
Verificación de Sistemas Concurrentes:
Optimalidad, Escalabilidad y Aplicabilidad

Verification of Concurrent Systems:
Optimality, Scalability and Applicability

TESIS DOCTORAL

Memoria presentada para obtener el grado de doctor
en Ingenieŕıa Informática por

Miguel Isabel Márquez

Dirigida por los profesores
Elvira Albert Albiol

Miguel Gómez-Zamalloa Gil

Facultad de Informática
Universidad Complutense de Madrid

Madrid, Mayo de 2020

Verificación de Sistemas Concurrentes:
Optimalidad, Escalabilidad y Aplicabilidad

TESIS DOCTORAL

Memoria presentada para obtener el grado de doctor
en Ingenieŕıa Informática por

Miguel Isabel Márquez

Dirigida por los profesores
Elvira Albert Albiol

Miguel Gómez-Zamalloa Gil

Facultad de Informática
Universidad Complutense de Madrid

Madrid, Mayo de 2020

Verification of Concurrent Systems:
Optimality, Scalability and Applicability

Ph.D. THESIS

Miguel Isabel Márquez

Advisor: Elvira Albert Albiol
Advisor: Miguel Gómez-Zamalloa Gil

Facultad de Informática
Universidad Complutense de Madrid

Madrid, May 2020

Financial Support. This work was funded partially by the Spanish MECD FPU
Grant FPU15/04313, the MINECO/FEDER, UE project TIN2015-69175- C4-3-R, the Span-
ish MINECO project TIN2015-69175-C4-2-R, the Spanish MICINN/FEDER, UE projects
RTI2018-094403-B-C31 and RTI2018-094403-B-C33, and by the CM project P2018/TCS-
4314.

Resumen

Tanto el testing como la verificación de sistemas concurrentes requieren explorar todos los
posibles entrelazados no deterministas que la ejecución concurrente puede tener, ya que
cualquiera de estos entrelazados podŕıa revelar un comportamiento erróneo del sistema. Esto
introduce una explosión combinatoria en el número de estados del programa que deben ser
considerados, lo que frecuentemente lleva a un problema computacionalmente intratable. El
objetivo de esta tesis es el desarrollo de técnicas novedosas para el testing y la verificación
de programas concurrentes que permitan reducir esta explosión combinatoria.

La reducción basada en órdenes parciales (POR) [39] es una teoŕıa general que ayuda a
mitigar esta explosión combinatoria mediante la identificación formal de clases de equiva-
lencia de exploraciones redundantes. La teoŕıa POR está basada en la siguiente idea: dos
entrelazados pueden ser considerados equivalentes si uno puede ser obtenido desde el otro
mediante el intercambio de dos pasos de ejecución que son independientes, consecutivos y que
no están en conflicto. Tales clases de equivalencia son conocidas como trazas de Mazurkiewicz
[55], y la teoŕıa POR garantiza que es suficiente explorar un entrelazado por cada clase de
equivalencia. Uno de los objetivos principales de esta tesis es el desarrollo de nuevas técnicas
de reducción basada en órdenes parciales.

El pilar fundamental de la teoŕıa POR es la noción de independencia, que es usada para
decidir si cada par de pasos de ejecución p y t son dependientes y, como consecuencia, las
ejecuciones p · t y t · p deben ser exploradas. En 2005, Flanagan y Godefroid propusieron un
algoritmo dinámico basado en POR (DPOR) [32], que fue un avance fundamental en este área.
Actualmente, DPOR es considerada una de las técnicas más escalables para el testing y la
verificación de sistemas concurrentes. Sin embargo, este algoritmo no es óptimo en el sentido
de que puede explorar varias ejecuciones por cada clase de equivalencia. Optimal-DPOR
(ODPOR) [1] es una extensión que garantiza optimalidad. Ambos algoritmos están basados
en una relación de (in)dependencia incondicional que determina el order parcial de cada par
de transiciones, es decir, para que dos transiciones sean consideradas como independientes
deben conmutar en todos los estados del programa posibles.

La noción de independencia condicional fue introducida en 1992 en el contexto de POR
[49], donde fue demostrado que solamente una noción de independencia condicional uniforme
puede ser utilizada correctamente, es decir, la independencia debe mantenerse a lo largo
de toda la traza. El primer algoritmo que ha usado nociones de independencia condicional
dentro del algoritmo DPOR clásico es conocido como Context-Sensitive DPOR [6] (DPORcs).
Recientemente, Optimal DPOR with Observers (ODPORob) [18] ha introducido la noción
de observabilidad, según la cual, la dependencia entre dos pasos de ejecución p y t está
condicionada a la existencia de futuros pasos (observadores) que lean las variables modificadas

i

por p y t. Uno de los logros principales de esta tesis es ser capaces de beneficiarse de nociones
de independencia condicional. Este logro puede separarse en los siguientes retos:

i) combinar y aprovechar las nociones de independencia presentadas en DPORcs y ODPORob

y estudiar sus sinergias para obtener mayores reducciones;

ii) explotar la propiedad de uniformidad que permite usar correctamente la noción de
independencia condicional dentro de los algoritmos DPOR, usando restricciones de
independencia (ICs), que garanticen la conmutatividad entre pasos de ejecución;

iii) realizar una evaluación experimental que permita medir las técnicas propuestas; y

iv) aplicar estas técnicas a un escenario realista.

Incluso tras aplicar las técnicas más avanzadas de POR para eliminar redundancias, explorar
sistemáticamente las diferentes ejecuciones presenta problemas de escalabilidad. Los análisis
estáticos aportan información útil acerca de los programas analizados y puede ser usado para
mejorar el comportamiento del testing. Para ello, se han propuesto dos retos más:

v) combinar el análisis estático y el testing para la detección efectiva de deadlocks, y

vi) extender este marco de trabajo al contexto de la ejecución simbólica.

En la conferencia ISSTA’19 [9], hemos presentado Optimal Context-Sensitive DPOR with
Observers que aborda el reto i). Para ello, hemos formulado Context-Sensitive DPOR sobre
Optimal DPOR, dando lugar al algoritmo Optimal Context-Sensitive DPOR (ODPORcs).
Además, hemos integrado la noción de observabilidad dentro de ODPORcs y el algoritmo
resultante es conocido como Optimal Context-Sensitive DPOR with Observers.

En la conferencia CAV’18 [13], hemos introducido el algoritmo Constrained DPOR (CD-
POR) que aborda el objetivo ii). CDPOR está basado en condiciones suficientes – que pueden
ser chequeadas dinámicamente– para explotar correctamente las ICs dentro del algoritmo
DPOR. También, hemos presentado una estrategia basada en tecnoloǵıa de Satisfactibilidad
Módulo Teoŕıas (SMT) para sintetizar automáticamente ICs para bloques atómicos (esto
es, bloques de instrucciones ejecutados atómicamente), cuya aplicabilidad va más allá del
contexto DPOR.

Esta tesis está respaldada por una evaluación experimental exhaustiva que aborda el
objetivo iii), cuyos resultados pueden ser encontrados en [13, 9]. Para afrontar el reto iv),
hemos aplicado nuestras técnicas para la verificación de redes definidas por software (SDN)
[14], donde éstas han sido codificadas mediante el modelo de actores [5, 42] y hemos aplicado
CDPOR para encontrar errores de programación en cinco casos de estudio. En la conferencia
CC’16, hemos presentado SYCO [11], una herramienta para testing sistemático, que recoge
todas estas técnicas y que puede ser encontrada online en http://costa.fdi.ucm.es/syco.

El reto v) ha sido abordado mediante el uso de un análisis estático de deadlocks [33] para
guiar el testing hacia ejecuciones que terminen en deadlock. Esta técnica ha sido presentada
en la conferencia iFM’16 [10]. Además, ha sido extendida al contexto de la ejecución simbólica
abordando el reto vi) y presentada en la conferencia LOPSTR’17 [12].

En resumen, en esta tesis hemos propuesto soluciones para todos los retos descritos y
hemos llevado a cabo una evaluación experimental para cada uno de ellos. Esta evaluación

ii

http://costa.fdi.ucm.es/syco

experimental permite afirmar que el uso de nociones de independencia condicional dentro
de los algoritmos DPOR mejora notablemente los resultados de las técnicas actuales. Final-
mente, el uso del análisis estático para guiar el proceso del testing ayuda a mitigar todav́ıa
más el problema de la explosión de estados.

iii

iv

Abstract

Both verification and testing of concurrent systems require exploring all possible non-deterministic
interleavings that the concurrent execution may have, as any of the interleavings may reveal
an erroneous behavior of the system. This introduces a combinatorial explosion on the
number of program states that must be considered, what leads often to a computationally
intractable problem. The overall goal of this thesis is to investigate novel techniques for
testing and verification of concurrent programs that reduce this combinatorial explosion.

Partial-Order Reduction (POR) [39] is a general theory that helps mitigate this combina-
torial explosion by formally identifying equivalence classes of redundant explorations. POR is
based on the idea that two interleavings can be considered equivalent if one can be obtained
from the other by swapping adjacent, non-conflicting independent execution steps. Such an
equivalence class is called a Mazurkiewicz trace [55], and POR guarantees that it is sufficient
to explore one interleaving per equivalence class. A main objective of this Ph.D. thesis is the
development of new Partial-Order Reduction techniques.

The cornerstone of the POR theory is the notion of independence, that is used to decide
whether each pair of execution steps p and t are dependent and thus both executions p · t and
t · p must be explored. The Dynamic-POR (DPOR) algorithm, introduced by Flanagan and
Godefroid [32] in 2005, was a breakthrough in the area. DPOR is nowadays considered one
of the most scalable techniques for concurrent software testing and verification. However, it
was not optimal in the sense that it may explore several executions per equivalence class.
Optimal-DPOR (ODPOR) [1] is an extension that guarantees optimality. Both the original
DPOR and ODPOR are based on an unconditional dependency relation which determines
the partial order of transitions, i.e., for two transitions to be considered independent they
must commute in all possible program states.

Conditional independence was earlier introduced in the context of POR [49], where it was
proven that only uniform conditional independence can be used, i.e., independence must hold
along the whole trace. The first algorithm that has used notions of conditional independence
within the state-of-the-art DPOR algorithm is Context-Sensitive DPOR (DPORcs) [6]. Re-
cently, Optimal DPOR with Observers (ODPORob) [18] has introduced the notion of observ-
ability, according to which dependencies between two execution steps p and t are conditional
to the existence of future steps called observers, which read the values modified by p and t.

A main achievement of this Ph.D. thesis is to be able to exploit notions of conditional
independence. This achievement is split in the next challenges:

i) combine and exploit the notions of DPORcs and ODPORob, and study their synergies
to gain further pruning;

ii) exploit the property of uniformity that allows to use soundly the notion of condi-

v

tion independence within DPOR algorithms using independence constraints (ICs), that
guarantee the commutativity between execution steps;

iii) carry out a thorough experimental evaluation to compare the different extensions; and

iv) apply the techniques to a realistic setting.

Even after applying the most advanced POR techniques to eliminate redundancies, ex-
ploring systematically all different executions poses scalability problems. Static analysis pro-
vides useful information about the programs that can be used to improve the performance
of testing. For this, two more research challenges are proposed:

v) combine static analysis and testing for effective deadlock detection and

vi) extend this framework to the context of symbolic execution.

At the Conference ISSTA 2019 [9], we have presented Optimal Context-Sensitive DPOR
with Observers which addresses the challenge i). We have formulated Context-Sensitive
DPOR over Optimal DPOR, which is named Optimal Context-Sensitive DPOR (ODPORcs),
and it includes the extension of wake-up trees used to ensure optimality. Furthermore, we
have also integrated the notion of observability into ODPORcs and the resulting algorithm
is called Optimal Context-Sensitive DPOR with Observers (ODPORob

cs).
At the Conference CAV 2018 [13], we have introduced Constrained DPOR (CDPOR)

which achieves the challenge ii). CDPOR is based on sufficient conditions –that can be
checked dynamically– to soundly exploit ICs within the DPOR framework. Moreover, it
extends the state-of-the-art DPOR algorithm with new forms of pruning (by means of ex-
panding sleep sets and reducing backtrack sets). We have also presented an approach based
on Satisfiability Modulo Theories (SMT) to synthesize ICs for atomic blocks (that is, blocks
of instructions executed atomically), whose applicability goes beyond the DPOR context.

This thesis is backed up by a thorough experimental evaluation that addresses goal iii),
whose results can be found both in [13, 9]. To address challenge iv), we have applied our
techniques for the verification of Software-Defined Networks [14], where we have encoded
these networks into the actors model[5, 42] and applied CDPOR to find bugs related to
programming errors, e.g., forwarding loops and violation of safety policies in five case studies.
Moreover, at the Conference CC 2016, we have presented SYCO [11], a tool for systematic
testing that includes all the techniques presented in this thesis and it can be found online at
http://costa.fdi.ucm.es/syco.

Finally, challenge v) has been addressed by using a state-of-the-art deadlock analysis [33]
to guide the execution of testing towards paths leading to deadlock. This technique has been
presented at the Conference iFM 2016 [10]. Moreover, it has been extended to the context
of symbolic execution addressing challenge vi) and presented at LOPSTR 2017 [12].

To summarize, we have proposed solutions for all challenges and we have performed an
experimental evaluation for each of them. Our solutions provide actual experimental evidence
that using conditional independence within DPOR algorithms improves upon state-of-the-
art results, since the experimental evaluations of these new approaches achieve exponential
gains compared to DPOR algorithms using unconditional independence. Finally, the use of
static analysis to guide the testing process can help mitigate even more the state explosion
problem.

vi

http://costa.fdi.ucm.es/syco

Agradecimientos

Sin duda alguna, estos cuatro años han sido una etapa muy bonita en mi vida. Ha habido
muchos momentos de felicidad y orgullo, pero también dif́ıciles, en los que he tenido ayuda
de mucha gente para superarlos. En primer lugar, queŕıa agradecer a mi directora de tesis,
Elvira Albert, quien me brindó la oportunidad de comenzar en el mundo de la investigación
hace seis años. Desde entonces, siempre ha estado ah́ı para ayudarme, aconsejarme y apo-
yarme. También, a mi director de tesis, Miguel Gómez-Zamalloa, a quien le quiero agradecer
la confianza depositada en mı́, aśı como su ayuda y consejo, cuando he tenido que tomar
decisiones dif́ıciles.

Gracias a todos los miembros del grupo COSTA, quienes siempre han estado dispuestos a
echarme una mano cuando lo he necesitado: Samir Genaim, Jesús Correas, Guillermo Román
y Enrique Mart́ın. En especial, a Albert Rubio. Es un gusto poder trabajar y aprender de
él, aunque exista peligro de irnos por las ramas, y que Elvira tenga que volver a centrar
la conversación; y a Puri Arenas, por sus consejos, sus historias, y su humor cada vez que
bajamos a fumar.

Los d́ıas de trabajo son mucho más llevaderos y amenos, cuando llegas al Aula 16 y te
encuentras compañeros y amigos, que siempre están ah́ı para echarte una mano, unas risas,
o unos copazos, dependiendo de la ocasión (preferiblemente, en ese orden). Gracias a Toni
Calvo, con quien viv́ı un terremoto en Japón; a Marta Caro, que siempre tiene una sonrisa
y un gesto cariñoso que regalar; a Joaqúın Gayoso, por siempre estar dispuesto a soltar una
“joaquinada” para echarnos unas risas. A Luisma Costero y Cristina Alonso, con quienes
llevo casi diez años compartiendo anécdotas y sufrimientos mientras estudiábamos tanto el
doble grado como el doctorado. No puedo olvidarme de Jesús Doménech, Alicia Merayo y
Pablo Gordillo, con quienes compart́ı una de las mejores experiencias en esta etapa: la escuela
de verano en Oxford, menudas semanas de aprendizaje, diversión y cerveza. Como dećıa al
comienzo, han sido años muy felices, con algún que otro momento dif́ıcil. En cada uno de
esos momentos, siempre ha estado Pablo, con quien poder desahogarme, aconsejándome y
ayudándome (y vigilando que haćıa la burocracia correctamente).

Y si el d́ıa hab́ıa sido duro, mi familia siempre estaba ah́ı para sacarme una sonrisa.
Quiero agradecer a mi madre, siempre preocupada porque yo dé lo mejor de mı́ en todos
los ámbitos de mi vida, ya que gracias a ella, soy como soy. A mis t́ıos y primos, por ser
mis segundos padres, y los hermanos que no tuve. Y por último, a mi pareja, Cristhian,
por animarme a que me fuese a Melbourne de estancia; por venirse conmigo sin dudarlo ni
un momento, para vivir la experiencia más bonita de mi vida; y en definitiva, por haberme
acompañado y ayudado durante estos tres años, sin duda, los más felices.

vii

viii

Contents

Resumen i

Abstract v

Contents xi

I Contents of the Thesis 1

1 Introduction & State-of-the-Art 3

1.1 Partial Order Reduction . 5

1.1.1 Basics of Partial Order Reduction . 5

1.1.2 State-of-the-art DPOR Algorithm . 7

1.1.3 Optimality in DPOR Algorithms . 10

1.1.4 On Improving the Dependency Relation 11

1.2 Deadlock-Guided Testing . 13

1.3 Main Goals and Contributions . 14

1.4 Organization of this Thesis . 16

2 Optimal Context-Sensitive DPOR with Observers 17

2.1 Context-Sensitive DPOR . 17

2.2 Optimal Context-Sensitive DPOR . 19

2.3 Optimal DPOR with Observers . 19

2.4 Context-Sensitive DPOR with Observers . 20

2.5 Contributions [ISSTA’19] . 21

2.6 Related Work . 22

3 Constrained DPOR 23

3.1 Conditional Independence within DPOR . 23

3.1.1 Independence Constraints . 25

3.1.2 Sufficient Condition for Uniformity 26

3.2 The Constrained DPOR Algorithm . 26

3.3 Contributions [CAV’18] . 28

3.4 Related Work . 28

ix

4 Application: Software-Defined Networks 31
4.1 Components of Software-Defined Networks 32
4.2 Actor-based Concurrency Model . 33
4.3 SDN-Actors: an Actor Based Encoding of SDN Programs 34
4.4 DPOR-based Model Checking of SDN-Actors 35
4.5 Contributions . 36
4.6 Related Work . 36

5 Combining Static Analysis and Testing for Deadlock Detection 39
5.1 Deadlock Analysis . 40
5.2 Deadlock-Guided Testing [iFM’16] . 41
5.3 Initial Contexts by Symbolic Executions . 42
5.4 Generating Deadlock Contexts for Symbolic Execution [LOPSTR’17] 43
5.5 SYCO: Systematic Testing for Concurrent Objects [CC’16] 44
5.6 Related Work . 44

6 Conclusions and Future Work 47
6.1 Conditional Independence in DPOR Algorithms 47
6.2 Model-Checking for Software-Defined Networks 49
6.3 Combining Static Analysis and Testing . 49

Bibliography 51

II Papers of the Thesis 59

7 Publications 61

x

Parte I

Contents of the Thesis

1

Chapter 1

Introduction & State-of-the-Art

Due to increasing performance demands, application complexity and multi-core parallelism,
concurrency is present everywhere in today’s software applications. Most of the modern
systems are designed to take advantage of as much parallelism as possible by allowing system
components to execute concurrently. Such components usually share resources and data,
hence the operations executed by different components can interfere with each other.

This data sharing is even more common in the context of concurrent imperative languages.
Most of them make use of a global memory, called heap, to which the different components
(e.g. threads, processes, tasks...) can have access. Thus, the orderings of accesses to heap
memory locations performed by different components may produce possibly different final
states, some of the algorithms leading to errors and/or unexpected behaviors. Most of these
hazards, e.g., race conditions, data races, deadlocks, and livelocks are not present in sequential
programs. For instance, a deadlock situation arises as a consequence of a circular dependency
among components waiting for each other’s resources.

To avoid these situations, a common approach is to restrict the sharing of data and/or
resources by the different components. However, this restriction reduces most of the desired
concurrency. Thus, programmers are usually forced to develop programs containing this
sharing, but also being aware of the underlying data dependencies and, as a result, the
unexpected behaviors that may appear. Indeed, some of these behaviors may not manifest
until weeks or months after system release, because they might only happen for specific
schedulings that are unlikely to occur.

The number of different behaviors of a program usually grows exponentially with the size
of the system, making it impossible for a programmer to have control over them. Therefore,
software validation techniques urge especially in the context of concurrent programming in
order to detect these problems and verify the systems before being released. Unfortunately,
concurrent systems are not only difficult to develop but they are also difficult to verify, debug,
test and analyze.

Testing is one of the most widely-used methodologies for software validation. Several
studies point out that it requires at least half of the total cost of a software project. In
the last twenty years, a great deal of research has focused on testing and, as a consequence,
numerous families of techniques have been developed. For instance, white-box testing, is an
approach in which the availability of the code of the program under test is assumed, while
black-box testing uses the requirement specifications of the program instead of the code.

3

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

Another common classification of testing is made depending on whether the program code
is executed or not: in dynamic testing, the program is executed to validate the real output
w.r.t. the expected output, whereas in static testing, the program code and/or its associated
specification and documentation are examined without the program being run.

Traditional testing for concurrent programs is not as effective as for sequential programs,
since in order not to lose any possible behavior, in principle, it must systematically explore
all possible ways in which the processes or tasks can interleave. This is known as systematic
testing [60]. This full exploration produces a state explosion problem that is often too time-
consuming and computationally intractable.

Example 1. Let us consider the following example: it contains three global variables x, y
and z which are initialized to 0. The program contains three processes: p, q and r. Processes
p and q execute two instructions: the first instruction of each process modifies the global
variable y and z, respectively, whereas the second one writes the global variable x. Process r
reads variable x and checks if it is greater than 0.

Int y = 0; Int z = 0; Int x = 0;

process p : process q : process r :
y = 1; z = 2; assert x > 0;
x = 5; x = 4;

This simple example only contains five instructions and three processes, however, if the
program is run, it may result in thirty different executions depending on the execution order
of the instructions. Let us denote each execution by the sequence of process names following
the execution order. For instance, sequence ppqqr has executed the two instructions of process
p, followed by the two instructions of process q and finally, the instruction of process r. After
the execution of sequence ppqqr, the assert holds and the final value for each global variable
is x, y, z = 4, 1, 2. In sequence qqppr, the assert also holds, but the final value for each
variable is x, y, z = 5, 1, 2. On the other hand, in sequence rppqq, the assert does not hold
since process r is executed before p and q and, thus it reads the initial value of x, which
is 0. Finally, let us consider the sequence pqpqr: the two first executed instructions write
variables y and z. Then, the instructions involving variable x are executed in the same order
than in sequence ppqqr: r again reads value 4, the assert holds and the execution reaches the
same final value for each global variable. For this reason, ppqqr and pqpqr can be seen as
equivalent, and systematic testing may only consider one of them to be explored.

One of the most widely-used techniques to mitigate such state explosion problem is
Partial-Order Reduction (POR). This theory is based on a well-known fact: many different
executions are often leading to equivalent final states. POR avoids exploring those executions
that are guaranteed to produce the same results. State-of-the-art POR algorithms are able
to detect redundant executions dynamically during the exploration and allow generating only
one execution per equivalence class, avoiding a large number of redundancies. In the next
section, we will see how these algorithms alleviate the state explosion.

4

1.1. PARTIAL ORDER REDUCTION

1.1 Partial Order Reduction

Partial-Order Reduction (POR) [39] is a general theory that helps mitigate the state ex-
plosion problem by formally identifying equivalence classes of redundant executions. Each
equivalence class is called a Mazurkiewicz trace, and the POR theory guarantees that it is
sufficient to explore one interleaving per equivalence class. POR is based on the idea that two
interleavings can be considered equivalent if one can be obtained from the other by swapping
adjacent, non-conflicting independent execution steps.

A cornerstone of POR is hence the notion of independence. Two execution steps are
independent if at every program state (1) they do not enable/disable each other and (2) their
executions commute, that is, both orderings lead to the same final state. Each execution
sequence has a total order, defined by the execution order of the different processes involved in
the execution sequence and also a partial order, called happens-before, induced by the notion
of dependency between the processes in the sequence. Formally, each equivalence class is
composed of all the execution sequences with the same partial order. Consequently, exploring
only an execution per equivalence class will be enough for studying the most interesting safety
properties, including race freedom, absence of assertion violations and deadlocks.

Example 2. Let us consider again Example 1, we can see that the execution of instruction y
= 1; is independent with the execution of any instruction of another process, but it is always
dependent with the execution of x = 5;, since both instructions are executed by process p. On
the other hand, instructions x = 5; and x = 4; are dependent, since they write a different value
and thus, their executions do not commute. Finally, any of the two previous instructions that
assign a value to x and the instruction assert x > 0; are dependent, since if x is not greater
than 0 in the program state before they are executed, then they do not commute.

1.1.1 Basics of Partial Order Reduction

In this section, we formalize the ideas described in the previous section: we introduce the
notation needed to explain the POR theory and also auxiliary definitions that will be used
throughout this thesis.

An event e of the form pi denotes the i-th occurrence of process p in an execution sequence
and ê denotes process p of event e. We use e <E e

′ to denote that event e occurs before event
e′ in E, s.t. <E establishes a total order between events in E, and E ≤ E ′ to denote that
sequence E is a prefix of sequence E ′.

The core concept in POR is that of the happens-before partial order among the events
in execution sequence E, denoted by →E. This relation defines a subset of the total order
<E, such that any two sequences with the same happens-before order are equivalent. Any
linearization E ′ of→E on the set of events in execution sequence E is an execution sequence
with the same happens-before relation →E′ as →E. Thus, →E induces a set of equivalent
execution sequences, all with the same happens-before relation. We use E ' E ′ to denote
that E and E ′ are two executions with the same happens-before relation and [E]' to denote
the equivalence class of sequence E.

The happens-before partial order has traditionally been defined in terms of a dependency
relation between the events in an execution sequence [39]. Two events p and q are dependent
if there is at least one execution sequence E for which they do not commute, either because

5

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

(1) (2) (3) (4) (5) (6)

p1

��

~~

p1

��

p1

��

��

p1

��

��

p1

��

��

p1

��

��

q1

��

q1

��

��

q1

�� ��

q1

�� ww

q1

��

��

q1

��

~~

p2

�� ��

p2

�� ��

q2

�� ��

q2

�� ��

r1

��""

r1

��""
q2

�� ��

r1

�� ��

p2

�� ��

r1

�� ��

p2

�� ��

q2

�� ��
r1 q2 r1 p2 q2 p2

Figure 1.1: Happens-before relations for Example 1

(i) one enables the other (i.e., the execution of p leads to introducing q or vice-versa), or
because (ii) the final state of executions after E.p.q and E.q.p is not the same.

Example 3. Figure 1.1 shows the happens-before relations for six executions of the previ-
ous example. The dotted arrows indicate a happens-before order between the events and the
continuous arrows indicate the total order <E within the execution sequence E. Transitive
arrows are omitted, such as the one from p1 to r1 in the first execution. As explained in Ex-
ample 2, dotted arrows from p1 to p2 and from q1 to q2 are caused by the execution of the first
event enabling the second one. The remaining dotted arrows are due to the fact that events
are not commutative. For instance, sequence E = ppqqr has the following happens-before
pairs: p1 →E p2 and q1 →E q2, due to enabling dependencies, p2 →E q2, since both events
modify variable x and q2 →E r1, given that event q2 modifies the variable read by r1. As
mentioned above, transitive pairs are omitted. Each of the thirty executions of this example
belongs to one and only one of these six equivalence classes:

• In the first equivalence class, the assert holds after reading the value 4 and its final state
is x, y, z = 4, 1, 2. This class contains three executions: pqpqr, qppqr and ppqqr.

• In the second equivalence class, the assert holds after reading the value 5 and its final
state is x, y, z = 4, 1, 2. This class contains four executions: pqprq, qpprq, pprqq and
ppqrq.

• In the third equivalence class, the assert holds after reading the value 5 and its final
state is x, y, z = 5, 1, 2. This class contains three executions: pqqpr, qpqpr and qqppr.

• In the fourth equivalence class, the assert holds after reading the value 4 and its final
state is x, y, z = 5, 1, 2. This class contains four executions: pqqrp, qpqrp, qqrpp and
qqprp.

• In the fifth equivalence class, the assert does not hold after reading the value 0 and its
final state is x, y, z = 4, 1, 2. This class contains eight executions: rppqq, rpqpq, rqppq,
prpqq, prqpq, qrppq, pqrpq and qprpq.

6

1.1. PARTIAL ORDER REDUCTION

• In the sixth equivalence class, the assert does not hold after reading the value 0 and its
final state is x, y, z = 5, 1, 2. This class contains eight executions: rqqpp, rpqqp, rqpqp,
prqqp, qrqpp, qrpqp, pqrqp and qprqp.

The happens-before relation is used for defining the concept of a race between two events.
Event e is said to be in a race with event e′ in execution E, if the events belong to different
processes, e happens-before e′ in E (e→E e

′), and the two events are “concurrent”, i.e. there
exists an equivalent execution sequence E ′ ' E where the two events are adjacent. We write
e -E e

′ to denote that e is in a race with e′ and that the race can be reversed (i.e., the events
can be executed in reverse order).

Example 4. Let us consider again the previous example and sequence E = ppqqr, which has
the same happens-before relation than (1) in Figure 1.1. Event p2 is in a reversible race with
q2, written p2 -E q2, because (1) they are dependent, (2) there exists an equivalent execution
E ′ (which is pqpqr) where they are adjacent and (3) q2 can be executed before p2 to reverse
the race. However, p2 and r1 are not in a race in spite of being dependent, since there does
not exist an equivalent execution E ′ ' E where p2 and r1 are adjacent.

1.1.2 State-of-the-art DPOR Algorithm

Partial-Order Reduction algorithms use the happens-before relation to reduce the number
of equivalent execution sequences explored, some of them ensuring that only one execution
sequence in each equivalence class is explored. Early POR algorithms [39, 28, 63] relied on
static over-approximations to detect possible future races between events. The Dynamic-POR
(DPOR) algorithm, introduced by Flanagan and Godefroid [32] in 2005, was a breakthrough
in the area because it does not need to look at the future. It keeps track of the reversible
races witnessed along with its execution and uses them to decide the required exploration
dynamically, without the need for static approximation. DPOR is nowadays considered one
of the most scalable techniques for software verification.

Algorithm 1 shows a simplification of the state-of-the-art DPOR algorithm. The algorithm
carries out a depth-first exploration of the execution tree using POR receiving as parameter
an execution sequence E (initially empty). Essentially, it dynamically finds reversible races
and is able to backtrack with the involved process at the appropriate scheduling points to
reverse them. E.g., in the case of Example 4, for the race between p2 and q2 in sequence
ppqqr, the algorithm will backtrack to explore the sequence pqqpr, where the race is reversed.

The key of DPOR algorithms is in the dynamic construction of two types of sets at each
scheduling point:

• The backtrack set contains processes which must be selected on backtracking in order
to reverse a race previously detected.

• The sleep set contains processes whose exploration has been proven to be redundant
(and hence should not be selected). It ensures that, given a sequence E and a process
q ∈ sleep(E), then ∀w such that E.q.w is an execution sequence, it is guaranteed that
either E.q.w has been explored by Explore(E.q) or another sequence E ′ ' E.q.w has
been already explored.

7

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

Algorithm 1 state-of-the-art DPOR algorithm
1: procedure explore(E)
2: if ∃ p ∈ (enabled(E)\sleep(E)) then
3: back(E) := {p};
4: while ∃ p ∈ (back(E)\sleep(E)) do
5: race detection phase(E, p)
6: sleep(E.p) := propagate(sleep(E), p);
7: explore(E.p);
8: add p to sleep(E);

9: procedure race detection phase(E, p)
10: for all e ∈ E such that e -E.p p do
11: let E′ = pre(E, e);
12: let v = reversed race(e, p, E);
13: choose q ∈ v and add q to back(E′);

The algorithm starts by selecting any process p that is ready to be executed in the state
reached after executing sequence E (this is returned by function enabled(E)) and is not
already in sleep(E) (line 2). If it does not find any such process p, it stops the exploration of
sequence E, since E is a complete execution. There can be two possible reasons to stop: (1)
enabled(E) is empty and, then execution E is completed because it cannot execute anything
else, or (2) every process in enabled(E) is already in sleep(E), which means that it is not
necessary to keep on exploring, because every possible continuation E.w is redundant with
other executions which have been already explored.

In case it finds a process p in line 2, it sets the backtrack set back(E) to {p}. Then, it
carries out a depth-first exploration of every element in back(E) that is not in sleep(E). The
backtrack set of E might grow as the loop progresses (due to later executions of line 13).

For each such p, DPOR performs two phases:

• Race detection phase (lines 10 - 13). The race detection starts by finding all events e
executed by processes in sequence E (written e ∈ E) that are in a reversible race with
the last event of process p in E.p (line 10). Let us notice here that, in order to simplify
the notation, (1) we use process p to denote the next event performed by p after E and
(2) we use e ∈ E to denote the events executed by the processes in E.

