S returned
by DecideMLRF(QI), or more precisely I(S), witnesses non-termination of I(Q). This
is not true in general (see Example 4.18 below), however, there are practical cases for
which it is true.

LEMMA 4.17. Let Q be a SLC loop with affine update x′ = Ux + c, and assume the
coefficients U and c are integer. If S is a recurrent set of Q, and I(S) is not empty, then
I(S) is recurrent for I(Q).

Proof. Since the update is affine with integer coefficients, it follows that any state in
projx(I(S)) has a successor in projx′(I(S)) ⊆ projx(I(S)), which is the definition of a
recurrent set.

In the context of the above lemma, assuming that S = DecideMLRF(QI), if S 6= ∅
and I(S) = ∅ all we can conclude (when the algorithm is applied to QI) is that I(Q)
does not have a MΦRF, we cannot conclude anything about non-termination as in the
rational case. For example, for the loop QI = Q = {x ≥ 0, x′ = 10 − 2x} we have
S = {(31

3
, 31

3
)} and I(S) = ∅ and the loop is terminating over the integers, and for the

loop QI = Q = {x ≥ 0, x′ = 1 − x} we have S = {(1
2
, 1
2
)} and I(S) = ∅ and the loop is

non-terminating over the integers.
We note that one can allow some degree of non-determinism in Lemma 4.17, in par-

ticular, non-deterministically setting a variable to an arbitrary value. Note that tools for
proving non-termination that are based on the use of Farkas’ lemma [Gupta et al. 2008;
Larraz et al. 2014], impose similar restrictions to guarantee that the recurrent set is valid
over the integers. The next example demonstrates that Lemma 4.17 does not extend to
SLC loops in general, even when the algorithm is applied to the integer hull QI . This
is because it is not guaranteed that any integer state x ∈ I(projx(S)) has an integer
successor x′ ∈ I(projx′(S)).

EXAMPLE 4.18. Consider the following loop

while (x ≥ 2) do x′ =
3

2
x (4.24)

which is specified by Q = {x ≥ 2, x′ = 3
2
x}. It is clearly non-terminating over the

rationals, for any x ≥ 2, and is terminating over the integers because

(i) starting from x odd, the next state 3
2
x is not integer, and;

(ii) starting from x even, then for some i > 0 the value 3i

2i
x is odd (because x

2i
must be

odd some i > 0 and 3i is odd), and then the next state is not integer.

The algorithm returns Q as a recurrent set, but I(Q), which is not empty, is not a recur-
rent set as the loop is terminating over the integers. Note that the transition polyhedron
is integral, i.e., Q = QI . 2

58

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

4.2.3 Recurrent Sets for Transition Systems

In the previous section, we discussed how Algorithm 3 can be used to infer recurrent sets
for SLC loops, however, to make it useful in practice, next we describe how to generalise
it to prove non-termination of TSs, i.e., CFGs with more than one node and transition.
This generalisation includes two different components:

(i) the first deals with finding a recurrent set for a given set of transitions (a set of
edges in the CFGs); and

(ii) the second deals with proving that this recurrent set is actually reachable from the
initial node.

Next, we define the notion of a closed walk that will be used to refer to some executions
of interest.

Definition 4.19 (Closed Walk). Let T be a TS. A path between two nodes n1, nk ∈ N
is a sequence of edges n1

Q1→ n2
Q2→ · · · Qk→ nk, such that, ni

Qi−→ ni+1 ∈ E. A closed walk is
a path that starts and ends in the same node.

Note that the a closed walk might visit the same node or edge several times.

EXAMPLE 4.20. The following are closed walks for the CFG of Figure 2.9:

(i) n1
Q2−→ n2

Q3−→ n1

(ii) n1
Q2−→ n2

Q4−→ n1

(iii) n1
Q2−→ n2

Q3−→ n1
Q2−→ n2

(iv) · · ·

It is clear that there are an infinite different closed walks. 2

For finding recurrent sets we rely on the notion of closed walks as follows. Suppose
we are given a closed walk

n1
Q1−→ n2

Q2−→ · · ·
Qk−1−→ nk

Qk−→ n1 (4.25)

and assume that variables in Q1, . . . ,Qk are renamed such that the variables of Qi are
(xi,xi+1), i.e., the target variable of Qi are the same as the source variable of Qi+1. Now
define

Q = Q1 ∧ · · · ∧ Qk (4.26)

ThisQ can be seen as a SLC loop, where x are x1 and x′ are xk+1. The only difference from
the definition of SLC loops is that here we have extra (intermediate) variables x2, . . . ,xk.
In principle, we could convert it to a SLC loop simply by projecting on x1 and xk+1 in
order to eliminate all extra variables, however, it is easy to see that Algorithm 3 is still
valid even if we do not eliminate these extra variables. This is because the set of positive
functions computed at Line 3 is the same for Q of (4.26) and for projx1,xk+1

(Q). This
shows that Algorithm 3 can be used to check non-termination of a given closed walk.

59

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

LEMMA 4.21. Let (4.25) be closed walk in some SCC, Q defined as in (4.26), and
S = DecideMLRF(Q) such that S 6= ∅. Then

{(n1,x) | x ∈ projx1
(S)} ∪ · · · ∪ {(nk,x) | x ∈ projxk

(S)}

is a recurrent set for that SCC.

Proof. It follows from the fact that DecideMLRF(projx1,xk+1
(Q)) returns the recurrent

set projx1,xk+1
(S).

Our procedure for proving non-termination is based on enumerating closed walks in
a given set of transitions (a connected subgraph that we failed to prove terminating,
typically a subset of a SCC of the transition system), and then using Algorithm 3 to find
recurrent sets of each closed walk as it is generated. In addition, once a recurrent set S
is found we check that it is actually reachable as follows: we collect all constraints on
a path from the initial node to node n1 of the closed walk, and we ask an SMT solver
to find a solution for these constraints together with S. If it finds one, then the TS is
non-terminating for the corresponding initial input. We could also use any off-the-shelf
tool for reachability analysis.

EXAMPLE 4.22. Consider the TS of Figure 2.9. We fail to prove termination of the
SCC formed by nodes n1 and n2. Suppose that we start to enumerate closed walks in the
order in which they are generated in Example 4.20:

1. For the first one n1
Q2−→ n2

Q3−→ n1, we compute the recurrent set {x ≥ 0, y ≥ 1},
but node n1 is not reachable with y ≥ 1.

2. For the second one n1
Q2−→ n2

Q4−→ n1, we compute the recurrent set {x ≥ 0, y ≤ 0},
which is clearly reachable using the path n0

Q0−→ n1.

To compute the recurrent set for the second case we proceed as follows: we first rename
the variables of Q2 to (x1,x2) and those of Q4 to (x2,x3) – where we treat x1 as x, and
x3 as x′ – and then call DecideMLRF with Q2 ∧Q4 2

As a final remark, for the case of integer variables, Lemma 4.17 can be easily extended
to the case of SLC loop with intermediate variables as in (4.26), and, moreover, in this
case we require the SMT query that checks reachability to find an integer solution.

4.2.4 Cases in which Algorithm 3 does not Terminate

When Algorithm 3 terminates, it either finds a MΦRF or proves non-termination of the
given loop. This means that if applied to a terminating loop that has no MΦRF, then
Algorithm 3 will not terminate. This non-terminating behaviour shows that our algorithm
is not complete, however, it can be used to show that a SLC loop does not have a MΦRF.

EXAMPLE 4.23. Consider the following loop

while (x ≥ y, y ≥ 1) do x′ = 2x, y′ = 3y (4.27)

which is specified by Q = {x ≥ y, y ≥ 1, x′ = 2x, y′ = 3y}, and is terminating [Leike and
Heizmann 2015]. Let Qi be the SLC loop passed to DecideMLRF at the ith iteration,
with Q0 = Q. The cone projx(Qi)

is generated by the rays (0, 1) and (1,−2i). It is
easy to show (by induction) that Qi = {x ≥ 2iy, y ≥ 1, x′ = 2x, y′ = 3y}, which satisfies
Qi 6= ∅ and Qi+1 ⊂ Qi. This implies that the algorithm does not terminate, and thus
the loop does not have a MΦRF. 2

60

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

The following example shows that Algorithm 3 might not terminate also when applied
to non-terminating loops.

EXAMPLE 4.24. Consider the following loop

while (x+ y ≥ 3) do x′ = 3x− 2, y′ = 2y (4.28)

which is specified by Q = {x+y ≥ 3, x′ = 3x−2, y′ = 2y}, and is non-terminating [Leike
and Heizmann 2018] and has a monotonic recurrent set, e.g., S = {x ≥ 1, y′ = 2y, x′ =
3x − 2}. From considerations similar to those of Example 4.23, it is easy to show that
Algorithm 3 does not terminate on this loop. 2

When the algorithm does not terminate, the iterates F i(Q) converge to

Qω = ∩i≥0F i(Q). (4.29)

For example, for Loop (4.27), which is terminating, we have Qω = ∅, and for Loop (4.28),
which is non-terminating, we have Qω = {x ≥ 1, y′ = 2y, x′ = 3x − 2} which is a
monotonic recurrent set. Some natural questions arise at this point:

(i) is it true that Qω = ∅ iff Q is terminating?

(ii) is it true that if Qω 6= ∅ then it is a (monotonic) recurrent set?

For deterministic loops, it is easy to show that termination implies Qω = ∅, and that if
Qω 6= ∅ then Qω is a monotonic recurrent set. The general questions, however, are left
open.

Once we start to explore properties of Qω, there is a difference between real and
rational loops as we demonstrate in the next example, this difference does not exists
when the algorithm terminate.

EXAMPLE 4.25. Consider the following loop

while (4x+ y ≥ 1) do x′ = −2x+ 4y, y′ = 4x (4.30)

which is specified by Q = {4x + y ≥ 1, x′ = −2x + 4y, y′ = 4x}. It is terminating over
the rationals and non-terminating over the reals [Braverman 2006]. The algorithm does
not terminate when applied to this loop. If each Qi is considered as a set of rational
transitions, then Qw = ∅, however, if we include also the irrational transitions then Qw

would be the closed convex set

{µ(
√

17− 1, 4, (
√

17− 1)2, 4(
√

17− 1)) | µ ≥ 1√
17 + 3

}

which is a monotonic recurrent set. 2

4.3 The Displacement Polyhedron

In this section, we introduce an alternative representation for SLC loops, that we refer
to as the displacement polyhedron, and show that Algorithm 3, or more precisely the
check F k(Q) = ∅, has a simple encoding in this representation that can be performed in
polynomial time, specifically, we show that it is equivalent to checking for unsatisfiability

61

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

of a particular linear constraint system. Note that we already know that deciding the
existence of a MΦRF of depth d can be done in polynomial time [Ben-Amram and Genaim
2017], so in this sense we do not provide any new knowledge. However, apart from the
efficient encoding of the check F k(Q) = ∅, the new formulation has some important
advantages:

� Unlike existing algorithms for inferring MΦRFs [Ben-Amram and Genaim 2017;
Leike and Heizmann 2018], it allows synthesising witnesses for the non-existence
of a MΦRF of a given depth (any solution of the corresponding linear constraint
system mentioned above) which explains why a loop does not have a MΦRF of the
given depth – see Section 4.3.1.

� It shows that MΦRFs have an interesting application for conditional termination –
see Section 4.3.2.

� Some non-trivial observations about termination and non-termination of SLC loops
are made straightforward through this representation – see Section 4.3.3.

� It provides a new tool for addressing the general MΦRF problem, i.e., without a
depth bound, that is still open – see Section 4.3.4.

In what follows, we first define the notion of the displacement polyhedron, show how the
check F d(Q) = ∅ can be encoded in this representation, and then discuss each of the
above points.

Definition 4.26. Given a SLC loop Q ⊆ Q2n, we define its corresponding displacement
polyhedron as R = projx,y(Q∧ x′ = x + y) ⊆ Q2n.

Note that the projection drops x′. Intuitively, an execution step using Q starts from
a state x, and chooses a state x′ such that

(
x
x′
)
∈ Q. To perform the step using R, select

y such that
(

x
y

)
∈ R and let the new state be x + y. By definition, we obtain the same

transitions. The constraint representation of R can be derived from that of Q as follows.
Let Q ≡ [A′′

(
x
x′
)
≤ c′′] where A′′ is the matrix below on the left (see Section 2.2.2), then

R ≡ [R
(

x
y

)
≤ c′′] where R is the matrix below on the right:

A′′ =

(
B 0
A A′

)
R =

(
B 0

A+ A′ A′

)
(4.31)

EXAMPLE 4.27. As notation, let x = (x, y, z)T and y = (y1, y2, y3)
T. Consider the

loop in Figure 2.2 defined by Q = {x + z ≥ 0, x′ = x + y, y′ = y + z, z′ = z − 1}. The
corresponding displacement polyhedron is R = {x+ z ≥ 0, y1 = y, y2 = z, y3 = −1}. 2

We will show that the displacement polyhedron Rk of Qk = F k(Q) is equivalent to
the following polyhedron projected onto x and y0

R̂k ≡ R
(

x
y0

)
≤ c′′ ∧ R

(
y0
y1

)
≤ 0 ∧ R

(
y1
y2

)
≤ 0 ∧ . . . ∧ R

(yk−1
yk

)
≤ 0 (4.32)

Now since, by Definition 4.26, Qk is empty iffRk is empty, the check F k(Q) = ∅ is reduced
to checking that (4.32) is empty, which can be done in polynomial time in the bit-size
of the constraint representation of Q and the parameter k. It is important to observe
that the first conjunct R

(
x
y0

)
≤ c′′ of (4.32) is actually R, and that each R

(
yi
yi+1

)
≤ 0 is

actually rec.cone(R). Observe also how the conjuncts of (4.32) are connected, i.e., that
the lower part of the variables vector of each conjunct is equal to the upper part of the
next one. We first show how Rk+1 can be obtained from Rk similarly to Qk+1 = F (Qk).

62

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

LEMMA 4.28. Let (~a1, b1), . . . , (~al, bl) generate the cone projx(R)#. Then Rk+1 =
Rk ∧ −~a1 · y ≤ 0 ∧ · · · ∧ −~al · y ≤ 0.

Proof. Follows from the fact that projx(Qk) = projx(Rk), and thus projx(Qk)# and

projx(Rk)# are the same, and that for ρ(x) = ~a ·x + b we have ∆ρ(x′′) = ρ(x)− ρ(x′) =
−~a · y, by definition of the displacement polyhedron.

LEMMA 4.29. Let (~a1, b1), . . . , (~al, bl) generate the cone projx(R)#. Then the condi-
tion −~a1 · y ≤ 0 ∧ · · · ∧ −~al · y ≤ 0 of Lemma 4.28 is equivalent to My ≤ 0, where M is
such that projx(R) ≡ [Mx ≤ b].

Proof. Consider (~a, b) ∈ projx(Q)# = projx(R)#. By Farkas’ lemma, a function f(x) =

~a · x + b is non-negative over projx(R) iff there are non-negative ~λ = (λ1, . . . , λm) such

that ~λ·M = −~a∧~λ·b ≤ b. Note that any (non-negative) values for ~λ define corresponding
values for ~a and b. Thus the valid values for ~a are all conic combinations of the rows of
−M , i.e., this cone is generated by the rows of −M . Hence −~a1 ·y ≤ 0∧ · · · ∧−~al ·y ≤ 0
is equivalent to My ≤ 0.

We use the above lemma to show that Rk can be represented as in (4.32), without
the need to compute M explicitly. We first note that using Lemma 4.28 and Lemma 4.29
we get that Rk+1 = Rk ∩ Dk, where

Dk = {
(

x
y

)
∈ Q2n |My ≤ 0} (M as in Lemma 4.29)

= {
(

x
y

)
∈ Q2n | y ∈ rec.cone(projx(Rk))} .

Before we proceed, let us state a lemma with a useful property of the projection
operation for polyhedral sets.

LEMMA 4.30. For a polyhedron P ⊆ Qn, projx(rec.cone(P)) = rec.cone(projx(P)).

Proof. A polyhedron P whose variables are split into two sets, x and y, can be represented
in the form Ax + Gy ≤ b for matrices A, G and a vector b of matching dimensions.
Then Theorem 11.11 of Conforti et al. [2010] states that projx(P) is specified by the
constraints V (b − Ax) ≥ 0 for a certain matrix V determined by G only. From this
it follows that rec.cone(projx(P)) = {x : VAx ≤ 0}. But we can also apply the
theorem to rec.cone(P), which is specified by Ax +Gy ≤ 0, and we get the same result
projx(rec.cone(P)) = {x : VAx ≤ 0}.

Now we are ready to state the main lemma, that relates Rk to (4.32).

LEMMA 4.31. Rk = projx,y0
(R̂k) where R̂k is defined by (4.32).

Proof. We use induction on k. For k = 0 the lemma states that R0 is specified by
R
(

x
y0

)
≤ c′′, which is correct since by definition R0 = R. Assume the lemma holds for

Rk, we prove it for Rk+1 = Rk ∩ Dk. By the induction hypothesis,

Rk = {
(

x
y0

)
∈ Q2n | R

(
x
y0

)
≤ c′′ ∧ R

(
y0
y1

)
≤ 0 ∧ . . . ∧ R

(yk−1
yk

)
≤ 0 } (4.33)

and

Dk ={
(

x
y0

)
∈ Q2n | y0 ∈ rec.cone(projx(Rk))} by definition

={
(

x
y0

)
∈ Q2n | y0 ∈ rec.cone(projx(projx,y0

(R̂k)))} by IH

={
(

x
y0

)
∈ Q2n | y0 ∈ rec.cone(projx(R̂k))}

={
(

x
y0

)
∈ Q2n | y0 ∈ projx(rec.cone(R̂k))} by Lemma 4.30

={
(

x
y0

)
∈ Q2n | R

(
y0
y1

)
≤ 0 ∧R

(
y1
y2

)
≤ 0 ∧ · · · ∧R

(yk
yk+1

)
≤ 0}

63

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Note that in the last step, we incorporated the recession cone of R̂k as in (4.32), after
renaming yi to yi+1, and x to y0 just to make it easier to read in the next step. Now,
let us compute Rk+1 = Rk ∩Dk. Note that any

(
x
y0

)
∈ Rk+1 must satisfy the constraint

R
(

x
y0

)
≤ c′′ that comes form Rk. Adding this constraint to Dk above we clearly obtain

a subset of Rk, and thus

Rk+1 = {
(

x
y0

)
| R
(

x
y0

)
≤ c′′ ∧ R

(
y0
y1

)
≤ 0 ∧ · · · ∧ R

(yk
yk+1

)
≤ 0}

which is exactly projx,y0
(R̂k+1), justifying the lemma’s statement for k + 1.