For each reversible race e -E.p p detected during this phase, a process must be added
to a backtrack set of a previous scheduling point in order to reverse such race. The
scheduling point is the prefix E ′ of E just before executing the event e (such prefix is
returned by function pre(E, e), line 11). However, there may be situations where p is not
enabled in E ′ and the execution of other events may be necessary before executing p. In
particular, function reversed race(e, p, E) returns the sequence of processes between
E ′ and E such that the event executed by each of them is dependent with event p,
followed by process p. Finally, back(E ′) needs to be updated with one of the processes
in v with no happens-before predecessors in such sequence (line 13).

• State exploration phase (lines 6, 7 and 8). After the race detection phase, the algorithm
continues with the state exploration phase for E.p. Before exploring the sequence

8

1.1. PARTIAL ORDER REDUCTION

0 : {p, q, r}
p

1 : {p, q, r}
q

2 : {p, q, r}sleep(2): p,q,r back(2): p,q,r

p
q r

3:{q, r}sleep(3): q,r back(3): q,r

q r
8:{r, p}sleep(8): r,p back(8): r,p

r p
13:{p, q}sleep(13): p,q back(13): p,q

p q

4:{r}
r

6:{q}
q

9:{p}
p

11:{r}
r

14:{q}
q

16:{p}
p

5:∅ 7:∅ 10:∅ 12:∅ 15:∅ 17:∅

Figure 1.2: Full execution tree computed by DPOR for Example 5. Node labels: Enabled
Processes. Arrow labels: scheduled process. Node labels right (in blue): backtrack set. Node
labels left (in red): sleep set. Both backtrack and sleep sets are only indicated for nodes with
more than one process.

E.p, it is important to propagate down the processes which are in sleep(E) and that
are independent with the event executed by process p to prevent the exploration of
sequences already explored. This is performed by the function propagate(E,p) in line
6. Then, the algorithm explores E.p, and finally, it adds p to sleep(E) to ensure that,
when backtracking on E, p is not selected until a dependent event with it is selected.

Example 5. Let us consider again the previous example with three processes:

Int y = 0; Int z = 0; Int x = 0;

process p : process q : process r :
y = 1; z = 2; assert x > 0;
x = 5; x = 4;

The tree computed by DPOR for this example is shown in Figure 1.2. DPOR starts with
the call explore(ε) (state 0), that is, with the empty execution sequence ε. Every backtrack
and sleep set is initially empty. The check in line 2 is true because enabled(ε) = {p, q, r} and
sleep(ε) is initially ∅, thus one of these processes is chosen to be added to the backtrack set
back(ε). Let us suppose that p is chosen. Now, the race detection phase (lines 10-13) finishes
without detecting any race and it performs a call explore(p) (state 1).

Again, the check in line 2 is true because enabled(p) = {p, q, r} and sleep(p) = ∅. Thus,
another process is randomly chosen. Let us suppose that q is chosen, then the race detec-
tion phase finishes without detecting races, because events p1 and q1 are independent, since
they do not modify any shared variable read or modified by the other one. Hence, a call
to explore(pq) is performed (state 2). Similarly, p can be randomly chosen and p2 is in-
dependent with q1, thus no race is detected. After that, the algorithm performs a call to
explore(pqp) (state 3). Now, q and r are both enabled after pqp. Let q be the next chosen

9

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

process. During the race detection phase, a race p2 -pqpq q2 is detected. In line 11, E ′ is
set to pq, because it is the prefix of pqpq before executing event p2. In line 12, v is set to
reversed race(p2, q2, pqpq) = q, since after E ′ there is not any other event which is dependent
with q2, thus q is the unique process in the sequence. Hence, it is added to the backtrack set
back(pq) (state 2, in blue) in line 13.

A new call explore(pqpq) is performed (state 4). The only enabled process is r, then it is
selected. A new race q2 -pqpqr r1 is detected. Now, E ′ and v are set to pqp and r, respectively.
Therefore, r is chosen to be added to back(pqp) (state 3). Finally, the call explore(pqpqr)
is performed (state 5), where enabled(pqpqr) is empty, i.e., the current execution sequence
finishes. Then, DPOR backtracks to the first point where a new process has been added to the
backtrack set, that is, at state 3 (line 4). On its way back, it adds every chosen process to its
corresponding sleep set (r and t2 to the sleep at state 4 and state 3, respectively), in line 8.
Let us notice that we do not show in Figure 1.2 the sleep set for nodes whose information is
irrelevant in order to simplify the figure.

Now, process r is chosen in line 4 and, thus, a race p2 -pqpr r1 is detected. Process r
is added to back(pq) (state 2). Once the race detection phase is over, function propagate
in line 6 does not propagate q from sleep(pqp) to sleep(pqpr) since q2 and r1 are dependent.
After the call explore(pqpr) is performed, q is chosen and the race r1 -pqprq q2 is detected.
However, q is already in back(pqp) = {q, r}, therefore nothing new is added to the backtrack
set. The execution pqprq has been completely explored, hence the algorithm backtracks to
state 2 adding, on its way back, q, r and p to the sleep sets of states 6, 3 and 2, respectively.

Since events p2, q2 and r1 are dependent two by two, the DPOR algorithm must explore
the six different executions shown in the execution tree. Let us notice that there are other
twenty four executions that could be explored from states 0 and 1 whose exploration has been
avoided by the DPOR algorithm.

Algorithm 1 is correct in the sense that for each execution sequence E, it explores an
execution sequence in [E.v]' for some v. In particular, if E is complete, then Algorithm 1
explores an execution sequence in [E]'.

Theorem 1 (Correctness of Algorithm 1 [1]). For all execution sequences E, Algorithm 1
explores some execution sequence E ′, which is in [E.v]' for some v. In particular, for all
complete execution sequences E, Algorithm 1 explores some execution sequence E ′, which is
in [E]'.

1.1.3 Optimality in DPOR Algorithms

Godefroid et al. [38] prove that DPOR algorithms are optimal in the sense that they do not
explore two equivalent complete execution sequences thanks to the use of sleep sets (check
in line 2). In 2014, Abdulla et al. propose a more precise notion of optimality for the DPOR
algorithms.

Definition 2 (Optimality). A DPOR algorithm is optimal iff

1. it never explores two complete execution sequences that are equivalent, and

2. no call to explore(E) is ever stopped (in line 2) because
enabled(E) ⊆ Sleep(E).

10

1.1. PARTIAL ORDER REDUCTION

That is, it never starts the exploration of a sequence which is eventually stopped by a sleep
set. The algorithm introduced in Section 1.1.2 is non-optimal using this notion of optimality.
In [2], a new algorithm, called Optimal DPOR (ODPOR), is proposed and it guarantees the
optimality of the exploration. Three major extensions are needed to achieve optimality:

• the use of a redundancy check between lines 12 and 13 in Algorithm 1 to detect if
the backtrack set must be updated with a new process or, otherwise, if sequence v is
redundant in E ′. A sequence v is redundant after sequence E ′ if one of the events
executed by v which does not have happens-before predecessors in v is already in
back(E ′). If the check is false, then the algorithm already contains a process that
guarantees that a sequence equivalent to E ′.v will be explored.

• the use of source sets as backtrack sets. Godefroid et al. [38] proposed a particular
backtrack set, called persistent set. Source sets are often smaller than persistent sets,
and when a persistent set contains more elements than the corresponding source set,
the additional elements will initiate sequences that are eventually stopped by a sleep
set. In [2], on the way to the definition of Optimal DPOR, the authors also propose
Source-DPOR (SDPOR), an algorithm using source sets, which is not yet optimal, but
which behaves more effectively than the original DPOR algorithm.

• the use of wake-up trees to guide the initial steps in the exploration. These wake-up
trees replace the source sets indicating exactly the sequence of processes that must be
executed to reverse the races detected by the algorithm. These sequences are given
by function reversed race (in line 12), which must be also redefined. Function re-
versed race(e,p,E) returns the sequence of processes executed after E ′ such that the
events executed by each of them are independent with event e, followed by process p.

Another difference between the previous DPOR algorithms and ODPOR is that the latter
delays the race detection phase until the current execution sequence has been completely
explored. The reason for this is that the new redundancy check is accurate when function
reversed race takes into account all events in the entire execution to define sequence v.

Using these extensions, ODPOR guarantees that redundant explorations are never even
initiated, proving optimality for any number of processes w.r.t. an unconditional independence
relation.

1.1.4 On Improving the Dependency Relation

Even though optimal DPOR algorithms explore exactly one execution per equivalence class,
the scalability of these algorithms can be improved. Improving the precision of the depen-
dency relation helps induce a smaller number of equivalence classes to be considered during
the execution of the DPOR algorithms.

Approximating the Unconditional Independence

The notion of independence considered in Section 1.1.1 is unconditional, i.e., it must hold for
every program state. This requirement forces us to use an over-approximation of the depen-
dency relation (an under-approximation of the independence relation) which results in thinner

11

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

(α) (β) (α) (γ) (κ) (κ)

p1

��

��

p1

��

��

p1

��

��

p1

��

��

p1

��

��

p1

��

��

q1

��

��

q1

��

��

q1

�� ||

q1

�� ||

q1

��

��

q1

��

||

p2

��

��

p2

��""

q2

��

��

q2

�� ||

r1

�� ��

��

r1

�� ��

��

q2

�� ||

r1

��""

p2

��""

r1

�� ||

p2

��

q2

��
r1 q2 r1 p2 q2 p2

Figure 1.3: Happens-before relations for Example 6

equivalence classes in case of loss of precision. The most widely-used over-approximation is
to consider two events as dependent if both access the same global variable and at least one of
them is modifying it. This approximation can be imprecise in many situations and increases
the number of equivalence classes that must be taken into account.

Example 6. Let us consider a modification of the previous examples. Here, process q also
writes the value 5:

Int y = 0; Int z = 0; Int x = 0;

process p : process q : process r :
y = 1; z = 2; assert x > 0;
x = 5; x = 5;

Instructions x = 5; of process p and x = 5; of process q are unconditionally independent,
since they write the same value, thus they commute at every possible program state. According
to the traditional over-approximation, both are dependent because they modify variable x. The
happens-before relations for this program using the previous over-approximation coincide with
the relations in Figure 1.1. Hence, the imprecision of the approximations used in the POR
theory leads to exploring more redundancies.

Let us consider now a better over-approximation that considers p2 and q2 as uncondition-
ally independent, since both events write the same value. Figure 1.3 shows the happens-before
relation according to this new approximation. For the first execution, we can see that p1 and
q1 happens-before p2 and q2, respectively, because the former events enable the latter ones.
Moreover, these two last events happen-before r1, since they write variable x that is read by
r1. Using this new approximation, we lose the arrows between p2 and q2, and vice-versa.
Therefore, executions like pqpqr and pqqpr are now equivalent because, as it can be observed
in the figure, they have the same happens-before relation. Consequently, there are only four
different equivalence classes instead of six using the less precise approximation.

12

1.2. DEADLOCK-GUIDED TESTING

Using Notions of Conditional Independence

As mentioned before, both the original DPOR and most of its extensions are based on an
unconditional dependency relation (also called unconditional happens-before relation) which
determines the partial order of events. Conditional independence was early introduced in the
context of POR [49]. It defines the conditional dependency relation for two events at each
state, instead of being defined for all possible states. For instance, even though instructions
like x = 5; and assert x > 0; are unconditionally dependent, they are conditionally independent
in states where variable x is greater than 0.

Throughout this thesis, we are going to see different extensions of this basic DPOR
algorithm which improve the precision of the notions of independence considered with the
objective of achieving reductions in the number of equivalence classes to be explored. The first
work that has used notions of conditional independence within the state-of-the-art DPOR
algorithm is Context-Sensitive DPOR [6]. It checks commutativity for each pair of events in a
reversible race dynamically during the exploration to prune redundant exploration. However,
it exploits conditional (context-sensitive) independence only partially to extend the sleep sets,
but not to reduce backtrack sets. Optimal DPOR with Observers [18] introduces another
kind of conditional independence based on the notion of observability, according to which
dependencies between execution steps p and t are conditional to the existence of future steps,
called observers, which read the values modified by p and t.

Example 7. Let us consider Example 6. Using the notion of context-sensitive independence,
the number of equivalence classes can be reduced, since after the execution of event p2, events
q2 and r1 are commutative. Using this notion, DPOR algorithms can consider sequences
pqpqr and pqprq as equivalent, exploring only one of them. Similarly, sequences pqqpr and
pqqrp can be also considered as equivalent. Using notions of conditional independence, DPOR
algorithms only need to explore two different executions.

To illustrate the power of the notion of observability, let us consider Example 5. Using
this notion, sequences pqrpq and pqrqp are equivalent since the observer r1 reading variable
x is executed before p2 and q2, and thus, one does not happen-before the other one.

1.2 Deadlock-Guided Testing

In concurrent programs, deadlocks are one of the most common programming errors and
thus, a main goal of verification and testing tools is, respectively, proving deadlock freedom
and detecting deadlock executions. A deadlock situation arises as a consequence of a circular
dependency among components waiting for each other’s resources.

There is a large body of work on deadlock detection including both dynamic and static
approaches. Much of the existing work, both for asynchronous programs [33, 35] and thread-
based programs [54], is based on static analysis techniques. Moreover, deadlock detection has
been intensively studied in the context of dynamic testing and model checking [27, 47, 16, 43]),
where it sometimes combines testing with static information [47].

Static analysis and testing are two different ways of detecting deadlocks. As static analysis
examines all possible execution paths and variable values, it can reveal deadlocks that could
not manifest until weeks or months after releasing the application. This aspect of static

13

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

analysis is especially important in security assurance – security attacks try to exercise an
application in unpredictable and untested ways. However, due to the use of approximations,
most static analyses can only verify the absence of deadlock but not its presence, i.e., they
can produce false positives. Moreover, when a deadlock is found, state-of-the-art analysis
tools [33, 36, 37] provide little (and often no) information on the source of the deadlock. In
particular, for deadlocks that are complex (involve many tasks and locations), it is essential
to know the task interleavings that have occurred and the locations involved in the deadlock,
i.e., provide a concrete deadlock trace that allows the programmer to identify and fix the
problem.

In contrast, testing consists in executing the application for either concrete input val-
ues or symbolic input values. Since a deadlock can manifest only on specific sequences of
task interleavings, in order to apply testing for deadlock detection, the testing process must
systematically explore all task interleavings.

The primary advantage of systematic testing for deadlock detection is that it can pro-
vide the detailed deadlock trace with all information that the user needs in order to fix the
problem. There are two shortcomings though: (1) Although POR techniques try to avoid
redundant exploration as much as possible, the search space of systematic testing (even with-
out redundancies) can be huge. (2) In concrete testing, there is only guarantee of deadlock
freedom for finite-state terminating programs (terminating executions with concrete inputs);
and in symbolic testing, one also needs to assume some termination criteria (e.g., a maximum
number of iterations for each loop in the program) and, thus, it is again not possible to ensure
deadlock freedom in programs that exceed the limits considered during systematic testing.

Static analysis and testing often complement each other and thus it seems quite natural
to combine them. A particular case of this, which has been subject of work in this thesis is
deadlock-guided testing, where the testing exploration is driven towards potential deadlock
executions (while other executions are not explored) using the information provided by a
deadlock analysis.

1.3 Main Goals and Contributions

Let us enumerate which are the main goals of this thesis. A main objective has been to be
able to exploit notions of conditional independence –which ensure the commutativity of the
considered events p and t under certain conditions that can be evaluated in the explored state–
with DPOR algorithms to alleviate the combinatorial explosion problem. This achievement
is split in the next challenges:

i) Combine and exploit the notions of context-sensitive independence, proposed in Context-
Sensitive DPOR [6], and independence modulo observability, proposed in Optimal
DPOR with Observers [18], and study their synergies to gain further pruning.

Paper 1 addresses this challenge. We have proposed a novel algorithm called Optimal
Context-Sensitive DPOR with Observers, where a new kind of independence is defined to
combine the previous notions. This work has been published at the Proceedings of the
International Symposium on Software Testing and Analysis 2019 (ISSTA 2019).

14

1.3. MAIN GOALS AND CONTRIBUTIONS

ii) Use the notion of conditional independence within DPOR algorithms to detect less
reversible races, reducing the backtrack sets and thus, improving the scalability of
these algorithms. This challenge has been split in three subgoals:

ii.a) Statically synthesize independence constraints (ICs) for blocks of instructions in
an automatic pre-analysis using a fully automatic SMT approach, that guarantee
the commutativity of the considered events if the ICs hold.

ii.b) Propose (sufficient) conditions that ensure uniformity [49], a property that enables
using soundly the notion of conditional independence and pruning exponentially
the DPOR search state using ICs.

ii.c) integrate the notion of uniform conditional independence (which requires to look
ahead) to prune the search space in a dynamic algorithm using ICs.

These challenges have been addressed in Paper 2, which has been published at the Proceedings
of the conference Computer-Aided Verification (CAV 2018). In this work, we have proposed
a new notion of independence based on the uniform conditional independence, that makes
easier the static approximation of the uniformity. Furthermore, we have obtained exponential
gains in the experimental evaluation in comparison with classical DPOR algorithms.

iii) carry out a thorough experimental evaluation to compare the different extensions.

iv) apply these techniques to a realistic setting.

All the papers presented in this thesis are supported by their corresponding experimental
evaluation. We have also applied our DPOR techniques to a more realistic setting: the
Software-Defined Networks (SDN). First, we have modelled several case studies of SDN and
we have evaluated different network properties applying our DPOR algorithms. This work
can be found in Paper 3 which is currently under revision in the Journal of Logical and
Algebraic Methods. In Paper 7, we have also presented a novel tool for systematic testing,
called SYCO [11], that we have used to evaluate the different experimental evaluations of
each contribution in this thesis. This description of SYCO can be found at the Proceedings
of Compilers Construction 2016 (CC 2016). Paper 4, also published at the Proceedings of the
International Symposium on Software Testing and Analysis 2019 (ISSTA 2019), summarizes
our main contributions in the field of DPOR.

Even applying the most advanced POR techniques to eliminate redundancies, systemat-
ically exploring all different equivalence classes poses scalability problems. Static analysis
provides useful information about the programs that can be used to improve the perfor-
mance of testing. In order to achieve further gains using a static deadlock analysis, two more
research challenges are proposed:

v) combine static analysis and testing for deadlock detection and

vi) extend these results to the context of symbolic execution.

These last two challenges have been addressed in Papers 5 and 6. They have been pub-
lished at the Proceedings of integrated Formal Methods 2016 (iFM 2016) and Logic-based
Program Synthesis and Transformation 2017 (LOPSTR 2017), respectively. The experimen-
tal evaluation performed to evaluate both contributions shows exponential gains in compar-
ison with systematic testing.

15

CHAPTER 1. INTRODUCTION & STATE-OF-THE-ART

1.4 Organization of this Thesis

This thesis is written in the format ”thesis by articles” and it consists of an introduction
describing its main objectives, the state of the art, contributions and conclusions, which are
presented in chapters 2, 3, 4, 5 , 6, and the set of papers which support the thesis as they
appear on the corresponding formal proceedings in Chapter 7. The rest of the thesis is thus
structured as follows:

• Chapter 2 overviews our work on Dynamic Partial Order Reduction addressing chal-
lenge i). In particular, it provides the basic ideas behind Context-Sensitive DPOR
and Optimal DPOR with Observers, two recent algorithms that used simple notions
of conditional independence, and overviews our approach to combine both notions of
independence and take advantage of their synergy.

• Chapter 3 summarizes the notion of uniform conditional independence and the condi-
tions needed to use it within DPOR algorithms.

• Chapter 4 reviews a case study of SDN networks addressing challenge iv). First, it
presents the basic operations of SDN. Then, it also summarizes the actor-based con-
currency model. Finally, it overviews the actor-based encoding of SDN Programs and
the model checking of SDN-Actors.

• Chapter 5 first summarizes a static deadlock analysis and overviews the use of a dead-
lock analysis to guide the execution of testing for effective deadlock detection and its
extension to symbolic execution. Moreover, it presents the tool SYCO, a systematic
testing tool for concurrent objects, and its main features.

• Finally, Chapter 6 presents the conclusions of the thesis and also discusses the future
work for each of the topics presented in this thesis.

• The technical details are presented in the papers which support this thesis. These
papers can be found in Chapter 7.

16

Chapter 2

Optimal Context-Sensitive DPOR
with Observers

The cornerstone of DPOR is the notion of independence that is used to decide whether
each pair of concurrent events p and t are in a race and thus both p · t and t · p must be
explored. As mentioned in Section 1.1, the classical notion used in the POR algorithms is
called unconditional independence.

Definition 3. (Unconditional Independence) Two events p and t are independent if for every
possible state S of the program, then

1. if p is enabled in S and S
p−→ S ′, then t is enabled in S if and only if t is enabled in

S ′; and

2. if p and t are enabled in S, then there is a unique state S ′ such that S
t·p−→ S ′ and

S
p·t−→ S ′.

Let us notice that this is called unconditional independence because it must hold for
every possible program state S. Any DPOR algorithm can improve its efficiency by using
a more accurate notion of independence [40]. Two recent approaches – Context-Sensitive
DPOR (DPORcs) [6] and Optimal-DPOR with Observers (ODPORob) [18] – have achieved
this by integrating orthogonal notions of conditional independence into DPOR. In this chap-
ter, we study their combination. These notions are explained in Section 2.1 and Section
2.3, respectively. Section 2.2 introduces the reformulation of DPORcs as an extension of
ODPOR. Section 2.4 explains the new notion of context-sensitive independence modulo ob-
servability which is illustrated using a detailed example. Finally, Section 2.5 presents our
main contributions in this area and Section 2.6 overviews the related work.

2.1 Context-Sensitive DPOR

The first algorithm that has used notions of conditional independence within the state of
the art DPOR algorithm is Context-Sensitive DPOR [6] (DPORcs). This algorithm exploits
context-sensitive independence, that is, intuitively, it checks explicitly the commutativity
in the current state (context) of every two events that are in race. If they commute, it

17

CHAPTER 2. OPTIMAL CONTEXT-SENSITIVE DPOR WITH OBSERVERS

0:{p, q, r}sleep: p,q,r back: p,q,r

p
q r

1:{q, r}sleep: rq,q,r back: q,r

q r
5:{p, r}sleep: pr,r,p back: r,p

r

p
9:{p, q}sleep: p,q back: p,q

p q

2:{r}
r

4:{q}sleep: q

q

6:{p}
p

8:{r}sleep: r

r

10:{q}
q

12:{q}
p

3:∅ ?:∅ 7:∅ ?:∅ 11:∅ 13:∅

Figure 2.1: Full execution tree computed by DPORcs for Example 8; dotted fragment not
computed thanks to sleep sets; Arrow labels: scheduled process. Node labels right (in blue):
backtrack set (only indicated for nodes with more than one process). Node labels left (in red):
sleep set (only indicated for nodes with more than one sequence and sequences propagated
from their parents).

prevents the exploration of the reversed race by adding additional information to the sleep
set. Specifically, the main features of DPORcs are:

• State equivalence check. When a race is detected, a new check is added in DPORcs to
detect if the sequence with the reversed race is leading to the same state as the original
sequence. If the check succeeds, the appropriate backtrack set is updated as usual, but
the corresponding sleep set is extended with the sequence of the reversed race to avoid
its exploration.

• Sleep-set extension. Sequences of processes are more expressive than single processes,
thus sleep sets are generalized to contain sequences of processes. Consequently, se-
quences in the sleep sets do not need to be explored because they are proven to be
leading to redundant exploration thanks to the new context-sensitive independence.

Example 8. Let us see how DPORcs works for the next example:

Int x = 0;

process p : process q : process r :
x = 5; x = 4; assert x > 0;

Figure 2.1 shows the full exploration tree performed by DPORcs. Since all processes have
a single event, by abuse of notation, we refer to events by their process names. Let us see the
first execution. After the execution of p, q and r are in race because q is modifying variable
x which is read by r. However, the state equivalence check notices that qr and rq lead to the
same final state. Thus, sequence rq does not need to be explored and is added to the sleep set
at state 1, preventing the exploration of the second execution. In a similar way, r and p are
in race, however they commute after q. Thus, sequence pr is added to the sleep set at state
8, avoiding the exploration of the fourth execution. This new check also provides an effective
technique to improve the traditional over-approximation of unconditional independence. For

18

2.2. OPTIMAL CONTEXT-SENSITIVE DPOR

instance, if process q also writes the value 5, then p and q are considered dependent in the
sequence rpq using the over-approximation since they both modify variable x, but the new
check detects that rqp leads to the same state and thus, it does not need to be explored.

2.2 Optimal Context-Sensitive DPOR

DPORcs was formulated in [6] over SDPOR. Thus, it did not include the extension of wake-up
trees used by ODPOR to ensure optimality. We have reformulated DPORcs as an extension
of Optimal DPOR, rather than of SDPOR. This yields an optimal DPORcs algorithm which
we have named Optimal Context-Sensitive DPOR (ODPORcs). This reformulation has been
challenging due to the fact that SDPOR (and DPORcs) performs race detection at every
state. ODPOR must delay this phase until the sequence being explored is complete, since
the redundancy check is accurate only if it considers the events in the entire execution to
define sequence v. As a main contribution, we have proven that not all events must be
taken into account by function reversed race to define v and thus, we have identified the
necessary events to preserve the accuracy of the redundancy check. Then, sleep sets must
stop the execution not only after the race is reversed but also after these events have been
also executed. Consequently, in general, sequences added to sleep sets by ODPORcs may
be longer than the ones added by DPORcs. In particular, the execution tree computed by
ODPORcs happens to coincide with the one in Figure 2.1.

Theorem 4 (Correctness of ODPORcs). For all complete execution sequences E, explore(ε)
in ODPORcs explores some execution sequence E ′ that either is in [E]', or reaches an equiv-
alent state to one in [E]'.

2.3 Optimal DPOR with Observers

Optimal DPOR with Observers (ODPORob) [18] has extended the traditional notion of de-
pendency using the concept of observability. Intuitively, two events are dependent modulo
observability if (1) they enable or disable each other or (2) if one of them reads a global
variable and the other modifies it or (3) if both modify the same global variables and there is
an observer after them which reads the new value. We use observers(e, e′, E) to denote the
set of processes whose events observe the race between events e and e′ in sequence E. There
are two kinds of races: (1) if e -E e′ and observers(e, e′, E) = ∅, then the race is produced
by a read-write dependency; and (2) if e -E e

′ and observers(e, e′, E) 6= ∅, then it is caused
by a write-write dependency and thus, observers(e, e′, E) contains the events which read the
values written by e and e′. Thanks to the delay of the race detection phase, ODPORob can
decide the independence of two events by checking the existence of some observers in the
whole execution.

Example 9. Let us see how ODPORob works for the previous example with processes p, q and
r. Figure 2.2 shows the full exploration tree performed by ODPORob. In the first execution,
q and r are in a race of kind (1), because q is modifying variable x which is read by r, then
r is added to the wake-up tree at state 1 to reverse the race. However, p and q are in race

19

CHAPTER 2. OPTIMAL CONTEXT-SENSITIVE DPOR WITH OBSERVERS

0:{p, q, r} wut: p, qpr, r
p

q r

1:{q, r} wut: q, r

q
r

6:{p, r} wut: pr, r

p r
11:{p, q}
p

q

2:{r}
r

4:{q}
q

7:{r} wut: r

r

9:{p}
p

12:{q}
q

?:{p}
p

3:∅ 5:∅ 8:∅ 10:∅ 13:∅ ?:∅

Figure 2.2: Full execution tree computed by ODPORob for Example 9; dotted fragment not
computed thanks to the notion of observability; Arrow labels: scheduled process. Node
labels right (in blue): wake-up tree (only indicated for nodes with more than one sequence
and sequences propagated down).

of kind (2) because both are modifying x and there exists a process r in observers(p, q, pqr),
such that r observes the value of x. Then, sequence qpr is added to the wake-up tree at state
0 to ensure that the algorithm will explore a sequence where r observes the value written by
p instead of q.

Let us consider the fifth execution. Events p and q are not in race because even though
both are modifying x, there does not exist any observer after them which reads x. Therefore,
in sequence rpq, p and q are independent modulo observability.

2.4 Context-Sensitive DPOR with Observers

The ODPORob and ODPORcs algorithms can be easily combined to obtain a “union” algo-
rithm which explores the intersection of each of them. We have presented a further optimiza-
tion of this algorithm, called Optimal Context-Sensitive DPOR with Observers (ODPORob

cs)
that not only combines and exploits the previous powerful notions, but also takes advantage
of their synergy to gain further pruning. The main point is the addition of a further and
different context-sensitive check that compares the states modulo observability. E.g., in a
race between p and q observed by r, instead of checking that both p.q and q.p are leading to
the same final state, it only considers the observation in sequences p.q.r and q.p.r performed
by the observer r. Consequently, if the second execution leads to the same observation, the
sequence will be added to the appropriate sleep set to prevent its complete exploration.

Example 10. Let us consider again the previous example. Figure 2.3 shows the full ex-
ploration tree performed by ODPORob

cs. In Example 8, we have seen that the exploration of
sequences prq and qrp are avoided thanks to the previous context-sensitive check. Moreover,
sequence rqp is avoided thanks to the notion of observability, as we have seen in Example
9. Let us see how the exploration of qpr is also avoided. During the race detection phase of
execution pqr, a race between p and q observed by r is detected. We can see that sequence
pq leads to a different final state than sequence qp, then the previous context-sensitive check
does not succeed and the sequence qpr would be explored. Nevertheless, considering the new
context-sensitive check modulo observability, r observes in both pqr and qpr that assert x > 0

20

2.5. CONTRIBUTIONS [ISSTA’19]

0:{p, q, r}sleep: qpr,p,q wut: p,qpr,r

p
q r

1:{q, r}sleep: rq,q,r wut: q,r

q r
5:{p, r}sleep: pr,rp wut: pr,r

p r
8:{p, q}

p q

2:{r}
r

4:{q}sleep: q

q

6:{r}sleep: r

r

7:{p}sleep: p

p

9:{q}
q

?:{p}
p

3:∅ ?:∅ ?:∅ ?:∅ 10:∅ ?:∅

Figure 2.3: Full execution tree computed by ODPORob
cs for Example 10; dotted fragment

not computed thanks to sleep sets; Arrow labels: scheduled process. Node labels right (in
blue): wake-up tree (only indicated for nodes with more than one sequence). Node labels
left (in red): sleep set (only indicated for nodes with more than one sequence and sequences
propagated from their parents).

holds, and consequently, the sequence qpr can be added to the sleep set at state 0 to be avoided
by ODPORob

cs.

Theorem 5 (Correctness of ODPORob
cs). For all complete execution sequences E, explore(ε)

in ODPORob
cs explores some execution sequence E ′ that either is in [E]', or reaches an equiv-

alent state modulo observability to one in [E]'.

2.5 Contributions [ISSTA’19]

This work is elaborated in detail in Paper 1 and addresses the challenges i) and iii). The
major contributions achieved have been the following:

1. DPORcs was formulated over Source-DPOR, but it did not include the extension of
wake-up trees used by ODPOR to ensure optimality, and later used to handle observers.
Our first contribution is the formulation of DPORcs over ODPOR, which we name
Optimal Context-Sensitive DPOR (ODPORcs).

2. Our second contribution is the integration of observability into ODPORcs. To this
aim, we extend the notion of context-sensitive independence to take observability into
account, hence checking equivalence for variables affected by future observers.

3. Finally, we have implemented our ODPORob
cs and we have performed an experimental

evaluation. We have used three different sets of benchmarks, borrowed from [6], [18]
and [15]. The results of ODPORob

cs have been compared with DPORcs and ODPORob

and showed that we explore exponentially fewer sequences at least with respect to one
of them in all examples considered.

21

CHAPTER 2. OPTIMAL CONTEXT-SENSITIVE DPOR WITH OBSERVERS

2.6 Related Work

Other recent approaches have considered alternative ways of refining the detection of inde-
pendence. Data-Centric DPOR [26] focuses on the read-write of variables. It defines two
traces to be observationally equivalent if every read event observes the same write event in
both traces. Their equivalence relation is proven to detect more traces as equivalent than the
one based on Mazurkiewicz traces, which is the one used in our work and all other variants
of the DPOR algorithm of [32].

Example 11. Let us consider again the following example:

Int x = 0;

process p : process q : process r :
x = 5; x = 4; assert x > 0;

According to Data-Centric DPOR, there are only three equivalence classes: (1) {rpq, rqp}
(where r reads the initialization), (2) {qpr, prq} (where r reads the value written by p), and
(3) {pqr, qrp} (where r reads the value written by q). Instead, according to the independence
modulo observability of [18], there are five different equivalence classes (see Example 9).

Let us notice that our proposal is also orthogonal to this new relation. In the above
example, in case q writes x = 5;, Data-Centric DPOR must explore again three equivalence
classes. However using state equivalence modulo observability, our algorithm would only
need to consider two of them, namely, one where assert x > 0 holds and one where assert x
> 0 does not hold.

The drawback of Data-Centric DPOR is that it is optimal only for programs with acyclic
communication graphs. Recently, a new optimal DPOR algorithm [3] has been proposed
based on this new notion of equivalence under sequential consistency memory semantics.
This algorithm is optimal in the sense that it never explores two program executions which
are observationally equivalent. Experimental results in [3] show that this new algorithm
outperforms exponentially both Data-Centric DPOR and Optimal DPOR in most of the
considered benchmarks. Interestingly, such notion of equivalence based on observability is
still orthogonal to the notion of context-sensitive independence. It remains for future to
study their combination.

22

Chapter 3

Constrained DPOR

As we have seen in Chapter 2, the context-sensitive DPOR algorithm is based on a notion
of conditional independence. DPORcs improves the classic DPOR algorithm extending the
sleep sets thanks to this notion, but it is not able to exploit it at all points of the algorithm
where dependencies are used. We present constrained DPOR (CDPOR), an extension of the
DPORcs framework which is able to use the conditional independence not only for the sleep-
set extension but also for the race detection phase. This algorithm is based on the use of
independence constraints (ICs), conditions that guarantee commutativity between two events
in those program states where they are satisfied. ICs can be declared by the programmer,
but importantly, we present a novel SMT-based approach to automatically synthesize ICs in
a static pre-analysis. This chapter is structured as follows:

• Section 3.1 introduces the notion of conditional independence and shows that using
it directly within the classic DPOR algorithm is unsound. Subsection 3.1.1 presents
the independence constraints and Subsection 3.1.2 illustrates how to approximate the
notion of uniformity within DPOR algorithms.

• Section 3.2 provides the extension from Context-Sensitive DPOR to apply independence
constraints, achieving a Constrained DPOR algorithm and it is illustrated using a
detailed example.

• Finally, Section 3.3 summarizes the main contributions in this area and Section 3.4
overviews the related work.

3.1 Conditional Independence within DPOR

Conditional independence consists in determining the independence of two events at a given
state, instead of doing it for all possible states. The following definition captures such notion.

Definition 6. (Conditional Independence) Two events p and t are independent at state S,
then

i1) if p is enabled in S and S
p−→ S ′, then t is enabled in S if and only if t is enabled in

S ′; and

23

CHAPTER 3. CONSTRAINED DPOR

i2) if p and t are enabled in S, then there is a unique state S ′ such that S
t·p−→ S ′ and

S
p·t−→ S ′.

The next example shows that using conditional independence directly within the DPOR
algorithm is unsound.

Example 12. Let us consider now the following example, where the three processes are
executed atomically. Since all processes have a single event, by abuse of notation, we refer to
events by their process name.

Bool b1 = false; Int z = 5; Int x = 0;

process t : process p : process r :
b1 = true; x = 5; if (b1) z = x;

We have the processes t, p and r enabled at the initial state with (b1, z, x) = (false, 5, 0).
Let p and r be the first two processes to be explored by DPOR. During the race detection
phase, r and p are not detected as dependent using conditional independence, because both rp
and pr are leading to the same final state, that is, they commute; thus, nothing is added to the
backtrack set. Now, t is explored and again, no race is detected between t and r because they
are independent after p (t and r commute after p) and neither between t and p because they
are independent at ε (in fact, they are unconditionally independent). Then, nothing is added
to the backtrack set. DPOR has explored sequence prt and does not backtrack at any point,
then prt is the only sequence explored. Let us notice that the final state here is (b1, z, x) =
(true, 5, 5), however if we consider sequence trp, its final state is (b1, z, x) = (true, 0, 5).
Thus, DPOR is not sound using conditional independence, since trp is not explored by the
algorithm.

This problem was already identified by Katz and Peled [49]. Essentially, the main idea
of POR is that the different linearizations of a partial order yield equivalent executions that
can be obtained by swapping adjacent independent events. However, this is no longer true
with conditional independence.

Example 13. Let us see this fact in the previous example. Using conditional independence,
the partial order of execution prt is empty. Then, there are six possible linearizations that
represent that same equivalence class: prt, ptr, rpt, rtp, tpr and trp. The first five executions
have the same final state (b1, z, x) = (true, 5, 5). However, as we have seen before, trp leads
to (b1, z, x) = (true, 0, 5).

An extra condition, called uniformity, is proposed in [49] to allow using conditional in-
dependence within the POR theory. Such refined conditional independence, named uniform
(conditional) independence adds a condition i3) to Definition 7 to ensure that independence
holds at all successor states for those events that are enabled and are uniformly independent
with the two events whose independence is being proven.

Definition 7. (Uniform Conditional Independence) Two events p and t are uniformly inde-
pendent at state S, written unif(p, t, S), then

24

3.1. CONDITIONAL INDEPENDENCE WITHIN DPOR

i1) if p is enabled in S and S
p−→ S ′, then t is enabled in S if and only if t is enabled in

S ′; and

i2) if p and t are enabled in S, then there is a unique state S ′ such that S
t·p−→ S ′ and

S
p·t−→ S ′.

i3) unif(p, t, Sr) holds for every process r 6∈ {p, t} enabled in S, where Sr is defined by
S →r Sr.

Example 14. For the previous example, we can see that even though p and r commute at the
initial state, the uniformity property does not hold, because (1) t and r are uniformly inde-
pendent after p, (2) t and p are indeed unconditionally independent, and (3) after executing
t, p and r do not commute. Thus, they are not uniformly independent and hence the partial
order of sequence prt would be {p →prt r}.

3.1.1 Independence Constraints

Instead of computing state equivalence to check condition i2) of conditional independence
as in DPORcs [6], our approach assumes precomputed independence constraints (ICs) for
all pairs of atomic blocks in the program. An atomic block can contain just one (global
statement) that affects the global state, a sequence of local statements followed by a global
statement, or a block of code implemented as atomic (e.g., using locks, semaphores, etc.).
ICs will be evaluated at the appropriate state to determine the independence between pairs
of concurrent events executing such atomic blocks.

Definition 8 (ICs). Consider two events α and β that execute, respectively, the atomic blocks
ᾱ and β̄. The independence constraints Iᾱ,β̄ are a set of boolean expressions (constraints) on
the variables accessed by α and β (including local and global variables) s.t., if some constraint
C in Iᾱ,β̄ holds at the state reached by execution sequence E, written C(E), then condition
(2) of conditional independence holds.

Example 15. Let us see the independence constraints for the previous example. This example
has the following three atomic blocks, denoted with a bar over the process:

• t̄ : b1 = true;

• p̄ : x = 5;

• r̄ : if(b1) z = x;

∗ It̄,p̄ = {true}

∗ It̄,r̄ = {b1, z == 5}

∗ Ir̄,p̄ = {¬b1, x == 5}

Regarding the independence constraints: for the first pair of blocks, we have It̄,p̄ = {true},
which means that they are (unconditionally) independent at every possible state. For It̄,r̄ =
{b1, z == 5}, they are independent if b1== true, because then the assignment is always
executed; or if z == 5, since if z is already set to 5, then it does not matter if the assignment
is executed. Finally, we have Ir̄,p̄ = {¬b1, x == 5}, that is, either the assignment is not
executed or the value of x is already 5, thus z is always set to 5.

25

CHAPTER 3. CONSTRAINED DPOR

We have introduced a novel SMT-based approach to synthesize ICs between pairs of
atomic blocks of code. Our ICs can be used within any transformation or analysis tool
–beyond DPOR– which can gain accuracy or efficiency by knowing that fragments of code
(conditionally) commute. The description of the inference of these ICs can be found at Paper
2.

3.1.2 Sufficient Condition for Uniformity

The challenge now is to apply the notion of uniform conditional independence, that requires
to look ahead in the exploration, at all possible places in the DPOR algorithm. Condi-
tion i1) of Definition 7 is computed dynamically as usual during the exploration simply
storing the enabling dependencies. Condition i2) is provided by the ICs, possibly being
under-approximated in case the IC is a sufficient but not a necessary condition. Our suf-
ficient conditions are computed by a pre-analysis, that can then be checked efficiently and
dynamically during DPOR, to ensure uniformity. Intuitively, our sufficient condition ensures
uniformity by checking that the global variables involved in the constraint C used to ensure
the uniformity condition are not modified by other enabled events at the state. This check
is performed statically, thus, unavoidably it can have a loss of precision that leads to consid-
ering two event dependent even though they are indeed uniformly independent. The formal
definition of this condition can be found in Paper 2.

Example 16. Let us consider again the exploration of prt as in Example 14, we have seen
that events p and r are not uniformly independent. Now, let us check unif(p, r, Sε) (where Sε
is the initial state): Ir̄,p̄ = {¬ b1, x == 5}. Moreover, ¬b1 is true at the initial state and then,
condition 12) is satisfied. However, there exists a process (which is t) that may modify global
variable b1 and, consequently, if it is executed before p and r might make the condition ¬b1

becomes false. Thus, condition i3) is not satisfied, and p and r are considered as dependent.

Let us consider now the exploration of prt starting from the initial state (b1, z, x) =
(false, 5, 5). In this case, unif(p, r, Sε) is satisfied, since x is equals to 5 at the initial state, then
condition i2) is satisfied, and there does not exist a process that may modify global variable x.
Hence, condition i3) is also satisfied, and p and r are considered as uniformly independent.

3.2 The Constrained DPOR Algorithm

Our goal now is to introduce a DPOR algorithm which (1) provides techniques to both infer
and soundly check uniform independence, and (2) is able to exploit them at all points of
the DPOR algorithm where dependencies are used. The detailed algorithm can be found at
Paper 2. The main points are the following:

• Backtrack-set reduction. The race detection is strengthened by using the new sufficient
condition for uniformity. Thus, only races whose events are not uniformly independent
must be reversed by CDPOR. This reduces the number of processes added to the back-
track set, hence improving the scalability of DPOR with the corresponding potential
exploration reduction.

26

3.2. THE CONSTRAINED DPOR ALGORITHM

0:{p, r, t}sleep: rp, p, r back: p,r,t

p
r

t

1:{r, t}
r t

4:{p, t}sleep: p

t p
6:{r, p}sleep: p back: r,p

r p

2:{t}
t

?:{r}
r

5:{p}sleep: p

p

?:{t}
r

7:{p}
p

?:{r}
r

3:∅ ?:∅ ?:∅ ?:∅ 8:∅ ?:∅

Figure 3.1: Full execution tree computed by CDPOR for Example 17; Arrow labels: scheduled
process. Node labels right (in blue): backtrack set (only indicated for nodes with more than
one process). Node labels left (in red): sleep set (only indicated for nodes with more than
one sequence and sequences propagated from their parents).

• Sleep-set extension. Function propagate(E,p) is redefined in order to propagate down
processes in sleep(E) which execute events that are uniformly independent with p.
Consequently, this redefinition allows potentially propagating more processes than using
unconditional independence avoiding the exploration of more redundancies.

• New state equivalence check. We can avoid computing the alternative states to check
context-sensitive independence as in DPORcs, thanks to the use of the independence
constraints.

Example 17. Let us consider again Example 12:

Bool b1 = false; Int z = 5; Int x = 0;

process t : process p : process r :
b1 = true; x = 5; if (b1) z = x;

Figure 3.1 shows the full exploration tree performed by CDPOR. The first execution se-
quence is prt. We can see that after executing p, r and t are uniformly independent, thus
they are not in race and the exploration of the second execution is avoided. However, DPOR
algorithms using the classical approximation must explore it even though both lead to the same
final program state.

As we have seen in Example 16, p and r are dependent because the sufficient condition
for uniformity does not hold, thus r must be explored from state 0. Let us observe now the
second and third points: p and r are in race because unif(p, r, Sε) does not hold, where Sε
is the initial state. However, they are commutative, thus pr and rp are leading to the same
final state. To prevent this redundancy, sequence rp is added to the sleep set at state 0. This
new information prevents the exploration of the fourth execution. However, t can still be
executed at state 4. Once it is executed, a race between r and t is detected to be reversed.
Consequently, the fifth execution is explored.

Theorem 9 (Correctness of CDPOR). For all complete execution sequences E, explore(ε)
in CDPOR explores a complete execution sequence E ′ that reaches the same final state as E.

27

CHAPTER 3. CONSTRAINED DPOR

3.3 Contributions [CAV’18]

This work is further studied in detail in Paper 2 which addresses the challenges ii.a), ii.b),
ii.c) and iii). The major contributions achieved have been the following:

1. We have introduced sufficient conditions –that can be checked dynamically– to soundly
exploit ICs within the DPOR framework.

2. We have extended the state-of-the-art DPOR algorithm with new forms of pruning
(through expanding sleep sets and reducing backtrack sets).

3. We have presented an SMT-based approach to automatically synthesize ICs for atomic
blocks, whose applicability goes beyond the DPOR context.

4. We have proven the soundness of the overall approach.

5. Finally, we have experimentally shown the exponential gains achieved by CDPOR on
some typical concurrency benchmarks used in [6]. The experimental results of CDPOR
are compared against DPORcs and SDPOR. For many of the benchmarks, SDPOR and
DPORcs time out, while CDPOR can still handle them efficiently. Moreover, the time
to infer the independence constraints is negligible for most of the benchmarks.

3.4 Related Work

The work in [64, 48] generated for the first time independence constraints (ICs) for processes
with a single instruction following some predefined patterns. This is a problem strictly sim-
pler than our inference of ICs both in the type of IC generated (restricted to the patterns)
and on the single-instruction blocks that they consider. While [41] also derives constraints
directly fulfilling uniformity, we use an over-approximation to check the uniformity prop-
erty. Furthermore, our approach using an AllSAT SMT solver is different from the CEGAR
approach in [21]. The ICs are used in [64, 48] for SMT-based bounded model checking, an ap-
proach to model checking fundamentally different from our stateless model checking setting.
As a consequence, ICs are used in a different way, in our case with no bounds on the number
of processes, nor derivation lengths, but requiring a uniformity condition on independence in
order to ensure soundness.

Maximal causality reduction [44] is technically quite different from CDPOR as it inte-
grates SMT solving within the dynamic algorithm. Bounded model checking is then per-
formed, by encoding the whole reachability problem for a bound K as an SMT formula, such
that the error location is reachable in at most K steps if and only if the SMT formula is
satisfiable. In this setting, ICs are used to add information to the encoding that will help
the off-the-shelf SMT solver to avoid analyzing those redundant derivations with respect to
independence. Therefore, both model checking approaches are radically different since we
apply stateless model checking, and as a consequence ICs are used in a different way.

In [64], a reduction method that exploits conditional independence is proposed. The
purpose in that work is different from ours. They aim at using DPOR symbolically and, as
the values of variables will be unknown in general and it is necessary to be able to handle

28

3.4. RELATED WORK

ICs that are valid for any possible instantiation of variables. The ICs they infer are for single
instructions, a problem that is strictly simpler than our inference. Besides, their method
ensures that no redundancy is explored for systems with two threads.

29

CHAPTER 3. CONSTRAINED DPOR

30

Chapter 4

Application: Software-Defined
Networks

Software-Defined Networks (SDN) is a relatively recent networking paradigm which is now
widely used in industry, with many companies—such as Google and Facebook—using SDN to
control their backbone networks and data-centers. The core principle in SDN is the separation
of control and data planes—there is a centralized controller which operates a collection of
distributed interconnected switches.

Network verification has become increasingly popular since SDN was introduced because
in this new paradigm the amount of detailed information available about network events
is rich enough and can be centrally gathered to check for properties, both statically and
dynamically, of the network behavior. Moreover, the controller itself is a program which can
be analyzed and verified before deployment. However, the distributed and concurrent nature
of network behavior makes both the programming and verification tasks challenging. Some
of the bugs that can be found in existing (programmable) networks are reminiscent of faults
that have appeared in distributed and concurrent systems, and which have inspired much
research in the verification and formal methods communities.

This chapter is organized as follows:

• Section 4.1 details how the different components of an SDN network work and the
different kind of exchanged messages.

• Section 4.2 introduces the actor-based concurrency model and the language used to
model the SDN programs.

• Section 4.3 describes the encoding using the actor model of the main components in
SDN networks (controller, switches, hosts), and one of the most important features:
OpenFlow barriers.

• Section 4.4 summarizes the main challenges of using model checking for SDN networks
and the advantages of applying Constrained DPOR to several case studies.

• Finally, the main contributions of the thesis in this subject and the related work are
presented in Sections 4.5 and 4.6, respectively.

31

CHAPTER 4. APPLICATION: SOFTWARE-DEFINED NETWORKS

Figure 4.1: Structure of the SDN load-balancer in Example 18.

4.1 Components of Software-Defined Networks

SDN is a networking architecture where a central software controller operates on a collection
of distributed interconnected switches. Hosts communicate with each other by sending pack-
ets to their switches. Each switch has a flow table, which is a collection of guarded forwarding
rules to determine the route of incoming packets. When a switch receives a packet, it checks
if its own flow table contains a forwarding rule to determine the route of the packet. If it
does, the packet is sent to the next switch or to the final host. Otherwise, it sends a message
to the controller via a dedicated link, in order to receive information about the destination of
the packet, which is buffered until instructions from the controller arrive. Depending on its
policy, the controller answers by sending several messages to the switches involved in the path
of the packet to the final host and dynamically updates switches’ policies depending on the
observed flow of packets, which is a simple but powerful way to react to unexpected events
in the network. Furthermore, in order to avoid synchronization problems, the controller may
also send a special kind of message, called barriers [56], designed to force a switch to handle
all previous control messages.

Example 18. Figure 4.1 shows the structure of a simple load-balancer implemented in SDN
and how potential bugs can easily arise due to the concurrent behavior and asynchrony of
message passing. This example has been taken from [31]. Suppose we want to balance the
traffic to a server by using two replicas Replica1 and Replica2 to which the controller alternates
the traffic in a round-robin fashion. The host wants to communicate with the server by using
Switch1. Even in this simple network, an incorrect implementation of the controller can
lead to serious problems. Let us suppose an implementation with a naive controller, which
simply instructs switches to forward packets along the shortest path to the chosen replica. This
implementation ignores the potential concurrency in actions taken by switches and controller,
leading to a forwarding loop between Switch1 and Switch2, that is, a situation where a packet

32

4.2. ACTOR-BASED CONCURRENCY MODEL

is sent from Switch1 to Switch2 and vice-versa in an endless loop.
Once the host sends a packet to Switch1, Switch1 queries the route to the controller. In

the first round, Replica1 is chosen. Then, the controller sends rules to Switch1 and Switch2

telling them to forward the packet to Switch2 and Replica1, respectively. Let us suppose that
Switch1 forwards the packet to Switch2 before the end of the first round, i.e., before the previous
rule is installed on Switch2, and this causes Switch2 to query the controller. When receiving
two messages of unknown packets (first from Switch1 and then from Switch2) the controller
assumes that the packet at Switch2 is a second unknown packet and therefore triggers the
second round of the round-robin protocol in which the controller chooses Replica2 instead of
Replica1 to balance the load. Thus, it sends instructions to install rules on Switch2, Switch1

and Switch3 to forward the packet to Switch1, Switch3 and Replica2, respectively. When the
controller rules arrive at Switch1, it will have two contradictory instructions, telling it to
forward the packet either to Switch2 or to Switch3. In the former, a forwarding loop between
Switch1 and Switch2 happens. This issue can be avoided if the implementation uses barriers—
the controller will then guarantee that Switch2 could not request for a new forwarding rule
before all the previous control messages sent to it were received and processed.

Let us notice here that the control messages between the controller and the switches can be
processed in arbitrary order and hence, in principle, all possible orderings must be considered
in order to detect bugs of the implementation of the network. The combinatorial explosion
problem in the context of SDN programs is exacerbated because all network components
(switches, hosts, controllers) are distributed nodes that run in parallel and send messages
and packets to each other. DPOR techniques can be used in order to alleviate this problem by
identifying redundant executions. However, using unconditional independence in this context
is not sufficient because every time a switch receives a message, it modifies its flow table,
thus every pair of messages are considered as dependent even though many of them are not.
In this framework, the use of conditional independence is vital: it allows us to declare that
two accesses to the flow table are independent if they are not accessing the same entry of the
flow table.

4.2 Actor-based Concurrency Model

In the actor-based paradigm [5, 42], each actor represents a processor with a memory, a
procedure stack, and an unordered buffer of pending tasks. Initially, all processors are idle.
When an idle processor’s task buffer is non-empty, some task is selected for execution. When
a task completes, its processor becomes idle again, chooses the next pending task, and so
on. Besides reading and writing its own memory, each task can post tasks to the buffers of
any processor, including its own, and synchronize with the termination of tasks. Instruction
o ! m(p) means that the current task posts a new task m in the distributed component o
with parameters p. The synchronization is performed by means of future variables. A future
variable acts as a proxy for a result that remains unknown until the computation of its value
by the corresponding task is completed. A future variable is bound to a task at the moment
it is spawned. Instruction Fut<Int> f = o ! m(p) means that the future variable f receives
an integer value returned by the execution of the spawned task m. When the task finishes,
its future variable becomes ready, and the result can be retrieved. There are two kinds of

33

CHAPTER 4. APPLICATION: SOFTWARE-DEFINED NETWORKS

synchronization mechanisms: the instruction f.get is blocking because the task executing
does not release the processor until the future variable f becomes ready. On the other hand,
the instruction await f? is non-blocking, that is, if the future variable f is not completed, it
releases the processor and other tasks of the actor can be executed. The number of actors
does not need to be known a priori, they can be dynamically created using the instruction
new. In order to take advantage of our DPOR-based tools, we model the SDN networks using
the actor-based language ABS [45].

4.3 SDN-Actors: an Actor Based Encoding of SDN

Programs

As already mentioned, verification of Software-Defined Networks is very challenging because
of the combinatorial explosion on the number of situations that must be considered to detect
synchronization problems, deadlocks, livelocks, and other concurrency bugs. Partial Order
Reduction techniques are essential to reduce the state space to be explored. To use our tools
to evaluate several SDN case studies, we need to model these networks using the actor-based
paradigm. In Paper 3, we have presented the concept of SDN-Actor : an actor based encoding
of SDN programs. The first step is to describe the creation and initialization of the actors
according to the network topology:

1. A controller actor is created.

2. A switch actor is created for each switch in the topology with, at least, three fields in
its memory: its identifier, the flow table, and a reference to the controller.

3. Similarly, a host actor is created for each host in the topology with, at least, two fields
in its memory: its identifier and a reference to the switch actor that it is connected to.

4. Once every switch and host actor are created, the controller actor must learn the link
relations among them to be able to update the switches’ flow tables on demand.

The second step is to provide the encoding of the operations and communications for
switch and host actors.

• Each host actor must be able to perform two different operations: (1) operation sendIn
to send a packet to the switch it is connected to and (2) operation hostHandlePacket to
receive a packet from the switch.

• Each switch actor must be able to perform three different operations: (1) operation
switchHandlePacket to handle a packet which is received from a host. If there is an en-
try for the packet in the flow table, it asynchronously makes the corresponding action;
otherwise, it sends a controlHandleMessage request to the controller to receive instruc-
tions to update the flow table and stores the packet in a buffer. (2) Operation sendOut
to handle a message from the controller with the packet identifier to be removed from
the buffer and the corresponding packet to be sent according to the information in the
flow table. Finally, (3) operation switchHandleMessage to handle a message from the
controller with an instruction to update the flow table.

34

4.4. DPOR-BASED MODEL CHECKING OF SDN-ACTORS

Finally, the third step is to encode the controller actor.

• The controller actor must be able to perform, at least, two different operations: (1)
operation controlHandleMessage to handle a message from the switch with a packet iden-
tifier for which it requests instructions. The current network policy is used (depending
on the type of controller) to obtain a list of switch identifiers and their corresponding
updating instructions to be sent by means of switchHandleMessage operations. (2) Op-
eration addConfig with the references to switches and hosts in order to set up the initial
network topology.

Altogether, our encoding provides an actor-based semantics foundation of SDN networks
that follow the OpenFlow specification [56]. Proofs of soundness for the encoding can be
found in Paper 3.

Furthermore, we have also encoded one of the most challenging aspects of Software-
Defined Networks: barrier messages [56]. These messages have been designed to force a
switch to handle all previous control messages before processing any new message, and thus
avoid synchronization problems. Intuitively, the proposed solution consists in the controller
not sending further messages to any switch on which a barrier has been activated, until
this switch acknowledges that all previous control messages have been already processed.
Acknowledgment messages are modeled by means of future variables. For each message sent
to a switch, the controller stores the future variable related to the message. Thus, when a
barrier is activated on such switch, the controller needs to ensure that all the future variables
related to such switch are ready.

4.4 DPOR-based Model Checking of SDN-Actors

The state space problem for model checking SDN programs is exacerbated because all network
components (switches, hosts, controllers) are distributed nodes that run in parallel and whose
concurrent tasks can interact. As we have seen in Example 18, a controller message sent from
a switch can change the state of another switch, and affect the route of an incoming packet.
Thus, in principle, a model checker needs to explore all possible reorderings of dependent
tasks, leading to a huge number of possible executions even for networks with few nodes
and few packets. Besides, the space is unbounded because hosts may generate unboundedly
many packets that could be simultaneously traversing the network. One of the most successful
approaches to handle unbounded input is to impose a bound k on the number of packets of
each type (as e.g. in [25]). Consequently, the search space is exhaustively explored for the
considered bound, possibly missing bugs that only show up when more packets are considered.

When DPOR is applied to actor systems, there are inherent reductions [62] because: (i) we
can atomically execute each task (without re-orderings) until a return or an await instruction
are found since concurrency is non-preemptive and the active task cannot be interrupted.
This avoids having to consider the reorderings at the level of instructions (as one must do in
thread-based concurrency) and allows us to work at the level of tasks. (ii) Besides that, two
tasks can have a dependency only if they belong to the same actor. This is because only the
actor itself can modify its private memory.

When two tasks that belong to the same actor are found, in the context of DPOR
techniques, unconditional independence is commonly over-approximated by requiring that

35

CHAPTER 4. APPLICATION: SOFTWARE-DEFINED NETWORKS

the fields of the actor that are accessed by one task are not modified by the other. In
our model, all tasks posted on a given switch access its flow table, namely sendOut and
switchHandlePacket read it and switchHandleMessage writes it. Thus, in principle, any task exe-
cuting switchHandleMessage is considered dependent on the other two. When multiple packets
are traversing the network it is usually the case that the different packets access distinct en-
tries in the flow table. This results in the inaccurate detection of many dependencies hence
producing redundant executions. Using Constrained DPOR, we alleviate this state space
explosion:

1. Entry-level independence. We adopt a finer-grained notion of entry-level independence
for which an access to entry i is independent from an access to j if i 6= j.

2. Independence constraints. Even when two tasks t and p access the same entry, we
can pre-generate independence constraints for each pair of tasks to guarantee com-
mutativity. Then, Constrained DPOR can use these constraints to avoid redundant
explorations. For instance, executing two consecutive switchHandleMessage on the same
entry might lead to the same state if the flow table contains duplicate entries.

4.5 Contributions

The main contributions achieved in our actor-based verification of SDN networks are:

1. SDN-Actors: An encoding of all basic components of an SDN network (switches, hosts,
controller) into the actor-based language ABS [45] and a soundness proof of our encod-
ing using the semantics of SDN networks.

2. Barriers: One of the most challenging aspects to encode are the OpenFlow barrier
messages, special instructions that the controller can use to force switches to execute
all their queued tasks. We provide an implementation of barriers using conditional
synchronization and a soundness result.

3. Model checker: A model checker for our SDN models built on top of the SYCO tool
[11] that incorporates different DPOR algorithms and visualization tools to view the
exploration and execution diagram.

4. Case studies: Several case studies of SDN and properties to illustrate the versatility
and potential of the approach. We were able to find bugs related to programming errors
in the controller, forwarding loops, and violation of safety policies, and scale to larger
networks than related techniques.

4.6 Related Work

Many static and dynamic techniques for verification closely related to our approach have been
developed in the last years. Using static approaches, one has the main advantage that, when
the property can be proven, it is ensured for any possible execution, while using dynamic
analysis only guarantees the property for the considered inputs. As a counterpart, to cover all

36

4.6. RELATED WORK

possible behaviors, static analysis needs to perform abstraction, which can give a don’t-know
answer, and, possibly, false positives. When the behavior of the programs depends on the
interaction of events, a static analyzer takes into account all possible interleavings and needs
to perform abstraction that can lead to loss of precision. For properties such as congestion,
it could give an overly pessimistic result (that would very unlikely to happen in practice).
In [20], the work on Horn-based verification is lifted to the SDN programming paradigm,
but excluding barriers. Using this kind of verification, one can prove safety invariants on
the program. Using our framework, we can furthermore check liveness invariants (e.g., loop
detection) by inspecting the traces computed by the model checker. Therefore, the suitability
of dynamic or static approaches also depends on the property that one wants to prove, and the
two approaches usually complement each other. In the line of work on the NetKat language
[34, 17, 22], static algebraic techniques are used to prove properties of SDN programs. NetKat
does not include primitives for concurrency and has a significantly higher level of abstraction.
Therefore capturing features and scenarios we are interested in would be difficult. In [57], a
particular type of attacks in the context of SDN networks has been modeled in Maude using
the so-called hierarchically structured composite actor systems described in [30]. This work
does not provide a general model for SDN networks and, besides, barriers are not considered.
On the other hand, it applies a statistical model checker, which requires to have a given
scheduler for the messages. Such scheduler determines the exact order in which messages
are handled while our framework captures all possible behaviors. Hence, both their aim and
their SDN model are radically different from ours.

Comparison of DPOR reductions with related work. There exist other model check-
ers for SDN programs that have used DPOR-based algorithms before [25, 53].

When compared with [25], there are two main differences: (1) they use state systematic
testing which requires saving all states, while we have adopted a stateless algorithm that has
proven to be much more scalable, (2) they consider reorderings among all possible events,
what can lead to a huge search tree. The use of DPOR in their case, as their experiments
show, achieves a 20% reduction of the search space. The reason for this modest reduction
might be that it does not take advantage of the inherent independence of the code executed by
the distributed elements of the network (switches, host, clients) nor to the fact that barriers
allow removing dependencies, as our actor-based SDN model does. In contrast, the use of
actors together with the Constrained DPOR algorithm in our case, instantiated with our
notion of independence, allows us to avoid those reorderings that will not lead to a different
network configuration. Similarly to their work, our algorithm can run symbolically.

In Kuai [53], a number of optimizations are defined to take advantage of these aspects.
Such optimizations must be (1) identified and formalized in the semantics, (2) proven correct
and, (3) implemented in the model checker. Instead, due to our formalization using actors,
the optimizations are already implicit in the model and handled by the model checker without
requiring any extension. Our approach could be adapted to apply abstractions that bound
the size of buffers [53] and to consider environment messages [61], without requiring any
conceptual change in the framework.

Finally, the approach of [31, 50] is fundamentally different from ours because it is based
on analyzing dynamically given snapshots of the network from real executions. Instead,
our approach tries to find programming errors by inspecting only the SDN program and

37

CHAPTER 4. APPLICATION: SOFTWARE-DEFINED NETWORKS

considering all possible execution traces, thus enabling verification at system design time.

38

Chapter 5

Combining Static Analysis and
Testing for Deadlock Detection

One of the most common errors in concurrent programming is a deadlock situation. Conse-
quently, a main goal of verification and testing tools is, respectively, proving deadlock freedom
and deadlock detection. A deadlock happens when a concurrent program reaches a state in
which one or more tasks are waiting for each other’s termination and none of them can make
any progress. In this chapter, we consider the actor-based paradigm explained in Section 4.2.
Let us see a simple example to illustrate what a deadlock is.

class A {Int B() {Fut<Int> f = this!C();
f.get;}

Int C() {return 0;}
}

An actor executing task B spawns task C to execute in the current actor (hence uses this
to refer to the actor itself) and awaits for its termination. However, instruction get does not
release the processor, thus task C will never be executed and then B cannot be completed. If
there are other actors awaiting for the termination of a task in the blocked actor, they will
also get blocked.

The rest of this chapter is structured as follows:

• Section 5.1 introduces the state-of-the-art work in deadlock analysis and a simple ex-
ample of a communication protocol between a database and several workers that will
be used to illustrate the main ideas behind this chapter.

• Section 5.2 presents Deadlock-guided testing with a detailed example and our main
contribution in this line of work.

• Section 5.3 summarizes the main ideas behind the symbolic execution technique.

• Section 5.4 extends the ideas explained in Section 5.2 to the context of symbolic exe-
cution. In particular, it shows the main contributions to generate initial contexts to be
used during symbolic execution.

• Section 5.5 presents our tool SYCO: a systematic testing tool for actor programs.

• Finally, Section 5.6 overviews the related work in this area.

39

CHAPTER 5. COMBINING STATIC ANALYSIS AND TESTING FOR DEADLOCK DETECTION

5.1 Deadlock Analysis

Static analysis and testing are two different ways of detecting deadlocks that often comple-
ment each other and thus it seems quite natural to combine them. Static analysis evaluates
a program by examining its code but without executing it. As static analysis examines all
possible execution paths and variable values, it can reveal deadlocks that could not manifest
until weeks or months after releasing the application. However, due to the use of approxima-
tions, most static analyses can only verify the absence of deadlock but not its presence, i.e.,
they can produce false positives. Moreover, when a potential deadlock is detected, state-of-
the-art analysis tools [33, 36, 37] provide little (and often no) information on the source of
the deadlock. In particular, for deadlocks that are complex (involve many tasks and actors),
it is essential to know the task interleavings that have occurred and the actors involved in
the deadlock, i.e., provide a concrete deadlock trace that allows the programmer to identify
and fix the problem. Let us see now an example that will be used to illustrate the ideas of
this chapter.