LEMMA 4.32. Q has a MΦRF of depth d iff R̂d is empty.

Proof. By Lemma 4.8 Q has a MΦRF of depth d iff Qd = F d(Q) is empty, and by

Definition 4.26 Qd is empty iff Rd is empty, and since Rd is empty iff R̂d is empty the
lemma follows.

EXAMPLE 4.33. Consider again Example 4.27, in particular the SLC loop Q and
the corresponding displacement polyhedron R. As notation, let x0 = (x, y, z)T, y0 =
(y1, y2, y3)

T, y1 = (w1, w2, w3)
T, y2 = (z1, z2, z3)

T, and y3 = (v1, v2, v3)
T. Then

R2 ≡ {x+ z ≥ 0, y1 = y, y2 = z, y3 = −1}∧
{y1 + y3 ≥ 0, w1 = y2, w2 = y3, w3 = 0}∧
{w1 + w3 ≥ 0, z1 = w2, z2 = w3, z3 = 0}

is satisfiable, e.g., for x0 = (0, 1, 0), y0 = (1, 0,−1), y1 = (0,−1, 0) and y2 = (−1, 0, 0),
and thus, as expected, the loop does not have a MΦRF of depth 2. On the other hand

R3 = R2 ∧ {z1 + z3 ≥ 0, v1 = z2, v2 = z3, v3 = 0}

is not satisfiable, and thus the loop has a MΦRF of depth 3. 2

Apart from providing a polynomial-time implementation for the check F d(Q) = ∅, the
use of the displacement polyhedra, and Lemma 4.32 in particular, has several important
consequences that we discuss in the next sections.

4.3.1 Witnesses for Non-existence of MΦRFs of a Given Depth

Existing algorithms for deciding whether a given SLC loop has a MΦRF of depth d [Ben-
Amram and Genaim 2017; Leike and Heizmann 2018] synthesise a MΦRF in the case of
success, but in the case of failure they do not provide any further knowledge on why the
loop does not have such a MΦRF. In this section we show that any satisfying assignment
for R̂k (as defined in (4.32)) witnesses the non-existence of a MΦRF of depth k, i.e., it
can be used to explains the reason due to which the loop does not have such MΦRF.

Let us start by explaining the intuition for R̂1, i.e., the case of LRFs. If x0,y0,y1 is
a satisfying assignment for R̂1, then by construction we have(

x0
y0

)
∈ R

(
y0
y1

)
∈ rec.cone(R) (4.34)

Note that for any c ≥ 0,
(

x0
y0

)
+ c ·

(
y0
y1

)
∈ R is a transition. Assume there is a LRF

ρ(x) = ~a · x + b for R, then it must rank
(

x0
y0

)
and

(
x0
y0

)
+ c ·

(
y0
y1

)
∈ R for any c > 0.

64

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

This means that the following must hold:

~a · x0 + b ≥ 0 (4.35)

~a · y0 ≤ −1 (4.36)

ρ(x0 + c · y0) = ~a · x0 + c · ~a · y0 + b ≥ 0 (4.37)

ρ(y0 + c · y1) = ~a · y0 + c · ~a · y1 ≤ −1 (4.38)

Clearly for c large enough (4.36) and (4.37) contradict. Thus the point
(

x0
y0

)
and the ray(

y0
y1

)
form a witness that explains why the loop does not have a LRF. More precisely, the

subset of the loop generated by the point and the ray of (4.34), in particular

conv.hull{
(

x0
y0

)
}+ cone{

(
y0
y1

)
} ⊆ R

cannot have a LRF.
Let us generalise this intuition for MΦRFs. Assume the loop has a MΦRF 〈ρ1, . . . , ρk〉,

and let x0,y0, . . . ,yk be an assignment satisfying R̂k. By construction, we have(
x0
y0

)
∈ R

(
y0
y1

)
∈ rec.cone(R) · · ·

(yk−1
yk

)
∈ rec.cone(R) (4.39)

We may assume that
(

x0
y0

)
is ranked by ρ1 (we can lift ρ1 up to make ρ1(x0) non-negative).

Now let us eliminate all transitions that are ranked by ρ1(x) = ~a ·x + b, i.e., compute
a new displacement polyhedron R′ = R ∧ ρ1(x) ≤ −1. Since ρ1 is decreasing on all
transitions of R, we must have ~a · y0 ≤ −1 and ~a · yi ≤ 0 for 1 ≤ i ≤ k. This means that
the rays

(
y0
y1

)
· · ·
(yk−1

yk

)
are in the rec.cone(R̂′) too (because R′ is obtained from R by

adding ~a · x + b ≤ −1). Moreover, for c > 0 large enough, the point
(

x0+c·y0
y0+c·y1

)
is in R′

since it cannot be ranked by ρ1 (from the same considerations of the LRF case). Now we
have the following(

x0+c·y0
y0+c·y1

)
∈ R′

(
y0+c·y1
y1+c·y2

)
∈ rec.cone(R′) · · ·

(yk−2+c·yk−1
yk−1+c·yk

)
∈ rec.cone(R′)

It has the same form as in (4.39), i.e., the lower part of each point/ray is equal to the
upper part of the next one, but the number of rays is reduced by 1, and since 〈ρ2, . . . , ρk〉
is a MΦRF for R′ we can apply the same reasoning again and reduce the number of rays
to k − 2. Repeating this, we arrive to a point and ray as in (4.34) that are supposed to
be ranked by the last component ρk, but we know that they cannot have a LRF so we
need at least one more component in the MΦRF. Thus, we conclude that the point and
rays of (4.39) form a witness that explains why the loop cannot have a MΦRF of depth
k. In fact, the subset of the loop generated by this witness, in particular

conv.hull{
(

x0
y0

)
}+ cone{

(
y0
y1

)
, . . . ,

(yk−1
yk

)
} ⊆ R

cannot have a MΦRF of depth k.

EXAMPLE 4.34. The satisfying assignment for R̂2 in Example 4.33, is a witness for
the non-existence of MΦRF of depth 2 for the SLC loop induced by the TS of Figure 2.2.
The transition polyhedron corresponding to this witness is

{x+ z = 0, y ≤ 1, z ≤ 0, x′ = x+ y, y′ = y + z, z′ = z − 1}.

Note how the guard is strengthened wrt. x+ z ≥ 0 of program depicted Figure 2.2. 2

65

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

4.3.2 Conditional Termination

In this section, we show how the displacement polyhedron can be used in the context of
conditional termination, i.e., inferring a set of initial states for which termination of a
given SLC loop is guaranteed.

Suppose that a SLC loop Q does not have a MΦRF of depth d, which means that R̂d

is satisfiable. Now let us consider the polyhedron P = projx(R̂d), and let the inequality
~ai · x ≤ bi be part of the constraints representation of P (or more generally, we can use
any (~ai, bi) ∈ P#). Observe that adding the constraint ~ai · x ≥ bi + ε to Q, for any ε > 0,

we get a SLC loop that has a MΦRF of depth at most d, since the corresponding R̂d

is empty then. We can use this fact to infer initial states for which Q is guaranteed to
terminate as follows.

Let Ii ⊆ Qn be an over-approximation of the set of all initial state that might reach
~ai · x ≤ bi, which can be computed using standard abstract interpretation techniques.
Clearly, starting the execution from ¬Ii, i.e., the set of states not in Ii, the loop terminates.
This is because such executions will use transitions from Q ∧ ~ai · x > bi only, and as we
have seen above that such executions are terminating since they have a MΦRF. We can
do this for each inequality of the constrains representation of P# and then take ∪i¬Ii as
a set of initial states that are guaranteed to terminate.

EXAMPLE 4.35. Consider the following loop

while (x+ z ≥ 0) do x′ = x+ y, y′ = y + z, z′ = z (4.40)

which is a non-terminating variation of the one in Figure 2.2. The transition polyhedron
of this loop is Q = {x + z ≥ 0, x′ = x + y, y′ = y + z, z′ = z}, and the corresponding
displacement polyhedron is R = {x+ z ≥ 0, y1 = y, y2 = z, y3 = 0}.

Let us consider R̂2 which is defined by

R̂2 = {x+ z ≥ 0, y1 ≥ 0, w1 ≥ 0, y1 = y, y2 = z, y2 = w1,

y3 = 0, w2 = 0, w3 = 0, z1 = 0, z2 = 0, z3 = 0}

Projecting R̂2 on the variables x = (x, y, z)T results in

P = projx(R̂2) = {x+ z ≥ 0, y ≥ 0, z ≥ 0}.

Next we compute the preconditions induced by each constraint of P :

� For x + z ≥ 0, the set of initial states I0 = {x + z ≥ 0} is an over-approximation
of those that might reach x + z ≥ 0. Thus, executions that start from states in
¬I0 = {x+ z < 0} are terminating.

� For y ≥ 0, the set of initial states I1 = {y ≥ 0} ∨ {z ≥ 0} is an over-approximation
of those that might reach y ≥ 0. Thus, executions that start from states in ¬I1 =
{y < 0, z < 0} are terminating.

� For z ≥ 0, the set of initial states I2 = {z ≥ 0} is an over-approximation of those
that might reach z ≥ 0. Thus, executions that start from states in ¬I2 = {z < 0}
are terminating.

We conclude that executions that starts from initial states in

I0 ∨ I1 ∨ I2 = x+ z < 0 ∨ (y < 0 ∧ z < 0) ∨ z < 0

are guaranteed to terminate. 2

66

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

4.3.3 Termination and Non-termination of Bounded SLC Loops

To further demonstrate the usefulness of the displacement polyhedra, in this section we
provide some observations, regarding SLC loops whose set of enabled states are defined
by bounded polyhedra, that are easy to see using the displacement polyhedron and are
much less obvious using the transition polyhedron. Recall that a polyhedron is bounded
if its recession cone consists of a single point 0.

LEMMA 4.36. Let Q be a SLC loop such that the set of enabled states projx(Q) is a
bounded polyhedron, then Q is non-terminating iff it has a fixpoint

(
x
x

)
∈ Q, and it is

terminating iff it has a LRF.

Proof. LetR be the displacement polyhedron ofQ. Since projx(Q) is bounded, projx(R)
is bounded. This means that its recession cone R

(
x
y

)
≤ 0 consists of points of the form(

0
y

)
. From the form of R̂k, which is a conjunction of instances of R

(
yi
yi+1

)
≤ 0, it is

easy to see that R2 = R1. This means that the algorithm will terminate in at most two
iterations with one of the following outcomes: (i) R0 = R1; (ii) R2 = R1; or (iii) R1

is empty. In the first two cases all transitions of R1 or R2 are of the form
(

x
0

)
, and

thus
(

x
x

)
∈ Q by definition; and in the third case we have found a MΦRF of depth 1,

i.e., LRF. Note that the part that relates non-termination to the existence of a fixpoint
follows from the work of Leike and Heizmann [2018] as well.

4.3.4 New Directions for the General MΦRF Problem

We believe that the displacement polyhedra representation, in particular the check in-
duced by Lemma 4.31, provides us with new tools that can be used for addressing the
problem of deciding whether a given SLC loop Q ≡ [A′′x′′ ≤ c′′] has a MΦRF of any
depth, which is still an open problem. Next we discuss some directions.

One direction is to come up with conditions on the matrices A′′ (or equivalently R of
the corresponding displacement representation) and c′′ under which it is guaranteed that

if R̂k is empty then k must be smaller than some d, i.e., bounding the depth of MΦRFs
for classes of loops that satisfy these conditions.

We can also view the problem as looking for some N , such that CN = CN+1 where
C ≡ [R

(y
y′
)
≤ 0], which is a sufficient condition for Algorithm 3 to terminate in at most

N iterations, since then RN = RN+1, either with a recurrent set or with a MΦRF. This
is particularly interesting if the loop is deterministic with an affine update x′ = Ux + c.
In such case C = [By ≤ 0 ∧ y′ = (U − I)y], where I ∈ Qn×n is the identity matrix, and
thus if the matrix (U−I) is nilpotent, for example, then there is N such that CN = CN+1.
This, for example, also holds when matrix (U − I) satisfies the finite-monoid property
that is used by Iosif et al. [2014].

Another tantalising observation reduces the existence of d such that R̂d is empty to
the question whether a related SLC loop terminates, for a given polyhedron of initial
states, in a bounded number of steps. Specifically, the loop:

while (By ≤ 0) do (A+ A′)y + A′y′ ≤ 0.

where B, A and A′ are those used in the definition of R in (4.31), and the question
whether it terminates in at most d steps for all y ∈ {y ∈ Qn | R

(
x
y

)
≤ c′′}. This is

because R̂d as in (4.32) is equivalent to unrolling the above loop d times. If the update

67

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

is affine, i.e., x′ = Ux + c, then the above loop is equivalent to

while (By ≤ 0) do y′ = (U − I)y

where I ∈ Qn×n is the identity matrix.

4.4 Loops for Which MΦRFs are Sufficient

The purpose of this section is to demonstrate the usefulness of Algorithm 3 for studying
properties of SLC loops. In particular, we use it to characterise kinds of SLC loops for
which there is always a MΦRF, if the loop is terminating. We shall prove this result
for two kinds of loops, both considered in previous work, namely octagonal relations and
affine relations with the finite-monoid property – for both classes, termination has been
proven decidable by Iosif et al. [2014]. We only consider the rational case. Another
question, which we do not answer, is whether we can ensure that Algorithm 3 recognises
the non-terminating members of the class.

Let us set some notation first. The composition of transition relations S, T ⊆ Q2n

is defined as S ◦ T = {
(

x
z

)
| ∃y .

(
x
y

)
∈ S ∧

(
y
z

)
∈ T}. We let T n = T n−1 ◦ T

where T 0 is the identity relation. We use pren(T) for the projection of T n over x, i.e.,
pren(T) = projx(T n), which is the set of states from which we can make traces of length
at least n (for non-deterministic loops some might be less than n as well). When T is
polyhedral, i.e., a SLC loop, then T n and pren(T) are polyhedral as well.

4.4.1 Finite Loops

First, we consider loops which always terminate and, moreover, their number of iterations
is bounded by a constant, i.e., there is N > 0 such that QN = ∅. Note that such loop
terminates in at most N − 1 iterations, or equivalently N − 1 is an upper-bound on the
length of the corresponding traces.

LEMMA 4.37. If QN = ∅, then it has a MΦRF of depth less than N .

Proof. The proof is by induction on N . For N = 1, Q = ∅, and it has a MΦRF of zero
depth, by definition. Let N > 1, and assume that QN−1 6= ∅, otherwise it trivially follows
for N . Consider a transition x′′ =

(
x
x′
)

that is the last in a terminating trace. We have
x ∈ projx(Q) and x′ 6∈ projx(Q). Since projx(Q) is a closed polyhedral set, this means

that there is a function ρ, defined by some (~a, b) ∈ projx(Q)#, that is non-negative over
projx(Q) but negative on x′, and thus ∆ρ(x′′) = ρ(x)− ρ(x′) > 0. It follows that x′′ is
eliminated by Algorithm 3 when computing Q′ at Line 4. This means that any transition
of Q′ cannot be the last transition of any terminating run of Q, and thus (Q′)N−1 = ∅.
Therefore, by induction, it has a MΦRF of depth at most N − 2, and by Lemma 4.7 Q
has a MΦRF of depth at most N − 1.

4.4.2 The Class RF(b)

This class contains loops which can be described as having the following behaviour:
Transitions are linearly ranked, as long as we are in states from which we can make runs
of length at least b. In other words, once we reach a state from which we cannot make
more than b− 1 transitions we do not require the rest of the trace to be linearly ranked.

68

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Definition 4.38. We say that a SLC loop Q belongs to the class RF(b) if the loop
Q∩ {(x,x′) ∈ Q2n | x ∈ preb(Q)} has a LRF.

We note that that RF(1) is the class of loops which have a LRF.

LEMMA 4.39. Loops in RF(b) have MΦRFs of depth at most b.

Proof. This lemma actually generalises Lemma 4.37, since the loops concerned there are
RF(N − 1). The proof is done similarly by induction on b. For b = 1, Q has a LRF by
definition. Let b > 1, and suppose that x′′ =

(
x
x′
)
∈ Q is a last transition of a terminating

run, then x ∈ projx(Q) and x′ 6∈ projx(Q). Since projx(Q) is a closed polyhedral set,

this means that there is a function ρ, defined by some (~a, b) ∈ projx(Q)#, that is non-
negative over projx(Q) but negative over x′, and thus ∆ρ(x′′) = ρ(x) − ρ(x′) > 0. It
follows that x′′ is eliminated by Algorithm 3 when computing Q′ at Line 4. This means
that any transition of Q′ cannot be the last transition of any terminating run of Q, and
thus Q′ is RF(b− 1). Therefore, by induction, it has a MΦRF of depth at most b− 1, and
by Lemma 4.7 Q has a MΦRF of depth at most b.

EXAMPLE 4.40. Consider the loop [Iosif et al. 2014] defined by

Q = {x2 − x′1 ≤ −1, x3 − x′2 ≤ 0, x1 − x′3 ≤ 0, x′4 − x4 ≤ 0, x′3 − x4 ≤ 0}.

This loop is RF(3), since adding pre3(Q) = {x2 + x4 ≥ 1, x3 + x4 ≥ 1, x1 + x4 ≥ 0} to
the loop we find a LRF, e.g., ρ(x) = −x1− x2− x3 + 3x4 + 1. Indeed, Q has a MΦRF of
optimal depth 3, e.g., 〈−x1 − x2 − x3 + 3x4 + 1,−2

3
x1 − 1

3
x2 + x4 + 1,−1

4
x1 + 1

4
x4 + 1〉.