Example 19. The code in Figure 5.1 simulates a simple communication protocol among a
database and n workers. Our implementation has three classes, a Main class which includes
the main method, and classes Worker and DB implementing the workers and the database,
respectively. The main method just calls method simulate with the number of workers to create
in its parameter (in this case 1). Method simulate creates the database and the n workers, and
invokes methods register and work on each of them, respectively. The work method of a worker
simply accesses the database (invoking asynchronously method getData) and then blocks until it
gets the result, which is assigned to its data field. The register method of the database registers
the provided worker reference adding it to its clients’ list field. We use add and contains to
refer to predefined functions for list. In case checkOn is true, before adding the worker, it
makes sure that the worker is online. This is done by invoking asynchronously method ping

with a concrete value and blocking until it gets the result with the same value. Method getData

of the database returns its data field if the caller worker is registered, otherwise, it returns
null.

The deadlock analysis of [33] provides a set of abstractions of potential deadlock cycles.
If this set is empty, then the program is deadlock-free. Otherwise, there may be a deadlock
situation. Each abstract deadlock cycle has as set of nodes, the task and actor abstractions
involved in the deadlock and the set of arrows must be interpreted as ”the origin node is
waiting for the ending node due to a synchronization primitive”.

Example 20. In the previous example, there are three abstract actors, m, the main actor
which is not relevant for this example, W and DB, corresponding to the set of worker actors
and the database actors, respectively. Furthermore, there are four relevant abstract tasks reg
(method register), getD (method getData), work (method work) and ping (method ping). If
the program in Figure 5.1 is analyzed by the deadlock analysis of [33], then the next abstract
deadlock cycle is inferred:

DB
register−−−−−→ ping

ping−−−→W
work−−−→ getD

getD−−−→ DB

It can be interpreted as follows: a database DB can be blocked in an instance of method
register waiting for the execution of an instance of method ping by a worker W . At the same

40

5.2. DEADLOCK-GUIDED TESTING [IFM’16]

1 class Main{
2 main(){
3 this!simulate(1);
4 return 0;
5 }
6 simulate(int n){
7 DB db = new DB();
8 while (n > 0){
9 Worker w = new Worker();

10 db!register(w);
11 w!work(db);
12 n = n−1;
13 }
14 return 0;
15 }
16 }// end of class Main
17

18 class DB{
19 Data data = ...;
20 List<Worker> clients;// Empty list
21 Bool checkOn = true;

22 int register(Worker w){
23 if (checkOn){
24 Fut〈int〉 f = w!ping(5);
25 if (f.get == 5) add(clients,w);
26 } else add(clients,w);
27 return 0;
28 }
29 Data getData(Worker w){
30 if (contains(w,clients)) return data;
31 else return null;
32 }
33 }// end of class DB
34 class Worker{
35 Data data;
36 int work(DB db){
37 Fut〈Data〉 f = db!getData(this);
38 data = f.get;
39 return 0;
40 }
41 int ping(int n){return n;}
42 }// end of class Worker

Figure 5.1: Working example: Communication protocol among a DB and n workers.

time, this worker may be blocked in an instance of method work waiting for DB to complete
a task getData. If a situation like this deadlock cycle happens during the execution of the
program, a deadlock is found.

5.2 Deadlock-Guided Testing [iFM’16]

In order to guide the systematic execution towards paths leading to deadlock, we use these
abstract deadlock cycles to generate deadlock-cycle constraints. These constraints must hold
in all states of executions leading to the deadlock cycle. As soon as one of them is not satisfied,
the exploration of this derivation is discarded because it is guaranteed not to contain any
deadlock.

Deadlock-guided testing (DGT) tries all possible orderings and checks the satisfiability of
these constraints every time a new state is explored. Deadlock-cycle constraints require that
the current state of the execution always contains a representative of the deadlock cycle, that
is, an instance for each of the abstract nodes of the detected cycle. As soon as one of the
tasks is completely executed instead of being blocked in a synchronization point, such a task
cannot be a representative. DGT checks if there can be a new representative along with the
execution. In such a case, the exploration continues normally. Otherwise, the execution is
stopped and other orderings must be considered.

41

CHAPTER 5. COMBINING STATIC ANALYSIS AND TESTING FOR DEADLOCK DETECTION

Example 21. Let us consider again the previous example. DGT first executes tasks main

and simulate. The resulting state contains two actors, a database and a worker, with a unique
task: register and work, respectively. Let us suppose that DGT chooses the database to execute
register, then a new state is reached where the worker can execute either work or ping. If the
latter is executed, DGT detects that ping has been completely executed and there cannot be
another representative of the abstract task ping, thus it stops the exploration of such execution,
because it is deadlock-free. If register is executed, then it detects the deadlock situation as soon
as possible and it continues with the execution.

Briefly, the main contributions of Paper 5 that achieve the goal v) of this thesis are:

1. We extend a standard semantics for asynchronous programs with information about
the task interleavings made and the status of tasks.

2. We provide a formal characterization of a deadlock state which can be checked along
with the execution and allows us to early detect deadlocks.

3. We present a new methodology to detect deadlocks which combines testing and static
analysis as follows: the deadlock cycles inferred by static analysis are used to guide
the testing process towards paths that might lead to a deadlock cycle while discarding
deadlock-free paths. Our method can be used both for static and dynamic testing.

4. We introduce several deadlock-based testing criteria, namely to find the first deadlock
trace, a representative trace for each deadlock cycle, or all deadlock traces.

5. We implement our methodology in the SYCO testing system and perform a thorough
experimental evaluation of some classical examples. These experiments support our
claim that testing complements deadlock analysis. We have used benchmarks that
include classical concurrency patterns containing deadlocks and deadlock-free versions
of some of them. We have compared the systematic testing with deadlock-guided
testing and the results show that our methodology complements deadlock analysis,
finding deadlock executions and discarding false positives, with a significant reduction
in the number of states explored.

5.3 Initial Contexts by Symbolic Executions

Symbolic execution [19, 24, 7] is arguably the most widely used enabling technique for white-
box testing. It consists in executing a program with the contents of its input arguments being
symbolic variables rather than concrete values. During the course of symbolic execution, the
values of the program’s variables are represented as symbolic expressions over the input sym-
bolic values and a path condition is maintained. Such a path condition is updated whenever
a branch instruction is executed. The satisfiability of each of these branches is checked and
symbolic execution stops exploring any path whose path condition becomes unsatisfiable.
The result of applying symbolic execution on a program is the set of possible final states and
the path conditions over the input variables that must be satisfied to reach each of them.

42

5.4. GENERATING DEADLOCK CONTEXTS FOR SYMBOLIC EXECUTION [LOPSTR’17]

In the context of concurrent programs, an initial context is the set of initial actors and ini-
tial tasks that must be executed during symbolic execution. Even though symbolic execution
is able to automatically generate different initial contexts and expose bugs and concurrency
problems that would introduce a new combinatorial explosion on the initial contexts that
must be explored. Then, a maximum number of initial actors and initial tasks considered
must be set up to guarantee termination of symbolic execution.

5.4 Generating Deadlock Contexts for Symbolic Exe-

cution [LOPSTR’17]

One of the main challenges for symbolic execution is to automatically and systematically
generate distributed contexts that give evidence of deadlock situations and then, help pro-
grammers to understand the causes of the bug. Therefore, contexts must contain not only
the set of actors involved but also their interfering tasks getting blocked in the deadlock. The
generation of relevant contexts is challenging because it must avoid (1) useless contexts that
do not expose any deadlock and (2) redundant contexts that do not provide programmers
with more information. Therefore, it is crucial to generate the minimal set of initial contexts
that contains only one representative of equivalent contexts.

Example 22. It is easy to see for the previous example which are the tasks that must neces-
sarily be in an initial context leading to deadlock even without an automatic procedure. The
initial context must contain at least two actors: a database and a worker with at least, the
tasks register and work, respectively. Regarding the parameters of these tasks, they remain as
variables that will be instantiated during symbolic execution. The possible aliasing between
the parameter w of task register and the actor worker will make symbolic execution try both
w = worker and w 6= worker during the exploration. The same situation will happen for the
parameter db of task work and the actor database. Then, symbolic execution will be able to
find a deadlock when w = worker and db = database, and the remaining possibilities will be
leading to deadlock-free executions. Consequently, the initial context must contain these two
actors with task work and register, respectively.

Let us suppose that field checkOn is initialized to false and there is another method of class
DB (called makesTrue) which makes such field true. In this situation, if we consider again
the previous initial context, symbolic execution does not detect any deadlock situation using
such context: during the execution of register, field checkOn is false and thus, no call ping to
worker is performed, and there will not be any deadlock.

In order to solve this problem, initial contexts must contain not only tasks involved in
the execution but also those methods that modify those fields involved in conditions that
may affect the execution of the asynchronous calls or the synchronization executions of the
deadlock. For the previous example, method makesTrue must be also part of the initial state.

The major contributions of our work that address the challenge vi) of this thesis are
introduced in Paper 6 and can be summarized as follows:

• We introduce the concept of a minimal set of initial contexts and extend a static testing
framework to automatically and systematically generate them.

43

CHAPTER 5. COMBINING STATIC ANALYSIS AND TESTING FOR DEADLOCK DETECTION

• We propose a new algorithm to infer which tasks produce or may produce conflicting
interactions from the deadlock cycles. This information is useful to discard initial states
or contexts that cannot lead to deadlock.

• We present a deadlock-guided approach to effectively generate initial contexts for dead-
lock detection and prove its soundness.

• We have implemented our proposal within the SYCO system [11] and performed an
experimental evaluation to show its efficiency and effectiveness. These experiments
show the effectiveness of our approach to generate initial contexts for deadlock detection
compared to full systematic generation. Additionally, these results demonstrate the
potential of the technique when it is applied within our deadlock detection framework.

5.5 SYCO: Systematic Testing for Concurrent Objects

[CC’16]

We have developed a prototype tool called SYCO, a dynamic/static testing tool for the
actor-based language ABS. It includes all the POR techniques described in Chapters 1,
2 and 3 to detect and avoid redundant explorations and also it includes the techniques
proposed in this chapter. This tool is available for online use through a user-friendly web
interface at http://costa.fdi.ucm.es/syco, where the code of all the benchmarks used in
the experimental evaluation of this thesis can be found.

SYCO is a systematic tester for ABS concurrent objects. Figure 5.2 shows its main archi-
tecture. Boxes with dash lines are internal components of SYCO whereas boxes with regular
lines are external components. The user interacts with SYCO through its web interface
which has been built using the EasyInterface [29] framework. The SYCO engine receives an
ABS program and a selection of parameters. The ABS compiler compiles the program into an
abstract-syntax-tree (AST) which is then transformed into the SYCO intermediate represen-
tation (IR). The DPOR engine carries out the actual systematic testing process using any
of the algorithms in Chapters 1, 2 and 3. The output manager then generates the output
in the format which is required by EasyInterface, including an XML file containing all the
EasyInterface commands and actions and SVG diagrams. In case deadlock-guided testing is
applied, the DECO deadlock analyzer [33] is invoked, which returns a set of potential dead-
lock cycles that are then fed to the DPOR engine to guide the testing process (discarding
non-deadlock executions).

5.6 Related Work

Since our method uses in conjunction static and dynamic analyses, and the individual meth-
ods can be used for multiple purposes, we need to relate it to a wide spectrum of existing
techniques that we classify as follows.

Deadlock Analysis. There is a large body of work on deadlock detection including both
dynamic and static approaches. Much of the existing work, both for asynchronous programs

44

http://costa.fdi.ucm.es/syco

5.6. RELATED WORK

Figure 5.2: SYCO architecture

[33, 35] and thread-based programs [54], is based on static analysis techniques. Static analysis
can ensure the absence of errors, however, it works on approximations (especially for pointer
aliasing) which might lead to a “don’t know” answer.

Our work complements static analysis techniques and can be used to look for deadlock
paths when static analysis is not able to prove deadlock freedom. Using our method, we try
to find a deadlock by exploring the paths (possibly infinite) given by a deadlock detection
algorithm that relies on the static information. Although we have used the output given by
the deadlock analyzer of [33], our combined approach could use the output of other static
analyzers (e.g., [35]) without requiring any conceptual change to the combined framework.

Symbolic Execution, Verification, Model Checking, Testing. By relying only on
systematic testing and symbolic execution, one can do (non-guided) deadlock detection al-
ready, and besides other types of errors can also be captured (e.g., find critical states that
can cause the system to crash). This is the approach taken in model checking and other
verification techniques which are based on symbolic execution to automatically verify cor-
rectness properties. Indeed, deadlock detection has been intensively studied in the context of
model checking (see, e.g., [58]). Both static and dynamic testing aim at finding bugs, among
them deadlocks (see, e.g., [27, 47, 16, 43]). Indeed, symbolic execution is at the core of static
testing systems and our symbolic execution engine is the basis for SYCO.

Hybrid Approaches. We now relate our work to hybrid approaches that use static in-
formation during testing for deadlock detection, namely [46] and [4]. As regards [46], it
first performs a transformation of the program into a trace program that only keeps the
instructions that are relevant for deadlock and then dynamic testing is performed on such
program. The approach is fundamentally different from ours: in their case since model check-
ing is performed on the trace program (that over-approximates the deadlock behavior), the
method can detect deadlocks that do not exist in the program, while in our case this is not

45

CHAPTER 5. COMBINING STATIC ANALYSIS AND TESTING FOR DEADLOCK DETECTION

possible since the testing is performed on the original program and the analysis information
is only used to drive the execution. As regards [4], the information inferred from a type
system is used to accelerate the detection of potential cycles. This work shares with our
work that information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for Java threads
captures deadlocks due to the use of locks and cannot handle wait-notify, while our technique
is not developed for specific patterns but works on a general characterization of deadlock of
asynchronous programs; their underlying static analysis is a type inference algorithm which
infers deadlock types and the checking algorithm needs to understand these types to take
advantage of them, while we base our method on an analysis which infers descriptions of
chains of tasks and a formal semantics is enriched to interpret them.

46

Chapter 6

Conclusions and Future Work

This chapter overviews the main contributions of this thesis and the future work. It is
structured as follows:

• Section 6.1 summarizes the main contributions in DPOR algorithms based on using
different notions of conditional independence and it overviews the future work for this
topic.

• Section 6.2 reviews the main contributions in Software-Defined Networks and the future
work in this area.

• Finally, Section 6.3 sums up the contributions obtained by combining static analysis
and testing to guide the executions towards deadlock situations and it also overviews
its future work.

6.1 Conditional Independence in DPOR Algorithms

A main goal of this thesis has been to improve the state-of-the-art in Dynamic Partial Order
Reduction algorithms by using notions of conditional independence. Our first challenge
was to combine two notions of independence, namely context-sensitive independence and
independence modulo observability, and study their synergy.

Firstly, we have extended the Optimal DPOR algorithm to handle context-sensitive inde-
pendence. We have built on top of the Optimal DPOR algorithm, another version that allows
using independence modulo observability. Furthermore, we have proposed a new check, called
state equivalence modulo observability that allows detecting even more redundancies. Fur-
thermore, we have performed an experimental evaluation with three sets of benchmarks that
shows exponential gains compared to Context-Sensitive DPOR and Optimal DPOR with
Observers.

Additionally, we have also introduced sufficient conditions that allow us to exploit in-
dependence constraints within the DPOR framework. These conditions can be checked ef-
ficiently and dynamically and allow us to extend the classic DPOR algorithms with new
ways of pruning. Moreover, the experimental evaluation demonstrates huge reductions in the
number of explored executions and time thanks to these prunings.

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We thus argue that the techniques proposed in this thesis provide actual evidence that
using conditional independence within DPOR algorithms improves upon state-of-the-art re-
sults. Moreover, our experimental evaluation shows exponential gains compared to DPOR
algorithms using unconditional independence.

Recovering states of the current execution sequence. A potential hazard of using
conditional independence within DPOR algorithms is that it needs to check independence in
the states explored in the current execution sequence but not in the current state. It does not
need to revisit states that have been completely explored and backtracked, but only those in
the current execution sequence. There are several strategies to confront this challenge: on-
demand recomputing, where all states are recomputed following the same order of events that
led to them (and then no memory usage is needed); full storage, where all states are stored
to be used until the state is backtracked; and state caching [59], where states are stored until
the memory is approaching full utilization. Our current implementation follows the second
strategy. According to our experimental results, full storage performs efficiently, since the
number of stored states is limited by the number of events in each execution sequence and it
remains quite low for the experiments. However, our future work includes the implementation
of these strategies to study the gains obtained by each of them.

Combination of uniform conditional independence and independence modulo ob-
servability. It is on our agenda to study the combination of the constrained framework
with the independence modulo observability. Independence constraints contain useful condi-
tions about the commutativity of each pair of atomic blocks. Consequently, an improvement
of these ICs with information of possible observers may enable the use of more efficient
checks that replace the state equivalence modulo observability. We strongly believe that the
resulting framework may achieve great gains in comparison with the previous algorithms.

Extension of Data-Centric DPOR using conditional independence. Additionally,
other recent approaches have considered alternative ways of refining the detection of inde-
pendence. In particular, Data-Centric DPOR [26] focused on the read-write of variables.
They also use a notion of observation but different from [18] claiming that two executions
are equivalent if every reading event observes the same write event in both executions. The
main advantage of this approach is that it is proven to detect more executions as equiva-
lent thanks to this notion of observation. However, it may explore several executions per
equivalence class, thus this algorithm is not optimal.

Based on this new notion, [3] proposes another algorithm that guarantees optimality
and, consequently, it can obtain exponential gains in comparison with Data-Centric DPOR.
Nevertheless, none of these approaches considers conditional independence. We believe that
both algorithms can also benefit from using a conditional variant as we have studied in this
thesis. It is on our agenda to further study the combination of both techniques.

Optimality of conditional framework. Although conditional frameworks have experi-
mentally shown to achieve exponential reductions, they have not been proven optimal with

48

6.2. MODEL-CHECKING FOR SOFTWARE-DEFINED NETWORKS

respect to the equivalence classes induced by a conditional relation. Consequently, the Con-
strained DPOR algorithm sometimes initiates partial executions that get stopped by the
sleep sets. Even though this partial executions must be fully explored by unconditional al-
gorithms, our future work includes the generalization of the optimal DPOR framework to
enable the use of conditional happens-before relations.

A better approximation of uniformity. One of the most important contributions of
this thesis is the automatic generation of sufficient independence conditions to be able to use
(uniform) conditional independence within DPOR algorithms. As the experimental evalua-
tion shows, we can obtain exponential gains thanks to the proposed condition. However, the
more precise the approximation is, the coarser the equivalence class is. Consequently, our
future work includes the study of better approximations that allow achieving even more gains
using conditional independence. For instance, instead of requiring that the variables involved
in the constraints cannot be modified by other blocks in the state, we can pre-compute the
set of blocks which keep invariant the constraints from that state on.

6.2 Model-Checking for Software-Defined Networks

Another big challenge of this thesis has been to apply this framework to a realistic setting.
In this regard, we have proposed a novel actor-based framework to model and verify SDN
programs. Several case studies have been developed: most of them are correct programs but
some of them contain bugs. The model-checker built on top of SYCO has been able to (1)
verify some properties and (2) find the bugs for the erroneous programs. Additionally, we
have been able to scale up more than the state-of-the-art SDN verifiers thanks to the use of
conditional independence and, in particular, to the independence constraints.

Automatic generation of ICs for SDN networks. The SMT Solver generates many
redundant constraints for SDN networks. Consequently, Constrained DPOR may spend a
significant amount of time and resources to check constraints. We have studied by-hand these
constraints and removed the redundant ones. We plan to improve the automatic generation
of these constraints as future work.

Application of other formal methods. Additionally, although it has not been explored
yet in this thesis, the proposed encoding opens the door to apply a huge range of techniques
other than model checking. Other tools and methods for verification of message-passing can
be easily adapted [27, 51, 23, 52]. For instance, we can use the deadlock analysis proposed
by [33] to detect if these networks can enter in a deadlock situation. It is also in our agenda
to apply the techniques described in Chapter 4 to generate test cases for SDN networks.

6.3 Combining Static Analysis and Testing

Finally, the last challenge of this thesis has been to combine static analysis with testing and
symbolic execution for deadlock detection. We have proposed a deadlock-guided framework

49

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

that uses the information provided by a deadlock analysis to guide the execution and (1)
prove deadlock freedom and (2) give deadlock traces in examples containing deadlocks. We
have also given a new algorithm to infer which tasks must be present in an initial context
to help symbolic execution find deadlock traces. Both techniques have been also evaluated
with experiments that show their efficiency and effectiveness.

Application to other properties. We are also studying the possibility of guiding the
search towards paths satisfying other properties of interest for the actors’ concurrency model.
For instance, we can use a resource analysis [8] to guide the execution towards derivations
where a particular resource is consuming more than a user-given threshold. This is a topic
for future research.

Application in a thread-based concurrency model. As regards the application in a
thread-based concurrency model, the fundamental difference is that even though our whole
approach is defined at the level of atomic tasks, it would be adaptable to thread-based
applications that rely on synchronized blocks of code, such as in monitors. As future work,
we plan to investigate how our framework could be adapted to this model.

50

Bibliography

[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Source
sets: A foundation for optimal dynamic partial order reduction. J. ACM, 64(4):25:1–
25:49, 2017.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos F. Sagonas.
Optimal dynamic partial order reduction. In Suresh Jagannathan and Peter Sewell,
editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages
373–384. ACM, 2014.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus L̊ang, Ngo Tuan
Phong, and Konstantinos Sagonas. Optimal stateless model checking for reads-from
equivalence under sequential consistency. PACMPL, 3(OOPSLA):150:1–150:29, 2019.

[4] Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Detecting potential deadlocks
with static analysis and run-time monitoring. In Hardware and Software Verification
and Testing, First International Haifa Verification Conference, Haifa, Israel, November
13-16, 2005, Revised Selected Papers, pages 191–207, 2005.

[5] Gul Agha. Actors: A model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA, 1986.

[6] Elvira Albert, Puri Arenas, Maŕıa Garćıa de la Banda, Miguel Gómez-Zamalloa, and
Peter Stuckey. Context sensitive dynamic partial order reduction. In Victor Kuncak and
Rupak Majumdar, editors, 29th International Conference on Computer Aided Verifica-
tion (CAV 2017), volume 10426 of Lecture Notes in Computer Science, pages 526–543.
Springer, 2017.

[7] Elvira Albert, Puri Arenas, Miguel Gómez-Zamalloa, and Jose Miguel Rojas. Test case
generation by symbolic execution: Basic concepts, a CLP-based instance, and actor-
based concurrency. In Marco Bernardo, Ferruccio Damiani, Reiner Hähnle, Einar Broch
Johnsen, and Ina Schaefer, editors, Formal Methods for Executable Software Models, vol-
ume 8483 of Lecture Notes in Computer Science, pages 263–309. Springer International
Publishing, 2014.

[8] Elvira Albert, Jesús Correas, and Guillermo Román-Dı́ez. Resource analysis of dis-
tributed systems. In Theory and Practice of Formal Methods - Essays Dedicated to
Frank de Boer on the Occasion of His 60th Birthday, pages 33–46. Springer, 2016.

51

BIBLIOGRAPHY

[9] Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and
Peter J. Stuckey. Optimal context-sensitive dynamic partial order reduction with ob-
servers. In Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis 2019 (ISSTA’19), ACM, 2019. To appear.

[10] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. Combining static analysis
and testing for deadlock detection. In Erika Ábrahám and Marieke Huisman, editors,
Integrated Formal Methods - 12th International Conference, IFM 2016, Reykjavik, Ice-
land, June 1-5, 2016, Proceedings, volume 9681 of Lecture Notes in Computer Science,
pages 409–424. Springer, 2016.

[11] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. SYCO: A systematic test-
ing tool for concurrent objects. In Ayal Zaks and Manuel V. Hermenegildo, editors,
Proceedings of the 25th International Conference on Compiler Construction, CC 2016,
Barcelona, Spain, March 12-18, 2016, pages 269–270. ACM, 2016.

[12] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. Generation of initial contexts
for effective deadlock detection. In Logic-Based Program Synthesis and Transformation:
27th International Symposium, LOPSTR 2017, Namur, Belgium, October 10-12, 2017,
Revised Selected Papers, volume 10855 of Lecture Notes in Computer Science, pages
3–19. Springer International Publishing, 2018.

[13] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. Constrained
dynamic partial order reduction. In Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in
Computer Science, pages 392–410. Springer, 2018.

[14] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, Albert Rubio, Matteo Sam-
martino, and Alexandra Silva. Actor-based model checking for SDN networks. CoRR,
abs/2001.10022, 2020.

[15] Elvira Albert, Miguel Gómez-Zamalloa, Albert Rubio, Matteo Sammartino, and Alexan-
dra Silva. SDN-Actors: Modeling and verification of SDN programs. In Formal Methods
- 22nd International Symposium, FM 2018, Held as Part of the Federated Logic Confer-
ence, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings, pages 550–567, 2018.

[16] Baris Kasikci Ali Kheradmand and George Candea. Lockout: Efficient testing for dead-
lock bugs. Technical report, 2013. Available at http://dslab.epfl.ch/pubs/lockout.
pdf.

[17] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. Netkat: Semantic foundations for net-
works. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages
113–126, 2014.

52

http://dslab.epfl.ch/pubs/lockout.pdf
http://dslab.epfl.ch/pubs/lockout.pdf

BIBLIOGRAPHY

[18] Stavros Aronis, Bengt Jonsson, Magnus L̊ang, and Konstantinos Sagonas. Optimal
dynamic partial order reduction with observers. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, pages 229–248,
2018.

[19] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Comput. Surv., 51(3), 2018.

[20] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karbyshev,
Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon: Towards verifying con-
troller programs in software-defined networks. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014, pages 282–293, 2014.

[21] Kshitij Bansal, Eric Koskinen, and Omer Tripp. Commutativity condition refinement,
2015.

[22] Ryan Beckett, Michael Greenberg, and David Walker. Temporal netkat. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 386–401,
2016.

[23] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Tractable re-
finement checking for concurrent objects. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 651–662, 2015.

[24] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three decades
later. Commun. ACM, 56(2):82–90, February 2013.

[25] Marco Canini, Daniele Venzano, Peter Pereśıni, Dejan Kostic, and Jennifer Rexford. A
NICE way to test Openflow applications. In Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, pages 127–140, 2012.

[26] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and
Kapil Vaidya. Data-centric dynamic partial order reduction. PACMPL, 2(POPL):31:1–
31:30, 2018.

[27] Maria Christakis, Alkis Gotovos, and Konstantinos F. Sagonas. Systematic testing for
detecting concurrency errors in Erlang programs. In Sixth IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2013, Luxembourg, Lux-
embourg, March 18-22, 2013, pages 154–163. IEEE Computer Society, 2013.

[28] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron A. Peled. State space
reduction using partial order techniques. STTT, 2(3):279–287, 1999.

53

BIBLIOGRAPHY

[29] Jesús Doménech, Samir Genaim, Einar Broch Johnsen, and Rudolf Schlatte. EasyIn-
terface: A toolkit for rapid development of GUIs for research prototype tools. In Fun-
damental Approaches to Software Engineering: 20th International Conference, FASE
2017, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture Notes in
Computer Science, pages 379–383. Springer, 2017.

[30] Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin Wirsing. Statistical
model checking for composite actor systems. In Recent Trends in Algebraic Development
Techniques, 21st International Workshop, WADT 2012, Salamanca, Spain, June 7-10,
2012, Revised Selected Papers, pages 143–160, 2012.

[31] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin T.
Vechev. SDNRacer: Concurrency analysis for software-defined networks. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 402–415,
2016.

[32] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. In Jens Palsberg and Mart́ın Abadi, editors, Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, January 12-14, 2005, pages 110–121. ACM, 2005.

[33] Antonio Flores-Montoya, Elvira Albert, and Samir Genaim. May-happen-in-parallel
based deadlock analysis for concurrent objects. In Dirk Beyer and Michele Boreale,
editors, Formal Techniques for Distributed Systems (FMOODS/FORTE 2013), volume
7892 of Lecture Notes in Computer Science, pages 273–288. Springer, June 2013.

[34] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson.
A coalgebraic decision procedure for netkat. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 343–355, 2015.

[35] Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt, and Peter Y. H.
Wong. Deadlock analysis of concurrent objects: Theory and practice. In Einar Broch
Johnsen and Luigia Petre, editors, Integrated Formal Methods, pages 394–411, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[36] Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of unbounded
process networks. In CONCUR 2014 - Concurrency Theory - 25th International Con-
ference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, pages 63–77,
2014.

[37] Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for deadlock
detection in core ABS. Software and Systems Modeling, 15(4):1013–1048, 2016.

[38] Patrice Godefroid. Using partial orders to improve automatic verification methods.
In Edmund M. Clarke and Robert P. Kurshan, editors, Computer Aided Verification,

54

BIBLIOGRAPHY

2nd International Workshop, CAV ’90, New Brunswick, NJ, USA, June 18-21, 1990,
Proceedings, volume 531 of Lecture Notes in Computer Science, pages 176–185. Springer,
1990.

[39] Patrice Godefroid. Partial-order methods for the verification of concurrent systems - an
approach to the state-explosion problem, volume 1032 of LNCS. Springer, 1996.

[40] Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-order
verification methods (extended abstract). In Computer Aided Verification, 5th Inter-
national Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings,
pages 438–449, 1993.

[41] Henning Günther, Alfons Laarman, Ana Sokolova, and Georg Weissenbacher. Dynamic
reductions for model checking concurrent software. In Verification, Model Checking, and
Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France,
January 15-17, 2017, Proceedings, pages 246–265, 2017.

[42] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, February 2009.

[43] Klaus Havelund. Using runtime analysis to guide model checking of java programs.
In SPIN Model Checking and Software Verification, 7th International SPIN Workshop,
Stanford, CA, USA, August 30 - September 1, 2000, Proceedings, pages 245–264, 2000.

[44] Shiyou Huang and Jeff Huang. Speeding up maximal causality reduction with static
dependency analysis. In 31st European Conference on Object-Oriented Programming,
ECOOP 2017, June 19-23, 2017, Barcelona, Spain, pages 16:1–16:22, 2017.

[45] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen.
ABS: A core language for abstract behavioral specification. In Formal Methods for
Components and Objects - 9th International Symposium, FMCO 2010, Graz, Austria,
November 29 - December 1, 2010. Revised Papers, pages 142–164, 2010.

[46] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. An effective dynamic analysis
for detecting generalized deadlocks. In Proceedings of the 18th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM, USA,
November 7-11, 2010, pages 327–336, 2010.

[47] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized dynamic
program analysis technique for detecting real deadlocks. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 110–120, 2009.

[48] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction: An
optimal symbolic partial order reduction technique. In Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings, pages 398–413, 2009.

55

BIBLIOGRAPHY

[49] Shmuel Katz and Doron A. Peled. Defining conditional independence using collapses.
Theor. Comput. Sci., 101(2):337–359, 1992.

[50] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: Static
checking for networks. In Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27,
2012, pages 113–126, 2012.

[51] Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha. Basset: A tool
for systematic testing of actor programs. In Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM,
USA, November 7-11, 2010, pages 363–364, 2010.

[52] Hongjin Liang and Xinyu Feng. A program logic for concurrent objects under fair
scheduling. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 385–399, 2016.

[53] Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. Kuai: A model checker for
software-defined networks. In Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014, pages 163–170, 2014.

[54] Stephen P. Masticola and Barbara G. Ryder. A model of ada programs for static deadlock
detection in polynomial time. In Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, Santa Cruz, California, USA, May 20-21, 1991, pages 97–
107, 1991.

[55] Antoni W. Mazurkiewicz. Trace theory. In Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course,
Bad Honnef, Germany, 8-19 September 1986, pages 279–324, 1986.

[56] Openflow switch specification, October 2013. Version 1.4.0.

[57] Túlio A. Pascoal, Yuri Gil Dantas, Iguatemi E. Fonseca, and Vivek Nigam. Slow TCAM
exhaustion ddos attack. In ICT Systems Security and Privacy Protection - 32nd IFIP
TC 11 International Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings,
pages 17–31, 2017.

[58] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent programs.
In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verification,
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings, volume 3576 of Lecture Notes in Computer Science, pages 82–97. Springer,
2005.

[59] César Rodŕıguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. Unfolding-
based partial order reduction. In 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages 456–469, 2015.

56

BIBLIOGRAPHY

[60] Koushik Sen and Gul Agha. Automated systematic testing of open distributed programs.
In Luciano Baresi and Reiko Heckel, editors, Fundamental Approaches to Software Engi-
neering, 9th International Conference, FASE 2006, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March
27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer Science, pages
339–356. Springer, 2006.

[61] Divjyot Sethi, Srinivas Narayana, and Sharad Malik. Abstractions for model check-
ing SDN controllers. In Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, pages 145–148, 2013.

[62] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov,
and Gul Agha. TransDPOR: A novel dynamic partial-order reduction technique for test-
ing actor programs. In Formal Techniques for Distributed Systems (FMOODS/FORTE
2012), volume 7273 of LNCS, pages 219–234. Springer, 2012.

[63] Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1990 [10th International Conference on Applications and
Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings], volume 483 of Lecture
Notes in Computer Science, pages 491–515. Springer, 1989.

[64] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial order
reduction. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of
Lecture Notes in Computer Science, pages 382–396. Springer, 2008.

57

BIBLIOGRAPHY

58

Parte II

Papers of the Thesis

59

Chapter 7

Publications

1. Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and
Peter J. Stuckey. Optimal Context-sensitive Dynamic Partial Order reduction with
Observers. In Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis 2019 (ISSTA’19), pages 352–362, ACM, 2019.

2. Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. Constrained
Dynamic Partial Order Reduction. In Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in
Computer Science, pages 392–410. Springer, 2018.

3. Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, Albert Rubio, Matteo Sam-
martino, Alexandra Silva. Actor-Based Model Checking for SDN Networks.

4. Miguel Isabel. Conditional Dynamic Partial Order Reduction and Optimality Results.
In Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis 2019 (ISSTA’19), pages 433–437, ACM, 2019.

5. Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel. Combining Static Analysis and
Testing for Deadlock Detection. In Erika Ábrahám and Marieke Huisman, editors,
Integrated Formal Methods - 12th International Conference, IFM 2016, Reykjavik, Ice-
land, June 1-5, 2016, Proceedings, volume 9681 of Lecture Notes in Computer Science,
pages 409–424. Springer, 2016.

6. Elvira Albert, Miguel Gómez-Zamalloa. Miguel Isabel. Generation of initial contexts
for deadlock detection. In Logic-Based Program Synthesis and Transformation: 27th
International Symposium, LOPSTR 2017, Namur, Belgium, October 10-12, 2017, Re-
vised Selected Papers, volume 10855 of Lecture Notes in Computer Science, pages 3–19.
Springer International Publishing, 2018.

7. Elvira Albert, Miguel Gómez-Zamalloa. Miguel Isabel. SYCO: a Systematic Testing
Tool for Concurrent Objects. In Ayal Zaks and Manuel V. Hermenegildo, editors,
Proceedings of the 25th International Conference on Compiler Construction, CC 2016,
Barcelona, Spain, March 12-18, 2016, pages 269–270. ACM, 2016.

61

CHAPTER 7. PUBLICATIONS

62

Optimal Context-Sensitive Dynamic
Partial Order Reduction with Observers

Elvira Albert

Complutense University of Madrid

Spain

elvira@fdi.ucm.es

Maria Garcia de la Banda

Faculty of IT, Monash University

Australia

maria.garciadelabanda@monash.edu

Miguel Gómez-Zamalloa

Complutense University of Madrid

Spain

mzamalloa@fdi.ucm.es

Miguel Isabel

Complutense University of Madrid

Spain

miguelis@ucm.es

Peter J. Stuckey

Faculty of IT, Monash University

Australia

peter.stuckey@monash.edu

ABSTRACT
Dynamic Partial Order Reduction (DPOR) algorithms are used in

stateless model checking to avoid the exploration of equivalent

execution sequences. DPOR relies on the notion of independence
between execution steps to detect equivalence. Recent progress in

the area has introduced more accurate ways to detect independence:

Context-Sensitive DPOR considers two stepsp and t independent in
the current state if the states obtained by executing p · t and t ·p are

the same; Optimal DPOR with Observers makes their dependency

conditional to the existence of future events that observe their op-

erations. We introduce a new algorithm, Optimal Context-Sensitive

DPOR with Observers, that combines these two notions of con-

ditional independence, and goes beyond them by exploiting their

synergies. Experimental evaluation shows that our gains increase

exponentially with the size of the considered inputs.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.

KEYWORDS
Testing, Software Verification, Model-Checking, Partial-Order Re-

duction.

ACM Reference Format:
Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel

Isabel, and Peter J. Stuckey. 2019. Optimal Context-Sensitive Dynamic Par-

tial Order Reduction with Observers. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA
’19), July 15–19, 2019, Beijing, China. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3293882.3330565

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00

https://doi.org/10.1145/3293882.3330565

1 INTRODUCTION
Partial Order Reduction (POR) considers two execution sequences

equivalent if one can be obtained from the other by swapping ad-

jacent, independent execution steps. Each such equivalence class

is called a Mazurkiewicz [16] trace, and POR guarantees that ex-

ploring one sequence per equivalence class is sufficient to cover all.

Early POR algorithms [9, 11, 19] relied on static approximations

of independence. The Dynamic-POR (DPOR) algorithm [10] was

a breakthrough because it uses the information witnessed during

the actual execution of the sequence to decide dynamically what

to explore. Thus, it often explores less sequences than approaches

based on static approximations. As a result, DPOR is considered

one of the most scalable techniques for software verification.

The cornerstone of DPOR is the notion of (in)dependence, which
is used to decide if two concurrent execution steps p and t (do
not) interfere with each other and, thus, both p · t and t · p se-

quences must (not) be explored. To guarantee soundness, DPOR

approximates independence and, thus, can lose precision if it treats

execution steps as interfering when they are not. Optimal DPOR

(ODPOR) [2] ensures optimality (never explores equivalent execu-

tion sequences), but only w.r.t. unconditional independence, which
requires execution steps to be independent in any possible state.

In practice, syntactic approximations are used to detect uncondi-

tional independence: typically, two execution steps are considered

dependent if both access the same variable and at least one modifies

it.

Any DPOR algorithm can thus improve its efficiency by using a

more accurate independence notion [12]. Two recent approaches

– DPORcs (Context-Sensitive DPOR) [3] and ODPOR
ob

(Optimal-

DPOR with Observers) [7] – have achieved this by integrating

orthogonal notions of conditional independence into DPOR:

• DPORcs : introduced the notion of context-sensitive indepen-
dence, which only requires execution steps p and t be inde-
pendent in the state S where they appear. This is determined

by executing sequences p · t and t · p in S , and checking if

the two states reached are equal. Consider, for example, the

three concurrent processes p, q and r below, and the execu-

tion tree in Fig. 2(a), which will be explained throughout the

paper.

352

ISSTA ’19, July 15–19, 2019, Beijing, China Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey

int x = 0;
p: x = 1;
q: x = 2;
r : assert (x < 3);

Assume p is scheduled first and we reach state 1, where

x==1. Executing either q · r or r ·q in state 1 yields the same

final state: x==2 and the assertion holds. Therefore, DPORcs
considers r and q independent in the context of state 1.

• ODPORob : introduced the notion of observability, where de-
pendencies between execution steps p and t are conditional
to the existence of future steps, called observers, which read

the values modified by p and t . Consider again the three

concurrent processes p, q and r above, and the execution

tree in Fig. 2(a). Assume r is scheduled first reaching state 9,

where x==0 and the assertion holds. ODPOR
ob

considers q
and p independent since, while their interleaved execution

leads to different final states, variable x is not observed later.

DPORcs and ODPOR
ob

modified the DPOR algorithm to exploit

their notions of independence. We present a further modification

of DPOR, called Optimal Context-Sensitive DPOR with Observers

(ODPOR
ob
cs), that not only combines and exploits these two powerful

notions, but also takes advantage of their synergy to gain further

pruning. Let us consider the leftmost branch of the execution tree

in Fig. 2(a). DPORcs does not consider p and q independent, as they

give different values to variable x . ODPORob does not consider

them independent either, as r observes the different values they

give to x . However, ODPORobcs does consider them as independent,

as the assertion of observer r evaluates to true after executing either
p · q or q · p. Two major contributions are needed for this:

(1) DPORcs was formulated over Source-DPOR [1]. Thus, it did

not include the extension of wakeup trees used by ODPOR

to ensure optimality, and later used to handle observers. Our

first contribution is the formulation of DPORcs over ODPOR,

which we name Optimal Context-Sensitive DPOR (ODPORcs).

(2) Our second contribution is to integrate observability into

ODPORcs , obtaining ODPOR
ob
cs . For this, we modify context-

sensitive independence to be modulo observability, which
only requires equivalence for variables affected by future

observers.

We have implemented ODPOR
ob
cs and experimentally evaluated it

with benchmarks from [3], [6] and [7]. Our experimental results

show ODPOR
ob
cs can explore exponentially less sequences than

either DPORcs or ODPOR
ob
.

2 PRELIMINARIES
2.1 Basics of DPOR and ODPOR
An event (p, i) of execution sequence E represents the i-th occur-

rence of process p in E. We use e <E e ′ to denote that event e
occurs before event e ′ in sequence E, s.t. <E establishes a total

order between events in E.
The core concept in ODPOR is that of the happens-before partial

order among the events in execution sequence E, denoted by →E .

This relation is used to define a subset of the <E total order, such

that any two sequences with the same happens-before order are

equivalent. Let dom(E) denote the set of events in E. Any lineariza-

tion E ′ of→E on dom(E) is an execution sequence with the same

happens-before relation →E′ as →E . Thus, →E induces a set of

equivalent execution sequences, all with the same happens-before

relation. We use E ≃ E ′ to denote that E and E ′ are equivalent.
The happens-before relation is also used for defining the notion

of race. Event e is said to be in race with event e ′ in execution E,
written e⋖Ee

′
, if the events belong to different processes, e happens-

before e ′ in E (e →E e ′), and the two events are “concurrent” (∃E ′
s.t. E ′ ≃ E and the two events are adjacent in E ′). We write e ≾E e ′

to denote that e is in a reversible race with e ′, i.e., e is in a race

with e ′ and the two can be reversed (∀E ′ s.t. E ′ ≃ E and e appears
immediately before e ′, e ′ is not blocked).

Optimality in ODPOR is achieved through the use of wakeup
trees. A wakeup tree is an ordered tree ⟨B,≺ ⟩, where the set of nodes

B is a finite prefix-closed set of sequences of processes, with the

empty sequence ϵ at the root. The children of nodew , of formw .p
for some set of processes p, are ordered by ≺. Intuitively, a wakeup

tree of sequence E, writtenwut(E), is composed of partial execution

sequences that must be explored from E, as they (a) reverse the

order of detected races, and (b) are provably not equivalent. As

a result, ODPOR does not even initiate equivalent explorations,

achieving exponential reductions over earlier DPOR algorithms.

To ensure an execution sequence v does not lead to equivalent

explorations if inserted in wut(E), sleep and weak initials sets [1]
are used. The sleep set of execution E, Sleep(E), contains the pro-
cesses that should not be explored from E, as they lead to equivalent
executions. The weak initials set of sequencew from execution E,
WI[E](w), contains any process with no “happens-before” predeces-

sors in dom[E](w), where dom[E](w) denotes the subset of events

in execution sequence E.w that are in w , i.e., dom(E.w)\dom(E).
Then, v is known to lead to equivalent explorations from E if

Sleep(E) ∩WI[E](v) , ∅.

Other notation we use includes: ê , denoting the process of event

e; s[E], the state after executing sequence E; enabled(s), the set of
processes that can perform an execution step from state s ;pre+(E, e)
and pre(E, e), the prefix of sequence E up to, including and not in-

cluding e , respectively; insert[E](v,wut(E)), the extension ofwut(E)
with new sequencev ; and subtree(⟨B,≺ ⟩,p), the subtree of wakeup
tree ⟨B,≺ ⟩ rooted at process p ∈ B, i.e., the tree ⟨B′,≺′ ⟩, where

B′ = {w |p.w ∈ B} and ≺′
is the restriction of ≺ to B′

.

2.2 ODPOR with Observers
The notion of dependency we use in this paper extends the tradi-

tional one by using the concept of observer introduced in [7].

Definition 2.1 (observers(e, e ′,E)[7]). Given an execution sequence
E, for all events e, e ′ ∈ dom(E) where e ⋖E e ′, there exists a set

O = observers(e, e ′,E) ⊆ dom(E) such that:

(1) For all o ∈ O , it holds that e →E o, o , e ′, and o ↛E e ′.
(2) For all o,o′ ∈ O , it holds that o ↛E o′.
(3) If E ′ ≃ E, then observers(e, e ′,E ′) = O .
(4) For every prefix E ′ of E such that e, e ′ ∈ dom(E ′):

• If O is empty, then e →E′ e ′.
• If O is nonempty, then e →E′ e ′ iff dom(E ′) ∩O , ∅.

(5) If e≾Ee
′
, for all sequencesw s.t. E.w is a sequence, and all

events e ′′∈dom(E):

353

Optimal Context-Sensitive DPOR with Observers ISSTA ’19, July 15–19, 2019, Beijing, China

1: procedure RaceDetection(E)
2: for all e, e ′ ∈ dom(E) such that e ≾E e ′ do
3: let E ′ = pre(E, e);
4: if observers(e, e ′,E) , ∅ then
5: let o =maxE (observers(e, e

′,E));
6: let v = notdep∗(e, e ′,E). ˆe ′.ê .(notobs∗(e, e ′,E)\ ˆe ′).ô;
7: else
8: let v = notdep∗(e, e ′,E). ˆe ′;
9: if v < redundant(E ′,done) then
10: wut(E ′) := insert[E′](v,wut(E

′));

Figure 1: RaceDetection of ODPORob [7]

• If e ↛E e ′′, then e�⋖E .we
′′
.

• If e ′′ ↛E e ′, then e ′′�⋖E .we
′
.

(6) For all e ′′∈dom(E) such that e ′ →E e ′′, it holds that O ∩

observers(e ′, e ′′,E)=∅.
(7) If O = {o} and E = E ′.ô for some o and E ′, then for any

E ′′ ≃ E ′, either e →E′′ .ô e ′ or e ′ →E′′ .ô e .

Intuitively, in the usual particular case, observers(e, e ′,E) is the
set of other events in E, independent of each other (by Property 2),

that read the value written by e (e ′) for any variable also written by

e ′ (e) (by Property 4). By an abuse of notation, we will sometimes

treat this set as a sequence.

Thus, the happens-before relation used in this paper is the one

defined in [7], based on the notion of observability discussed previ-

ously (except from Sec. 3, which uses the relation in [2]). Intuitively,

two processes p and q are dependent modulo observability in execu-

tion E if either enables the other (i.e., executing E.p introduces q,
or vice versa), or (ii) s[E′ .p .q] , s[E′ .q .p], where E

′ < E, and there

exists in E at least one observer reading the variable written by

both of them.

The code in black of procedure Explore of Algorithm 1 (lines

11-33, excluding underlined blue parts) and the code of procedure

RaceDetection of Fig. 1, corresponds to the ODPOR
ob

algorithm [7],

which extends the original ODPOR [2] with the notion of observers,

and is our starting point. ODPOR
ob

carries out a depth-first explo-

ration of the execution tree from execution sequence E (initially

empty) using DPOR. Essentially, it dynamically finds reversible

races and is able to backtrack at the appropriate scheduling points

to reverse them. For this purpose, it keeps two sets at every prefix E ′

of E: the usual wakeup treewut(E ′), with the execution sequences

that must be explored from E ′, and the set done(E ′) of processes
that have already been explored from E ′.

ODPOR
ob

starts by selecting (line 24) the leftmost process p in

the wakeup tree, according to its order ≺, that is enabled by state

s[E] (due to line 14). If there is such a process, it setsWuT ′
as the

subtree of wut(E) with root p (line 28), and recursively explores

every sequence inWuT ′
from E.p (line 31). Note thatwut(E)might

grow as this recursion progresses, due to later executions of line 10.

After the recursion finishes, it adds p to done(E), removes from

wut(E) all sequences that start from p, and iterates selecting a new

p. Once a complete sequence E has been explored (E is said to be

complete if enabled(s[E]) = ∅), the algorithm performs the race

detection phase (line 14). This starts by finding all pairs of events e

Algorithm 1 ODPORcs algorithm

11: procedure explore(E ,WuT ,DnD)

12: dnd (E) := DnD ;

13: done(E) := ∅;

14: if enabled (s[E]) = ∅ then RaceDetection(E);
15: else ifWuT , ⟨{ϵ }, ∅⟩ then
16: wut (E) :=WuT ;
17: else if enabled (s[E])\dnd (E) = ∅ then
18: for each p ∈ dnd (E) such that |p | = 1 :
19: RaceDetection(E .p);
20: else
21: choose p ∈ enabled (s[E])\dnd (E);
22: wut (E) := ⟨{ϵ, p }, {(p, ϵ)}⟩;
23: while ∃p ∈ wut (E) do
24: let p =min≺ {p ∈ wut (E)};
25: if p ∈ dnd (E) then
26: RaceDetection(E .p);
27: else
28: letWuT ′ = subtree(wut (E), p);
29: let DnD′ = {v | v ∈ dnd (E), p < v, E |= p ⋄v }

30: ∪ {v | (p .v) ∈ dnd (E)};
31: Explore(E .p,WuT ′, DnD′);

32: add p to done(E);
33: remove all sequences of form p .w from wut (E);
34: procedure RaceDetection(E)
35: for all e, e′ ∈ dom(E) such that e ≾E e′ do
36: let E′ = pre(E, e); let dont = ϵ ;
37: let v = notdep∗(e, e′, E).ê′; v := v .I

fut
(E′, v, E);

38: if s[pre+(E,e′)] = s[E′ .(v .suc (e,E))
≤e

′

E
] then

39: dont := v .ê ;

40: if v < r edundant (E′, done) then
41: wut (E′) := inser t[E′](v, wut (E′));

42: add dont to dnd (E′);

and e ′ in dom(E) such that e ≾E e ′. For each such pair, it sets E ′ to
pre(E, e) and checks if the race between e and e ′ is observed (line 4).

If the race is not observed, v is set to notdep∗(e, e ′,E). ˆe ′ (line 8),

where notdep∗(e, e ′,E)1 is the subsequence of processes
ˆe ′′ of E

such that events e ′′ hold e <E e ′′ and e ↛E e ′′. If it is observed,
the race must be reversed and observed by the same observers.

Thus, the last (maxE) observer o executed in E is selected (line 5)

and used to compute v (line 6), where notobs∗(e, e ′,E)1 denotes the

subsequence of E containing any process
ˆe ′′ such that e →E e ′′,

but e ′′ does not observe the race e ≾E e ′, and o′ ↛E e ′′ for any
observer o′ of the race. There is a small change in line 5 with respect

to [7]: we select o as the last (rather than an arbitrary) observer

from observers(e, e ′,E). The reason for this will be clear in Sec. 4.1.

Finally, ifv is not redundant for E ′ (line 9), it is inserted intowut(E ′)

(line 10). To detect if v is redundant from E ′, ODPORob cannot use

sleep sets because they are not sufficiently precise, in the presence

of observers, for avoiding redundant explorations without missing

non-redundant ones [7]. Instead, ODPOR
ob

uses the set done: v ∈

1
The mark

∗
in functions notdep∗ and notobs∗ indicates they will be redefined later.

Function notdep∗(e, e ′, E) does not use parameter e ′, it will be used once redefined.

354

ISSTA ’19, July 15–19, 2019, Beijing, China Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey

redundant(E ′,done) iff E ′.v is an execution sequence and there is

a partitioning E ′ = w .w ′
such that done(w) ∩WI[w](w

′.v) , ∅.

Example 2.2. Consider again the processes p, q and r in Fig. 2(a).

Since they all have a single event, by abuse of notation, we will refer

to events by their process name. The algorithm starts at state 0 in

Fig. 2(a), with both E andWuT empty. The execution first chooses

p, and explores sequence p with an empty done set to state 1. The

execution then chooses q and explores sequence p.q with an empty

done set to state 2. Since now only r can be chosen, the execution

explores sequence p.q.r to state 3. Now, the race detection phase

detects an observed race for p and q, as they both write variable x
and are observed by r (line 4). It then creates sequence q.p.r in line

6, which will later lead to sequence q.p and will thus make r observe
the value written by p. The created sequence is added towut(ϵ) of
state 0 in line 10. A race between q and r is also detected and r is
added towut(p). Execution then backtracks to state 1, adding q to

done(p) on the way. Next, it chooses r and continues, exploring the

first five executions in Fig. 2(a). Once the fifth one is completed, it

checks if p is in an observed race with q. Since it is not, as there
is no observer after them, the sixth execution is not even started.

Thus, ODPOR
ob

explores one sequence less than ODPOR.

3 OPTIMAL CONTEXT-SENSITIVE DPOR
The happens-before relation used in this section is the one in [2],

which does not consider observability. Essentially, DPORcs works

as follows: when a reversible race e ≾E e ′ is detected, it not only
updates the appropriate structures to ensure the race is reversed on

backtracking, but also checks whether events e and e ′ are indepen-
dent in the current context E, that is, whether s

[E .ê .ê ′] = s[E .ê ′ .ê].

If they are, it stores a sequence in a new don’t-do set (in the origi-

nal DPORcs it was stored in the sleep set) at every prefix E ′ of E,
indicating that this sequence must not be explored in full when

backtracking to E ′. Consider theworking example of Fig. 2(a).When

DPORcs reaches state 3 (execution sequence p.q.r), it realizes q and

r can be regarded as independent in context p, as s[p .q .r] = s[p .r .q]
even though they are dependent according to the happens-before

relation in [2] with the usual syntactic approximation, sinceq writes
global variable x and r reads it. Hence, it adds r .q to the don’t-do

set of state 1. Once r is explored, q is not executed because it is in

the don’t-do set of state 4, which prevents the full exploration of

p.r .q.
As mentioned before, our first contribution is the reformulation

of DPORcs as an extension of ODPOR, rather than of Source-DPOR.

This yields an optimal DPORcs algorithm (see below), referred

to as ODPORcs , which makes it easier to integrate the notion of

observers (as done in Sec. 4). Reformulating DPORcs in terms of

ODPOR is challenging due to two main problems:

• Problem I: While Source-DPOR performs race detection at

every state, ODPOR must delay race detections until the

sequence being explored is complete.

• Problem II: As shown in [3], the effectiveness of DPORcs is

highly dependent on exploring don’t-do sequences as soon

as possible. Indeed, DPORcs uses these sequences to guide

the selection of the next process to be explored. However, the

wakeup trees of ODPOR fix part of these decisions, which

can affect guidance.

The ODPORcs algorithm corresponds to the code of Algorithm 1.

It is discussed in detail in Secs. 3.1 and 3.2, which explain how

problems I and II, respectively, have been overcome. Finally, Sec. 3.3

discusses its correctness and optimality.

3.1 Overcoming Problem I
Delaying race detections until the entire sequence is explored, com-

plicates the implementation of the context-sensitive checks, as they

need access to intermediate states. One could recover these states

by, for example, re-executing the sequence of events to reach them,

or storing them, either in full or by means of incremental state

updates, to be undone on backtracking. One could also perform

(part of) the checks on the fly during the exploration, instead of at

the end, thus reducing the number of intermediate states needed.

The preferred strategy will depend on the available memory and

the concrete language features. In any case, the following assumes

access to all states of the current sequence.

The new context-sensitive check corresponds to the underlined

blue code in line 38 of Algorithm 1 (for now, we use the black code

for v in line 37; it will be redefined in Sec. 3.2). Recall that the black

code of Algorithm 1 is common to both ODPOR and ODPOR
ob
, and

was explained in Sec. 2.2. Intuitively, given a reversible race e ≾E e ′

for events e and e ′, the check succeeds if the state right after the

race, s[pre+(E,e ′)], is the same as that obtained when the race is

reversed, s[E′ .(v .suc(e,E))
≤e

′

E
], where suc(e,E) is the subsequencew

of E that starts with ê and contains all ˆe ′′ s.t. e →E e ′′, andw
≤e

′

E
is

the subsequence ofw in E of processes that execute events up to,

and including, e ′ (i.e., keeps ˆe ′′ only if e ′′ ≤E e ′). As a result, the
sequence E ′.(v .suc(e,E))

≤e
′

E
executes the same events aspre+(E, e ′)

but with the race reversed. Assuming we have access to s[pre+(E,e)]
and s[E′], we only need to compute the state after the sequence

(v .suc(e,E))
≤e

′

E
from s[E′]. If the check succeeds, sequence v .ê is

added to the don’t-do set dnd(E ′) (line 42). Note that, unlike in the

original DPORcs , v contains the processes of events executed after

e ′ in E, that are independent of e and, thus, also independent of e ′.
This issue is further discussed in Sec. 3.2.

As in the original DPORcs , if a sequencew is added to the don’t-

do set of state s , w can be inherited down once we backtrack to

s , possibly being reduced until it eventually becomes a unitary

sequence and the exploration stops. In that case, race detection

must be forced explicitly. This is the task of the new if statement

in lines 25 and 26. Similarly, if every process enabled in s[E] is also
in dnd(E) for sequence E, then the exploration of E stops and race

detection is forced explicitly, in this case for every unitary sequence

indnd(E) (lines 17, 18 and 19). The support to inherit down don’t-do
sequences is the same as in the original DPORcs , corresponding

to lines 29 and 30. Essentially, E.p inherits each sequence v where

p.v ∈ dnd(E) (line 30), and where every process in v (line 29) is

independent of p in E (denoted as E |= p ⋄v), i.e, where the event
in dom[E](p) does not happen-before any event in dom[E .p](v).

Example 3.1. Let us explain the exploration performed byODPORcs
on our running example in Fig. 2(a). The algorithm first explores

sequence p.q.r and then performs race detection. For the reversible

race between q and r , the check (line 38) s[p .q .r] = s[p .r .q] suc-
ceeds and, hence, r .q is added to dnd(p). The algorithm also finds a

355

Optimal Context-Sensitive DPOR with Observers ISSTA ’19, July 15–19, 2019, Beijing, China

0

q + r
¬rp,¬rq

p

ww
q
�� r

''
1

r
¬rq

q
��

r

��

5

r
¬rp

p
��

r

��

9 ¬p,¬q

p
��

q

��
2

r
��

4 ¬q

q
��

6

r
��

8 ¬p

p
��

?

q
��

?

p
��

3 ? 7 ? ? ?

(a) Full tree computed by ODPOR; dashed fragment not computed by DPORcs
(nor by ODPORcs); Arrow labels: scheduled process. Upper Node label: wakeup

trees (v +w is a tree with two traces). Lower node labels: don’t-do (dnd).

0

qpr + r
¬qpr,¬rp,¬rq

p

ww
q
�� r

''
1

r
¬rq

q
��

r

��

5

pr + r
¬pr,¬rp

p
��

r

��

8 ¬p,¬q

2

r
��

4 ¬q 6

r
¬r

r
��

7 ¬p

3 ?

(b) Full tree computed by ODPORcs ; dotted fragment not computed by ODPOR
ob
cs .

Labels are as in 2(a).

Figure 2: Execution trees computed by DPOR algorithms for our running example starting from x==0

reversible race between p and q, but this time s[p .q] , s[q .p] and,
thus, nothing is added to dnd(ϵ). After backtracking to state 1 with

r , sequence r .q is inherited down to state 4 as q (line 30). Hence,

this exploration is stopped at state 4 and race-detection is explicitly

invoked (lines 25 and 26). For the reversible race between p and

r , the check s[p .r] = s[r .p] also succeeds adding r .p to dnd(ϵ). At
this point wut(ϵ) contains q and r . After backtracking to state 0

with q, p and r can be executed. Let us suppose that q.p.r is fully
explored. This exploration is analogous to that of p.q.r . Therefore,
r .p will be added to dnd(q), stopping the exploration at state 8 in

Fig. 2(a). Due to the reversible race between q and r , the algorithm
checks s[q .r] = s[r .q], which succeeds adding r .q to dnd(ϵ). Finally,
after backtracking to state 0 with r , sequences r .p and r .q are in-

herited down to state 9, as p and q, respectively (line 30). Hence,

the exploration stops at state 9.

3.2 Overcoming Problem II
Consider the processes p and q from our running example, and

the initial exploration E1 = t .t ′.p.q, where t is a process defined
as t : y = 1; and t ′ is another instance of the same process t . Let
us assume, for now, that ODPORcs uses the original definition

of sequence v (line 37), that is, v = notdep∗(e, e ′,E). ˆe ′. For the
reversible race between p and q, ODPORcs adds q to wut(t .t ′).
Hence, upon backtracking to t .t ′, it will explore E2 = t .t ′.q.p. For
the reversible race between t and t ′, ODPORcs sets v to p.q.t ′

and adds it towut(ϵ). Also, since s[t .t ′] = s[t ′ .t], it adds p.q.t
′.t to

dnd(ϵ). Later, when backtracking to ϵ and exploringp.q.t ′, sequence
t ′.t is inherited down to dnd(p.q). Hence, t is inherited down to

dnd(p.q.t ′), causing the exploration to stop and the race-detection

phase to start (line 26) for p.q.t ′.t . This detects a race between p
and q, causing the exploration of t ′.t .q.p, which is redundant to E2
(as s[t .t ′] = s[t ′ .t]).

Such a redundant tracewould not have been explored byDPORcs .

This is because DPORcs (as well as Source-DPOR and the original

DPOR) does not record the sequence to be explored upon backtrack-

ing but, rather, an initial event to explore plus the sequences that

should not be selected (by means of the so called backtrack-set and
sleep set). This allows using don’t-do sequences to guide DPORcs
decisions regarding what to explore, achieving earlier and more

effective context-sensitive prunings. However, wakeup trees are

essential for ODPOR to achieve optimality. Therefore, the challenge

is to determine whether it is possible to keep optimality, while at

the same time being able to exploit don’t-do sequences at least as

effectively as DPORcs .

In order to reverse race e ≾E e ′, it suffices to have all ancestors of

e ′ before it. Let us then re-define notdep∗(e, e ′,E) as ance(e, e ′,E),
the subsequence of E containing the processes whose events oc-

curs after e and happen-before
ˆe ′ (and thus, independent with e).

This solves the problem in the above example: for the race be-

tween t and t ′ in E1, the sequences added to wut(ϵ) and dnd(ϵ)
would be t ′ and t ′.t , respectively. This is however not enough
since, in order to achieve optimality, v needs to include part of

the processes of E whose corresponding events are independent

with the ones in v , thus being detected as redundant in line 38.

Let us define the set of future initials, written I
fut
(E ′,v,E), that

contains any process with no “happens-before” predecessors in

dom[E′ .v](w) (i.e.,WI[E′](w) \ v), where E = E ′.w . Intuitively, ev-

ery event executed in w is dependent with one in v .I
fut
(E ′,v,E)

(i.e., ∀ê ∈ w,∃ ˆe ′ ∈ v .I
fut
(E ′,v,E) such that e ′ →E e). Indeed,

the future initials are also required in sequence v , so that when

an exploration is stopped by a don’t-do sequence (line 26), the

corresponding race detection phase has enough information to

build the appropriate sequences for each detected new race. As a

result, we redefine v as notdep∗(e ′, e ′,E). ˆe ′.I
fut
(E ′,v,E) (line 37)

with notdep∗(e, e ′,E) = ance(e, e ′,E). In the example above, for the

race between t and t ′ in E1, the new sequences added to wut(ϵ)
and dnd(ϵ) are t .p and t .p.t ′, respectively.

3.3 Correctness, Optimality and Final Remarks
The correctness of the ODPORcs algorithm follows from the correct-

ness of ODPOR, and the fact that context-sensitive checks only re-

move equivalent Mazurkiewicz traces. The optimality of ODPORcs

356

ISSTA ’19, July 15–19, 2019, Beijing, China Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey

with respect to theMazurkiewicz traces based on any conditional in-

dependence is not guaranteed, since it only detects certain cases of

context-sensitive independence. However, it has similar optimality

results as [2] (i.e., for the Mazurkiewicz traces based on uncon-

ditional independence): if ODPORcs explores a sleep set blocked

execution E, then ODPOR explores completely an execution with

the same happens-before relation than E. We do not compute sleep

sets but they can be obtained from the dnd and done sets. Further-
more, ODPORcs never explores more traces than ODPOR.

Definition 3.2 (Sleep set and Sleep set blocked execution [2]). Given
an execution sequence E and dnd(E) set and a done(E ′) set for
each prefix E ′ ≤ E, we define Sleep(E) as the set of processes

{p | p ∈ dnd(E) such that ∃E ′ ≤ E,p ∈ done(E ′)}. A call to

Explore(E,WuT ,DnD) is sleep set blocked during the execution of

Algorithm 1 if enabled(s[E]) ⊆ Sleep(E).

Note that this section focuses on the correctness and optimality

theorems of ODPORcs and, thus, the original check [2] is used

(sleep(E ′) ∩WI[E′](v) , ∅). However, a similar reasoning can be

done for the check in [7]: v ∈ redundant(E,done). Proofs for the
theorems in the paper can be found online in a technical report at

costa.fdi.ucm.es/papers/costa/issta19-proofs.pdf.

Lemma 3.3. If Algorithm 1 discovers that s[pre+(E′,e ′)] =

s[E0 .(v .suc(e,E))
≤e

′

E
], then for any complete sequence E of the form

E = E0.v .ê .u
′.w ′ that contains a race e ′ ≾E e , there is a complete

sequence E ′ = pre+(E ′, e ′).w that defines a different Mazurkiewicz
trace T ′ =→E′ and leads to an identical final state.

Theorem 3.4 (Soundness of ODPORcs). For each Mazurkiewicz
trace T defined by the happens-before relation,
Explore(ϵ, ⟨{ϵ}, ∅⟩, ∅) of Algorithm 1 explores a complete execution
sequence that either implements T , or reaches an identical state to
one that implements T.