Note that the first component is the LRF that we have just found for Q∩ pre3(Q). 2

If we know that a given class of loop belongs to RF(b), then bounding the recursion
depth of Algorithm 3 by b gives us a decision procedure for the existence of MΦRF for
this class. Iosif et al. [2014] proved that octagonal relations are RF(52n), where n is the
number of variables1. Thus for octagonal relations, we can decide termination and for
terminating loops obtain MΦRFs. For the depth of the MΦRF, namely the parameter b
above, Iosif et al. [2014] gives a tighter (polynomial) result for those octagonal relations
which allow arbitrarily long executions (called ∗-consistent).

4.4.3 Loops with Affine-linear Updates

In certain cases, we can handle loops with affine-linear updates – which are, in general,
not octagonal. Recall that a loop with affine-linear update has a transition relation of
the form:

Q ≡ [Bx ≤ b ∧ x′ = Ux + c] . (4.41)

We keep the meaning of the symbols U,B,b, c fixed for the sequel. Moreover, we express
the loop using the transformation U(x) = Ux + c and the guard G ≡ [Bx ≤ b]. We use
Uij to denote the entry of matrix U in row i and column j, and for a vector v we let
v[i..j] be the vector obtained from components i to j of the vector v.

Our goal is to show that if Up, for some p > 0, is diagonalizable and all its eigenvalues
are in {0, 1}, then Q is RF(3p), and thus, by Lemma 4.39, if terminating, it has a MΦRF.
Affine loops with the finite monoid property that has been addressed by Iosif et al. [2014],
satisfy this condition (interestingly, in Section 4.3.4 we have shown a similar result when
U − I has the finite monoid property). We state some auxiliary lemmas first.

1Technically, they prove it just for integer loops, but the result applies to the rational case as well
(one only has to simplify some considerations away from the proof).

69

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

LEMMA 4.41. Let Q be an affine-linear loop as in (4.41) such that, for some N > 0,
QN is RF(b). Then Q is RF(N(b+ 1)).

Proof. If QN is RF(b), then QN ∩ {x′′ | x ∈ preb(QN)} has a LRF ρ, and thus

x ∈ preb(QN) = preNb(Q) ⇒ ρ(x) ≥ 0 ∧ ρ(x)− ρ(UN(x)) > 0 . (4.42)

Note that ρ(x)− ρ(UN(x)) can be written as

N−1∑
j=0

ρ(U j(x))−
N−1∑
j=0

ρ(U j+1(x)) (4.43)

This is because every term ρ(U i(x)), except for i = 0 and i = N , appear in (4.43) with
positive and negative signs. Hence, if we let ρ1(x) =

∑N−1
j=0 ρ(U j(x)) then:

x ∈ preNb(Q) ⇒ ρ1(x)− ρ1(U(x)) > 0 .

Moreover, ρ1 is the sum of terms ρ(U i(x)) which are bounded from below on preN(b+1)(Q).
Hence, we have a LRF for Q∩ {x′′ | x ∈ preN(b+1)(Q)} and thus Q is RF(N(b+ 1)).

LEMMA 4.42. Let Q be a loop as in (4.41), and assume U is diagonal with entries in
{0, 1}. Then, if Q is terminating, it is RF(2).

Proof. Without loss of generality we may assume that U11 = · · · = Ukk = 1 and Ujj = 0
for j > k, otherwise we could reorder the variables to put it into this form. Clearly, the
update adds c1 = c[1..k] to the first k elements of x, and sets the rest to c2 = c[k+ 1..n].
Consequently, such a loop is non-terminating iff the space V = {x ∈ Qn | x[k+1..n] = c2}
intersects the loop guard G ≡ [Bx ≤ b], and the vector u = (c1, . . . ck, 0, . . . , 0)T is a
recession direction of the guard, i.e., Bu ≤ 0. To see this: suppose these conditions hold,
then starting from any state x0 ∈ V , the state after i iterations will be xi = x0+iu, which
is in G since x0 ∈ G and u ∈ rec.cone(G), and thus the execution does not terminate; for
the other direction, suppose it does not terminate, then there must be a non-terminating
execution that starts in x0 ∈ V , this execution generates the states x0 + iu ∈ G and thus
u is a recession directions of G.

Now suppose the loop is terminating, we show that it is RF(2). Let us analyse a run
of the loop starting with some valid transition

(
x0
x1

)
. We have two cases:

1. If x1 6∈ G, then the run terminates in 1 iteration.

2. If x1 ∈ G, then V intersects with G, since x1[k + 1..n] = c2, and thus Bu ≤ 0
should not hold, otherwise the loop is non-terminating. This means that there is a
constraint ~bi · x ≤ bi of the guard such that ~bi · u > 0. Let ~a be as ~bi but setting
components k + 1..n to zero, we still have ~a · u > 0 because these components are
0 in u. We show that this trace is linearly ranked by ρ(x) = ~a · x + max(bi, 0).

Suppose the initial state is x0, and write it as
(x0[1..k]

x0[k+1..n]

)
. Consider a trace that

starts in x0, it is easy to see that the ith state, for i ≥ 1, is xi =
(

x0[1..k]+ic1
c2

)
. Then,

we have ρ(xi)− ρ(xi+1) = ~a · u > 0, moreover ρ is non-negative on all state except
the last of the trace (which is not in the guard).

This analysis implies that any terminating trace is either of length 1, or has a LRF
ρ(x) = ~a · x + max(bi, 0), and together with the fact that the loop is deterministic we
conclude that it is RF(2).

70

CHAPTER 4. MΦRFS AND THEIR RELATION TO RECURRENT SETS

Now we are in a position for proving our main result of this section.

LEMMA 4.43. If Up, for some p > 0, is diagonalizable and all its eigenvalues are in
{0, 1}, then loop (4.41) is either non-terminating or RF(3p).

Proof. Recall that the update is U(x) = Ux + c, then Up(x) = Upx + v, for a vector
v = (I + U + · · ·+ Up−1)c. Taking into account the guard,

Qp ≡ (Bx ≤ b ∧ · · · ∧BUp−1(x) ≤ b) ∧ x′ = Up(x) . (4.44)

We write this guard concisely with the notation B〈p〉x ≤ b〈p〉. Since, by assumption,
Up is diagonalizable, there is a non-singular matrix P and a diagonal matrix D such
that P−1UpP = D and D has only 1’s and 0’s on the diagonal (P is a change-of-basis

transformation). We consider a loop Q̂p which is similar to Qp but transformed by P ,
that is:

Q̂p ≡ BP 〈p〉x ≤ b〈p〉 ∧ x′ = Dx + P−1v . (4.45)

Properties like termination and linear ranking are not affected by such a change of basis.
This is because if

(
x0
x1

)
is a transition of Qp then

(
P−1x0

P−1x1

)
is a transition of Q̂p, and

if
(

x0
x1

)
is a transition of Q̂p then

(
Px0
Px1

)
is a transition of Qp. This means that there is

a one-to-one correspondence between the traces. Moreover, if function ~a · x + b ranks a
transition of Qp then (~aP−1) · x + b ranks the corresponding transition of Q̂p, and if it

ranks a transition Q̂p then (~aP) · x + b ranks the corresponding transition of Qp. We

conclude that, if terminating, Qp is RF(b) iff Q̂p is RF(b).

Now, Q̂p has the diagonal form discussed in Lemma 4.42, and thus, in the case that
it terminates, it is RF(2) and so is Qp. Then using Lemma 4.41 we conclude that Q is
indeed RF(3p).

71

Chapter 5

Implementation

This chapter describes iRankFinder, a termination analyser that includes the algo-
rithms and techniques discussed in chapters 3 and 4, as well as state-of-the-art techniques
discussed in Section 2.3. Besides, it describes a toolkit for the rapid development of web-
interfaces for research prototype tools, which has been have developed in the context of
this thesis and used to build a web-interfaces for iRankFinder and other tools.

5.1 iRankFinder

iRankFinder is an open-source termination and non-termination analyser for TSs that
implements, among other things, the techniques described in chapters 3 and 4. In addi-
tion, it includes components for invariant generation, assertion checking, and control-flow
refinement that can be used independently from termination analysis. It is written in
Python 3 and uses the Parma Polyhedra Library (PPL) [Bagnara et al. 2008] for manip-
ulating polyhedra and Z3 [de Moura and Bjørner 2008] for solving constraints. It can be
used via a web-interface or from a command-line.

5.1.1 Input Syntax

There are several TS syntax used by different termination analysis tools, and there are
sets of benchmarks that are available in one syntax but not in others. iRankFinder
implements a new TS syntax that we call flow-chart and is described below, however,
it also supports two widely used TS syntax:

� smt2: this syntax is used in the termination competition and was formally defined
by Brockschmidt and Rybalchenko. We have modified the tool SMTPushDown1, that
includes a parser for this syntax, to output the TS as a flow-chart. Files in this
syntax are identified by iRankFinder with the extension “.smt2”.

� koat-kittel: this syntax was first introduced by Falke et al. [2011] for the KITTeL

termination analyser, and then used in some variation by Brockschmidt et al.
[2016b] for the complexity analysis tool KoAT. It is the standard format used in
the complexity analysis competition as well. Files in this syntax are identified by
iRankFinder with the extension “.koat”.

1https://github.com/jesusjda/SMTPushdown/

73

https://github.com/jesusjda/SMTPushdown/

CHAPTER 5. IMPLEMENTATION

1 {

2 vars: [x, y, z],

3 pvars: [x', y', z'],

4 initnode: n0,

5 nodes: {

6 n1: { cfr properties: [[x >= 1],[y =< z - 1],[y >= z]] },

7 n3: { asserts: [[[x <= 0]]] }

8 },

9 transitions: [

10 {

11 source: n0,

12 target: n1,

13 name: Q0,

14 constraints: [x' = x, y' = y, z' = z]

15 },

16 {

17 source: n1,

18 target: n2,

19 name: Q1,

20 constraints: [x >= 1, x' = x, y' = y, z' = z]

21 },

22 {

23 source: n1,

24 target: n3,

25 name: Q2,

26 constraints: [x <= 0, x' = x, y' = y, z' = z]

27 },

28 {

29 source: n2,

30 target: n1,

31 name: Q3,

32 constraints: [y <= z - 1, x' = x+1, y' = y + 1, z' = z]

33 },

34 {

35 source: n2,

36 target: n1,

37 name: Q4,

38 constraints: [y >= z, x' = x - 1, y' = y, z' = z]

39 }

40]

41 }

Figure 5.1: An example of TS in flow-chart syntax. It corresponds to TS T of Figure 3.2.

The parser of iRankFinder directly parses the syntax koat-kittel and flow-chart

and converts them to an internal representation. iRankFinder accepts basic C programs
as well, and translates them to koat-kittel syntax using tool LLVM2KTTEL that was also
developed in the context of the KITTeL termination analyser of Falke et al. [2011].

Our flow-chart syntax is based on JSON structures, and thus it is easy to extend.
Apart from the definition a TS, it also allows passing other information to the analyser
such as user-defined properties to be used for CFR, assertions to be checked, etc. An
example of a TS in this syntax is depicted in Figure 5.1, it corresponds to the TS T of
Figure 3.2. Next, we describe the details of the flow-chart syntax using this example.

A TS in flow-chart syntax is a JSON-like dictionary where some keys are mandatory
and some are optional (the mandatory keys are marked with ?):

� vars?: a list of tokens representing a sequence of global variable names (V in
Definition 2.4).

� pvars: a list of tokens representing a sequence of primed variable names (V ′ in
Definition 2.4). The ith element of pvars is the primed version of the ith element
in vars. The default value is generated by adding a quote to the values in vars.

74

CHAPTER 5. IMPLEMENTATION

� domain: a token Q or Z representing the domain of variables – rationals or integers.
The default value is Z.

� initnode: a token representing the identifier of the initial node of the TS. The
default value is the source node ns of the first edge, and if ns has incoming edges
then an auxiliary node n0 with a single edge to ns is added to the TS.

� transitions?: a list of dictionaries (with specific keys) representing edges of the
TS. The essential keys are:

– source?: a token representing the identifier of source node.

– target?: a token representing the identifier target node.

– name: an identifier for the edge.

– constraints?: a list of linear constraints representing the corresponding tran-
sitions polyhedron. The constraints are over variables from vars and pvars,
other variables are treated as existentially quantified (i.e., local to the edge).
The parser allows non-linear constraints as well, but they are ignored by
iRankFinder (this should be used carefully since while it is safe for ter-
mination, it is not safe for non-termination).

An edge can be disabled by adding the key ignore with the value true.

� nodes: a dictionary where keys are node identifiers, and the value of each key is
another dictionary that provides extra information for the corresponding node:

– asserts: a list of assertions that must hold when the execution reaches the
corresponding node. iRankFinder can check assertions if the corresponding
option is enabled.

– cfr properties: constraints representing user-defined properties to be used
for CFR.

– threshold: constraints representing thresholds [Lakhdar-Chaouch et al. 2011]
to be used in the widening operation of the invariants generator.

Files in this syntax are identified by iRankFinder with the extension “.fc”.

5.1.2 Invariant Generation

iRankFinder includes an invariant generation component that implements a standard
fix-point algorithm with two abstract domains: polyhedra [Cousot and Halbwachs 1978]
and intervals [Cousot and Cousot 1977]. For polyhedra, it allows using the threshold-
based techniques for widening [Lakhdar-Chaouch et al. 2011]. Invariants can be inferred
at different stages: before starting the termination analysis, before applying CFR, after
applying CFR, etc. Invariants are used to check user assertions as well, if required by
the user, by checking that each assertion is implied by the corresponding invariant. The
invariant generation component can be applied independently from termination analysis,
and invariants can be written to the input TS as annotations for corresponding nodes.

75

CHAPTER 5. IMPLEMENTATION

5.1.3 Control-Flow Refinement

The CFR techniques of Chapter 3 are implemented in iRankFinder, including the three
different schemes. For partial evaluation of CHCs, i.e., for procedure PE of Section 3.1,
it uses a slightly modified version of the tool developed by Gallagher [2019]. It also
allows applying PE iteratively on its output, which might achieve further refinements,
but also risks increasing the size of the resulting TS (there are examples where this
is needed). iRankFinder translates TSs into CHC programs as accepted by the tool
of Gallagher [2019], and also translates the resulting specialised CHC programs to TSs.
For properties, it allows using any subset of those defined in Section 3.1.4, as well as
user-defined properties.

The CFR component can be used independently from termination analysis as well. It
accepts TSs in any of the syntax mentioned above and writes the specialised TSs into a
file using the selected syntax. Indeed, it is already used as a black-box in other tools as
we report in Chapter 6.

5.1.4 Termination and Non-termination Analysis

The core algorithm used for proving termination and non-termination is based Algo-
rithm 2 which incorporates the CFR procedure (see Section 3.2).

Non-termination Analysis

For non-termination analysis, it implements the technique described in Section 4.2.3 to
seek recurrent sets, and another simpler technique that checks (using SMT queries) if a
closed walk can start and end in the same state (i.e., has a fix-point). For reachability,
it collects all constraints on a path from the initial node to a node of the recurrent set
and asks an SMT solver to find a solution for these constraints together with those of
the recurrent set. This is done in a loop that enumerates such paths and has a bound on
the number of times an edge can be taken (to guarantee termination of the loop). Since
iRankFinder allows local variables in transition polyhedra, they might be instantiated
to concrete values to make the corresponding closed walk deterministic – this is important
for TSs with integer variables, see section 4.2.2 and 4.2.3.

Termination Analysis

For termination analysis, it implements an algorithm for LRFs [Podelski and Rybalchenko
2004], and several algorithms corresponding to the QLRFs of Alias et al. [2010], Bradley
et al. [2005a] and Ben-Amram and Genaim [2014] (see Section 2.3.1). It also allows the
user to specify if the (quasi-)ranking functions should use the same linear function for all
nodes, or to use possibly different one for each node (functions can be different only wrt.
free constant, or wrt. coefficients as well). As we have seen in Example 2.10 this might
affect precision, but also performance.

iRankFinder implements as well a new kind of a quasi-ranking function that gener-
alises the notion of poly-ranking of Bradley et al. [2005c]. It uses tuples of d linear func-
tions instead of only linear functions as done for QLRFs (it is a kind of quasi-lexicographic
linear ranking function). For a fixed d, it assigns to each node ni a tuple 〈ρ1,ni , . . . , ρd,ni〉

76

CHAPTER 5. IMPLEMENTATION

such that: (i) there is at least one edge ns
Q−→ nt ∈ ES for which any x′′ ∈ Q satisfies

ρ1,ns(x)− ρ1,nt(x′) ≥ 1 (5.1)

∀1 < i ≤ d . ρi,ns(x)− ρi,nt(x′) + ρi−1,ns(x) ≥ 1 (5.2)

ρd,ns(x) ≥ 0 (5.3)

and (ii) any other other x′′ (that comes from other edges) satisfies

∀1 ≤ i ≤ d . ρi,ns(x)− ρi,nt(x′) ≥ 0 (5.4)

Conditions (5.1-5.3) specify the decreasing transitions, while Condition (5.4) specifies the
non-increasing ones. Conditions (5.1-5.3) are the same required for nested ranking func-
tions [Ben-Amram and Genaim 2017; Leike and Heizmann 2015] which is a special case
of MΦRF. Thus, we will refer to this new quasi-ranking function as nested QLRF. Intu-
itively, it finds MΦRFs that eliminate at least one edge in each iteration. The resulting
lexicographic ranking function has tuples in its components.

It is easy to check that for d = 1 we get the QLRF definition of Bradley et al.
[2005a]. For d > 1 iRankFinder can handle some examples that are handled by the
QLRFs of Larraz et al. [2013], for example, we succeed to prove termination of the TS of
Example 2.17 but fail on the one of Example 2.16.