Let us claim now the optimality of Algorithm 1.

Lemma 3.5. Let E ′.v .u be a complete execution sequence such that
v ∈ wut(E), v .u ∈ dnd(E) and v ′ is the sequence created to reverse a
race found in E ′′ < E ′.v .u. For all w , such that E ′.v .u .w , let vw be
the corresponding sequence to reverse the same race in E ′′ < E ′.v .u .w .
Then:

Sleep(E ′′) ∩WI[E′′](v
′) , ∅ ⇔ Sleep(E ′′) ∩WI[E′′](vw) , ∅

Theorem 3.6 (Optimality of ODPORcs). Algorithm 1 never
explores two complete execution sequences that are equivalent and
never initiates sleep set blocked executions.

Finally, let us conclude this section by noting that both DPORcs
and ODPORcs are likely to be highly beneficial for programs with

large atomic code sections (e.g., monitors, concurrent objects, and

message-passing systems), where the usual approximation of de-

pendence can be rather imprecise. It is also likely to be beneficial

for programs with assertions, as these only result in two possibly

(local) states: either the assertion holds or it does not. Hence, the

context-sensitive independence check is more likely to succeed.

4 OPTIMAL CONTEXT-SENSITIVE DPOR
WITH OBSERVERS

The ODPOR
ob

and ODPORcs algorithms of Secs. 2.2 and 3 can be

combined simply by joining their codes together. This also requires

using the happens-before relation based on the notion of observ-

ability of [7] throughout the algorithm. The exploration performed

by such a “union” algorithm would be the intersection of the explo-

rations of ODPOR
ob

and ODPORcs , and its prunings the union of

the ODPOR
ob

and ODPORcs prunings.

This section goes beyond the union of the algorithms and pro-

poses in Secs. 4.1 and 4.2 two enhancements that exploit the combi-

nation and the synergy between the notions of context-sensitive

independence and observability. The resulting algorithm ODPOR
ob
cs

is presented in Algorithm 2. Finally, Sec. 4.3 studies the soundness

of ODPOR
ob
cs .

Algorithm 2 ODPOR
ob
cs algorithm

43: procedure explore(E ,WuT ,DnD)

44: dnd (E) := DnD ;

45: done(E) := ∅;

46: if enabled (s[E]) = ∅ then RaceDetection(E);
47: else ifWuT , ⟨{ϵ }, ∅⟩ then
48: wut (E) :=WuT ;
49: else if enabled (s[E])\dnd (E) = ∅ then
50: for each p ∈ dnd (E) such that |p | = 1 :
51: RaceDetection(E .p);
52: else
53: choose p ∈ enabled (s[E])\dnd (E);
54: wut (E) := ⟨{ϵ, p }, {(p, ϵ)}⟩;
55: while ∃p ∈ wut (E) do
56: let p =min≺ {p ∈ wut (E)};
57: if p ∈ dnd (E) then
58: RaceDetection(E .p);
59: else
60: letWuT ′ = subtree(wut (E), p);
61: let DnD′ = {v | v ∈ dnd (E), p < v, E |= p ⋄v }

62: ∪ {(u .v) | (u .p .v) ∈ dnd (E), E |=u .p .v p ⋄u };
63: Explore(E .p,WuT ′, DnD′);

64: add p to done(E);
65: remove all sequences of form p .w from wut (E);
66: procedure RaceDetection(E)
67: for all e, e′ ∈ dom(E) such that e ≾E e′ do
68: let E′ = pre(E, e); let dont = ϵ ;
69: if observers(e, e′, E) , ∅ then
70: let o =maxE (observers(e, e′, E));
71: let v = notdep∗(e, e′, E).ê′.ê .(notobs∗(e, e′, E)\ê′).ô;
72: let os = observers(e, e′, E); v := v .I

fut
(E′, v, E));

73: if
∧

o′∈os
s[pre+(E,o′)]=

e,e′
o′ s[E′ .v≤oE

.(ôs \ô)] then

74: dont := v .(ôs \ô);

75: else
76: let v = notdep∗(e, e′, E).ê′; v := v .I

fut
(E′, v, E);

77: if s[pre+(E,e′)] = s[E′ .(v .suc (e,E))
≤e

′

E
] then

78: dont := v .ê ;
79: if v < r edundant (E′, done) then
80: wut (E′) := inser t[E′](v, wut (E′));

81: add dont to dnd (E′);

357

Optimal Context-Sensitive DPOR with Observers ISSTA ’19, July 15–19, 2019, Beijing, China

4.1 Refining the Context-Sensitive Check for
Write-Write Races

Consider again the race detection phase on our running example of

Fig. 2(b), after exploring the sequence p.q.r . The “union” algorithm
still finds a reversible race p ≾E q observed by r . After setting v to

q.p.r in line 71, the check s[p .q] = s[q .p] in line 77 fails (recall this

line is temporarily assumed to be out of the else). Hence, nothing is
added todnd(ϵ) andq.p.r is added towut(ϵ). Interestingly, sequence
q.p.r is equivalent to the already explored p.q.r , from the point of

view of the observer, i.e., while the value of variable x is different,

the assert in r holds in both cases.

It thus seems natural to perform a further and different context-

sensitive check that compares the states modulo observability, e.g.,
compares s[p .q .r] and s[q .p .r] only considering the observation

performed by r . Since the observed value in both cases makes

the assert hold, q.p.r could be added to dnd(ϵ), thus stopping the
exploration of the third sequence at state 6. More precisely, given

a race e ≾E e ′ observed by o, we say that two states s and s ′ are

equivalent modulo observability, written s =e,e
′

o s ′, if the effect

produced by observing e or e ′ is the same. If o is an assertion, the

effect is the same if after both eventso evaluates to the same Boolean

value. Similarly, if o is an assignment to a variable y, where there is
at least a variable which is read on its right-hand side and modified

by both e and e ′, then the effect is the same if the value of y in s
and s ′ is the same.

The implementation of the refined check corresponds to the un-

derlined red code in lines 72 and 73 of Algorithm 2. First, it sets os to
the subsequence of observer processes observers(e, e ′,E). Then, af-
ter extendingv with the required processes (see explanation below),

it checks that for every observer process o′ in os (this time treated as

a set), the state after executing o′ is equivalent modulo observability

to the state obtained by the alternative sequence E ′.v≤oE
.(ôs \ ô),

which contains the reversed race, followed by observer o and the

remaining observers.

As with the original context sensitive check (see Sec. 3.2), in

order to be effective, it is important not to include in v unnecessary

processes before the reversed race, while at the same time including

at the end those that are necessary to keep optimality. The solution

is analogous to that of Sec. 3.2. First, unnecessary processes are

taken away from sequencev (line 71). In particular,notdep∗ inherits
the redefinition of Sec. 3.2, and notobs∗(e, e ′,E) is redefined as the

subsequence of processes of E, excluding the occurrence e , whose
events happen-before those in observers(e, e ′,E). Finally, to ensure
optimality,v is extended with I

fut
(E ′,v,E) (line 71), to ensure it has

enough information to detect redundancies.

Note that all the predecessors of other observers are in v≤oE
,

thanks to the choice of o as maxE (observers(e, e
′,E)). Thus, we

can execute ôs \ ô (ô is already in v) without problem after E ′.v≤oE
.

Note also that we cannot use s[pre+(E,o)] to perform all the checks

because, after every o′ ∈ os has been executed, there may be an-

other event e ′′ < o ∈ E such that o′ →E e ′′, which would invali-

date the check by modifying the value of the variables used in the

check. That is why we use s[pre+(E,o′)] for each o
′ ∈ os to perform

each check in line 73. Another possibility, which could be more

efficient in certain contexts (and does not require accessing these

intermediate states), would be to perform all the checks with the

state s
[notdep∗(e,e ′,E).ê .ê ′ .(notobs∗(e,e ′,E)\{ê }).ôs], (where the race

between e and e ′ has not been reversed).

The following provides the intuition behind the need to consider

every observer o′ ∈ observers(e, e ′,E) for the new check, rather

than just the selected oneo. Consider our running example extended

with onemore observer r ′ : assert(x < 2); and an initial exploration

of the sequence E = p.q.r .r ′. For the race between p and q we

have that observers(p,q,E) = {r , r ′}. Let us assume the algorithm

selects o := r . If the new check only considers o (instead of every

o′ ∈ os), the check succeeds (the assert holds in both cases) and,

hence, q.p.r is added to dnd(ϵ). This prevents the exploration of

sequence q.p.r .r ′(where the assert of r ′ does not hold) which is not

equivalent to any previously explored sequence. In this concrete

example, this does not cause losing any different final result (the

assert of r ′ also fails in other combinations). However, this would

not be the case in an example where the only possibility for the

assert of r ′ to fail would be to execute it after q.p.
Note that this new check is only applied in the case of write-

write races followed by an observer (i.e. when the algorithm enters

the if of line 69) and that it can only be finer than the original

check. That is why in the final algorithm, the blue code of lines 76,

77 and 78 goes within the else scope, hence replacing the original

check for the case of write-write races. For those races that are not

observed, the original check is still applied in line 77.

Example 4.1. Let us extend our running example with a process

r2 := assert(x < 2); which is enabled only after executing

r and let us suppose that E = p.q.r .r2 is the first exploration ex-

plored by Algorithm 2. We detect a race between p and q because

observers(p,q,E) = {r }, so the race is observed by r . Now, the
check in line 69 is true, p.q.r is equivalent modulo observer r to
q.p.r , so q.p.r is added to dnd(ϵ). However, q.p.r .r2 and p.q.r .r2
have a different effect in r2 (let us notice that r2 is not an observer

for these executions). We also detect a race between q and r in E, so
r and r .q are added towut(p) anddnd(p), respectively. Now,p.r .r2.q
is also explored. Let us notice that the effect of r is always true for
any possible execution and the effect of r2 is true (in p.r .r2.q) or
false (in p.q.r .r2) depending on the execution.

4.2 Refining the Inheritance of Don’t-Do
Sequences

One could think that whenever a sequencew is added to a dnd(E ′)
set of sequence E ′ due to the new refined check, then a prefix ofw
is also added towut(E ′). Indeed, if the refined check of line 73 suc-

ceeds, the sequencev .(ôs \ ô) is added to dnd(E
′), and the sequence

v is inserted towut(E ′). However, it is possible for the sequence not
to be added towut(E ′) if it already contains an equivalent sequence

(which had been added before). In such cases, the dnd sequence

might not be propagated successfully during the exploration of

the corresponding sequence inwut(E ′), resulting in unnecessary

exploration.

Example 4.2. Let us consider our running example but replacing

process r by r : o = x ;, and first exploring sequence E1 = p.p
′.q.r ,

where p′ is another instance of the same process p. For the race
between p and q, the refined check builds the alternative sequence

358

ISSTA ’19, July 15–19, 2019, Beijing, China Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey

p′.q.p.r (note that p′ happens-before q in E1). The obtained obser-

vation is o == 1, whereas in the original E1 it was o == 2, hence

p′.q.p.r is added towut(ϵ) but not todnd(ϵ). The algorithm explores

four more sequences before backtracking to the root, including se-

quence E2 = p.q.p′.r . In this case, for the race between p and p′,
the refined check builds the alternative sequence q.p′.p.r (note that
q happens-before p′ in E2). The obtained observation both in E2
and q.p′.p.r is o == 1. Hence, q.p′.p.r is added to dnd(ϵ) but not to
wut(ϵ), since it is equivalent to p′.q.p.r , which was added before.

The propagation of dnd sequences in Algorithm 1 (underlined blue

code of lines 29 and 30) is not able to propagate down q.p′.p.r when
exploring p′.q.p.r , even though they are equivalent sequences.

The refined propagation allows to generalize the previous prop-

agation of dnd sequences, which can be seen in the underlined red

code of line 62 of Algorithm 2. Essentially, a sequence u .p.v will

now be propagated as u .v , if p is independent of all processes in u.
In addition, the new case can take advantage of observability using

the information of the trace E ′.u .p.v . We define E |=u .q .p .v q ⋄p if

E.u |= q ⋄p, (i.e., they are unconditional independent), or ∃ŵ ∈ v ,
such that the set of variables written both by p and q is over-

written by w and ∀r̂ ∈ v that observes any of these variables,

w <E .u .q .p .v r . Intuitively, this refined propagation allows transi-

tively propagating equivalences between the dnd set and theWuT
of a state.

In the case of Example 4.2, when backtracking to the root to

explorep′.q.p.r , the sequenceq.p′.p.r indnd(ϵ) is propagated down
to dnd(p′) as q.p.r . This allows detecting p′.q.p.r as redundant.

Indeed, ϵ |=qp′pr q ⋄ p′ in q.p′.p.r since r is not observing their

effect (it observes the subsequent write p), whereas they would be

dependent with the traditional notion of dependency.

Let us finally point out that this refinement is also applicable to

the ODPORcs algorithm of Sec. 3, and also to the original DPORcs
algorithm of [3], although in these contexts it would be much less

likely to be applied.

4.3 Correctness and Optimality
The theorem for ODPOR

ob
cs is analogous to the one in Sec. 3.3, but

using the definition of equivalence modulo observability, introduced
in Sec. 4.1. As in [7], the optimality used in this theorem (based on

not exploring redundant complete execution sequences) is weaker

than the one in Sec. 3.3 (based on not exploring sleep set blocked

executions). This is because, as we havementioned before, sleeps sets
cannot be used with observers to achieve the stronger optimality.

Lemma 4.3. If Algorithm 2 discovers that s[pre+(E′,o′)] =
e,e ′
o′

s[E0 .v≤oE
.(ôs \ô)] ∀o′ ∈ os , for any complete sequence E of the form

E = E0.v .(ôs\ô).w
′ that contains a race e ′ ≾E e observed by os =

observers(e, e ′,E) and o = maxE (os), there is a complete sequence
E ′ = pre+(E ′,o).w that defines a differentMazurkiewicz traceT ′ =→E′

and leads to an identical final state modulo observability.

Lemma 4.4 (soundness of new inheritance). Let E ′ be an exe-
cution such thatp.q.u ∈ wut(E ′),q.p.u .v ∈ dnd(E ′), andE ′ |=q .p .u .v
p⋄q. If E = E ′.p.q.u .v and E ′′ = E ′.q.p.u .v , then s[E] = s[E′′] modulo
observability.

Theorem 4.5 (Soundness of ODPOR
ob
cs). For each Mazurkiewicz

trace T defined by the happens-before relation,

Explore(ϵ, ⟨{ϵ}, ∅⟩,∅) of Algorithm 2 explores a complete execution
sequence that either implements T , or reaches an equivalent state
modulo observability as one that implements T.

Let us claim now the optimality of Algorithm 2.

Theorem 4.6 (Optimality of ODPOR
ob
cs). Algorithm 2 never

explores two complete execution sequences that are equivalent.

5 EXPERIMENTS
This section reports on an experimental comparison of the perfor-

mance of DPORcs [3], ODPOR
ob

[7] and our proposed ODPOR
ob
cs .

We have implemented and experimentally evaluated our method

within the SYCO tool [4], a systematic testing tool for message-

passing concurrent programs. SYCO can be used online through

its web interface available at http://costa.fdi.ucm.es/syco. We have

used three sets of benchmarks: The first one is a subset of the

synthetic programs used in [7] to compare ODPOR and ODPOR
ob
.

Benchmarks FR, FR-a, LW, and abs are similar to our running exam-

ple, while Lam is a mutual exclusion protocol. We have not included

apr_1, an Apache library written in C, because translating it to our

language is very complex. Similarly, we have excluded the second

set of benchmarks used in [7], because they are written in Erlang

and exploit the notion of observability inherent to a receive syn-

chronization primitive that is not supported by our language [13].

Our second set of benchmarks is a subset of the classical concurrent

programs used in [3] to compare Source-DPOR and DPORcs . They

feature typical distributed and concurrent algorithmic patterns, in

which computations are split into smaller atomic subcomputations

that concurrently interleave their executions, and work on shared

data. Our set includes two concurrent sorting algorithms, QS and

MS, concurrent Fibonacci, Fib, a database protocol, DBP, and a

consumer producer interaction, BB. We excluded Pi, PSort and

Reg, because they were already optimal in DPORcs and behave

as Fib and MS. Our third set of benchmarks include two larger

programs: MapRed, an implementation of a map-reduce model

developed by a company (440 lines of code); and SDN [6], a model

of a software-defined network featuring a safety policy violation

(490 lines).

We have executed each benchmark with 4 size increasing input

parameters and a timeout of 120 seconds. When reached, we write

>X to indicate that, for the corresponding measure, we encountered

X units at timeout (i.e., it is at least X). Table 1 shows the results
of the executions. An exception for this is Lam, for which we only

show one input (corresponding to two processes trying to access the

critical section), since it is not tractable for more than two processes

in our implementation (in the implementation of [7] it becomes

intractable for more than three processes). Column E shows the

number of execution sequences, S the number of states explored,

and T the time in seconds needed to compute them. Times are

obtained on an Intel(R) Core(TM) i7 CPU at 2.5Ghz with 8GB of

RAM (Linux Kernel 5.4.0). Columns Gcs
T and Gob

T show the time

speedup of ODPOR
ob
cs over DPORcs and ODPOR

ob
, respectively,

computed by dividing their respective times by that of ODPOR
ob
cs .

To measure memory requirements, we compute for each explored

trace, the sum of the cardinality of all its dnd sets, and show inMD
the maximum of these sums. In addition, MS shows the maximum

359

Optimal Context-Sensitive DPOR with Observers ISSTA ’19, July 15–19, 2019, Beijing, China

Table 1: Experimental evaluation results

DPORcs ODPORob ODPORobcs Speed-up

Bench. E S T E S T E S T MD MS Gcs
T Gob

T

FR(3) 17 36 0.02 13 29 0.03 8 27 0.04 8 6 0.5x 0.7x

FR(5) 416 865 0.35 81 247 0.17 29 141 0.14 43 8 2.7x 1.3x

FR(7) 21k 42k 34.21 449 2k 2.28 68 456 0.82 128 10 42.1x 2.9x

FR(9) >51k >104k 120.00 3k 12k 29.92 129 2k 5.18 328 12 >23.2x 5.8x

FR-a(4) 24 107 0.05 33 86 0.05 1 40 0.04 17 7 1.3x 1.6x

FR-a(6) 720 4k 2.17 193 680 0.88 1 119 0.25 51 9 9.0x 3.7x

FR-a(8) >20k >88k 120.00 2k 5k 10.79 1 270 1.18 116 11 >101.9x 9.2x

FR-a(10) >18k >79k 120.00 >5k >26k 120.00 1 517 5.09 224 13 >23.6x >23.6x

LW(3) 6 17 0.01 3 10 0.01 1 10 0.01 3 6 0.9x 0.7x

LW(5) 120 327 0.16 5 21 0.02 1 21 0.03 8 8 7.8x 0.9x

LW(7) 6k 14k 8.96 7 36 0.06 1 36 0.07 15 10 137.8x 0.9x

LW(10) >32k >85k 120.00 10 66 0.32 1 66 0.31 29 13 >396.0x 1.1x

abs(2) 4 28 0.02 2 15 0.01 1 12 0.01 6 9 2.0x 1.2x

abs(3) 54 577 0.30 2 26 0.02 1 23 0.02 15 12 19.8x 1.3x

abs(4) 2k 33k 29.34 2 44 0.04 1 40 0.05 25 15 598.6x 0.8x

abs(5) >4k >109k 120.00 2 58 0.09 1 54 0.10 37 18 >1250.0x 0.9x

Lam(2) 37 605 0.30 30 470 0.59 26 456 0.46 12 29 0.7x 1.3x

Fib(3) 1 18 0.01 6 22 0.01 1 18 0.01 2 10 0.8x 1.0x

Fib(4) 1 43 0.02 90 250 0.18 1 43 0.03 5 18 0.7x 8.2x

Fib(5) 1 99 0.04 4k 11k 22.36 1 99 0.09 10 30 0.5x 266.2x

Fib(6) 1 228 0.13 >2k >6k 120.00 1 228 0.63 20 50 0.2x >192.6x

QS(8) 1 763 0.31 4k 12k 23.67 1 309 0.19 7 30 1.7x 130.8x

QS(10) 1 4k 1.47 >6k >31k 120.00 1 607 0.50 9 38 3.0x >243.4x

QS(13) 1 25k 14.83 >2k >15k 120.00 1 2k 1.68 12 50 8.9x >71.6x

QS(15) 1 99k 72.95 >826 >10k 120.00 1 3k 3.56 14 58 20.6x >33.8x

MS(7) 1 70 0.03 2k 4k 5.12 1 68 0.06 6 26 0.5x 91.4x

MS(9) 1 121 0.06 14k 37k 116.75 1 107 0.14 8 34 0.4x 877.8x

MS(11) 1 172 0.09 >4k >13k 120.00 1 166 0.33 15 42 0.3x >372.7x

MS(14) 1 254 0.14 >2k >5k 120.00 1 224 1.08 14 54 0.2x >111.5x

DBP(5) 361 5k 2.89 32 210 0.24 4 65 0.09 5 32 35.2x 2.9x

DBP(6) 2k 21k 66.59 64 451 0.73 4 73 0.14 6 38 479.1x 5.3x

DBP(7) >3k >26k 120.00 128 964 2.23 5 109 0.28 7 44 >431.7x 8.0x

DBP(8) >3k >27k 120.00 256 3k 6.78 5 117 0.44 8 50 >275.9x 15.6x

BB(3) 11 38 0.02 20 49 0.03 5 23 0.02 5 7 1.0x 2.0x

BB(5) 80 326 0.13 252 671 0.56 17 103 0.09 9 11 1.5x 6.7x

BB(7) 580 3k 1.18 4k 10k 18.02 65 459 0.82 13 15 1.5x 22.2x

BB(8) 5k 21k 12.49 >10k >28k 120.00 257 3k 15.87 17 19 0.8x >7.6x

MapRed 9 162 114 118 856 2961 9 162 185 24 26 0.6x 16.0x

SDN 22 242 83 58 287 229 16 83 52 20 14 1.6x 4.4x

number of states stored, which corresponds to the number of states

of the longest explored trace.

The results from the first set of benchmarks show that ODPOR
ob
cs

can explore exponentially less sequences thanDPORcs andODPOR
ob
.

In most cases we obtain speedups with respect to both methods,

although when the reduction in sequences is small, the overhead

of the more complex context-sensitive checks of ODPOR
ob
cs does

not pay off. For FR and FR-a, ODPOR
ob
cs obtains gains over both

algorithms, scaling by several orders of magnitude. For LW(n),

ODPOR
ob

behaves very well, only exploring n sequences. Thus,

ODPOR
ob
cs obtains similar results and the overhead is small. The

same happens for abs. When compared with DPORcs , we achieve

reductions of up to 4 orders of magnitude. Since most examples

reach the timeout, the gains can be bigger than the ones shown.

In the second set of benchmarks DPORcs is already optimal for

Fib andMS. Hence, the addition of observers has no benefit and the

slower context-sensitive checks introduce a slowdown. For DBP,

observers achieve important gains and the combination with con-

text sensitivity gives further benefits. For QS, we obtain significant

gains over both algorithms, although those over ODPOR
ob

do not

scale. In most benchmarks, we have been able to identify which

of the extensions proposed in the paper are leading to the gains.

In particular, the gains in QS are achieved due to the extension of

Sec. 3. The refined context-sensitive check is fundamental for the

gains achieved in FR and FR-a. Finally, the new way of inheriting

the dnd sets leads to the gains of abs and DBP.

360

ISSTA ’19, July 15–19, 2019, Beijing, China Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey

The results from the third set of benchmarks give evidence of

the potential of our algorithm when applied over larger programs.

For MapRed, both ODPOR
ob
cs and DPORcs explore 9 executions in

185 ms. and 114 ms. respectively, while ODPOR
ob

explores 118 ex-

ecutions and takes almost 3 seconds, since there is no gain in using

observers in this case. For SDN, ODPOR
ob
cs explores 16 executions

in 52 ms., whereas DPORcs explores 22 executions in 83 ms. and

ODPOR
ob

58 in 229 ms.

Regarding the memory requirements of ODPOR
ob
cs , the results

show thatMS (i.e., the maximal length of the explored traces) re-

mains low in all examples and grows linearly with the input size.

The same holds forMD except for FR and FR-a, where an exponen-

tial growth can be observed. As already mentioned in Sec. 3 (and

also discussed in [18] for a different algorithm), there are a number

of strategies to reduce the amount of information to be stored.

In summary, our experimental results show the exponential

reduction that can be achieved by ODPOR
ob
cs , as our gains increase

exponentially at least w.r.t. one of the algorithms in all examples

we have considered.

6 CONCLUSIONS AND RELATEDWORK
DPOR is one of the most scalable techniques used in the verifica-

tion of concurrent systems. Recent work has introduced orthogonal

notions of conditional independence into DPOR: DPORcs [3] pro-

poses a context-sensitive check in the current state to detect more

accurately independence among processes, ODPOR
ob

[7] proposes

a finer notion of independence which is conditional to the exis-

tence of observers that read the values written by the processes. We

propose a seamless integration of DPORcs and ODPOR
ob
, via two

major technical extensions to DPORcs : (1) incorporating (and using

effectively) the notion of wakeup tree used by ODPOR
ob
, and (2)

refining the context-sensitive check (and the sequences computed

with it) to take observers into account. As shown in our experimen-

tal evaluation, the resulting algorithm achieves prunings that go

beyond the combination of the individual algorithms.

Other recent approaches have considered alternative ways of

refining the detection of independence. Data-Centric DPOR [8]

focuses on the read-write of variables. It defines two traces to be

observationally equivalent if every read event observes the same

write event in both traces. In contrast, we use the notion of observ-

ability introduced by [7], which is based on observing interference

of operations, not just individual writes. The equivalence relation

used by Data-Centric is proven in [8] to see more traces as equiva-

lent than the one based on Mazurkiewicz traces, which is the one

used in our work and in all other variants of the DPOR algorithm

of [10]. The drawback of Data-Centric is that it is optimal only for

programs with acyclic communication graphs. Instead, our work is

an extension of an optimal algorithm [7].

Another approach is to generate independence constraints (ICs),
which ensure the independence of each pair of processes in the

program. The work in [14, 20] generated for the first time ICs

for processes with a single instruction following some predefined

patterns. Recently, Constrained DPOR [5] proposed to generate ICs

in a pre-phase, using an SMT solver. It later used the generated ICs

within DPOR in a similar way to how our context-sensitive checks

are used. In addition, it can perform another type of pruning using

the notion of transitive uniform conditional independence –which

ensures the ICs hold along the whole execution trace (and ensures

uniformity as defined in [12, 15]). The extension of Constrained

DPOR with observers, to the best of our knowledge, has not been

studied yet. We believe the integration of wakeup trees could be

done similarly to our proposal in Sec. 3, and the enhancements in

Sec. 4 would be applicable also in the Constrained DPOR framework.

Still, the combination of transitive uniformity and observability

remains to be investigated.

An orthogonal approach to increase scalability, introduced in

Quasi-Optimal POR [17], is to approximate the optimal exploration

using a provided constant k . In essence, by using approximation,

alternatives are computed in polynomial time, rather than making

an NP-complete exploration, as in ODPOR. Another orthogonal

improvement is to inspect dependencies over event chains [18].

ACKNOWLEDGMENTS
This work was funded partially by the Spanish MECD FPU Grant

FPU15/04313, the Spanish MINECO project TIN2015-69175-C4-2-R,

the Spanish MICINN/FEDER, UE project RTI2018-094403-B-C31,

the CM project S2018/TCS-4314 and the Australian ARC project

DP180100151.

REFERENCES
[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.

Source sets: A foundation for optimal dynamic partial order reduction. J. ACM,

64(4):25:1–25:49, 2017.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos F. Sagonas.

Optimal Dynamic Partial Order Reduction. In Suresh Jagannathan and Peter

Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,
pages 373–384. ACM, 2014.

[3] Elvira Albert, Puri Arenas, María García de la Banda, Miguel Gómez-Zamalloa,

and Peter Stuckey. Context Sensitive Dynamic Partial Order Reduction. In Victor

Kuncak and Rupak Majumdar, editors, 29th International Conference on Computer
Aided Verification (CAV 2017), volume 10426 of Lecture Notes in Computer Science,
pages 526–543. Springer, 2017.

[4] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. Syco: A Systematic

Testing Tool for Concurrent Objects. In Ayal Zaks and Manuel V. Hermenegildo,

editors, Proceedings of the 25th International Conference on Compiler Construction,
CC 2016, Barcelona, Spain, March 12-18, 2016, pages 269–270. ACM, 2016.

[5] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. Con-

strained Dynamic Partial Order Reduction. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of

Lecture Notes in Computer Science, pages 392–410. Springer, 2018.
[6] Elvira Albert, Miguel Gómez-Zamalloa, Albert Rubio, Matteo Sammartino, and

Alexandra Silva. Sdn-actors: Modeling and verification of SDN programs. In

Formal Methods - 22nd International Symposium, FM 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings,
pages 550–567, 2018.

[7] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. Optimal

dynamic partial order reduction with observers. In Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, pages
229–248, 2018.

[8] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha,

and Kapil Vaidya. Data-centric dynamic partial order reduction. PACMPL,
2(POPL):31:1–31:30, 2018.

[9] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron A. Peled. State

space reduction using partial order techniques. STTT, 2(3):279–287, 1999.
[10] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for

Model Checking Software. In Jens Palsberg andMartín Abadi, editors, Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages
110–121. ACM, 2005.

361

Optimal Context-Sensitive DPOR with Observers ISSTA ’19, July 15–19, 2019, Beijing, China

[11] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer,
1996.

[12] Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-

order verification methods (extended abstract). In CAV, pages 438–449, 1993.
[13] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin

Steffen. ABS: A Core Language for Abstract Behavioral Specification. In Bern-

hard K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Formal
Methods for Components and Objects - 9th International Symposium, FMCO 2010,
Graz, Austria, November 29 - December 1, 2010. Revised Papers, volume 6957 of

Lecture Notes in Computer Science, pages 142–164. Springer, 2012.
[14] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction:

An optimal symbolic partial order reduction technique. In CAV, pages 398–413,
2009.

[15] Shmuel Katz and Doron A. Peled. Defining conditional independence using

collapses. TCS, 101(2):337–359, 1992.
[16] Antoni W. Mazurkiewicz. Trace theory. In Petri Nets: Central Models and Their

Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course,
Bad Honnef, Germany, 8-19 September 1986, pages 279–324, 1986.

[17] Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure

Petrucci. Quasi-optimal partial order reduction. In Hana Chockler and Georg

Weissenbacher, editors, Computer Aided Verification - 30th International Confer-
ence, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Com-
puter Science, pages 354–371. Springer, 2018.

[18] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.

Unfolding-based partial order reduction. In 26th International Conference on
Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages
456–469, 2015.

[19] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In Grzegorz

Rozenberg, editor, Advances in Petri Nets 1990 [10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings],
volume 483 of Lecture Notes in Computer Science, pages 491–515. Springer, 1989.

[20] ChaoWang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole Partial Order

Reduction. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
volume 4963 of Lecture Notes in Computer Science, pages 382–396. Springer, 2008.

362

CHAPTER 7. PUBLICATIONS

74

Constrained Dynamic Partial Order
Reduction

Elvira Albert1 , Miguel Gómez-Zamalloa1(B) , Miguel Isabel1 ,
and Albert Rubio2

1 Complutense University of Madrid,
Madrid, Spain

mzamalloa@fdi.ucm.es
2 Universitat Politècnica de Catalunya,

Barcelona, Spain

Abstract. The cornerstone of dynamic partial order reduction (DPOR)
is the notion of independence that is used to decide whether each pair
of concurrent events p and t are in a race and thus both p · t and t · p
must be explored. We present constrained dynamic partial order reduc-
tion (CDPOR), an extension of the DPOR framework which is able to
avoid redundant explorations based on the notion of conditional inde-
pendence—the execution of p and t commutes only when certain inde-
pendence constraints (ICs) are satisfied. ICs can be declared by the pro-
grammer, but importantly, we present a novel SMT-based approach to
automatically synthesize ICs in a static pre-analysis. A unique feature
of our approach is that we have succeeded to exploit ICs within the
state-of-the-art DPOR algorithm, achieving exponential reductions over
existing implementations.

1 Introduction

Partial Order Reduction (POR) is based on the idea that two interleavings can
be considered equivalent if one can be obtained from the other by swapping
adjacent, non-conflicting independent execution steps. Such equivalence class is
called a Mazurkiewicz trace, and POR guarantees that it is sufficient to explore
one interleaving per equivalence class. Early POR algorithms [8,10,20] relied
on static over-approximations to detect possible future conflicts. The Dynamic-
POR (DPOR) algorithm, introduced by Godefroid [9] in 2005, was a break-
through in the area because it does not need to look at the future. It keeps
track of the independence races witnessed along its execution and uses them to
decide the required exploration dynamically, without the need of static approx-
imation. DPOR is nowadays considered one of the most scalable techniques for

This work was funded partially by the Spanish MECD Salvador de Madariaga
Mobility Grants PRX17/00297 and PRX17/00303, the Spanish MINECO projects
TIN2015-69175-C4-2-R and TIN2015-69175-C4-3-R, and by the CM project
S2013/ICE-3006.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 392–410, 2018.
https://doi.org/10.1007/978-3-319-96142-2_24

Constrained Dynamic Partial Order Reduction 393

software verification. The key of DPOR algorithms is in the dynamic construc-
tion of two types of sets at each scheduling point: the sleep set that contains
processes whose exploration has been proved to be redundant (and hence should
not be selected), and the backtrack set that contains the processes that have
not been proved independent with previously explored steps (and hence need to
be explored). Source-DPOR (SDPOR) [1,2] improves the precision to compute
backtrack sets (named source sets), proving optimality of the resulting algorithm
for any number of processes w.r.t. an unconditional independence relation.

Challenge. When considering (S)DPOR with unconditional independence, if a
pair of events is not independent in all possible executions, they are treated as
potentially dependent and their interleavings explored. Unnecessary exploration
can be avoided using conditional independence. E.g., two processes executing
respectively the atomic instructions if(z≥ 0) z = x; and x = x + 1; would be
considered dependent even if z≤ −1—this is indeed an independence constraint
(IC) for these two instructions. Conditional independence was early introduced
in the context of POR [11,15]. The first algorithm that has used notions of con-
ditional independence within the state-of-the-art DPOR algorithm is Context-
Sensitive DPOR (CSDPOR) [3]. However, CSDPOR does not use ICs (it rather
checks state equivalence dynamically during the exploration) and exploits con-
ditional (context-sensitive) independence only partially to extend the sleep sets.
Our challenge is twofold: (i) extend the DPOR framework to exploit ICs dur-
ing the exploration in order to both reduce the backtrack sets and expand the
sleep sets as much as possible, (ii) statically synthesize ICs in an automatic
pre-analysis.

Contributions. The main contributions of this work can be summarized as:

1. We introduce sufficient conditions –that can be checked dynamically– to
soundly exploit ICs within the DPOR framework.

2. We extend the state-of-the-art DPOR algorithm with new forms of pruning
(by means of expanding sleep sets and reducing backtrack sets).

3. We present an SMT-based approach to automatically synthesize ICs for
atomic blocks, whose applicability goes beyond the DPOR context.

4. We experimentally show the exponential gains achieved by CDPOR on some
typical concurrency benchmarks used in the DPOR literature before.

2 Background

In this section we introduce some notations, the basic notions on the POR theory
and the state-of-the-art DPOR algorithm that we will extend in Sect. 3.

Our work is formalized for a general model of concurrent systems, in which
a program is composed of atomic blocks of code. An atomic block can contain
just one (global) statement that affects the global state, a sequence of local
statements (that only read and write the local state of the process) followed by
a global statement, or a block of code with possibly several global statements

394 E. Albert et al.

but whose execution cannot interleave with other processes because it has been
implemented as atomic (e.g., using locks, semaphores, etc.). Each atomic block
in the program is given a unique block identifier. We use spawn(P [ini]) to create
a new process. Depending on the programming language, P can be the name of
a method and [ini] initial values for the parameters, or P can be the identifier of
the initial block to execute and [ini] the initialization instructions, etc., in every
case with mechanisms to continue the execution from one block to the following
one. Notice that the use of atomic blocks in our formalization generalizes the
particular case of considering atomicity at the level of single instructions.

As previous work on DPOR [1–3], we assume the state space does not contain
cycles, executions have finite unbounded length and processes are deterministic
(i.e., at a given time there is at most one event a process can execute). Let Σ
be the set of states of the system. There is a unique initial state s0 ∈ Σ. The
execution of a process p is represented as a partial function executep : Σ �→ Σ
that moves the system from one state to a subsequent state. Each application
of the function executep represents the execution of an atomic block of the code
that p is running, denoted as event (or execution step) of process p. An execution
sequence E (also called derivation) of a system is a finite sequence of events of
its processes starting from s0, and it is uniquely characterized by the sequence
of processes that perform steps of E. For instance, p · q · q denotes the execution
sequence that first performs one step in p, followed by two steps in q. We use
ε to denote the empty sequence. The state of the system after E is denoted by
s[E]. The set of processes enabled in state s (i.e., that can perform an execution
step from s) is denoted by enabled(s).

2.1 Basics of Partial Order Reduction

An event e of the form (p, i) denotes the i-th occurrence of process p in an
execution sequence, and ê denotes the process p of event e, which is extended to
sequences of events in the natural way. We write ē to refer to the identifier of
the atomic block of code the event e is executing. The set of events in execution
sequence E is denoted by dom(E). We use e <E e′ to denote that event e occurs
before event e′ in E, s.t. <E establishes a total order between events in E, and
E ≤ E′ to denote that sequence E is a prefix of sequence E′. Let dom[E](w)
denote the set of events in execution sequence E.w that are in sequence w, i.e.,
dom(E.w)\dom(E). If w is a single process p, we use next[E](p) to denote the
single event in dom[E](p). If P is a set of processes, next[E](P) denotes the set of
next[E](p) for all p ∈ P . The core concept in POR is that of the happens-before
partial order among the events in execution sequence E, denoted by →E . This
relation defines a subset of the <E total order, such that any two sequences with
the same happens-before order are equivalent. Any linearization E′ of →E on
dom(E) is an execution sequence with exactly the same happens-before relation
→E′ as →E . Thus, →E induces a set of equivalent execution sequences, all with
the same happens-before relation. We use E � E′ to denote that E and E′ are
linearizations of the same happens-before relation. The happens-before partial
order has traditionally been defined in terms of a dependency relation between

Constrained Dynamic Partial Order Reduction 395

Algorithm 1. (Source+Context-sensitive)+Constrained DPOR algorithm

1: procedure explore(E)
2: if (∃p ∈ (enabled(s[E])\sleep(E))) then
3: back(E) := {p};
4: while (∃p ∈ (back(E)\sleep(E))) do
5: let n = next[E](p);
6: for all (e ∈ dom(E) such that e �E.p n) do
7: let E′ = pre(E, e);
8: let u = dep(E, e, n);
9: if (¬(U⇒(Iē,n̄, e, n, s[E′.û])) then

10: updateBack(E, E′, e, p);
11: if C(s[E′.û]) for some C ∈ Iē,n̄ then
12: add û.p.ê to sleep(E′);
13: else
14: updateSleepCS(E, E′, e, p);

15: sleep(E.p) := {x | x ∈ sleep(E), E |= p � x}
16: ∪ {x | p.x ∈ sleep(E)}
17: ∪ {x | x ∈ sleep(E), |x| = 1, m = next[E](x), U⇒(In̄,m̄, n, m, s[E]))};
18: explore(E.p);
19: sleep(E) := sleep(E) ∪ {p};

the execution steps associated to those events [10]. Intuitively, two steps p and
q are dependent if there is at least one execution sequence E for which they
do not commute, either because (i) one enables the other (i.e., the execution
of p leads to introducing q, or viceversa), or because (ii) s[E.p.q] �= s[E.q.p]. We
define dep(E, e, n) as the subsequence containing all events e′ in E that occur
after e and happen-before n in E.p (i.e., e<Ee′ and e′→E.pn). The unconditional
dependency relation is used for defining the concept of a race between two events.
Event e is said to be in race with event e′ in execution E, if the events belong to
different processes, e happens-before e′ in E (e →E e′), and the two events are
“concurrent”, i.e. there exists an equivalent execution sequence E′ � E where
the two events are adjacent. We write e �E e′ to denote that e is in race with
e′ and that the race can be reversed (i.e., the events can be executed in reverse
order). POR algorithms use this relation to reduce the number of equivalent
execution sequences explored, with SDPOR ensuring that only one execution
sequence in each equivalence class is explored.

2.2 State-of-the-Art DPOR with Unconditional Independence

Algorithm 1 shows the state-of-the-art DPOR algorithm –based on the SDPOR
algorithm of [1,2],1 which in turn is based on the original DPOR algorithm
of [9]. We refer to this algorithm as DPOR in what follows. The context-sensitive
extension of CSDPOR [3] (lines 14 and 16) and our extension highlighted in blue

1 The extension to support wake-up trees [2] is deliberately not included to simplify
the presentation.

396 E. Albert et al.

(lines 8–10, 11–13 and 17) should be ignored by now and will be described in
Sect. 3.

The algorithm carries out a depth-first exploration of the execution tree
using POR receiving as parameter a derivation E (initially empty). Essentially,
it dynamically finds reversible races and is able to backtrack at the appropriate
scheduling points to reverse them. For this purpose, it keeps two sets at every
prefix E′ of E: back(E′) with the set of processes that must be explored from E′,
and, sleep(E′) with the set of sequences of processes that previous executions
have determined do not need to be explored from E′. Note that in the original
DPOR the sleep set contained only single processes, but in later improvements
sequences of processes are added, so our description considers this general case.
The algorithm starts by selecting any process p that is enabled by the state
reached after executing E and is not already in sleep(E). If it does not find
any such process p, it stops. Otherwise, after setting back(E) = {p} to start
the search, it explores every element in back(E) that is not in sleep(E). The
backtrack set of E might grow as the loop progresses (due to later executions of
line 10). For each such p, DPOR performs two phases: race detection (lines 6, 7
and 10) and state exploration (lines 15, 18 and 19). The race detection starts by
finding all events e in dom(E) such that e �E.p n, where n is the event being
selected (see line 5). For each such e, it sets E′ to pre(E, e), i.e., to be the pre-
fix of E up to, but not including e. Procedure updateBack modifies back(E′)
in order to ensure that the race between e and n is reversed. The source-set
extension of [1,2] detects cases where there is no need to modify back(E′) –this
is done within procedure updateBack whose code is not shown because it is
not affected by our extension. After this, the algorithm continues with the state
exploration phase for E.p, by retaining in its sleep set any element x in sleep(E)
whose events in E.p are independent of the next event of p in E (denoted as
E |= p	x), i.e., any x such that next[E](p) would not happen-before any event in
dom(E.p.x)\dom(E.p). Then, the algorithm explores E.p, and finally it adds p to
sleep(E) to ensure that, when backtracking on E, p is not selected until a depen-
dent event with it is selected. All versions of the DPOR algorithm (except [3]) rely
on the unconditional (or context-insensitive) dependency relation. This relation
has to be over-approximated, usually by requiring that global variables accessed
by one execution step are not modified by the other.

Example 1. Consider the example in Fig. 1 with 3 processes p, q, r containing a
single atomic block. Since all processes have a single event, by abuse of notation,
we refer to events by their process name throughout all examples in the paper.
Relying on the usual over-approximation of dependency all three pairs of events
are dependent. Therefore, starting with one instance per process, the algorithm
has to explore 6 execution sequences, each with a different happens-before rela-
tion. The tree, including the dotted and dashed fragments, shows the exploration
from the initial state z = −2, x = −2. The value of variable z is shown in brack-
ets at each state. Essentially, in all states of the form E.e, the algorithm always
finds a reversible race between the next event of the current selected process
(p, q or r) and e, and adds it to back(E). Also, when backtracking on E, none

Constrained Dynamic Partial Order Reduction 397

of the elements in sleep(E) is propagated down, since all events are considered
dependent. In the best case, considering an exact (yet unconditional) depen-
dency relation which realizes that events p and r are independent, the algorithm
will make the following reductions. In state 6, p and r will not be in race and
hence p will not be added to back(q). This avoids exploring the sequence p.r
from 5. When backtracking on state 0 with r, where sleep(ε) = {p, q}, p will be
propagated down to sleep(r) since ε |= r 	 p, hence avoiding the exploration of
p.q from 8. Thus, the algorithm will explore 4 sequences.

Fig. 1. Left: code of working example (up) and ICs (down). Right: execution tree
starting from z = −2, x = −2. Full tree computed by SDPOR, dotted fragment not
computed by CSDPOR, and, dashed+dotted fragment not computed by CDPOR.

3 DPOR with Conditional Independence

Our aim in CDPOR is twofold: (1) provide techniques to both infer and soundly
check conditional independence, and (2) be able to exploit them at all points
of the DPOR algorithm where dependencies are used. Section 3.1 reviews the
notions of conditional independence and ICs, and introduces a first type of check
where ICs can be directly used in the DPOR algorithm. Section 3.2 illustrates
why ICs cannot be used at the remaining independence check points in the
algorithm, and introduces sufficient conditions to soundly exploit them at those
points. Finally, Sect. 3.3 presents the CDPOR algorithm that includes all types
of checks.

3.1 Using Precomputed ICs Directly Within DPOR

Conditional independence consists in checking independence at the given state.

Definition 1 (conditional independence). Two events α and β are inde-
pendent in state S, written indep(α, β, S) if (i1) none of them enables the other

from S; and, (i2) if they are both enabled in S, then S
α·β−→ S′ and S

β·α−→ S′.

398 E. Albert et al.

The use of conditional independence in the POR theory was firstly studied in [15],
and it has been partially applied within the DPOR algorithm in CSDPOR [3].
Function updateSleepCS at line 14 and the modification of sleep at 16 encapsulate
this partial application of CSDPOR (the code of updateSleepCS is not shown
because it is not affected by our extension). Intuitively, updateSleepCS works as
follows: when a reversible race is found in the current sequence being explored,
it builds an alternative sequence which corresponds to the reverse race, and then
checks whether the states reached after running the two sequences are the same.
If they are, it adds the alternative sequence to the corresponding sleep set so
that this sequence is not fully explored when backtracking. Therefore, sleep sets
can contain sequences of events which can be propagated down via the rule of
line 16 (i.e., if the event being explored is the head of a sequence in the sleep
set, then the tail of the sequence is propagated down). In essence, the technique
to check (i2) in Definition 1 in CSDPOR consists in checking state equivalence
with an alternative sequence in the current state (hence it is conditional) and, if
the check succeeds, it is exploited in the sleep set only (and not in the backtrack
set).

Example 2. Let us explain the intuition behind the reductions that CSDPOR
is able to achieve w.r.t. unconditional independence-based DPOR on the exam-
ple. In state 1, when the algorithm selects q and detects the reversible race
between q and p, it computes the alternative sequence q.p and realizes that
s[p.q] = s[q.p], and hence adds p.q to sleep(ε). Similarly, in state 2, it computes
p.r.q and realizes that s[p.q.r] = s[p.r.q] adding r.q to sleep(p). Besides these
two alternative sequences, it computes two more. Overall, CSDPOR explores 2
complete sequences (p.q.r and q.r.p) and 13 states (the 9 states shown, plus 4
additional states to compute the alternative sequences).

Instead of computing state equivalence to check (i2) as in [3], our approach
assumes precomputed independence constraints (ICs) for all pairs of atomic
blocks in the program. ICs will be evaluated at the appropriate state to deter-
mine the independence between pairs of concurrent events executing such atomic
blocks.

Definition 2 (ICs). Consider two events α and β that execute, respectively, the
atomic blocks ᾱ and β̄. The independence constraints Iᾱ,β̄ are a set of boolean
expressions (constraints) on the variables accessed by α and β (including local
and global variables) s.t., if some constraint C in Iᾱ,β̄ holds in state S, written
C(S), then condition (i2) of indep(α, β, S) holds.

Our first contribution is in lines 11–13 where ICs are used within DPOR as
follows. Before executing updateSleepCS at line 14, we check if some constraint
in Iē,n̄ holds in the state s[E′.û], by building the sequence E′.û, where u =
dep(E, e, n). Only if our check fails we proceed to execute updateSleepCS. The
advantages of our check w.r.t. updateSleepCS are: (1) the alternative execution
sequence built by updateSleepCS is strictly longer than ours and hence more
states will be explored, and (2) updateSleepCS must check state equivalence

Constrained Dynamic Partial Order Reduction 399

while we evaluate boolean expressions. Yet, because our IC is an approximation,
if we fail to prove independence we can still use updateSleepCS.

Example 3. Consider the ICs in Fig. 1 (down left), which provide the constraints
ensuring the independence of each pair of atomic blocks, and whose synthesis
is explained in Sect. 4.1. In the exploration of the example, when the algorithm
detects the reversible race between q and p in state 1, instead of computing
q.p and then comparing s[p.q] = s[q.p] as in CSDPOR, we would just check the
constraint in Ip̄,q̄ at state ε, i.e., in z = −2 (line 11), and since it succeeds, q.p is
added to sleep(ε). The same happens at states 2, again at 1 (when backtracking
with r), and 5. This way we avoid the exploration of the additional 4 states due
to the computation of the alternative sequences in Example 2 (namely q.p, r.p
and r.q from state 0, and r.q from 1). The algorithm is however still exploring
many redundant derivations, namely states 4, 5, 6, 7 and 8.

3.2 Transitive Uniformity: How to Further Exploit ICs Within
DPOR

The challenge now is to use ICs, and therefore conditional independence, at
the remaining dependency checks performed by the DPOR algorithm, and most
importantly, for the race detection (line 6). In the example, that would avoid
the addition of q and r to back(ε) and r to back(p), and hence would make the
algorithm only explore the sequence p.q.r. Although that can be done in our
example, it is unsound in general as the following counter-example illustrates.

Example 4. Consider the same example but starting from the initial state z =
−1, x = −2. During the exploration of the first sequence p.q.r, the algorithm
will not find any race since p and q are independent in z = −1, q and r are
independent in z = x = −1, and, p and r are always independent. Therefore,
no more sequences than p.q.r with final result z = 0 will be explored. There is
however a non-equivalent sequence, r.q.p, which leads to a different final state
z = −1.

The problem of using conditional independence within the POR theory was
already identified by Katz and Peled [15]. Essentially, the main idea of POR
is that the different linearizations of a partial order yield equivalent executions
that can be obtained by swapping adjacent independent events. However, this
is no longer true with conditional dependency. In Example 4, using conditional
independence, the partial order of the explored derivation p.q.r would be empty,
which means there would be 6 possible linearizations. However r.q.p is not equiv-
alent to p.q.r since q and p are dependent in s[r], i.e., when z = 0. An extra
condition, called uniformity, is proposed in [15] to allow using conditional inde-
pendence within the POR theory. Intuitively, uniform independence adds a con-
dition to Definition 1 to ensure that independence holds at all successor states
for those events that are enabled and are uniformly independent with the two
events whose independence is being proved. While this notion can be checked
a posteriori in a given exploration, it is unclear how it could be applied in a

400 E. Albert et al.

dynamic setting where decisions are made a priori. Here we propose a weaker
notion of uniformity, called transitive uniformity, for which we have been able
to prove that the dynamic-POR framework is sound. The difference with [15] is
that our extra condition ensures that independence holds at all successor states
for all events that are enabled, which is thus a superset of the events considered
in [15]. We notice that the general happens-before definition of [1,2] does not
capture our transitive uniform conditional independence below (namely prop-
erty seven of [1,2] does not hold), hence CDPOR cannot be seen as an instance
of SDPOR but rather as an extension.

Definition 3. The transitive uniform conditional independence relation, writ-
ten unif(α, β, S), fulfills (i1) and (i2) and, (i3) unif(α, β, Sγ) holds for all

γ /∈ {α, β} enabled in S, where Sγ is defined by S
γ−→ Sγ .

During the exploration of the sequence p.q.r in Example 4, the algorithm will now
find a reversible race between p and q, since the independence is not transitively
uniform in z = −1, x = −2. Namely, (i3) does not hold since r is enabled and
we have x = −1 and z = 0 in s[r], which implies ¬unif(p, q, s[r]) ((i2) does not
hold).

We now introduce sufficient conditions for transitive uniformity that can
be precomputed statically, and efficiently checked, in our dynamic algorithm.
Condition (i1) is computed dynamically as usual during the exploration sim-
ply storing enabling dependencies. Condition (i2) is provided by the ICs. Our
sufficient conditions to ensure (i3) are as follows. For each atomic block b, we
precompute statically (before executing DPOR) the set W (b) of the global vari-
ables that can be modified by the full execution of b, i.e., by an instruction in b
or by any other block called from, or enabled by, b (transitively). To this end, we
do a simple analysis which consists in: (1) First we build the call graph for the
program to establish the calling relationships between the blocks in the program.
Note that when we find a process creation instruction spawn(P [ini]) we have a
calling relationship between the block in which the spawn instruction appears
and P . (2) We obtain (by a fixed point computation) the largest relation ful-
filling that g belongs to W (b) if either g is modified by an instruction in b or g
belongs to W (c) for some block c called from b. This computation can be done
with different levels of precision, and it is well-studied in the static analysis field
[18]. We let G(C) be the set of global variables evaluated on constraint C in I.

Definition 4 (sufficient condition for transitive uniformity, U⇒). Let E
be a sequence, I a set of constraints, α and β be two events enabled in s[E],
and T = next[E](enabled(s[E])) \ {α, β}, we define U⇒(I, α, β, s[E]) ≡ ∃C ∈ I :
C(s[E]) ∧ ((G(C) ∩ ⋃

t∈T W (t̄)) = ∅).

Intuitively, our sufficient condition ensures transitive uniformity by checking that
the global variables involved in the constraint C of the IC used to ensure the
uniformity condition are not modified by other enabled events in the state.

Theorem 1. Given a sequence E and two events α and β enabled in s[E], we
have that U⇒(Iᾱ,β̄ , α, β, s[E]) ⇒ unif(α, β, s[E]).

Constrained Dynamic Partial Order Reduction 401

3.3 The Constrained DPOR Algorithm

The code highlighted in blue in Algorithm1 provides the extension to apply
conditional independence within DPOR. In addition to the pruning explained in
Sect. 3.1, it achieves two further types of pruning:

1. Back-set reduction. The race detection is strengthened with an extra condition
(line 9) so that e and n (the next event of p) are in race only if they are
not conditionally independent in state s[E′.u] (using our sufficient condition
above). Here u is the sub-sequence of events of E that occur after e and
“happen-before” n. This way the conditional independence is evaluated in
the state after the shortest subsequence so that the events are adjacent in an
equivalent execution sequence.

2. Sleep-set extension. An extra condition to propagate down elements in the
sleep set is added (line 17) s.t. a sequence x, with just one process, is propa-
gated if its corresponding event is conditionally independent of n in s[E].

It is important to note also that the inferred conditional independencies are
recorded in the happens-before relation to be later re-used for subsequent com-
putations of the � and dep definitions.

Example 5. Let us describe the exploration for the example in Fig. 1 using
our CDPOR. At state 1, the algorithm checks whether p and q are in race.
U⇒(Ip̄,q̄, p, q, S) does not hold in z = −2 since, although (z ≤ −1) ∈ Ip̄,q̄ holds,
we have that G(z ≤ −1)∩W (r) = {z} �= ∅. Process q is hence added to back(ε).
On the other hand, since (z ≤ −1) ∈ Ip̄,q̄ holds in z = −2 (line 11), q.p is added
to sleep(ε) (line 12). At state 2 the algorithm checks the possible race between
q and r after executing p. This time the transitive uniformity of the indepen-
dence of q and r holds since (z ≤ −2) ∈ Iq̄,r̄ holds, and there are no enabled
events out of {q, r}. Our algorithm therefore avoids the addition of r to back(p)
(pruning 1 above). The algorithm also checks the possible race between p and r
in z = −2. Again, true ∈ Ip̄,r̄ holds and is uniform since G(true) = ∅ (pruning
1). The algorithm finishes the exploration of sequence p.q.r and then backtracks
with q at state 0. At state 5 the algorithm selects process r (p is in the sleep
set of 5 since it is propagated down from the q.p in sleep(ε)). It then checks
the possible race between q and r, which is again discarded (pruning 1), since
transitive uniformity of the independence of q and r can be proved: we have that
(z ≤ −2) ∈ Iq̄,r̄ holds in z = −2 and W (p) ∩ G(z ≤ −2) = ∅, where p is the only
enabled event out of {q, r} and W (p) = {x}. This avoids adding r to back(ε).
Finally, at state 5, p is propagated down in the new sleep set (pruning 2), since
as before true ∈ Ip̄,r̄ ensures transitive uniformity. The exploration therefore
finishes at state 6.

Overall, on our working example, CDPOR has been able to explore only one
complete sequence p.q.r and the partial sequence q.r (a total of 6 states). The
latter one could be avoided if a more precise sufficient condition for uniformity
is provided which, in particular, is able to detect that the independence of p and
q in ε is transitive uniform, i.e., it still holds after r (even if r writes variable z).

402 E. Albert et al.

Theorem 2 (soundness). For each Mazurkiewicz trace T defined by the hap-
pens before relation, Explore(ε, ∅) in Algorithm1 explores a complete execution
sequence T ′ that reaches the same final state as T .

4 Automatic Generation of ICs Using SMT

Generating ICs amounts to proving (conditional) program equivalence w.r.t. the
global memory. While the problem is very hard in general, proving equivalence
of smaller blocks of code becomes more tractable. This section introduces a
novel SMT-based approach to synthesize ICs between pairs of atomic blocks of
code. Our ICs can be used within any transformation or analysis tool –beyond
DPOR– which can gain accuracy or efficiency by knowing that fragments of
code (conditionally) commute. Section 4.1 first describes the inference for basic
blocks; Sect. 4.2 extends it to handle process creation and Sect. 4.3 outlines other
extensions, like loops, method invocations and data structures.

4.1 The Basic Inference

In this section we consider blocks of code containing conditional statements and
assignments using linear integer arithmetic (LIA) expressions. The first step to
carry out the inference is to transform q and r into two respective deterministic
Transition Systems (TSs), Tq and Tr (note that q and r are assumed to be
deterministic), and compose them in both reverse orders Tq·r and Tr·q. Consider
r and q in Fig. 1 whose associated TSs are (primed variables represent the final
value of the variables):

Tq : z ≥ 0 → z′ = x; Tr : true → x′ = x + 1, z′ = z + 1;
z < 0 → z′ = z;

The code to be analyzed is the composition of Tq and Tr in both orders:

Tq·r: z ≥ 0 → x′ = x + 1, z′ = x + 1; Tr·q: z ≥ −1 → x′ = x + 1, z′ = x + 1;
z < 0 → x′ = x + 1, z′ = z + 1; z < −1 → x′ = x + 1, z′ = z + 1;

In what follows we denote by Ta·b the deterministic TS obtained from the con-
catenation of the blocks a and b, such that all variables are assigned in one
instruction using parallel assignment. We let A |G be the restriction to the global
memory of the assignments in A (i.e., ignoring the effect on local variables). The
following definition provides an SMT formula over LIA (a boolean formula where
the atoms are equalities and inequalities over linear integer arithmetic expres-
sions) which encodes the independence between the two blocks.

Definition 5 (IC generation). Let us consider two atomic blocks q and r and
a global memory G and let Ci → Ai (resp. C ′

j → A′
j) be the transitions in Tq·r

(resp. Tr·q). We obtain Fq,r as the SMT formula:
∨

i,j(Ci ∧ C ′
j ∧ Ai |G= A′

j |G).

Constrained Dynamic Partial Order Reduction 403

Intuitively, the SMT encoding in the above definition has as solutions all those
states where both a condition Ci of a transition in Tq·r and C ′

j of a transition in
Tr·q hold (and hence are compatible) and the final global state after executing
all instructions in the two transitions (denoted Ai and A′

j) remains the same.
Next, we generate the constraints of the independence condition Iq,r by

obtaining a compact representation of all models over linear arithmetic atoms
(computed by an allSAT SMT solver) satisfying Fq,r. In particular, we add a
constraint in Iq,r for every obtained model.

Example 6. In the example, we have the TS with conditions and assignments:

Tq·r: C1:z ≥ 0 A1:x
′ = x + 1, z′ = x + 1 Tr·q: C′

1:z ≥ −1 A′
1:x

′ = x + 1, z′ = x + 1
C2:z < 0 A2:x

′ = x + 1, z′ = z + 1 C′
2:z < −1 A′

2:x
′ = x + 1, z′ = z + 1

and we obtain a set with three constraints Iq,r = {(z ≥ 0), (z = x), (z < −1)}
by computing all models satisfying the following resulting formula:

(z ≥ 0 ∧ z ≥ −1 ∧ x + 1 = x + 1 ∧ x + 1 = x + 1) ∨
(z ≥ 0 ∧ z < −1 ∧ x + 1 = x + 1 ∧ x + 1 = z + 1) ∨
(z < 0 ∧ z ≥ −1 ∧ x + 1 = x + 1 ∧ z + 1 = x + 1) ∨
(z < 0 ∧ z < −1 ∧ x + 1 = x + 1 ∧ z + 1 = z + 1)

The second conjunction is unsatisfiable since there is no model with both C1 and
C ′

2. On the other hand, the equalities of the first and the last conjunctions always
hold, which give us the constraints z ≥ 0 and z ≤ −2. Finally, all equalities hold
when x = z, which give us the third constraint as a result for our SMT encoding.

Note that, as in this case Fq,r describes not only a sufficient but also a necessary
condition for independence, the obtained constraints IC are also a sufficient
and necessary conditions for independence. This allows removing line 14 in the
algorithm, since the context-sensitive check will fail if line 11 does. However, the
next extensions do not ensure that the generated ICs are necessary conditions.

4.2 IC for Blocks with Process Creation

Consider the following two methods whose body constitutes an atomic block
(e.g., the lock is taken at the method start and released at the return). They
are inspired by a highly concurrent computation for the Fibonacci used in the
experiments. Variables nr and r are global to all processes:

fib(int v) {
if (v≤1) {spawn(res(v));}
else {spawn(fib(v-1));

spawn(fib(v-2));}
}

res(int v) {
if (nr>0) {nr=0; r=v; }
else {spawn(res(r+v));

r=0;nr=1;}
}

We now want to infer Ifib(v),fib(v1), Ifib(v),res(v1), Ires(v),res(v1). The first step is to
obtain, for each block r, a TS with uninterpreted functions, denoted TSu

r , in
which transitions are of the form C → (A,S) where A are the parallel assign-
ments as in Sect. 4.1, and S is a multiset containing calls to fresh uninterpreted
functions associated to the processes spawned within the transition (i.e., a pro-
cess creation spawn(P) is associated to an uninterpreted function spawn P).

404 E. Albert et al.

T u
fib: v ≤ 1 → (skip, {spawn res(v)})

v > 1 → (skip, {spawn fib(v − 1), spawn fib(v − 2)}
T u

res: nr ≥ 0 → (nr′ = 0, r′ = v, {})
nr < 0 → (nr′ = 1, r′ = 0, {spawn res(r + v)}

The following definition extends Definition 5 to handle process creation. Intu-
itively, it associates a fresh variable to each different element in the multisets
(mapping P ′ below) and enforces equality among the multisets.

Definition 6 (IC generation with process creation). Let us consider TSu
r·q

and TSu
q·r. We define P = {∪s | s ∈ S, with C → (A,S) ∈ TSu

r·q ∪ TSu
q·r}.

Let P ′ be a mapping from the elements in P to fresh variables, and P ′(S) be
the replacement of the elements in the multiset S applying the mapping P ′. Let
Ci → (Ai, Si) (resp. C ′

j → (A′
j , S

′
j)) be the transitions in TSu

q·r (resp. TSu
r·q). We

obtain Fq,r as the SMT formula:
∨

i,j(Ci ∧C ′
j ∧Ai |G= A′

j |G ∧P ′(Si) ≡ P ′(S′
j)).

For simplicity and efficiency, we consider that ≡ corresponds to the syntactic
equality of the multisets. However, in order to improve the precision of the encod-
ing we apply P ′ to Si and Sj replacing two process creations by the same variable
if they are equal modulo associativity and commutativity (AC) of arithmetic
operators and after substituting the equalities already imposed by Ai |G= A′

j

(see example below). A more precise treatment can be achieved by using equality
with uninterpreted functions (EUF) to compare the multisets of processes.

Example 7. Let us show how we apply the above definition to infer Ires(v),res(v1).
We first build Tres(v)·res(v1) from Tres(v) by composing it with itself:

nr ≤ 0 → (nr′ = 0, r′ = v1, {spawn res(r+v)})

nr > 0 → (nr′ = 1, r′ = 0, {spawn res(v+v1)})

and Tres(v1)·res(v) which is like the one above but exchanging v and v1. Next, we
define P ′ = {spawn res(r + v) �→ x1, spawn res(v + v1) �→ x2, spawn res(r +
v1) �→ x3, spawn res(v1+v) �→ x4} and apply it with the improvement described
above

(nr ≤ 0 ∧ nr ≤ 0 ∧ 0 = 0 ∧ v = v1 ∧ {x1} = {x1}) ∨
(nr ≤ 0 ∧ nr > 0 ∧ 0 = 1 ∧ v1 = 0 ∧ {x1} = {x4}) ∨
(nr > 0 ∧ nr ≤ 0 ∧ 1 = 0 ∧ 0 = v ∧ {x2} = {x3}) ∨
(nr > 0 ∧ nr > 0 ∧ 1 = 1 ∧ 0 = 0 ∧ {x2} = {x2})

Note that the second and the third conjunction are unfeasible and hence can
be removed from the formula. In the first one spawn res(r + v1) is replaced by
x1 (instead of x3) since we can substitute v1 by v as v = v1 is imposed in the
conjunction and in the fourth one spawn res(v1 + v) is replaced by x2 (instead
of x4) since it is equal modulo AC to spawn res(v + v1). Then we finally have

(nr ≤ 0 ∧ nr ≤ 0 ∧ 0 = 0 ∧ v = v1) ∨ (nr > 0 ∧ nr > 0 ∧ 1 = 1 ∧ 0 = 0)

As before, Ires(v),res(v1) = {(nr > 0), (v = v1)} is then obtained by computing all
satisfying models. In the same way we obtain Ifib(v),res(v1)

= Ifib(v),fib(v1)
= {true}.