5.1.5 Handling Strict Inequalities

Throughout the thesis, we used only non-strict inequalities. However, iRankFinder
allows using strict inequities of the following form when defining transition polyhedra:

n∑
i=1

aixi < b

If the domain of variables is Z, it turns each < to ≤ and adds −1 to the right-hand
side (assuming all ai and b are integer, otherwise it multiplies the inequality by a large
positive integer first to make them integer). If the domain of variables is Q, it turns each
< to ≤ as well, which can be seen as replacing an open polyhedron Q by its topological
closure. However, while this is clearly sound for termination it is not sound for non-
termination. Interestingly, this transformation even preserves completeness for LRFs
and some QLRFs because, for example, it is easy to show that ρ is a LRF for an open
polyhedron iff it is a LRF for its topological closure.

Since the underlying algorithms for LRFs and QLRFs are based on the use of Farkas’
Lemma [Schrijver 1986, p. 93], which is valid only for non-strict inequities, we could use
Motzkin Transposition Theorem [Schrijver 1986, Corollary 7.1k, p. 94] which is similar
and valid for non-strict constraints as well (this is not implemented in iRankFinder).

5.1.6 Using iRankFinder

The easiest way to use iRankFinder is through its web-interface2 that is depicted in
Figure 5.2. It includes a set of predefined TSs that can be used and allows users to provide
their own TSs. A click on the Settings button opens a settings window as depicted in
Figure 5.3, which includes a list of different configuration options.

2http://irankfinder.loopkiller.com

77

http://irankfinder.loopkiller.com

CHAPTER 5. IMPLEMENTATION

Figure 5.2: iRankFinder web-interface.

This web-interface has been developed using the toolkit described in Section 5.2.
Another possibility is to use iRankFinder from a command-line (in Linux or OSX).
Installation and usage instructions for this option are available at the main GitHub
repository3.

We also provide a Docker4 script that can be used to generate a corresponding (Linux
based) image with all tools installed, including the web-interface. This can be done by first
downloading the corresponding Dockerfile5, and then executing the following command
in the same directory where Dockerfile is saved:

> docker build -t irankfinder .

Creating the image will take some time, after which the image can be started by executing
the following command (only once):

> docker run -d -p 8081:80 --name irankfinder irankfinder

Now iRankFinder can be locally used through its web-interface that is available at
http://localhost:8081, or from a Linux shell by first logging into the image using

> docker exec -it irankfinder bash

and then executing

> irankfinder.sh -h

which lists corresponding usage information.

3http:://github.com/costa-group/iRankFinder
4http://www.docker.com
5http://github.com/costa-group/iRankFinder/blob/master/installer/Dockerfile

78

http://localhost:8081
http:://github.com/costa-group/iRankFinder
http://www.docker.com
http://github.com/costa-group/iRankFinder/blob/master/installer/Dockerfile

CHAPTER 5. IMPLEMENTATION

Figure 5.3: iRankFinder settings window.

Finally, several components of iRankFinder are available as separate packages, since
they might be interesting for the community, in particular:

� pyParser6 for parsing TSs in different syntax as described in Section 5.1.1, and
converting them to some internal representation; and

� pyLPi7 for constructing arithmetic expressions, constraints, polyhedra, and manip-
ulating them with corresponding operations.

This allows developers to use them independently from iRankFinder.

5.2 EasyInterface

In this section, we describe EasyInterface, an open-source toolkit8 for the rapid de-
velopment of GUIs for research prototype tools. This toolkit has been developed in the
context of this thesis as part of the Envisage9 project, and also used for the web-interface
of iRankFinder and other tools in our research group.

EasyInterface is a toolkit that aims at simplifying the process of building GUIs
for research prototypes tools. It provides an easy way to make existing (command-line)
applications available via different environments such as a web-interface, within Eclipse,
etc. It also defines a text-based output language, called EasyInterface Output Language
(EIOL), that can be used to improve the way results are shown to the user without
requiring any knowledge in GUI/Web programming. For example, if the output of an ap-
plication is (a structured version of) “highlight line number 10 of file ex.c” and “when the
user clicks on line 10, open a dialog box with the text ...”, the web-interface will interpret
this and convert it to corresponding visual effects. The advantage of using this output

6http:://github.com/jesusjda/pyParser
7http:://github.com/jesusjda/pyLPi
8https://github.com/abstools/easyinterface
9http://www.envisage-project.eu/

79

http:://github.com/jesusjda/pyParser
http:://github.com/jesusjda/pyLPi
https://github.com/abstools/easyinterface
http://www.envisage-project.eu/

CHAPTER 5. IMPLEMENTATION

EasyInterface
 Server

Tool1

Tool3

Tool1.cfg

Web-Interface

Eclipse Plugin

Remote Shell

Server Side
(A machine with Linux, Windows or OSX)

Client Side

The server executes the tools via
command-line and forward their
standard output to the clients

Clients communicate
with the server using
HTTP POST requests

Tool2 ToolN

app2.cfg
Tool2.cfg

ToolN.cfg

Figure 5.4: The architecture of EasyInterface.

language is that it will be interpreted equally by all environments of EasyInterface,
e.g., the web-interface and the Eclipse plugin.

5.2.1 General overview

The overall architecture of EasyInterface is depicted in Figure 5.4. It includes two
main components: (1) server side: a machine with several tools (the circles with Tool1,
Tool2, etc.) that can be executed from a command-line and that their output go to the
standard output. These are the tools that we want to make available for the outside
world; and (2) client side: several clients that make it easy to communicate with the
server side to execute a tool, they might run on the same machine as the server or on
other machines, e.g., the web-interface can be installed in the server, as a web-page, but
accessed from anywhere using a web browser.

The problem that we want to solve at the server side is to provide a uniform way to
remotely execute locally installed tools. This problem is solved by the EasyInterface
server, which is a collection of PHP programs that run on top of an HTTP server. This
server allows specifying how a local tool can be executed and which parameters it takes
using simple configuration files (Tool1.cfg, Tool2.cfg, etc.).

Figure 5.5 is a XML snippet from a configuration file that describes a tool with a
unique identifier myapp. The cmdlineapp tag is a template that describes how to execute
the tool from a command-line. Here _ei_parameters is a template parameter that will
be replaced by an appropriate value before executing the command. The parameters

tag includes a list of parameters accepted by the tool. For example, the parameter “c”
above takes one of the values 1 or 2. Parameters can be logically grouped, using the field
group, and the corresponding interfaces might display them together. The groups tag
defines the list of groups. Once the configuration file is installed on the server, we can
access the tool using an HTTP POST request that includes JSON-formatted data like
the snippet in Figure 5.6.

When the server receives such a request, it generates a corresponding shell command
according to the specification in the configuration file; e.g., for “/path-to/myapp -c 1”,

80

CHAPTER 5. IMPLEMENTATION

<app id="myapp" visible="true">

...

<execinfo method="cmdline">

<cmdlineapp>/path-to/myapp _ei_parameters </cmdlineapp>

</execinfo>
<parameters prefix="-" check="false">

...

<selectone name="c" group="global">

<option value="1" />

<option value="2" />

</selectone>
</parameters>
<groups>
<group id="global">Global parameters</group>
</groups>
</app>

Figure 5.5: An example configuration file of a tool.

1 {

2 command: "execute",

3 app_id: "myapp",

4 parameters:*) {

5 c: ["1"],

6 ...

7 },

8 ...

9 }

Figure 5.6: An example of a server request.

and then the server executes the command and redirects the standard output back to the
client. The server can accept other kinds of requests as discussed later (e.g., to ask which
tools are available). In addition to tools, the server side can also include sets of examples
to provide users with basic examples on which they can apply the different tools.

Although we now have an easy way to execute tools on the server side, our aim is to
simplify this process further by providing GUIs that (1) connect to the server and ask for
the list of available tools; (2) let the user select a tool to execute as well as the values of
the available parameters for that tool; (3) generate the corresponding request and send
it to the server; and (4) display the returned output to the user. The EasyInterface
toolkit provides three such clients: a web-interface that can be executed in a browser and
looks like an IDE; an Eclipse-plugin that runs within the Eclipse IDE; and a remote shell
that can be used from the command-line. We focus our discussion on the web-interface.

The web-interface is depicted in Figure 5.7. It is designed like an IDE where users
can edit programs, etc. Next to the Apply button there is a combo-box with a list of
all available tools obtained from the associated servers. In the settings window, the user
can select values for the different parameters to be passed to the tool. Note that these
parameters are specified in the corresponding configuration file on the server side, they
are and automatically converted to combo-boxes, etc., by the web-interface. To execute a
selected tool, the user should click the Apply button. The web-interface will then send a
request to the associated server to execute the corresponding tool and print the received

81

CHAPTER 5. IMPLEMENTATION

File-Manager

Console

Outline

Code Editor

Tools

Menu

Settings

Figure 5.7: EasyInterface Web-Interface Client.

output back in the console area.

Since the web-interface and the Eclipse-plugin are GUI based clients, EasyInterface
also gives tools the possibility to generate output that has some graphical effects, such
as open dialog-boxes, highlighted code lines, added markers, etc. To use this feature, the
tools should be modified to use the EIOL. Figure 5.8 is an example of the output format.

Here, the highlightlines tag indicates that lines 5–10 of file /path-to/sum.c should
be highlighted. The oncodelineclick tag indicates that when clicking on line 17, a
dialog-box with a corresponding message should be opened. Note that the tool is only
modified once to produce such output, and will have similar effect in all EasyInterface
clients that support this output language. In the next sections we discuss some features
of the server side, the web-interface client, and the EIOL in more detail.

5.2.2 Using EasyInterface

In this section, we describe the methodology that EasyInterface implies for its users
by explaining the basics of its different parts and the way they are supposed to be used.
Note that the installation of EasyInterface is practically immediate: it only consists
in cloning the GitHub repository and making its root directory accessible via an HTTP
server. An installation guide is available in the GitHub repository.

82

CHAPTER 5. IMPLEMENTATION

<highlightlines dest="/path-to/sum.c">

<lines> <line from="5" to="10"/> </lines>
</highlightlines>
...

<oncodelineclick dest="/path-to/sum.c" outclass="info" >

<lines><line from="17" /></lines>
<eicommands>
<dialogbox boxtitle="Hey!">

<content format="text"> some message </content>
</dialogbox>

</eicommands>
</oncodelineclick>

Figure 5.8: EIOL example.

<stream execid="EI65231" time="60sec">

<content format="text">

The program is running in the background,

the output goes here ...

</content>
</stream>

Figure 5.9: EIOL stream command example.

Adding Tools and Examples to the Server

As described in Section 5.2.1, adding a tool to the server is simply done by providing a
configuration file such as the one in Figure 5.5. This file includes two main components:
(1) the command-line template that describes how to execute the corresponding tool; and
(2) the parameter section that describes which command-line parameters the tool will
take.

EasyInterface supports several types of parameters such as a parameter with a
single value, a parameter with multiple values, a Boolean parameter, etc. Each parameter
has a name, a set of valid values, and a set of default values. When receiving a request to
execute a tool (such as the JSON-formatted data in Figure 5.6), the server generates a
sequence of command-line parameters from those specified in the request and replaces the
template parameter _ei_parameters by this list. For example, if there is a parameter
named “c” and its provided value is “1”, then what is passed to the tool is “-c 1”.
The prefix “-” that is attached to the parameter name can be specified using the prefix

attribute in the parameters section. In addition, the check attribute indicates if the server
should reject requests with invalid parameter values. Apart from _ei_parameters the
command-line template might include other template parameters, all are first replaced by
corresponding values and then the resulting shell command is executed and its output is
redirected back to the client. Next we describe some of the available template parameters:

� _ei_files: tools typically receive input files (e.g., programs) to process. The
execution request (i.e., the JSON-formatted data of Figure 5.6) can include such
files, and, in order to pass them to the corresponding tool, the server first saves them
locally in a temporary directory and replaces _ei_files by a list of corresponding
local paths.

� _ei_outline: since EasyInterface was first developed for tools that process
programs, e.g., program analysis tools, the execution request can include so-called

83

CHAPTER 5. IMPLEMENTATION

<download execid="EI65231" filename="file.zip" />

Figure 5.10: EIOL download command example.

outline entities. These are elements of the input programs such as method names,
class names, etc., and they are used to, for example, indicate from where the tool
should start the analysis. The server replaces _ei_outline by the list of the pro-
vided outline entities.

� _ei_execid: this corresponds to a unique execution identifier that is assigned (by
the server) to the current execution request, which can be used for future references
to this execution as we see next.

� _ei_stream: there are tools that do not generate output immediately, such as sim-
ulators. In this case we would like to keep the tools running in the background
and fetch their output periodically without maintaining the current connection to
the server. The template parameter _ei_stream corresponds to a temporary di-
rectory where the tool can write its output and where clients can fetch this output
by corresponding requests to the server. These requests should include the corre-
sponding execution identifier. For example, the tool could output the command of
Figure 5.9 (in the EIOL) and terminate, while keeping a process running in the
background (complying with the server’s permissions) writing its output chunks to
the _ei_stream directory.

This command indicates that the output, in text format, should be fetched every
60 seconds using the execution identifier specified in execid. Note that it is the
responsibility of the client (e.g., the web-interface) to fetch the output once it
receives the above command.

� _ei_download: some tools generate output in the form of large files, e.g., com-
piled code. Instead of redirecting this output directly to the client it can be more
convenient to return download links. This template parameter corresponds to a
temporary directory where such files can be stored and later fetched by sending
a special request to the server with the file name and the corresponding execu-
tion identifier, similarly to the stream mode above. The EIOL includes a special
command for downloading such files (see Figure 5.10).

Once the client (e.g., the web-interface) receives this command, it sends a re-
quest to download the file file.zip that is associated with the execution identifier
“EI65231”.

� _ei_sessionid: this corresponds to a unique session identifier that is assigned to
the user, and can be used to track the user’s activity among several requests. It is
implemented using PHP sessions.

� _ei_clientid: this corresponds to the client identifier, e.g., webclient, eclipse,
etc. It can be used to generate client directed output which uses the EIOL for the
selected clients and plain text for others.

The server configuration files also include options for controlling security issues, time-
out for tools, etc.

84

CHAPTER 5. IMPLEMENTATION

<examples>
<exset id="iter">

<folder name="Examples_1">

<folder name="iterative">

<file name="sum.c" url="https://.../sum.c" />

...

</folder>
<folder name="rec">

<file name="sum.c" url="https://.../fib.c" />

...

</folder>
</folder>
</exset>
<exset id="set2">

<folder name="Examples_2">

<github owner="abstools" repo="absexamples"

branch="master" path="collaboratory" />

</folder>
</exset>
</examples>

Figure 5.11: An example configuration file of two sets of examples.

Apart from tools, one can also install example sets on the server side, which are meant
to be used by clients (e.g., the web-interface) to provide users with some examples on
which they can apply the available tools. Adding example sets is done by adding an XML
structure to the sever configuration files like Figure 5.11.

Figure 5.11 defines two sets of examples. The first uses a directory structure, while
the second refers to a github repository. Note that in the first case the example files are
not necessarily installed on the server, for each we must provide a link from which it can
be downloaded.

Using the Web-Interface Client

The web-interface client of EasyInterface is a JavaScript program that runs in a web
browser, a screenshot is depicted in Figure 5.7. It uses JQuery10 as well as some other
libraries like JSTree11 and CodeMirror12. It is designed like an IDE, this is because
EasyInterface was first developed for with static program analysis tools in mind. It
includes the following components: (1) the code editor, where users can edit programs;
(2) the file-manager that contains a list of predefined examples and user files; (3) the
outline view that includes an outline (e.g., methods and classes) of one or more files;
(4) the console where the results of executing a tool is printed by default; and (5) the tool
bar that includes several buttons to execute a tool, etc. Next we describe the work-flow,
and give more details on these components.

The work-flow within the web-interface is as follows: (a) write a new program or
open an existing one from the file-manager; (b) click on the Refresh Outline button
to generate the outline of the currently open program, and select some entities from this
outline; (c) select a tool from the tools menu; and (d) click on the Settings button
to set the values of the different parameters; (e) click on the Apply button to execute
the selected tool. At this point the web-interface sends a request to the corresponding
server to execute the selected tool (passing it the currently opened file, parameter values,

10http://jquery.com
11http://www.jstree.com
12http://codemirror.net

85

http://jquery.com
http://www.jstree.com
http://codemirror.net

CHAPTER 5. IMPLEMENTATION

selected outline entities, etc.), and the output is printed in the console area. If the tool’s
output is in the EIOL, then it passes through an interpreter that converts it to some
corresponding graphical output. The user can apply a tool (and generate an outline)
on several files by selecting the corresponding option from the context menu in the file-
manager (opened with a right click on an entry in the file-manager).

The code editor is based on CodeMirror, it can be easily configured (in the web-
interface configuration file) to use syntax-highlighting for different languages.

The tools menu includes a list of tools that can be executed by the user. This list can
be set in the web-interface configuration file, simply by providing URLs of corresponding
EasyInterface servers and, for each, indicating if all available tools should be included
or only some selected ones. The default configuration of the web-interfaces fetches all
tools that are installed on the server running on the machine where the web-interface is
installed.

When clicking the Settings button, a settings window is opened where the user
can choose values for the different parameters of the different tools (see the top part
of Figure 5.7). This is automatically generated using the parameters defined in the
server configuration file (the web-interface fetches this information from the corresponding
server). Predefined configurations of these parameters are available by selecting a profile.
Those profiles can be defined in the server configuration file.

The predefined examples included in the file-manager can be set in the web-interface
configuration file, simply by providing URLs to corresponding EasyInterface servers
and identifiers for the sets to be included. As we have seen, such a set can simply be given
as a reference to a GitHub repository. The file-manager can also allow users to create
their own files, upload files from local storage, and clone public and private GitHub
repositories.

The Outline area is supposed to include an outline of some of the programs files
(available in the file-manager), and thus it depends on the structure of those programs.
For example, fro Java programs it might include classes, interfaces, methods, . EasyIn-
terface already provides an easy way to change the outline generator. All we have to
do is (1) to provide a tool (installed on an EasyInterface server, like any other tool)
that takes a set of files and generates an XML structure that represents an outline, the
web-interface will convert this XML to a tree-view; and (2) to modify the web-interface
configuration file in order to use this tool for generating the outline.

Using The Output Language

The EIOL is a text-based language that allows tools to generate more sophisticated
output. It is supported in both the web-interface and the Eclipse clients. In this section
we will explain the basics of this language by example. An output in EIOL is an XML
of the form in Figure 5.12.

where [EICOMMAND]* is a list of commands to be executed; and [EIACTION]* is a list of
actions to be declared. An [EICOMMAND] is an instruction like: print a text on the console,
highlight lines 5-10, etc. An [EIACTION] is an instruction like: when the user clicks on line
13, highlight lines 20-25, etc. In the rest of this section we consider some representative
commands (Figure 5.13) and actions (Figure 5.14).

Recall that when the EIOL is used, the web-interface does not redirect the output
to the console area and thus we need a command to print in the console area. The
Figure 5.13a is an example of a command that prints “Hello World” in the console area.

86

CHAPTER 5. IMPLEMENTATION

<eiout>
<eicommands>

[EICOMMAND]*
</eicommands>
<eiactions>

[EIACTION]*
</eiactions>
</eiout>

Figure 5.12: EIOL general scheme.

The value of the consoleid attribute is the console identifier in which the given text
should be printed (e.g., in the web-interface the console area has several tabs, so the
identifier refers to one of those tabs). If a console with the provided identifier does not
exist yet, a new one is created, with a title as specified in consoletitle. If consoleid
is not given the output goes to the default console. Inside printonconsole we can have
several content tags which include the content to be printed. The attribute format

indicates the format of the content. In the above example it is plain text, other formats
are supported as well, e.g., html, svg, and graphs. The graphs option refers to diagrams
that are drawn using DyGraphs13, where the data is provided inside the content tag using
a JSON based format.

Figure 5.13b shows a command to highlight code lines. Attributes dest and outclass

are as in the addmarker command. Each line tag defines a region to be highlighted. In
the example above, lines 5–10 get highlighted. We can also use the attributes fromch

and toch to indicate the columns in which the highlight starts and ends respectively.
The Figure 5.13c is an example of a command that adds a marker next to a code

line in the editor area. The attribute dest indicates the full path of the file in which the
marker should be added. The attribute outclass indicates the nature of the marker,
which can be info, error, or warning. This value typically affects the type/color of
the icon to be used for the marker. The tag lines includes the lines in which markers
should be added, each line is given using the tag line where the from attribute is the
line number (line can be used to define a region in other commands, this is why the
attribute is called from). The text inside the content tag is associated to the marker (as
a tooltip, a dialog box, etc., depending on the client).

The command in Figure 5.13d can be used to open a dialog box with some content.
The dialog box will be titled as specified in boxtitle and it will include the content
as specified in the content environments. The attributes boxwidth and boxheight are
optional, they determine the initial size of the window.

A CodeLine action defines a list of commands to be executed when the user clicks on
a line of code (more precisely, on a marker placed next to the line). The commands can
be any of those seen above. Figure 5.14a is an example of such an action.

First note that the XML description above should be placed inside the eiactions

tag. When the above action is executed, e.g., by the web-interface client, a marker will
be shown next to line 17 of the file specified in the attribute dest. If the user clicks on
this marker the commands inside the eicommands tag will be executed, and if the user
clicks again the effect of these commands is undone. In the case above, a click highlights
lines 17–19 and opens a dialog box, and another click removes the highlights and closes
the dialog box.

13http://dygraphs.com

87

http://dygraphs.com

CHAPTER 5. IMPLEMENTATION

<printonconsole consoleid="1" consoletitle="A Title">

<content format="text">Hello World</content>
</printonconsole>

(a) Printing in the console area.

<highlightlines dest="path" outclass="info">

<lines> <line from="5" to="10"/> </lines>
</highlightlines>

(b) Highlighting lines.

<addmarker dest="path" outclass="info">

<lines> <line from="4" /> </lines>
<content format="text">

some associated text

</content>
</addmarker>

(c) Adding a marker.

<dialogbox outclass="info" boxtitle="A Title"

boxwidth="100" boxheight="100">

<content format="html">

some associated text

</content>
</dialogbox>

(d) Opening a dialog box.

Figure 5.13: Some EIOL commands.

OnClick actions are similar to CodeLine actions. The difference is that instead of being
assigned to a line of code, they are assigned to an HTML tag that we have previously
generated. Let us suppose that the tool has already generated the content of Figure 5.14b
in the console area. Note that the text “10 errors” is wrapped by a span tag with an
identifier err1. The OnClick action can assign a list of commands to a click on this text
as in Figure 5.14c. The selectors used in the tag selector are as in JQuery14.

14http://jquery.com

88

http://jquery.com

CHAPTER 5. IMPLEMENTATION

<oncodelineclick dest="path" outclass="info" >

<lines> <line from="17" /> </lines>
<eicommands>
<highlightlines>
<lines> <line from="17" to="19"/> </lines>

</highlightlines>
<dialogbox boxtitle="Hey!">

<content format="html">

some text

</content>
</dialogbox>

</eicommands>
</oncodelineclick>

(a) When clicking a code line.

<content format="html"/>

10 errors were found.

</content>

(b) Trigger text.

<onclick>
<elements> <selector value="#err1"/> </elements>
<eicommands>
<dialogbox boxtitle="Errors">

<content format="html">some text</content>
</dialogbox>
</eicommands>

</onclick>

(c) When clicking in #err1 of the above Figure.

Figure 5.14: EIOL actions examples.

89

Chapter 6

Experimental Evaluation

In this chapter, we experimentally evaluate iRankFinder, in particular, the techniques
presented in chapters 3 and 4 that have been implemented in iRankFinder as described
in Section 5.1. The raw data used for this evaluation, and additional information, can be
found at the following page: http://irankfinder.loopkiller.com/DomenechPhD.

For our evaluation we have used standard sets of benchmarks taken from the Termi-
nation Problem Data Base (TPDB)1:

� (TPDB-A) a set of 416 TSs in smt2 syntax coming from corresponding Java programs
(directory Integer Transition Systems/From Aprove 2014).

� (TPDB-B) a set of 806 TSs in smt2 syntax coming from not necessarily structured
programs (directory Integer Transition Systems/From T2).

� (TPDB-C) a set of 335 C programs with integer variables (directory C Integer).

� (TPDB-D) a set of 781 TSs in kittle-koat syntax, coming from different sources
(directory Complexity TS).

The first 3 sets are used in the termination analysis competition, and the last one is used
in the complexity analysis competition2.

We divide the evaluation into several sections: Section 6.1 evaluates the effect of
our CFR techniques on termination analysis; Section 6.2 evaluates the effect of our CFR
techniques on cost analysis; Section 6.3 evaluates the non-termination analysis techniques
of Chapter 4, and also the effect of our CFR techniques on non-termination; and Sec-
tion 6.4 evaluates the effect of our CFR techniques on generating invariants and proving
assertions, using the examples of Sharma et al. [2011].

6.1 CFR for Termination Analysis

In this section, we evaluate the effect of Algorithm 2 on iRankFinder, i.e., we compare
the results of iRankFinder with and without CFR using different settings. We also
compare to other termination analysis tools. We have used sets TPDB-A, TPDB-B and
TPDB-C, but excluded benchmarks known to be non-terminating: 151 for TPDB-A, 93 for
TPDB-B, and 93 for TPDB-C. They are used in Section 6.3 to evaluate non-termination.

1http://termination-portal.org/wiki/TPDB
2http://termination-portal.org/wiki

91

http://irankfinder.loopkiller.com/DomenechPhD
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki

CHAPTER 6. EXPERIMENTAL EVALUATION

Props CFRB CFRS CFRA Set

P1 36 (40.43) 38 (34.20) 39 (38.00)

S
u
c
c
:

15
9

(8.16
)

F
a
i
l
:

10
6

(15
.7

5)
S
u
c
c
-
C
F
R
:

4
0

T
P
D
B
-
A

P2 11 (31.12) 15 (28.22) 14 (31.71)
P3 36 (40.51) 38 (34.16) 39 (38.14)
P4 37 (82.07) 39 (53.63) 40 (59.44)
P5 27 (45.68) 28 (33.51) 30 (37.98)
P6 37 (51.39) 39 (39.80) 40 (45.19)
P7 27 (48.90) 28 (34.30) 30 (39.17)

P1 131 (330.06) 147 (306.17) 139 (329.02)

S
u
c
c
:

123
(17.33)

F
a
i
l
:

335
(165.94)

S
u
c
c
-
C
F
R
:

182

T
P
D
B
-
B

P2 25 (272.19) 128 (268.76) 93 (278.81)
P3 131 (330.36) 147 (307.95) 139 (331.65)
P4 136 (411.52) 159 (343.86) 152 (372.06)
P5 61 (313.59) 148 (311.79) 119 (332.19)
P6 156 (364.58) 172 (345.83) 166 (369.26)
P7 61 (330.80) 144 (313.83) 120 (331.66)

P1 65 (41.31) 51 (28.63) 67 (35.74)

S
u
c
c
:

74
(3.68)

F
a
i
l
:

168
(21

.2
5
)

S
u
c
c
-
C
F
R
:

9
0

T
P
D
B
-
C

P2 19 (30.68) 13 (23.95) 17 (29.45)
P3 65 (41.28) 51 (28.53) 67 (35.82)
P4 82 (70.79) 68 (45.39) 82 (56.62)
P5 40 (35.89) 42 (28.26) 46 (33.28)
P6 79 (45.53) 76 (32.25) 81 (38.49)
P7 43 (31.84) 43 (28.45) 46 (28.75)

Table 6.1: Summary of evaluation of CFR for termination analysis using LRFs.

92

CHAPTER 6. EXPERIMENTAL EVALUATION

Props CFRB CFRS CFRA LLRF

P1 8 (32.25) 7 (38.77) 9 (37.75)

S
u
c
c
:

2
2
9

(3
2
.26)

F
a
i
l
:

3
6

(24
.6

9)
S
u
c
c
-
C
F
R
:

9

T
P
D
B
-
A

P2 7 (29.28) 4 (36.40) 7 (35.37)
P3 8 (32.34) 7 (38.81) 9 (37.60)
P4 8 (44.42) 8 (42.54) 9 (40.38)
P5 7 (38.88) 4 (41.62) 8 (41.31)
P6 8 (41.45) 7 (43.46) 9 (42.81)
P7 7 (39.69) 4 (41.72) 8 (41.41)

P1 21 (263.17) 14 (285.09) 17 (285.37)

S
u
c
c
:

373
(93.20)

F
a
i
l
:

85
(265.51)

S
u
c
c
-
C
F
R
:

29

T
P
D
B
-
B

P2 7 (258.57) 3 (274.69) 4 (275.65)
P3 21 (263.43) 14 (285.32) 17 (287.19)
P4 25 (255.90) 16 (283.49) 19 (284.91)
P5 23 (238.51) 13 (272.41) 16 (276.12)
P6 28 (248.67) 19 (279.66) 21 (282.36)
P7 25 (232.75) 13 (272.79) 16 (273.98)

P1 27 (49.87) 18 (65.97) 25 (69.03)

S
u
c
c
:

175
(2

3
.6

0)
F
a
i
l
:

67
(47

.2
7
)

S
u
c
c
-
C
F
R
:

3
4

T
P
D
B
-
C

P2 12 (39.18) 5 (59.86) 10 (60.68)
P3 27 (50.02) 18 (65.98) 25 (69.17)
P4 34 (47.98) 21 (63.31) 30 (67.58)
P5 19 (32.97) 10 (56.79) 17 (60.12)
P6 29 (35.38) 20 (59.46) 26 (63.19)
P7 20 (33.24) 10 (56.93) 17 (60.23)

Table 6.2: Summary of evaluation of CFR for termination analysis using LLRFs.

93

CHAPTER 6. EXPERIMENTAL EVALUATION

We first analysed all benchmarks for termination without CFR in two settings : using
only LRFs; and using LLRFs with the definition of nested QLRF of Section 5.1.4 and
d = 3. For those on which iRankFinder failed to prove termination, we analysed them
again with CFR using different sets of properties and CFR schemes. The results for LRFs
and LLRFs are summarised in tables 6.1 and 6.2.

Both tables consist of 3 (vertical) blocks, one for each set of benchmarks. On the right
side of each block, we indicate: the total number of benchmarks on which iRankFinder
succeeded and failed without CFR (excluding non-terminating ones), and the corre-
sponding total time in minutes; and the additional number of benchmarks on which
iRankFinder succeeded when using CFR. For example: in the first block of Table 6.1,
the last column indicates that iRankFinder succeeded (resp. failed) on 159 (resp. 106)
benchmarks and the total analysis time was 8.16min (resp. 15.75min); and that when
using CFR it succeeds on additional 40 benchmarks.

For each set, columns correspond to different CFR schemes, and rows to properties
used for CFR. These properties are subsets of those defined in Section 3.1:

P1 = Propsc
P2 = Propsh
P3 = Propsc ∪ Propsh
P4 = Propsc ∪ Propscv ∪ Propsh ∪ Propshv
P5 = Propsdh
P6 = Propsdh ∪ Propsc
P7 = Propsdh ∪ Propsh

Each entry in the tables includes the number of benchmarks that iRankFinder can now
prove terminating, and the total time it took to analyse all benchmarks, using the scheme
and properties as indicated in the corresponding row and column. Each benchmark was
given a 5 minutes time limit. In terms of precision:

� For TPDB-A: without using CFR iRankFinder proves termination of 159 (resp.
229) benchmarks when using LRFs (resp. LLRFs), and with CFR iRankFinder
proves termination of 40 (resp. 9) more benchmarks.

� For TPDB-B: without using CFR iRankFinder proves termination of 123 (resp.
373) benchmarks when using LRFs (resp. LLRFs), and with CFR iRankFinder
proves termination of 182 (resp. 29) more benchmarks.

� For TPDB-C: without using CFR iRankFinder proves termination of 74 (resp. 175)
benchmarks when using LRFs (resp. LLRFs), and with CFR iRankFinder proves
termination of 90 (resp. 34) more benchmarks.

In total, out of 609 (resp. 188) benchmarks that iRankFinder cannot prove terminating
without CFR using LRFs (resp. LLRFs), with CFR it proves terminating of 312 (resp.
72) more benchmarks, which is an improvement of about 51.2% (resp. 38.2%).

Experiments show that properties Propsdh and Propsc are important for precision and
that using them with scheme CFRS results in the best performance/precision trade-off.
The time spent on CFR can be up to 42% of the total time, depending on the scheme
and properties used – as expected, CFRB takes more time than CFRA and CFRS.

Times in the tables, however, should be interpreted carefully, since when analysing
without CFR and when using CFRB the analysis stops as soon as it fails to prove termi-
nation of a SCC, while when using CFRS and CFRA it keeps trying to prove termination of
other SCCs.

94

CHAPTER 6. EXPERIMENTAL EVALUATION

Set iRankFinder iRankFinder (CFR) VeryMax T2

TPDB-A 229 238 219 231
TPDB-B 373 402 409 382
TPDB-C 175 209 211 176

TOTAL 777 849 839 789

Table 6.3: Total number of benchmarks for which each tool could prove termination.

iRankFinder iRankFinder (CFR) VeryMax T2

iRankFinder – 0 20 33
iRankFinder (CFR) 72 – 29 66

VeryMax 82 19 – 73
T2 47 11 23 –

Table 6.4: Comparison of tools on individual benchmarks. Each cell indicates the number
of benchmarks the tool at the corresponding row could prove terminating, and the tool
at the corresponding column could not.

We have also compared to other termination analysers of TSs: VeryMax [Borralleras
et al. 2017] and T2 [Brockschmidt et al. 2016a]. The results are summarised in tables 6.3
and 6.4. Note that these tables include two versions of iRankFinder: with and without
CFR. Table 6.3 includes the total number of benchmarks for which each tool could prove
terminating. We can see that, in total, iRankFinder with CFR could prove termination
of more examples than any other tool. Table 6.4 includes a more detailed comparison.
The number x at row i and column j is the number of benchmarks for which tool i could
prove termination and tool j could not. We can see that the column of iRankFinder
with CFR has the lowest numbers, i.e., it is the one that loses less precision.

6.2 CFR for Cost Analysis

In this section, we evaluate the effect of our CFR techniques on cost analysis, in particular
using the tool KoAT and the set TPDB-D (781 benchmarks). We did not analyse TPDB-A,
TPDB-B and TPDB-C since they are not suitable for complexity analysis, e.g., most of them
include concrete initial values which would always induce constant asymptotic upper-
bounds, and thus it is not easy to quantify improvements.

For each benchmark, we applied KoAT without CFR and with CFR as a pre-processing
step using properties P1-P7 of the previous section. Each benchmark was given a 5
minutes time limit for CFR and 3 minutes time limit for KoAT. Table 6.5 summarises the
improvements obtained.

Rows correspond to sets of properties, and columns to asymptotic upper-bounds which
are possible outcomes of KoAT. A number x in row Pi and column O(f(n)) means the
following: when using CFR with properties Pi, x benchmarks for which KoAT infers
O(f(n)) without CFR, have been improved to a lower asymptotic upper-bounds. For
example, using P1, the use of CFR improves 13 benchmarks from O(n2) to a lower
asymptotic upper-bound and using P2, the use of CFR improves 17 benchmarks from
O(∞) to a lower asymptotic upper-bound, etc. The last row includes the total number

95

CHAPTER 6. EXPERIMENTAL EVALUATION

Props O(n) O(n2) O(n3) O(n4) ≥ O(n5) O(EXP) O(∞) TOTAL

P1 3 14 3 0 0 0 18 38
P2 2 15 4 0 0 0 17 38
P3 1 16 3 0 0 0 17 37
P4 2 16 2 0 1 0 19 39
P5 3 15 3 1 3 0 14 39
P6 3 16 3 0 2 0 19 43
P7 3 15 4 1 2 0 15 40

– 3 16 4 1 3 0 22 49

Table 6.5: Evaluation of CFR for Cost Analysis.

of benchmarks for which the use of CFR achieves improvements for the corresponding
asymptotic upper-bound, using any of properties P1-P7. Overall, using CFR we get tighter
asymptotic upper-bounds for 49 benchmarks, which are about 6% of all benchmarks;
and using properties P6, which consists of Propsdh and Propsc, give the best precision
improving in 43 cases.

Note that in this evaluation, KoAT timeouts more often when using CFR, however, this
is expected as CFR is applied to the whole TS. In a new version of KoAT, that is under
development, the developers incorporated our CFR procedure in a way that is similar to
scheme CFRS that was used for termination. We expect this to improve performance.

We have also evaluated our CFR procedure on all examples of Figure 1 and Figure 2
of Gulwani et al. [2009] and got similar refinements. Their tool is not available so we
cannot experimentally compare to them. We did not run PUBs on this set since it is not
directly designed for TSs. Transforming TSs to CRSs without losing precision requires
more work (e.g., inferring loop summaries which are usually done by the frontend that
uses PUBs). We did not run CoFloCo on this set since it includes a CFR component for
CRSs. However, as we have seen in the examples of Section 3.2, our CFR procedure can
improve the precision of both PUBs and CoFloCo.

6.3 Non-Termination via Recurrent Sets (and CFR)

For experimentally evaluating Algorithm 3 for non-termination of TSs, we have inte-
grated the procedure described in Section 4.2.3 in iRankFinder (see Section 5.1.4). In
a nutshell, when iRankFinder fails to prove termination, it enumerates closed walks
using only transitions whose termination was not proven and then applies Algorithm 3
to seek recurrent sets in these closed walks. In addition, it checks that the recurrent
set is reachable as described in Section 5.1.4. When the domain of the variables is Z,
iRankFinder tries to avoid non-determinism by sampling integer values for (local) vari-
ables that cause non-determinism. Recall that soundness cannot be guaranteed for Z
without making closed walks deterministic (see sections 4.2.2 and 4.2.3).

We have analysed 707 benchmarks from sets TPDB-A, TPDB-B, and TPDB-C. They
include benchmarks where iRankFinder failed to prove termination, and others that
are known to be non-terminating (those excluded in Section 6.1). We have applied the
analysis in two settings, the first assumes that variables range over Q and the second
assumes that variables range over Z. Clearly the case of Q is not interesting since all these
benchmarks use integer variables, however, it will give an indication on the effectiveness

96

CHAPTER 6. EXPERIMENTAL EVALUATION

Set
iRankFinder

Q Z
Found Reach. Found Reach.

TPDB-A 154 133 123 100
TPDB-B 330 301 308 276
TPDB-C 101 93 97 83

TOTAL 585 527 528 459

Table 6.6: Evaluation of the non-termination algorithm of Section 4.2.3.

of our method for making loops deterministic as explained below.
The results are summarised in Table 6.6. For each set of benchmarks, we indicate the

number of benchmarks for which iRankFinder finds a recurrent set, and the number of
those it succeeds to prove reachable. The results are shown for both Q and Z. Obviously,
for Q we find more recurrent sets than for Z. Roughly, the difference between columns
“Found” of Q and Z indicates the number of benchmarks where it did not succeed to
make the corresponding closed walks deterministic, so we could not apply the analysis
for Z on those benchmarks (in total 57).

Overall, for Q iRankFinder succeeds to find recurrent sets for 585 TSs, and proves
that 527 are reachable; and for Z it succeeds to find recurrent sets for 528 TSs, and proves
that 459 are reachable. We can see that although our procedure for reachability is very
simply, it obtains reasonable results in practice.

We have also evaluated the effect of using CFR on non-termination. For this, we
have analysed 164 (resp. 232) benchmarks where iRankFinder could not prove non-
termination when variables range over Q (resp. Z), using CFR schemes and properties
as in Section 6.1. Table 6.7 summaries our results, its structure is similar to that of
tables 6.3 and 6.4 of Section 6.1. Each entry indicates the number of benchmarks for which
iRankFinder finds a reachable recurrent set, using the corresponding CFR scheme and
properties. In terms of precision, CFR improves:

� For TPDB-A: iRankFinder CFR proves non-termination of 6 (resp. 10) more bench-
marks when using the domain Q (resp. Z).

� For TPDB-B: iRankFinder CFR proves non-termination of 16 (resp. 25) more
benchmarks when using the domain Q (resp. Z).

� For TPDB-C: iRankFinder CFR proves non-termination of 7 (resp. 5) more bench-
marks when using the domain Q (resp. Z).

In total, out of 164 (resp. 232) benchmarks that iRankFinder without CFR cannot
prove non-terminating using the domain Q (resp. Z), it proves non-termination of 29
(resp. 40) benchmarks when using CFR, which is an improvement of about 17.6% (resp.
17.2%). The table also indicates that scheme CFRS is not useful for non-termination
and that properties Propsdh and Propsc are important for precision. This is because
non-termination, in principle, improves the reachability check rather than the process of
finding a recurrent set.

We have also compared to other non-termination analysis tools: VeryMax [Borralleras
et al. 2017], T2 [Brockschmidt et al. 2016a] and LoAT [Frohn and Giesl 2019]. The results
are summarised in tables 6.8 and 6.9. Note that these tables include iRankFinder

97

CHAPTER 6. EXPERIMENTAL EVALUATION

Props CFRB CFRS CFRA Q
P1 4 0 2 S

u
c
c
:

133
F
a
i
l
:

36
S
u
c
c
-
C
F
R
:

6

T
P
D
B
-
A

P2 2 0 1
P3 4 0 2
P4 2 0 2
P5 2 0 1
P6 5 0 4
P7 2 0 1

P1 11 1 4 S
u
c
c
:

301
F
a
i
l
:

88
S
u
c
c
-
C
F
R
:

16

T
P
D
B
-
B

P2 3 1 1
P3 11 1 5
P4 12 0 4
P5 6 0 1
P6 14 1 5
P7 6 1 2

P1 6 0 6 S
u
c
c
:

93
F
a
i
l
:

25
S
u
c
c
-
C
F
R
:

7

T
P
D
B
-
C

P2 2 0 2
P3 6 0 6
P4 6 0 5
P5 4 0 4
P6 7 0 6
P7 4 0 4

Props CFRB CFRS CFRA Z
P1 8 0 7 S

u
c
c
:

100
F
a
i
l
:

76
S
u
c
c
-
C
F
R
:

10

T
P
D
B
-
A

P2 5 0 4
P3 8 0 7
P4 7 0 7
P5 4 0 4
P6 9 0 9
P7 4 0 4

P1 20 0 15 S
u
c
c
:

276
F
a
i
l
:

113
S
u
c
c
-
C
F
R
:

25

T
P
D
B
-
B

P2 11 0 10
P3 20 0 15
P4 22 0 14
P5 15 0 10
P6 23 0 15
P7 15 0 10

P1 4 0 4 S
u
c
c
:

83
F
a
i
l
:

43
S
u
c
c
-
C
F
R
:

5

T
P
D
B
-
C

P2 2 0 2
P3 4 0 4
P4 4 0 4
P5 4 0 3
P6 4 0 4
P7 4 0 3

Table 6.7: Evaluation of CFR for Non-Termination.

Set
iRankFinder

VeryMax T2 LoAT
no CFR CFR

TPDB-A 100 110 131 115 140
TPDB-B 276 301 280 323 356
TPDB-C 83 88 98 77 97

TOTAL 459 499 509 515 593

Table 6.8: The number of benchmarks for which each tool could prove Non-Termination.

iRankFinder iRankFinder (CFR) VeryMax T2 LoAT

iRankFinder – 0 68 53 8
iRankFinder (CFR) 40 – 77 65 16

VeryMax 97 88 – 72 33
T2 109 81 46 – 5

LoAT 142 107 71 71 –

Table 6.9: Comparison of tools on individual benchmarks. Each cell indicates the number
of benchmarks the tool at the corresponding row could prove non-terminating, and the
tool at the corresponding column could not

98

CHAPTER 6. EXPERIMENTAL EVALUATION

with and without CFR, and in both cases we refer to applying it using Z and checking
reachability as well (which is the setting used by the other tools).

Table 6.8 includes the total number of benchmarks for which each tool could prove
non-terminating. We can see that, in total, iRankFinder with CFR is comparable
to VeryMax and T2. Table 6.9 includes a more detailed comparison. The number x
at row i and column j is the number of benchmarks for which tool i could prove non-
termination and tool j could not. We can see that iRankFinder (with CFR) could
prove non-termination of many programs that other tool cannot, though, in general, it is
less precise. Note that we expected these tools to give better results than iRankFinder,
since their techniques were developed particularly for non-termination of TSs, unlike ours
that was developed for SLC loops and then generalised for TSs. However, we can see
that our results are in some sense comparable to the results of VeryMax and T2.

6.4 Other Experiments with CFR

We used the invariants generator of iRankFinder to prove the assertions in 13 programs
from Sharma et al. [2011]. Without CFR, it proved the assertions for 5 of them, and with
CFR it did so for all benchmarks. Also here, Propsdh and Propsc provided the most precise
results. The tool of Sharma et al. [2011] is not available so we cannot experimentally
compare to them on other benchmarks.

99

Chapter 7

Related Work

This chapter discusses works related to the topics addressed in this thesis. We di-
vide the discussion into three parts, each concentrates on a topic, as follows: ranking
functions (Section 7.1), non-termination analysis (Section 7.2), and control-flow refine-
ment (Section 7.3).

7.1 Terminating Analysis Using Ranking Functions

Ranking functions have been used for proving termination of programs since the early
work of Turing [1949], and corresponding practical and theoretical aspects have been
studied extensively. Ranking functions that are based on the use of linear function or
tuples of linear function received special attention, mainly because synthesising them
can be done efficiently using polynomial-time linear programming techniques. In this
category, LRFs and LLRFs are widely used in practical termination analysers.

Probably the most popular work for synthesising LRFs is the one of Podelski and Ry-
balchenko [2004], mainly due to its use in the Terminator tool [Cook et al. 2006], which
demonstrated the use of LRFs in termination analysis of complex, real-world programs.
However, the problem of synthesising LRFs has been addressed by other researches using
similar ideas [Colón and Sipma 2001; Mesnard and Serebrenik 2008; Podelski and Ry-
balchenko 2004; Sohn and Gelder 1991]. Bagnara et al. [2012] discuss the relationship
between some of these techniques in more details.

All these work observe that synthesising LRFs can be done by inferring inequalities
implied by the corresponding transition polyhedra, which can be done in polynomial-
time using linear programming: the techniques of Sohn and Gelder [1991] and Mesnard
and Serebrenik [2008] are based on the duality theorem of linear programming [Schrijver
1986, p. 92], and those of Colón and Sipma [2001] and Podelski and Rybalchenko [2004]
are based on Farkas’ lemma [Schrijver 1986, p. 94]. These methods are complete when
variables range over the rationals but not the integers.

Ben-Amram and Genaim [2013] are the first to provide a complete algorithm for
inferring LRFs for the integers. It is based on first computing the integer-hull of the
transition polyhedra and then applying the algorithms of the rational case. They also
show that the underlying decision problem is co-NP complete. Cook et al. [2013a] also
mention the use of integer-hull to handle the integer case, however, they do not address
the complexity of the corresponding decision problem. Bradley et al. [2005b] addressed
the integer case as well, however, their technique is not based on linear programming and
is not complete.

101

CHAPTER 7. RELATED WORK

Since LRFs do not suffice for all programs, several algorithms for synthesising LLRFs
have been developed. The earliest work that we are aware of is that of Colón and Sipma
[2002] which employs linear programming techniques, and LLRFs have been studied in
several works since then [Alias et al. 2010; Ben-Amram and Genaim 2014; Bradley et al.
2005a]. All these works can be viewed uniformly using the notion of QLRFs as we did
in Section 2.3.1. They define the notion of LLRF in slightly different ways, which means
that for a given program a LLRF might exist according to one definition but not other
definitions. Ben-Amram and Genaim [2015] discusses the relative power and complexity
issues of these works.

As in the case of LRFs, these techniques have polynomial-time algorithms that are
based on linear programming, though Bradley et al. [2005a] use non-linear constraints
solving since they simultaneously infer supporting invariants. Completeness is guaranteed
when variables range over the rationals, and over the integers, Ben-Amram and Genaim
[2014] show that completeness can be achieved by computing the integer-hull as for the
case of LRFs. The work of Larraz et al. [2013] uses the most general definition for
LLRFs. Their underlying algorithm is based on the use of Max-SMT rather than linear
programming and is not complete. They infer supporting invariants as well. There are
other techniques [Brockschmidt et al. 2013; Cook et al. 2013b; Harris et al. 2011] that
are based on a CEGAR loop and non-linear constraint solving.

The class MΦRFs is a special case of LLRF that has recently triggered the interest
of several researchers. Ben-Amram and Genaim [2017] show that for SLC loops MΦRFs
are equivalent of the notion of nested ranking functions [Leike and Heizmann 2015], and
provide a complete polynomial-time synthesis algorithm when variables range over the
rationals. For the case of integer variables, completeness can be achieved by comput-
ing the integer-hull first. They also show that for SLC loops MΦRFs have the same
power as the most general notion of LLRFs [Larraz et al. 2013]. MΦRFs for general
loops (which cover TSs) have been considered by Leike and Heizmann [2015] and Li et al.
[2016], where both use non-linear constraint solving. Bagnara and Mesnard [2013] study
the notion of “eventual linear ranking functions”, which are MΦRFs of depth 2. The
approach described by Borralleras et al. [2017] is also able to infer MΦRFs for general
loops incrementally, by solving corresponding safety problems using Max-SMT.

There are other works [Cousot and Cousot 2012; Urban 2013; Urban and Miné 2014]
that address the problem of proving termination by ranking functions, in particular Urban
and Miné [2014] that combines piecewise-linear functions with lexicographic orders. None
considers recurrent sets together with ranking-function termination proofs. The combi-
nation of piecewise-linear functions with lexicographic orders as used by Urban and Miné
[2014] subsumes MΦRFs, however, being more general, and using an approach which is
more generic, Urban and Miné [2014] does not offer any particular insights about MΦRFs
and makes no claims of completeness. Cousot [2005] used Lagrangian relaxation for in-
ferring possibly non-linear ranking functions. In the linear case, Lagrangian relaxation is
similar to the affine form of Farkas’ lemma.

7.2 Non-termination Analysis

Non-termination provers are described in several works, and the underlying techniques of
some are based on finding recurrent sets in one form or another, while others are based
on reducing the problem to proving non-reachability of terminating states.

102

CHAPTER 7. RELATED WORK

Gupta et al. [2008] describe an algorithm that first generates candidate lassos, and
then seeks recurrent sets on each lasso using constraint solving. Larraz et al. [2014]
suggest a technique that infers recurrent sets using the notion of quasi-invariants. These
are invariants that are guaranteed to hold only from some point of the execution on. This
technique is probably the most powerful among all works we are aware of. Payet and
Spoto [2009]; Payet et al. [2014] reduce non-termination of simple Java programs to non-
termination of corresponding simple constraint logic programming. Bakhirkin et al. [2015]
compute recurrent sets using backwards analysis and trace partitioning, and Bakhirkin
and Piterman [2016] search for non-termination witnesses in a corresponding abstract
graph. Brockschmidt et al. [2011] define several notions of non-termination and reduces
them to satisfiability of corresponding constraints. Iosif et al. [2014] describe a method for
inferring the weakest non-termination precondition for octagonal SLC loops. Leike and
Heizmann [2018] suggest a non-termination witness for SLC loop that is called a geometric
non-termination argument, which induces recurrent sets as well. This is very related to
our notion of monotonic recurrent sets that we have discussed in Section 4.2.2. Frohn
and Giesl [2019] suggest a non-termination analysis that is based on loop acceleration.
Other works [Chen et al. 2014; Le et al. 2015; Velroyen and Rümmer 2008] are based on
reducing the problem to that of proving the non-reachability of terminating states.

The idea of shrinking a set of states until finding a recurrent set, like ours, can be
found in several of these works, the main difference is that they typically remove states
that ensure termination while our procedure might remove non-terminating states (so
that, when it finds a recurrent set, it is not necessarily the largest one).

7.3 Control-Flow Refinement

CFR for some variations of CFGs has been considered before in the context of cost
analysis [Flores-Montoya and Hähnle 2014; Gulwani et al. 2009], mainly to improve the
precision. Roughly, they explore different combinations of the paths of a given loop to
discover execution patterns and then transform the loop to follow these patterns. The
use of partial evaluation for CFR is not directly comparable to these works; however,
experiments show that we achieve similar results. In particular, in the examples of
Section 3.2, we discussed some cases that Flores-Montoya and Hähnle [2014] cannot
handle, and in Section 6.2 we have seen that we achieve similar refinements for the
examples of Gulwani et al. [2009]. Albert et al. [2019] suggest a CFR technique that uses
the information in the termination proof to transform and simplify the control-flow of
the original program. It is mainly used in the context of a cost analysis of C program,
and can be seen as a generalisation of the ideas of Section 3.3.2 – it has been developed
in parallel to ours.

Sharma et al. [2011] use CFR to improve invariants generation. Their technique is
based on finding a splitter predicate such that when it holds one part of the loop is
executed and when it does not hold another part is executed. The loop is then rewritten
as two consecutive loops, where the predicate is required to hold in one and not to hold
in the other. iRankFinder could prove when using CFR, all assertions in the examples
of Sharma et al. [2011]. Moreover, we conjecture that the partial evaluation algorithm
achieves the same refinement as the technique of Sharma et al. [2011], provided that the
splitter predicates (or their negations) are among the properties provided to the algorithm.
Sharma et al. [2011] generate candidate splitter predicates from the conditions occurring

103

CHAPTER 7. RELATED WORK

in loops, using the weakest precondition operator to project them onto the loop head,
which corresponds closely to our property generation Propsdh.

There is a close relationship between partial evaluation of logic programs (sometimes
called partial deduction) and abstract interpretation of logic program wrt. to a goal
(top-down abstract interpretation); both can be expressed in a single generic framework
parameterised by an abstract domain and an unfolding strategy [Leuschel 2004; Puebla
et al. 1999, 2006]. The combination of the two techniques can be mutually beneficial, as
shown by Puebla et al. [2006]. In top-down abstract interpretation, the aim is to derive
call- and answer-patterns, which are described by abstract substitutions over program
variables, whereas in partial evaluation, the aim is to unfold parts of the computation
and derive a program specialised for the given goal. The versions in a poly-variant par-
tial evaluation correspond to multiple call-patterns in top-down abstract interpretation.
Viewing CFR as an instance of a generic framework, the choice of abstract domain and
unfolding strategy are crucial, and therefore this paper focuses on those aspects. There
are many ways to achieve poly-variance in partial evaluation, and obtaining a good set
of versions leading to useful refinements requires careful choice of the abstract domain,
which in our case is the power set of the given set of properties. The control of unfolding
is also critical, as unfolding choice predicates leads to a trade-off between specialisation
and blow-up in the size of the specialised program.

Logic program specialisation has been previously applied as a component in program
verification tools, with a goal similar to the one in this paper. Namely, the specialisation
of a program with respect to a goal (corresponding to a property to be proved) can en-
able the derivation of more precise invariants, contributing to a proof of the property [De
Angelis et al. 2012; Fioravanti et al. 2012; Kafle et al. 2018; Leuschel and Massart 2000].
Poly-variant specialisation is often crucial, allowing (in effect) the inference of disjunc-
tive invariants. Again, for CFR the choices for abstraction and unfolding strategy are
important, to achieve the right balance between precision and the size of the specialised
programs. De Angelis et al. [2012] use an operation called constrained generalisation;
this identifies constraints on a predicate that determines control flow. A generalisation
operator on constraints is designed to preserve the control flow. This has a relation to
property-based abstraction but we find it more natural and controllable to let the prop-
erties determine the control flow rather than the other way round. However, further
evaluation of different abstractions is needed. We performed some experiments on exam-
ples from Section 3.2 using a general-purpose logic program specialiser (ECCE [Leuschel
et al. 2006]) but the abstraction used in that tool did not result in any useful CFR.

104

Chapter 8

Conclusions and Future Work

The research in this thesis started with our interest in the problem of proving termination
using ranking functions, in particular ranking functions that are based on linear or tuples
of linear functions, such as LRFs and LLRFs. Our initial goals were: (i) to explore on
properties of classes of ranking functions that did not receive enough attention from the
community, in particular MΦRFs; and (ii) to explore on opportunities and techniques for
improving the precision of termination analysis that is based on such ranking functions,
in particular using CFR. However, our research has led us to additional directions: (a) the
first one that is particularly surprising is about a relation between non-termination anal-
ysis and ranking functions; (b) the second is about a new program representation that
provides a completely new look at MΦRFs and termination of SLC loops in general; and
(c) the third one is related to the applicability of the CFR techniques, developed for
improving the precision of termination analysis, to other program analysis.

Our research on using CFR to improve the precision of termination analysis, started
by applying existing techniques developed mainly for cost analysis [Flores-Montoya and
Hähnle 2014; Gulwani et al. 2009] on some classical examples (such as the one discussed
in Section 1.2). The purpose was to simplify the control-flow to allow simpler termination
proofs. The transformed programs triggered our interest in checking if it was possible
to obtain similar results using general-purpose specialisation techniques, such as partial
evaluation. The initial experiments were promising and we decided to explore further. We
followed with our initial goal of applying CFR to improve the precision of termination
analysis, but given the generality of the new direction, we also became interested in
exploring its use in other domains, and also in providing an infrastructure that facilitates
using it in such domains.

In this part of our research, we proposed the use of partial evaluation as a general-
purpose technique to achieve CFR. Our CFR procedure is developed for TSs, and uses
a partial evaluation technique, for Horn clause programs, that is based on specialising
programs wrt. a set of supplied properties [Gallagher 2019]. The right choice of properties
is a key factor for achieving the desired CFR, and thus we suggested several heuristics
for inferring properties automatically. For cost analysis, we also suggested a way to
automatically generate properties from corresponding MΦRFs.

We provide an implementation that can be used as a pre-processing step for any
static analysis tool that uses TSs. Besides, we have shown how to apply it only on
parts of the TS for which we could not obtain a termination proof, and thus improve the
performance of iRankFinder. Experimental evaluation in the context of termination
analysis demonstrated that our CFR procedure enables termination proofs for many TSs

105

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

that could not be handled without CFR by iRankFinder. As evidence, iRankFinder
with CFR can now obtain termination proofs more than any other tool that we have
compared to. Experiments show that CFR can be useful for non-termination analysis,
though, the evidence is not as clear as for termination analysis. For cost analysis, CFR
helped KoAT to improve the asymptotic upper-bounds of many benchmarks, however,
more work is needed in this direction since now it is applied as a pre-processing step,
which in turn has a significant performance overhead. We have also evaluated the effect
of CFR on the precision of invariant generation, where with our CFR we could prove the
required assertions for all challenging examples of Sharma et al. [2011].

Our research on MΦRFs started with the purpose of improving our understanding of
MΦRFs, in particular of the problem of deciding whether a given SLC loop has a MΦRF
without a given bound on the depth. The outcomes are important insights that shed
light on the structure of these ranking functions.

At the heart of our work is an algorithm that seeks MΦRFs, which is based on iter-
atively eliminating transitions, until eliminating them all or stabilising on a set of tran-
sitions that cannot be reduced anymore. In the first case, a MΦRF can be constructed,
and, surprisingly, in the second case the stable set of transitions turns to be a recurrent
set that witnesses non-termination. This reveals an equivalence between the problems
of seeking MΦRFs and seeking recurrent sets of a particular form. This last result has
been generalised for TSs as well, and our experiments show that it can be used to prove
non-termination of many TSs.

Apart from the relation to seeking recurrent sets, the insights of our work help charac-
terise classes of loops for which there is always a MΦRF, when terminating. We demon-
strated this for two classes that have been considered previously. Besides, our insights led
to a new representation for SLC loops in which our algorithm has a very simple formali-
sation that, unlike previous algorithms, yields witnesses for the non-existence of MΦRFs
of a given depth. Moreover, this new representation makes some non-trivial observations
regarding (bounded) SLC loop straightforward. We believe that this representation can
be useful for other related problems.

As a byproduct of our research, we developed an open-source termination analyser
called iRankFinder, that implements all techniques developed in this thesis as well as
other state-of-the-art techniques. Some of the components of iRankFinder can be used
independently, in particular the CFR component that can be used to incorporate CFR
in static analysers with little effort. Besides, we developed an open-source toolkit, called
EasyInterface, that simplifies the process of building GUIs for research prototype
tools, and thus improve the dissemination of the corresponding research. It was used to
build a web-interface for iRankFinder.

8.1 Future Work

Our research in this thesis leaves several further research directions, including a good
number of new open questions, which we hope will trigger the interest of the community.

Control-Flow Refinement

Automatic inference of properties is crucial for obtaining the desired transformations.
We have developed some heuristics in this thesis, but further research in this direction
is required. A possible direction is to explore properties that are based on different

106

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

kinds of ranking functions as discussed in Section 3.3.2. Another possibility is to explore
properties that are implicit in a given transitions polyhedron Q, and possibly discover
them by studying structural properties of polyhedra. We have started initial research in
this direction, where the generators of the set of non-negative functions projx(Q)# (see
Section 4.2.1) are used as properties. This is interesting since any condition implied by
Q is a conic combination of these generators.

In this thesis, we have concentrated on TSs, in a future direction one could apply our
CFR techniques for program representations that allow recursion as well. Technically,
this would not require much work since the partial evaluation technique of Gallagher
[2019] specialise CHCs that include recursion already.

In this thesis, we concentrated on numerical programs, a possible future direction can
concentrate on using CFR for program analysis tools where the data is not numerical.
Here one should also adapt the partial evaluation techniques to support such specialisa-
tions. This seems doable for the partial evaluation of Gallagher [2019] since it is based
on using abstract properties like those used in abstract domains of program analysis.

Ranking Functions

In Section 4.2.2, we have seen that our notion of recurrent sets is narrower than the stan-
dard one. It is natural to explore the difference between the two kinds of recurrent sets,
and in particular in the question if non-terminating SLC loops always have monotonic
recurrent sets. Besides, further research can explore the relation between our mono-
tonic recurrent sets and the geometric non-termination argument introduced by Leike
and Heizmann [2018], as at a first sight they seem to be equivalent.

Further research is required on understanding properties of Algorithm 3 when it does
not terminate. In particular, the properties of the closed convex-set Qω to which the al-
gorithm converges. Interesting questions to explore in this context are if Qω is a recurrent
set and if the emptiness of Qω implies termination. These questions are also related to
the question if a terminating SLC loop can make executions of any length for the same
input. This is true for TSs, but it is an open question of SLC loops. Answering this last
question would shed light on many problems related to the termination problem of SLC
loops.

Ben-Amram and Genaim [2017] showed that MΦRFs as powerful as the most general
definition of LLRFs. It is natural to ask if MΦRFs are the most powerful termination
witness, that is based on tuples of linear functions, for SLC loops. We conjuncture that
the answer is positive – we have recently proved this for the special case of tuples of
length 2.

An obvious future direction is to study the problem of deciding whether a TS has a
MΦRF, both from algorithmic and theoretical complexity perspectives. In initial unpub-
lished work, we have proven that the corresponding decision problem is NP-hard for the
rational setting, but we could not obtain a further classification. Further exploration of
the MΦRF problem for SLC loops is also required since it is not solved for the general
case yet, for this one could follow the directions we suggested in Section 4.3.4.

107

Bibliography

Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-form upper
bounds in static cost analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.
URL https://doi.org/10.1007/s10817-010-9174-1.

Elvira Albert, Miquel Bofill, Cristina Borralleras, Enrique Martin-Martin, and Albert
Rubio. Resource analysis driven by (conditional) termination proofs. Theory and
Practice of Logic Programming, 19(5-6):722–739, 2019. URL https://doi.org/10.

1017/S1471068419000152.

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart programs. In
Radhia Cousot and Matthieu Martel, editors, Static Analysis Symposium, SAS’10,
volume 6337 of LNCS, pages 117–133. Springer, 2010. URL https://doi.org/1007/

978-3-642-15769-1_8.

Roberto Bagnara and Fred Mesnard. Eventual linear ranking functions. In Principles
and Practice of Declarative Programming, PPDP’13, pages 229–238. ACM Press, 2013.
URL https://doi.org/10.1145/2505879.2505884.

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verification of
hardware and software systems. Science of Computer Programming, 72(1):3–21, 2008.
URL https://doi.org/10.1016/j.scico.2007.08.001.

Roberto Bagnara, Fred Mesnard, Andrea Pescetti, and Enea Zaffanella. A new look at
the automatic synthesis of linear ranking functions. Information and Computation,
215:47–67, 2012. URL https://doi.org/10.1016/j.ic.2012.03.003.

Alexey Bakhirkin and Nir Piterman. Finding recurrent sets with backward analy-
sis and trace partitioning. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems, TACAS’16, vol-
ume 9636 of LNCS, pages 17–35. Springer, 2016. URL https://doi.org/10.1007/

978-3-662-49674-9_2.

Alexey Bakhirkin, Josh Berdine, and Nir Piterman. A forward analysis for recurrent sets.
In Sandrine Blazy and Thomas Jensen, editors, Static Analysis Symposium, SAS’15,
volume 9291 of LNCS, pages 293–311. Springer, 2015. URL https://doi.org/10.

1007/978-3-662-48288-9_17.

Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem for integer
linear-constraint loops. In Principles of programming languages, POPL’13, pages 51–
62. ACM, 2013. URL https://doi.org/10.1145/2480359.2429078.

109

https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1017/S1471068419000152
https://doi.org/1007/978-3-642-15769-1_8
https://doi.org/1007/978-3-642-15769-1_8
https://doi.org/10.1145/2505879.2505884
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.ic.2012.03.003
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/978-3-662-48288-9_17
https://doi.org/10.1007/978-3-662-48288-9_17
https://doi.org/10.1145/2480359.2429078

BIBLIOGRAPHY

Amir M. Ben-Amram and Samir Genaim. Ranking functions for linear-constraint
loops. Journal of the ACM, 61(4):26:1–26:55, 2014. URL https://doi.org/10.1145/

2629488.

Amir M. Ben-Amram and Samir Genaim. Complexity of Bradley-Manna-Sipma lex-
icographic ranking functions. In Daniel Kroening and Corina S. Păsăreanu, edi-
tors, Computer Aided Verification, CAV’14, volume 9207 of LNCS, pages 304–321.
Springer, 2015. URL https://doi.org/10.1007/978-3-319-21668-3_18. see also
TR at http://arxiv.org/abs/1504.05018.

Amir M. Ben-Amram and Samir Genaim. On multiphase-linear ranking functions. In
Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification, CAV’17,
volume 10427 of LNCS, pages 601–620. Springer, 2017. URL https://doi.org/10.

1007/978-3-319-63390-9_32.

Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliveras, Enric
Rodŕıguez-Carbonell, and Albert Rubio. Proving termination through conditional ter-
mination. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’17, volume 10205 of LNCS, pages
99–117, 2017. URL https://doi.org/10.1007/978-3-662-54577-5_6.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability.
In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verification,
CAV’05, volume 3576 of LNCS, pages 491–504. Springer, 2005a. URL https://doi.

org/10.1007/11513988_48.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of inte-
ger linear loops. In Mart́ın Abadi and Luca de Alfaro, editors, Concurrency The-
ory, CONCUR’05, volume 3653 of LNCS, pages 488–502. Springer, 2005b. URL
https://doi.org/10.1007/11539452_37.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In
Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, International Colloquium on Automata, Languages and Programming,
ICALP’05, volume 3580 of LNCS, pages 1349–1361. Springer, 2005c. URL https:

//doi.org/10.1007/11523468_109.

Mark Braverman. Termination of integer linear programs. In Thomas Ball and Robert B.
Jones, editors, Computer Aided Verification, CAV’06, volume 4144 of LNCS, pages
372–385. Springer, 2006. URL https://doi.org/10.1007/11817963_34.

Marc Brockschmidt and Andrey Rybalchenko. TermComp proposal: Push-
down systems as a model for programs with procedures, 2014. URL
https://www.microsoft.com/en-us/research/publication/termcomp-proposal-

pushdown-systems-as-a-model-for-programs-with-procedures/.

Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Automated de-
tection of non-termination and nullpointerexceptions for java bytecode. In Bernhard
Beckert, Ferruccio Damiani, and Dilian Gurov, editors, Formal Verification of Object-
Oriented Software, FoVeOOS’11, volume 7421 of LNCS, pages 123–141. Springer, 2011.
URL https://doi.org/10.1007/978-3-642-31762-0_9.

110

https://doi.org/10.1145/2629488
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-319-21668-3_18
http://arxiv.org/abs/1504.05018
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11539452_37
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11817963_34
https://www.microsoft.com/en-us/research/publication/termcomp-proposal-pushdown-systems-as-a-model-for-programs-with-procedures/
https://www.microsoft.com/en-us/research/publication/termcomp-proposal-pushdown-systems-as-a-model-for-programs-with-procedures/
https://doi.org/10.1007/978-3-642-31762-0_9

BIBLIOGRAPHY

Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving through
cooperation. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification, CAV’13, volume 8044 of LNCS, pages 413–429. Springer, 2013. URL
https://doi.org/10.1007/978-3-642-39799-8_28.

Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. T2:
temporal property verification. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems, TACAS’16, volume
9636 of LNCS, pages 387–393. Springer, 2016a. URL https://doi.org/10.1007/

978-3-662-49674-9_22.

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl.
Analyzing runtime and size complexity of integer programs. ACM Transactions on
Programming Languages and Systems, TOPLAS’16, 38(4):13:1–13:50, 2016b. URL
https://doi.org/10.1145/2866575.

Maurice Bruynooghe, Michael Codish, John P. Gallagher, Samir Genaim, and Wim Van-
hoof. Termination analysis of logic programs through combination of type-based norms.
ACM Transactions on Programming Languages and Systems, TOPLAS’07, 29(2):10–
54, 2007. URL https://doi.org/10.1145/1216374.1216378.

Hong Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter W. O’Hearn.
Proving nontermination via safety. In Erika Ábrahám and Klaus Havelund, editors,
Tools and Algorithms for the Construction and Analysis of Systems, TACAS’14, vol-
ume 8413 of LNCS, pages 156–171. Springer, 2014. URL https://doi.org/10.1007/

978-3-642-54862-8_11.

Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In Tiziana Mar-
garia and Wang Yi, editors, Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’01, volume 2031 of LNCS, pages 67–81. Springer, 2001. URL
https://doi.org/10.1007/3-540-45319-9_6.

Michael Colón and Henny Sipma. Practical methods for proving program termination.
In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification,
CAV’02, volume 2404 of LNCS, pages 442–454. Springer, 2002. URL https://doi.

org/10.1007/3-540-45657-0_36.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Polyhedral approaches
to mixed integer linear programming. In Jünger et al., editor, 50 Years of Integer
Programming 1958–2008, pages 343–386. Springer, 2010. URL https://doi.org/10.

1007/978-3-540-68279-0_11.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems
code. In Michael I. Schwartzbach and Thomas Ball, editors, Programming Language
Design and Implementation, PLDI’06, volume 41:6, pages 415–426. ACM, 2006. URL
https://doi.org/10.1145/1133981.1134029.

Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. Rank-
ing function synthesis for bit-vector relations. Formal Methods in System Design, 43
(1):93–120, 2013a. URL http://doi.org/10.1007/s10703-013-0186-4.

111

https://doi.org/10.1007/978-3-642-39799-8_28
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1145/2866575
https://doi.org/10.1145/1216374.1216378
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1007/3-540-45657-0_36
https://doi.org/10.1007/3-540-45657-0_36
https://doi.org/10.1007/978-3-540-68279-0_11
https://doi.org/10.1007/978-3-540-68279-0_11
https://doi.org/10.1145/1133981.1134029
http://doi.org/10.1007/s10703-013-0186-4

BIBLIOGRAPHY

Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termination
proving. In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’13, volume 7795 of LNCS, pages 47–61.
Springer, 2013b. URL https://doi.org/10.1007/978-3-642-36742-7_4.

Patrick Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. In Radhia Cousot, editor,
Verification, Model Checking, and Abstract Interpretation, VMCAI’05, volume 3385 of
LNCS, pages 1–24, 2005. URL https://doi.org/10.1007/978-3-540-30579-8_1.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pages 238–252. ACM, 1977. URL https://doi.org/10.1145/

512950.512973.

Patrick Cousot and Radhia Cousot. An abstract interpretation framework for termina-
tion. In John Field and Michael Hicks, editors, Principles of Programming Languages,
POPL’12, pages 245–258. ACM, 2012. URL https://doi.org/10.1145/2103621.

2103687.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski,
editors, Principles of Programming Languages, POPL’78, pages 84–96. ACM Press,
1978. URL https://doi.org/10.1145/512760.512770.

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Spe-
cialization with constrained generalization for software model checking. In Elvira Al-
bert, editor, Logic-Based Program Synthesis and Transformation, LOPSTR’12, vol-
ume 7844 of LNCS, pages 51–70. Springer, 2012. URL https://doi.org/10.1007/

978-3-642-38197-3_5.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08, volume 4963 of LNCS, pages 337–340. Springer,
2008. URL https://doi.org/10.1007/978-3-540-78800-3_24.

Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination analysis of c programs
using compiler intermediate languages. In Manfred Schmidt-Schauß, editor, Rewriting
Techniques and Applications, RTA’11, volume 10 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 41–50. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2011. URL http://drops.dagstuhl.de/opus/volltexte/2011/3123.

Paul Feautrier. Some efficient solutions to the affine scheduling problem. I. One-
dimensional time. International Journal of Parallel Programming, 21(5):313–347, 1992.
URL https://doi.org/10.1007/BF01407835.

Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, and Valerio Senni. Improving
reachability analysis of infinite state systems by specialization. Fundamenta Informat-
icae, 119(3-4):281–300, 2012. URL https://doi.org/10.3233/FI-2012-738.

112

https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2103621.2103687
https://doi.org/10.1145/2103621.2103687
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/978-3-642-38197-3_5
https://doi.org/10.1007/978-3-642-38197-3_5
https://doi.org/10.1007/978-3-540-78800-3_24
http://drops.dagstuhl.de/opus/volltexte/2011/3123
https://doi.org/10.1007/BF01407835
https://doi.org/10.3233/FI-2012-738

BIBLIOGRAPHY

Antonio Flores-Montoya. Cost Analysis of Programs Based on the Refinement of Cost
Relations. PhD thesis, Darmstadt University of Technology, Germany, 2017. URL
http://tuprints.ulb.tu-darmstadt.de/6746/.

Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex programs
with cost equations. In Jacques Garrigue, editor, Asian Symposium on Programming
Languages and Systems, APLAS’14, volume 8858 of LNCS, pages 275–295. Springer,
2014. URL https://doi.org/10.1007/978-3-319-12736-1_15.

Florian Frohn and Jürgen Giesl. Proving non-termination via loop acceleration. In Clark
Barrett and Jin Yang, editors, Formal Methods in Computer Aided Design, FMCAD’19,
pages 221–230. IEEE, 2019. URL https://doi.org/10.23919/FMCAD.2019.8894271.

John P. Gallagher. Polyvariant program specialisation with property-based abstraction.
In Alexei Lisitsa and Andrei P. Nemytykh, editors, Verification and Program Transfor-
mation, VPT’19, volume 299, pages 34–48. Open Publishing Association, 2019. URL
https://doi.org/10.4204/eptcs.299.6.

Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp,
Thomas Ströder, Stephanie Swiderski, and René Thiemann. Analyzing program termi-
nation and complexity automatically with AProVE. Journal of Automated Reasoning,
58(1):3–31, 2017. URL https://doi.org/10.1007/s10817-016-9388-y.

Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and progress
invariants for bound analysis. In Michael Hind and Amer Diwan, editors, Programming
Language Design and Implementation, PLDI’09, volume 44, pages 375–385. ACM,
2009. URL https://doi.org/10.1145/1542476.1542518.

Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko, and
Ru-Gang Xu. Proving non-termination. In George C. Necula and Philip Wadler,
editors, Principles of Programming Languages, POPL’08, volume 43, pages 147–158.
ACM, 2008. URL https://doi.org/10.1145/1328438.1328459.

William R Harris, Akash Lal, Aditya V Nori, and Sriram K Rajamani. Alternation
for termination. In Radhia Cousot and Matthieu Martel, editors, Static Analysis
Symposium, SAS’11, volume 6337 of LNCS, pages 304–319. Springer, 2011. URL
https://doi.org/10.1007/978-3-642-15769-1_19.

Radu Iosif, Filip Konečný, and Marius Bozga. Deciding conditional termination. Log-
ical Methods in Computer Science, 10(3), 2014. URL http://doi.org/10.2168/

LMCS-10(3:8)2014.

Bishoksan Kafle, John P. Gallagher, Graeme Gange, Peter Schachte, Harald Søndergaard,
and Peter J. Stuckey. An iterative approach to precondition inference using constrained
Horn clauses. Theory and Practice of Logic Programming, 18(3-4):553–570, 2018. URL
https://doi.org/10.1017/S1471068418000091.

Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Girault. Widening with thresholds
for programs with complex control graphs. In Tevfik Bultan and Pao-Ann Hsiung,
editors, Automated Technology for Verification and Analysis, ATVA’11, pages 492–
502. Springer, 2011. URL https://doi.org/10.1007/978-3-642-24372-1_38.

113

http://tuprints.ulb.tu-darmstadt.de/6746/
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.4204/eptcs.299.6
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-642-15769-1_19
http://doi.org/10.2168/LMCS-10(3:8)2014
http://doi.org/10.2168/LMCS-10(3:8)2014
https://doi.org/10.1017/S1471068418000091
https://doi.org/10.1007/978-3-642-24372-1_38

BIBLIOGRAPHY

Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Rubio. Proving
termination of imperative programs using Max-SMT. In Formal Methods in Computer-
Aided Design, FMCAD’13, pages 218–225. IEEE, 2013. URL https://doi.org/10.

1109/FMCAD.2013.6679413.

Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Al-
bert Rubio. Proving non-termination using Max-SMT. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification, CAV’14, volume 8559 of LNCS, pages
779–796. Springer, 2014. URL https://doi.org/10.1007/978-3-319-08867-9_52.

Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. Termination and non-termination
specification inference. In David Grove and Steve Blackburn, editors, Programming
Language Design and Implementation, PLDI’15, pages 489–498. ACM, 2015. URL
https://doi.org/10.1145/2737924.2737993.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In Chris Hankin and Dave Schmidt, editors, Principles of
Programming Languages, POPL’01, pages 81–92. ACM, 2001. URL https://doi.

org/10.1145/360204.360210.

Jan Leike and Matthias Heizmann. Ranking templates for linear loops. Logical Methods
in Computer Science, 11(1):1–27, 2015. URL http://arxiv.org/abs/1503.00193.

Jan Leike and Matthias Heizmann. Geometric nontermination arguments. In Dirk Beyer
and Marieke Huisman, editors, Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’18, volume 10806 of LNCS, pages 266–283. Springer, 2018. URL
https://doi.org/10.1007/978-3-319-89963-3_16.

Michael Leuschel. A framework for the integration of partial evaluation and abstract inter-
pretation of logic programs. ACM Transactions on Programming Languages and Sys-
tems, TOPLAS’04, 26(3):413–463, 2004. URL https://doi.org/10.1145/982158.

982159.

Michael Leuschel and Thierry Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In A. Bossi, editor, Logic-Based Program Synthesis
and Transformation, LOPSTR’99, volume 1817 of LNCS, pages 63–82, 2000. URL
https://doi.org/10.1007/10720327_5.

Michael Leuschel, Daniel Elphick, Mauricio Varea, Stephen-John Craig, and Marc
Fontaine. The Ecce and Logen partial evaluators and their web interfaces. In John
Hatcliff and Frank Tip, editors, Partial Evaluation and semantics-based Program Ma-
nipulation, PEPM’06, pages 88–94. ACM, 2006. URL https://doi.org/10.1145/

1111542.1111557.

Yi Li, Guang Zhu, and Yong Feng. The L-depth eventual linear ranking functions for
single-path linear constraint loops. In Theoretical Aspects of Software Engineering,
TASE’16, pages 30–37. IEEE, 2016. URL https://doi.org/10.1109/TASE.2016.8.

Naomi Lindenstrauss and Yehoshua Sagiv. Automatic termination analysis of Logic pro-
grams. In Lee Naish, editor, International Conference on Logic Programming, ICLP’97,
pages 64–77. MIT Press, 1997. URL https://ieeexplore.ieee.org/document/

6279160.

114

https://doi.org/10.1109/FMCAD.2013.6679413
https://doi.org/10.1109/FMCAD.2013.6679413
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
http://arxiv.org/abs/1503.00193
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1145/982158.982159
https://doi.org/10.1145/982158.982159
https://doi.org/10.1007/10720327_5
https://doi.org/10.1145/1111542.1111557
https://doi.org/10.1145/1111542.1111557
https://doi.org/10.1109/TASE.2016.8
https://ieeexplore.ieee.org/document/6279160
https://ieeexplore.ieee.org/document/6279160

BIBLIOGRAPHY

Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic numeric
abstractions for heap-manipulating programs. In Manuel V. Hermenegildo and Jens
Palsberg, editors, Principles of Programming Languages, POPL’10, pages 211–222.
ACM, 2010. URL https://doi.org/10.1145/1706299.1706326.

Frédéric Mesnard and Alexander Serebrenik. Recurrence with affine level mappings is
P-time decidable for CLP(R). Theory and Practice of Logic Programming, TPLP’08,
8(1):111–119, 2008. URL https://doi.org/10.1017/S1471068407003122.

Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006. URL https://doi.org/10.1007/s10990-006-8609-1.

Étienne Payet and Fausto Spoto. Experiments with non-termination analysis for java
bytecode. Electronic Notes in Theoretical Computer Science, 253(5):83–96, 2009. URL
https://doi.org/10.1016/j.entcs.2009.11.016.

Étienne Payet, Fred Mesnard, and Fausto Spoto. Non-termination analysis of java byte-
code. CoRR, 2014. URL http://arxiv.org/abs/1401.5292.

Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of
linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors, Verification,
Model Checking, and Abstract Interpretation, VMCAI’04, volume 2937 of LNCS, pages
239–251. Springer, 2004. URL https://doi.org/10.1007/978-3-540-24622-0_20.

Germán Puebla, Manuel Hermenegildo, and John P. Gallagher. An integration of partial
evaluation in a generic abstract interpretation framework. In Olivier Danvy, editor,
Partial Evaluation and Semantics-Based Program Manipulation, PEPM’99, Technical
report BRICS-NS-99-1, pages 75–84. University of Aarhus, 1999. URL http://oa.

upm.es/14639/.

Germán Puebla, Elvira Albert, and Manuel V. Hermenegildo. Abstract interpretation
with specialized definitions. In Kwangkeun Yi, editor, Static Analysis Symposium,
SAS’06, volume 4134 of LNCS, pages 107–126. Springer, 2006. URL https://doi.

org/10.1007/11823230_8.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
New York, 1986.

Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop invariant
generation using splitter predicates. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification, CAV’11, volume 6806 of LNCS, pages 703–719.
Springer, 2011. URL https://dl.acm.org/doi/10.5555/2032305.2032362.

Kirack Sohn and Allen Van Gelder. Termination detection in logic programs using argu-
ment sizes. In Daniel J. Rosenkrantz, editor, Principles of Database Systems, PoDS’91,
pages 216–226. ACM Press, 1991. URL https://doi.org/10.1145/113413.113433.

Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for java bytecode
based on path-length. ACM Transactions on Programming Languages and Systems,
TOPLAS’10, 32(3), 2010. URL https://doi.org/10.1145/1709093.1709095.

115

https://doi.org/10.1145/1706299.1706326
https://doi.org/10.1017/S1471068407003122
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1016/j.entcs.2009.11.016
http://arxiv.org/abs/1401.5292
https://doi.org/10.1007/978-3-540-24622-0_20
http://oa.upm.es/14639/
http://oa.upm.es/14639/
https://doi.org/10.1007/11823230_8
https://doi.org/10.1007/11823230_8
https://dl.acm.org/doi/10.5555/2032305.2032362
https://doi.org/10.1145/113413.113433
https://doi.org/10.1145/1709093.1709095

BIBLIOGRAPHY

Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron Peled, editors,
Computer Aided Verification, CAV’04, volume 3114 of LNCS, pages 70–82. Springer,
2004. URL https://doi.org/10.1007/978-3-540-27813-9_6.

Alan M. Turing. Checking a large routine. In Report on a Conference on High Speed Au-
tomatic Computation, June 1949, pages 67–69. University Mathematical Laboratory,
Cambridge University, 1949. URL http://www.turingarchive.org/browse.php/B/

8.

Caterina Urban. The abstract domain of segmented ranking functions. In Francesco
Logozzo and Manuel Fähndrich, editors, Static Analysis Symposium, SAS’13, vol-
ume 7935 of LNCS, pages 43–62. Springer, 2013. URL https://doi.org/10.1007/

978-3-642-38856-9_5.

Caterina Urban and Antoine Miné. An abstract domain to infer ordinal-valued ranking
functions. In Zhong Shao, editor, European Symposium on Programming, ESOP’14,
volume 8410 of LNCS, pages 412–431. Springer, 2014. URL https://doi.org/10.

1007/978-3-642-54833-8_22.

Helga Velroyen and Philipp Rümmer. Non-termination checking for imperative pro-
grams. In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, TAP’08,
volume 4966 of LNCS, pages 154–170. Springer, 2008. URL https://doi.org/10.

1007/978-3-540-79124-9_11.

116

https://doi.org/10.1007/978-3-540-27813-9_6
http://www.turingarchive.org/browse.php/B/8
http://www.turingarchive.org/browse.php/B/8
https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-540-79124-9_11
https://doi.org/10.1007/978-3-540-79124-9_11

Acronyms

EIOL EasyInterface Output Language. ix, 79, 82–84, 86–89

TPDB Termination Problem Data Base. 91

CFG Control-Flow Graph. 1, 2, 11, 12, 15, 26, 50, 59, 103

CFR Control-Flow Refinement . vii, viii, xi, 4–7, 25, 26, 30–46, 74–76, 91–99, 103–107

CHC Constrained Horn Clause. ix, 26–28, 30–32, 36, 76, 107

CRS Cost Relations . 41, 96

GUIs Graphical User Interfaces . 7, 79

LLRF Lexicographic Linear Ranking Function. ix, xi, 3–5, 18–21, 25, 33, 36, 45, 47, 49,
93, 94, 101, 102, 105, 107

LRF Linear Ranking Function. xi, 2–4, 17, 19, 21, 25, 28, 33, 36, 37, 39, 41, 42, 44, 47,
49, 64, 65, 67, 69, 70, 76, 77, 92, 94, 101, 102, 105

MΦRF Multi-Phase Linear Ranking Function. viii, ix, 3–7, 21, 22, 45–55, 57, 58, 60,
62, 64–69, 77, 102, 105–107

PPL Parma Polyhedra Library . 73

SCC Strongly Connected Component . 15–22, 32, 33, 35–37, 39–42, 44, 47, 56, 60, 94

SLC Single-path Linear-Constraint . viii, ix, 1–3, 5–7, 13, 14, 45, 47–50, 53, 55–62,
64–69, 99, 102, 103, 105–107

TS Transition System. ix, 1–3, 5–7, 11–14, 16, 17, 19–23, 25–28, 30–49, 56, 59, 60, 65,
73–77, 79, 91, 95–97, 99, 102, 105–107

117

	AntePortada
	Portada
	Cover
	Autorización
	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Classes of (Linear-based) Ranking Functions
	Control-Flow Refinement
	Objectives and Methodology
	Summary of Contributions and Outline

	Preliminaries
	Polyhedra
	Program Representations
	Transition Systems
	Single-path Linear-Constraint Loops

	Termination and Non-termination Analysis
	Termination Analysis Using Ranking Functions
	Non-termination Analysis Using Recurrent Sets

	Control-Flow Refinement of Transition Systems via Partial Evaluation
	Partial Evaluation of Transition Systems
	Constraint Horn-Clauses
	From Transition Systems to Constraint Horn-Clauses
	Partial Evaluation of Constraint Horn-Clauses
	Choice of Properties

	Application to Termination Analysis
	Control-Flow Refinement Schemes
	Incorporating CFR into a Termination Algorithm
	How CFR Benefits Termination Analysis

	Application to Cost Analysis
	How CFR Benefits Cost Analysis
	Using Ranking Functions as Properties

	Multi-Phase Ranking Functions and Their Relation to Recurrent Sets
	Multi-Phase Ranking Functions for SLC loops
	Inferring Multi-Phase Ranking Functions
	Deciding Existence of MRFs
	Inference of Recurrent Sets
	Recurrent Sets for Transition Systems
	Cases in which Algorithm 3 does not Terminate

	The Displacement Polyhedron
	Witnesses for Non-existence of MRFs of a Given Depth
	Conditional Termination
	Termination and Non-termination of Bounded SLC Loops
	New Directions for the General MRF Problem

	Loops for Which MLRFs are Sufficient
	Finite Loops
	The Class RF(b)
	Loops with Affine-linear Updates

	Implementation
	iRankFinder
	Input Syntax
	Invariant Generation
	Control-Flow Refinement
	Termination and Non-termination Analysis
	Handling Strict Inequalities
	Using iRankFinder

	EasyInterface
	General overview
	Using EasyInterface

	Experimental Evaluation
	CFR for Termination Analysis
	CFR for Cost Analysis
	Non-Termination via Recurrent Sets (and CFR)
	Other Experiments with CFR

	Related Work
	Terminating Analysis Using Ranking Functions
	Non-termination Analysis
	Control-Flow Refinement

	Conclusions and Future Work
	Future Work

	Bibliography
	Acronyms