Constrained Dynamic Partial Order Reduction 405

The following theorem states the soundness of the inference of ICs, that holds
by construction of the SMT formula.

Theorem 3 (soundness of independence conditions). Given the assump-

tions in Definition 6, if ∃C ∈ Ir,q s.t. C(S) holds, then S
r·q−→ S′ and S

q·r−→ S′.

We will also get a necessary condition in those instances where the use of syn-
tactic equality modulo AC on the multisets of created processes (as described
above) is not loosing precision. This can be checked when building the encoding.

4.3 Other Extensions

We abstract loops from the code of the blocks so that we can handle them
as uninterpreted functions similarly to Definition 6. Basically, for each loop, we
generate as many uninterpreted functions as variables it modifies (excluding
local variables of the loop) plus one to express all processes created inside the
loop. The functions have as arguments the variables accessed by the loop (again
excluding local variables). This transformation allows us to represent that each
variable might be affected by the execution of the loop over some parameters,
and then check in the reverse trace whether we get to the loop over the same
parameters.

Definition 7 (loop extraction for IC generation). Let us consider a loop
L that accesses x1, . . . , xn variables and modifies y1, . . . , ym variables (excluding
local loop variables) and let l1, . . . , lm+1 be fresh function symbol names. We
replace L by the following code:

x′
1 = x1; . . . ; x′

n = xn; y1 = l1(x
′
1, ..., x

′
n); . . . ; ym = lm(x′

1, ..., x
′
n);

spawn(fm+1(x
′
1, ..., x

′
n)); (only if there are spawn operations inside the loop)

Existing dependency analysis can be used to infer the subset of x1, . . . , xn that
affects each yi, achieving more precision with a small pre-computation overhead.

The treatment of method invocations (or function calls) to be executed atom-
ically within the considered blocks can be done analogously to loops by intro-
ducing one fresh function for every (non-local) variable that is modified within
the method call and one more for the result. The parameters of these new func-
tions are the original ones plus one for each accessed (non-local) variable. After
the transformations for both loops and calls described above, we have TSs with
function calls that are treated as uninterpreted functions in a similar way to
Definition 6. However these functions can now occur in the conditions and the
assignments of the TS. To handle them, we use again a mapping P ′′ to remove
all function calls from the TS and replace them by fresh integer variables. After
that the encoding is like in Definition 6, and we obtain an SMT formula over
LIA, which is again sent to the allSAT SMT solver. Once we have obtained
the models we replace back the introduced fresh variables by the function calls
using the mapping P ′′. Several simplifications on equalities involving function
calls can be done before and after invoking the solver to improve the result. As a

406 E. Albert et al.

final remark, data structures like lists or maps have been handled by expressing
their uses as function calls, hence obtaining constraints that include conditions
on them.

5 Experiments

In this section we report on experimental results that compare the performance of
three DPOR algorithms: SDPOR [1,2], CSDPOR [3] and our proposal CDPOR.
We have implemented and experimentally evaluated our method within the
SYCO tool [3], a systematic testing tool for message-passing concurrent pro-
grams. SYCO can be used online through its web interface available at http://
costa.fdi.ucm.es/syco. To generate the ICs, SYCO calls a new feature of the
VeryMax program analyzer [6] which uses Barcelogic [5] as SMT solver. As
benchmarks, we have borrowed the examples from [3] (available online from the
previous url) that were used to compare SDPOR with CSDPOR. They are clas-
sical concurrent applications: several concurrent sorting algorithms (QS, MS,
PS), concurrent Fibonacci Fib, distributed workers Pi, a concurrent registration
system Reg and database DBP, and a consumer producer interaction BB. These
benchmarks feature the typical concurrent programming methodology in which
computations are split into smaller atomic subcomputations which concurrently
interleave their executions, and which work on the same shared data. There-
fore, the concurrent processes are highly interfering, and both inferring ICs and
applying DPOR algorithms on them becomes challenging.

We have executed each benchmark with size increasing input parameters. A
timeout of 60 s is used and, when reached, we write >X to indicate that for the
corresponding measure we encountered X units up to that point (i.e., it is at least
X). Table 1 shows the results of the executions for 6 different inputs. Column
Tr shows the number of traces, S the number of states that the algorithms
explore, and T the time in sec it takes to compute them. For CDPOR, we also
show the time T smt of inferring the ICs (since the inference is performed once
for all executions, it is only shown in the first row). Times are obtained on
an Intel(R) Core(TM) i7 CPU at 2.5 GHz with 8 GB of RAM (Linux Kernel
5.4.0). Columns Gs and Gcs show the time speedup of CDPOR over SDPOR
and CSDPOR, respectively, computed by dividing each respective T by the time
T of CDPOR. Column Gsmt shows the time speedup over CSDPOR including
T smt in the time of CDPOR. We can see from the speedups that the gains of
CDPOR increase exponentially in all examples with the size of the input. When
compared with CSDPOR, we achieve reductions up to 4 orders of magnitude for
the largest inputs on which CSDPOR terminates (e.g., Pi, QS). It is important
to highlight that the number of non-unitary sequences stored in sleep sets is 0
in every benchmark except in BB for which it remains quite low (namely for
BB(11) the peak is 22).

W.r.t. SDPOR, we achieve reductions of 4 orders of magnitude even for
smaller inputs for which SDPOR terminates (e.g., PS). Note that since most
examples reach the timeout, the gains are at least the ones we show, thus the

Constrained Dynamic Partial Order Reduction 407

Table 1. Experimental evaluation

concrete numbers shown should not be taken into account. In some examples
(e.g., BB, MS), though the gains are linear for the small inputs, when the size
of the problem increases both SDPOR and CSDPOR time out, while CDPOR
can still handle them efficiently.

Similar reductions are obtained for number of states explored. In this case,
the system times out when it has memory problems, and the computation stops
progressing (hence the number of explored states does not increase with the input
any more). As regards the time to infer the annotations T smt, we observe that in
most cases it is negligible compared to the exploration time of the other methods.
QS is the only example that needs some seconds to be solved and this is due to
the presence of several nested conditional statements combined with the use of

408 E. Albert et al.

built-in functions for lists, which makes the generated SMT encoding harder for
the solver and the subsequent simplification step. Note that the inference is a
pre-process which does not add complexity to the actual DPOR algorithm.

6 Related Work and Conclusions

The notion of conditional independence in the context of POR was first intro-
duced in [11,15]. Also [12] provides a similar strengthened dependency definition.
CSDPOR was the first approach to exploit this notion within the state-of-the-art
DPOR algorithm. We advance this line of research by fully integrating condi-
tional independence within the DPOR framework by using independence con-
straints (ICs) together with the notion of transitive uniform conditional indepen-
dence –which ensures the ICs hold along the whole execution sequence. Both ICs
and transitive uniformity can be approximated statically and checked dynam-
ically, making them effectively applicable within the dynamic framework. The
work in [14,21] generated for the first time ICs for processes with a single instruc-
tion following some predefined patterns. This is a problem strictly simpler than
our inference of ICs both in the type of IC generated (restricted to the patterns)
and on the single-instruction blocks they consider. Furthermore, our approach
using an AllSAT SMT solver is different from the CEGAR approach in [4]. The
ICs are used in [14,21] for SMT-based bounded model checking, an approach
to model checking fundamentally different from our stateless model checking
setting. As a consequence ICs are used in a different way, in our case with no
bounds on number of processes, nor derivation lengths, but requiring a unifor-
mity condition on independence in order to ensure soundness. Maximal causality
reduction [13] is technically quite different from CDPOR as it integrates SMT
solving within the dynamic algorithm.

Finally, data-centric DPOR (DCDPOR) [7] presents a new DPOR algorithm
based on a different notion of dependency according to which the equivalence
classes of derivations are based on the pairs read-write of variables. Consider the
following three simple processes {p, q, r} and the initial state x = 0:

p: write(x = 5), q: write(x = 5), r: read(x). In DCDPOR, we have only
three different observation functions: (r, x) (reading the initial value), (r, p)
(reading the value that p writes), (r, q) (reading the value that q writes). There-
fore, this notion of relational independence is finer grained than the traditional
one in DPOR. However, DCDPOR does not consider conditional dependency,
i.e., it does not realize that (r, p) and (r, q) are equivalent, and hence only two
explorations are required (and explored by CDPOR). The example in conclusion,
our approach and DCDPOR can complement each other: our approach would
benefit from using a dependency based on the read-write pairs as proposed in
DCDPOR, and DCDPOR would benefit from using conditional independence
as proposed in our work. It remains as future work to study this integration.
Related to DCDPOR, [16] extends optimal DPOR with observers. For the pre-
vious example, [16] needs to explore five executions: r.p.q and r.q.p, are equivalent
because p and q do not have any observer. Another improvement orthogonal to
ours is to inspect dependencies over chains of events, as in [17,19].

Constrained Dynamic Partial Order Reduction 409

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: a foundation for
optimal dynamic partial order reduction. J. ACM 64(4), 25:1–25:49 (2017)

2. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: POPL, pp. 373–384 (2014)

3. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:
Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 526–543. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 26

4. Bansal, K., Koskinen, E., Tripp, O.: Commutativity condition refinement (2015)
5. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The

barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol.
5123, pp. 294–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-70545-1 27

6. Borralleras, C., Larraz, D., Oliveras, A., Rivero, J.M., Rodŕıguez-Carbonell, E.,
Rubio, A.: VeryMax: tool description for termCOMP 2016. In: WST (2016)

7. Chalupa, M., Chatterjee, K., Pavlogiannis, A., Vaidya, K., Sinha, N.: Data-centric
dynamic partial order reduction. In: POPL 2018 (2018)

8. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.A.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

9. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL, pp. 110–121 (2005)

10. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

11. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS,
vol. 697, pp. 438–449. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
56922-7 36

12. Günther, H., Laarman, A., Sokolova, A., Weissenbacher, G.: Dynamic reductions
for model checking concurrent software. In: Bouajjani, A., Monniaux, D. (eds.)
VMCAI 2017. LNCS, vol. 10145, pp. 246–265. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-52234-0 14

13. Huang, S., Huang, J.: Speeding up maximal causality reduction with static depen-
dency analysis. In: ECOOP, pp. 16:1–16:22 (2017)

14. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: an optimal
symbolic partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 31

15. Katz, S., Peled, D.A.: Defining conditional independence using collapses. TCS
101(2), 337–359 (1992)

16. Aronis, S., Jonsson, B., L̊ang, M., Sagonas, K.: Optimal dynamic partial order
reduction with observers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10806, pp. 229–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89963-3 14

17. Nguyen, H.T.T., Rodŕıguez, C., Sousa, M., Coti, C., Petrucci, L.: Quasi-optimal
partial order reduction. CoRR, abs/1802.03950 (2018)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

410 E. Albert et al.

19. Rodŕıguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order
reduction. In: CONCUR, pp. 456–469 (2015)

20. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

21. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

CHAPTER 7. PUBLICATIONS

94

Actor-Based Model Checking for SDN Networks

Elvira Alberta, Miguel Gómez-Zamalloaa, Miguel Isabela,∗, Albert Rubioa,
Matteo Sammartinob, Alexandra Silvab

aComplutense University of Madrid, Spain
bUniversity College London, UK

Abstract

Software-Defined Networking (SDN) is a networking paradigm that has become
increasingly popular in the last decade. The unprecedented control over the
global behavior of the network it provides opens a range of new opportunities for
formal methods and much work has appeared in the last few years on providing
bridges between SDN and verification. This article advances this research line
and provides a link between SDN and traditional work on formal methods for
verification of concurrent and distributed software—actor-based modelling. We
show how SDN programs can be seamlessly modelled using actors, and thus
existing advanced model checking techniques developed for actors can be directly
applied to verify a range of properties of SDN networks, including consistency
of flow tables, violation of safety policies, and forwarding loops. Our model
checker for SDN networks is available through an online web interface, that also
provides the SDN actor-models for a number of well-known SDN benchmarks.

Keywords: Software-Defined Networks, Verification, Concurrency,
Actor-based modelling, Model checking

1. Introduction

SDN is a relatively recent networking paradigm which is now widely used in
industry, with many companies—such as Google and Facebook—using SDN to
control their backbone networks and data-centers. The core principle in SDN is
the separation of control and data planes—there is a centralized controller which
operates a collection of distributed interconnected switches. The controller can
dynamically update switches’ policies depending on the observed flow of packets,
which is a simple but powerful way to react to unexpected events in the network.

∗Corresponding author: Miguel Isabel, Department of Sistemas Informáticos y Com-
putación , C/ Profesor José Garćıa Santesmases, s/n Complutense University of Madrid,
E-28040 - Madrid (Spain). Phone/Fax +34 91 3947641 / +34 91 3947529.

Email addresses: elvira@sip.ucm.es (Elvira Albert), mzamalloa@ucm.es (Miguel
Gómez-Zamalloa), miguelis@ucm.es (Miguel Isabel), albert@cs.upc.edu (Albert
Rubio), m.sammartino@ucl.ac.uk (Matteo Sammartino),
alexandra.silva@ucl.ac.uk (Alexandra Silva)

Preprint submitted to Elsevier December 4, 2019

Network verification has gained an extra boost since SDN was introduced, as in
this new paradigm the amount of detailed information available about network
events is rich enough and can be centrally gathered to check for properties, both
statically and dynamically, of the network behavior. Moreover, the controller
itself is a program which can be analyzed and verified before deployment.

The distributed and concurrent nature of network behavior makes program-
ming and verification tasks challenging. Some of the bugs that can be found in
existing (programmable) networks are reminiscent of faults that have appeared
in distributed and concurrent systems, and which have inspired much research
in the verification and formal methods communities. With this observation as
a starting point, this article provides a new bridge between SDN and a strand
of formal methods—actor-based modelling [1]— which was originally developed
to analyze concurrent systems. Actors, entities equipped with a private mem-
ory, form the basic unit of computation in such framework and can interact with
each other through asynchronous messages. This setup enables reasoning about
local properties of the system without knowledge of the whole program, which
gives rise to more compositional and thus scalable methods. Actors provide
the foundations for the concurrency model of languages used in industry, e.g.,
Erlang and Scala, and libraries used in mainstream languages, e.g., Akka.

1.1. Summary of contributions

This article makes five main contributions:

1. SDN-semantics: A formalization of the semantics of SDN networks which
allows us to define the transitions that occur in the network and formalize
the concept of execution trace needed to prove soundness of our modelling.

2. SDN-Actors: An encoding of all basic components of an SDN network
(switches, hosts, controller) into the actor-based language ABS [2] and a
soundness proof of our encoding using the semantics of SDN networks in
point 1.

3. Barriers: One of the most challenging aspects to encode are the OpenFlow
barrier messages, special instructions that the controller can use to force
switches to execute all their queued tasks. We provide an implementation
of barriers using conditional synchronization and a soundness result.

4. Model checker: A model checker for our SDN models built on top of the
SYCO tool [3] that incorporates several dynamic partial-order reduction
(DPOR) algorithms.

5. Case studies: Several case studies of SDN and properties to illustrate the
versatility and potential of the approach. We were able to find bugs related
to programming errors in the controller, forwarding loops, and violation
of safety policies, and scale to larger networks than related techniques.

This article extends and improves the conference paper that appeared in the
FM’18 proceedings [4] as follows. On the theoretical side, we have formalized

2

the semantics of SDN networks and used it to prove soundness of the basic
encoding of SDN-Actors, ensuring thus the correctness of our models. On the
practical side, we have carried out a new experimental evaluation using the
Constrained DPOR algorithm [5]. This DPOR algorithm can take advantage of
independence conditions that we have defined specifically for the SDN domain
and that allow us to treat larger networks than by using related techniques
and than in our FM’18 paper. We have also extended the SYCO tool with a
mechanism to detect the violation of the property under check that stops the
exploration, while before SYCO was restricted to full exploration.

1.2. Organization of the article

Section 2 gives an intuition of the main ideas in the article by means of
a simple example. In Section 3 we present the semantics of SDN programs
and of actor systems, in two parts. First, Section 3.1 introduces a semantics
for SDN networks that describes the communication patterns in this kind of
networks and that allows us to formalize the notion of execution trace in the
SDN network. Next, we recall the semantics of actor systems from [2] which
will constitute the semantics of our models. Section 4 introduces the concept
of SDN-Actor by providing the encoding of all components in an SDN network
as actors. We formally prove the soundness of the encoding by relying on the
semantics introduced in Section 3.1. Section 5 extends both the SDN semantics
and our models to handle barriers and formalizes the soundness of this extension.
Section 6 describes our DPOR-based model checker which instantiates an off-
the-shelf model checker for actor systems with tailored independence conditions
to efficiently verify SDN-Actor models. Section 7 describes the experimental
evaluation of the tool. Related work and conclusions appear in Section 8.

2. Overview

This section contains an overview of the technical contributions via an ex-
tended example, which we also use to introduces basic concepts and notations.

2.1. Concurrency errors in SDN networks

SDN is a networking architecture where a central software controller can
dynamically change how network switches forward packets by monitoring the
traffic. Switches can be connected to hosts and to other switches via bidirec-
tional channels that may reorder packets. Each switch has a flow table, that
is a collection of guarded forwarding rules to determine the route of incoming
packets. Whenever a switch receives a packet, it checks if one of the flow table
rules applies. If no rule applies, the switch sends a message to the controller via
a dedicated link, and the packet is buffered until instructions arrive. Depending
on its policy, the controller instructs the switch, and possibly other switches in
the network, on how to update their flow tables. Such control messages between
the controller and the switches can be processed in arbitrary order.

We now show how a simple load-balancer can be implemented in SDN (exam-
ple taken from [6]) and how potential bugs can easily arise due to the concurrent

3

S1

C

S2

S3

H0

R2

R1

0
2

1 1

0

0

1

load-balancer

1
2

0

1
0

0

1

S2 S3C S1

first round
(R1 is chosen)

second round
(R2 is chosen)

{

{

4

5
6

Figure 1: Example SDN load-balancer. On the left: structure of the SDN. On the right:
messages exchanged in a possible execution of a naive controller program. Coloured arrows
stand for control messages to switches, indicating which flow rule to install (colours specify
the link to be used for the forwarding). Grey boxes and arrows among them represent packet
forwardings. Dashed arrows indicate messages to the controller.

behavior and asynchrony of message passing. Suppose we want to balance the
traffic to a server by using two replicas R1 and R2 to which the controller alter-
nates the traffic in a round-robin fashion. The structure of the SDN is shown in
Figure 1, on the left: H0 is any host that wants to communicate with the server
and S1, S2 and S3 are switches (numbers on endpoints stand for port numbers).

Even in this simple network, an incorrect implementation of the controller
can lead to serious problems. In Figure 1, on the right, we show an execution of
a naive controller, which simply instructs switches to forward packets along the
shortest path to the chosen replica. This implementation ignores the potential
concurrency in actions taken by switches and controller, leading to a forwarding
loop between S1 and S2. In the first round, when S1 queries the controller, R1 is
chosen. The figure shows S1 forwarding the packet to S2 before the end of the
first round, i.e., before a rule is installed on S2 (green arrow). This causes S2

to query the controller, which triggers the second round in which the controller
chooses R2. Thus, it sends instructions to install rules on S2, S1 and S3 to
forward the packet to S1, S3 and R2, respectively. When the controller rules
arrive at S1, it will have two contradictory instructions, telling to forward the
packet either to S2 or to S3. In the former case, the loop at the bottom of the
figure occurs. This issue can be avoided if the implementation uses barriers—the
controller will then guarantee that S2 receives and processes control messages
before taking any other action.

2.2. Actor-based modelling of SDN networks

We now explain how we can automatically detect the above problem using
actors and model checking. We use the object-oriented actor language ABS
[2, 7], where each actor type is specified as a class, consisting of a set of fields and
methods. Actors are instances of actor classes. For instance, the instructions:
Controller ctrl = new Controller(); Switch s1 = new Switch(”S1”,ctrl); Host h0 =

4

new Host(”H0”,s1,0); create 3 actors: a controller ctrl; a switch s1 with name
"S1" and a reference to ctrl; a host h0, with name "H0", connected to the switch
s1 via the port 0. The SDN in Figure 1 can be modeled using one actor per
component (additional data structures for network links will be shown later).

The execution model of actors is asynchronous. Each actor can be thought
of as a processor, with a queue of pending tasks and a local memory. Actors
are executed in parallel and, at each actor, one task is non-deterministically
selected among all the pending ones and executed. The syntax Fut<type>
f=a!m(x) spawns an asynchronous task m(x), that is added to the queue of
pending tasks of a, type is the type of the data returned by m or Unit if no data
is returned. This task consists in executing the method m of a with arguments
x. The variable f is a future variable [8] that will allow us to check if such task
has been completed. Left-hand side of the assignment can be omitted in case
the future variable is not needed.

A partial trace of execution of our SDN actor model computed by the model
checker is (the code that the tasks below execute will be given in Section 4):

1: h0!sendIn
1−→ 2: s1!switchHandlePacket

2−→ 3: ctrl!controlHandleMessage

3−→ 4: s1!switchHandleMessage(s2), 5: s1!sendOut, 6: s2!switchHandleMessage(r1)

Intuitively, a packet sending (sendIn) is executed on h0 (label 1), which
causes the packet to be forwarded to the switch s1 (2), then s1 sends a control
message to the controller (3). Finally, the controller spawns the three tasks in
the last state (parameters tell where to forward the packet). When executed,
these tasks will produce the messages in Figure 1 with the same numbers. Their
execution order is arbitrary: if it is the one shown in Figure 1, the execution
trace may lead to a state exhibiting a forwarding cycle between s1 and s2. As
we will show later, this situation can be easily detected by our model checker
SYCO via an exploration of a reduced execution tree, which avoids equivalent
executions (Section 6).

The ABS language provides a convenient await primitive that will be used
to model barriers and to rule out the behavior described above. The instruction
await f? synchronizes with the termination of the task associated to the future
variable f, by releasing the processor (so that another task can be scheduled) if
the task is not finished. Once the awaited task is finished, the suspended task
can resume. The await can be used also with boolean conditions await b? to
suspend the execution of the current active task until condition b holds. The
formal semantics of the language can be found in Section 3.2.

3. Semantics for SDN Networks and for Actors

This section presents two semantics that provide the formal basis on which
we build our models: we first introduce the semantics of SDN Networks in
Section 3.1, and then the semantics of actors in Section 3.2. The semantics

5

Host Switch Controller

packet

packet

pa
ck
et

Packet-in

Packet-out

Modify-State

packet

Figure 2: Information flow in SDN networks

of actors has been already defined in several works (ours is a simplification of
[2]). Our formalization of the SDN semantics is similar to that of [9]. We
have considered a simplification of the Openflow specification that captures the
essence of the communications of SDN networks (e.g., we have not included the
operation flood as it behaves similarly to the considered switch operations).

3.1. SDN Networks

Let us first describe the information flow of packets and messages among the
different elements in an SDN network that we have depicted in Figure 2. As in
standard networks, packets can be sent from hosts to switches and viceversa,
and also from switches to switches (see dashed arrows). The leftmost dashed
arrow represents the reception by a host of a new packet which is fed into the
network. The specific communications of SDN networks are performed by means
of Openflow messages (see regular arrows), which in our simplification can be
of three types:

• Packet-in: This message is sent from a switch to the controller when the
switch processes a packet for which it has no action rule to apply. The
message includes the switch identifier and the identifier and header of
the packet. The packet is buffered in the switch until a message of type
Packet-out is received.

• Modify-State: This message is sent from the controller to a switch with
new action rules to be inserted into the switch’s flow-table. The message
includes a flow-table entry with an action rule.

• Packet-out: This message is sent from the controller to a switch to notify
that it must re-try applying an action rule to a buffered packet. The
message includes the packet header.

Figure 3 shows the semantics of the flow of communications performed in our
simplified SDN networks. The three types of messages below are respectively
abbreviated as pktIn, modState and pktOut.

• A host is a term of the form h(id , sid , o, in), where id is the host identifier,
sid and o are, respectively, the switch identifier and port to which the host
is connected, and in its input channel.

6

• A switch is of the form s(id , ft , b, in), where id is the switch identifier, ft
its flow-table, b its internal buffer of packets and in its input channel.

• The controller is of the form c(top, in) where top is the topology of the
network and in is its input channel.

• A state of the SDN network is a tuple of the form 〈H,S,C〉 where H =
{h | h is a host}, S = {s | s is a switch}, that is, H is a set of hosts, S is
a set of switches, and, C is the controller.

Letter p denotes a packet. Function header(p) returns its header. Flow-tables
are represented as mappings from pairs packet-header/port to actions and are
treated as a black-box through the following functions: lookup(ft , 〈ph, o〉) that
returns the action associated to the packet with header ph received through port
o in the flow-table ft , or ⊥ if there is no entry for it; and, put(ft , 〈ph, o〉, a) that
returns the new flow-table after inserting in ft the entry 〈ph, o〉 7→ a. For simplic-
ity, we only consider actions of the form send(id) or 〈send(id), o〉, which indicate
that the corresponding packet should be sent, respectively, to the host id , or to
the switch with id as identifier using port o. Function applyPol(top, sid, o, ph)
represents the application of the controller’s policy using the current network
topology top in result to a packet received via port o with header ph that the
switch with identifier sid has not been able to handle. It returns a set of pairs
〈id,m〉 where m is a modifyState message with an associated new flow-table
entry that has to be forwarded to the switch with identifier id.

A transition or step in the network corresponds to the processing of a packet
or message by a host, switch or the controller. There are six (sets of) transition
rules corresponding to the different types of incoming arrows in Figure 2:

• sendIn (abbreviated as si): It corresponds to the processing by a host of
a new packet which is fed into the network (denoted as new(p)), in which
case the packet is forwarded to the switch to which the host is connected
via the corresponding port. Note that the port is attached to the packet
(denoted o:p) since there is only one input channel in switches.

• hostHandlePacket (hhp): This corresponds to the processing by a host h
of a packet received from its switch, in which case the packet is consumed
without any further action.

• switchHandlePacket (shp): When a switch processes a received packet,
either from a host or from another switch, it looks up if there is any rule
matching with the header of the packet and port in its flow table ft . There
are three cases: (cases 1 and 2) there is a send action rule in the switch’s
flow-table, hence the packet is forwarded to the host (case 1) or switch
(case 2) indicated in the action (in the latter case also the switch’s port
is included in the action); or (case 3) there is no rule for this packet, in
which case the packet is buffered and a Packet-in message is sent to the
controller.

7

• sendOut (so): This corresponds to the processing of a Packet-out mes-
sage by a switch. After looking up the header of the packet p in its own
flow-table ft , there are three cases which are analogous to those of switch-
HandlePacket except that the packet is in the switch’s buffer (instead of
in its input channel), and that if no action rule is found in the switch’s
flow-table the packet is dropped.

• switchHandleMessage (shm): It corresponds to the processing of a Modify-
State message by a switch, in which case the received action rule is inserted
into the switch’s flow-table.

• controlHandleMessage (chm): The controller receives a Packet-in message
from a switch s in result to a packet that the switch s has not been able to
handle. As a result, the controller sends a set ms of Modify-State messages
with new action rules to a selected set of switches (as specified by the
controller’s policy with the current network topology), and a Packet-out
message to switch s.

A derivation E ≡ S0 → · · · → Sn is complete if S0 is the initial state and
Sn = 〈H,S,C〉 is the final state such that every message and packet in their
channels has been processed (their input channels are empty). We use exec(S)
to denote the set of all possible executions starting at state S.

3.2. Syntax and Semantics for Actor Programs

The grammar below describes the syntax of the language ABS in which SDN
models will be defined:

P ::= M C̄
C ::= class c(T̄ x̄){M̄}
M ::= T m(T̄ x̄){s; }
s ::= s ; s | x = e | if b then s else s | while b do s | m(z̄)

| x = new C(ȳ) | f = x!m(z̄) | await f? | await b?
Here, x, y, z denote variables names, f a future variable name, and s a sequence
of instructions. For any entity A, the notation Ā is used as a shorthand for
A1, ..., An. We use the special identifier this to denote the current actor.
For generality, the syntax of expressions e, Boolean conditions b and types
T is left unspecified. As in the object-oriented paradigm, a class denotes a
type of actors including their behavior, and it is defined as a set of fields and
methods. Lastly, m(z̄) denotes standard (synchronous) method calls, which are
only allowed on the actor itself, whereas “!” is used for asynchronous method
calls (see Section 2.2).

Figure 4 presents the semantics of the actor model. An actor is a term
of the form a(o, tk , h,Q), where o is the actor identifier, tk is the identifier
of the active task that holds the actor’s lock or ⊥ if the actor’s lock is free,
h is its local heap and Q is the queue of tasks in the actor. A heap h is a
mapping h : fields(C) 7→ V, where V stands for the set of references and val-
ues. A task tk is a term tk(tk ,m, l, s) where tk is a unique task identifier,

8

(si)
h = h(id, sid, o, in ∪ {new(p)}) s = s(sid , ft , b, in ′)

〈{h} ∪H, {s} ∪ S,C〉 → 〈{h(id, sid, o, in)} ∪H, {s(sid , ft , b, in ′ ∪ {o:p})} ∪ S,C〉

(hhp)
h = h(id, sid, o, in ∪ {p})

〈{h} ∪H,S,C〉 → 〈{h(id, sid, o, in)} ∪H,S,C〉

(shp1)

s = s(sid , ft , b, in ∪ {o:p}) h = h(id, sid, o′, in′)
send(id) = lookup(ft , 〈header(p),o〉)

〈{h} ∪H, {s} ∪ S,C〉 → 〈{h(id, sid, o′, in′ ∪ {p})} ∪H, {s(sid , ft , b, in)} ∪ S,C〉

(shp2)

s = s(sid , ft , b, in ∪ {o:p}) s′ = s(sid ′, ft ′, b′, in ′)
send(sid′,o′) = lookup(ft , 〈header(p),o〉)

〈H, {s, s′} ∪ S,C〉 → 〈H, {s(sid , ft , b, in), s(sid ′, ft ′, b′, in ′ ∪ {o′:p})} ∪ S,C〉

(shp3)
s=s(sid , ft , b, in ∪ {o:p}) s′ = s(sid , ft , b ∪ {o:p}, in) ⊥ = lookup(ft , 〈header(p),o〉)
〈H, {s} ∪ S, c(top, in′)〉 → 〈H, {s′} ∪ S, c(top, in′ ∪ {pktIn(sid, o, id(p), header(p))})〉

(so1)

s = s(sid , ft , b ∪ {o:p}, in ∪ {pktOut(ph)})
ph = header(p) h = h(id, sid, o′, in′) send(id) = lookup(ft , 〈header(p),o〉)
〈{h} ∪H, {s} ∪ S,C〉 → 〈{h(id, sid, o, in′ ∪ {p})} ∪H, {s(sid , ft , b, in)} ∪ S,C〉

(so2)

s = s(sid , ft , b ∪ {o:p}, in ∪ {pktOut(ph)})
ph = header(p) s′ = s(sid ′, ft ′, b′, in ′) send(sid′, o′) = lookup(ft , 〈header(p),o〉)
〈H, {s, s′} ∪ S,C〉 → 〈H, {s(sid , ft , b, in), s(sid ′, ft ′, b′, in ′ ∪ {o′:p})} ∪ S,C〉

(so3)

s = s(sid , ft , b ∪ {o:p}, in ∪ {pktOut(ph)})
ph = header(p) ⊥=lookup(ft , 〈header(p),o〉)
〈H, {s} ∪ S,C〉 → 〈H, {s(sid , ft , b, in)} ∪ S,C〉

(shm)
s = s(sid , ft , b, in ∪ {modState(〈ph, o〉 7→ a)})

〈H, {s} ∪ S,C〉 → 〈H, {s(sid , put(ft , 〈ph, o〉, a), b, in)} ∪ S,C〉

(chm)

c = c(top, cin ∪ {pktIn(sid, o, pid, ph)}) s = s(sid , ft , b, sin)
ms = applyPol(top, sid , o, ph) msid = {m | 〈id,m〉 ∈ ms}

S′ = {s(sid ′, ft ′, b′, in ′) | s(sid ′, ft ′, b′, in) ∈ S, in′ = in ∪mssid′}
〈H,S ∪ {s}, c〉 → 〈H,S′ ∪ s(sid , ft , b, sin ∪mssid ∪ {pktOut(ph)}), c(top, cin)〉

Figure 3: Semantics of SDN networks

9

(mstep)

a(o,⊥, h,Q) = selectAct(S)

tk(tk ,m, l , s) = selectTask(a(o,⊥, h,Q)) s 6= ε S
o·tk
;∗ S′

S 7−→ S′

(asy)
tk = tk(tk ,m, l, xf = y ! m1(z); s) o1 = l(y) tk1 = fresh() l1=newlocals(z̄,m1, l)

a(o, tk , h,Q∪ {tk}) · a(o1, tk
′, h′,Q′) o·tk

;

a(o, tk , h,Q∪{tk(tk ,m, l[xf 7→tk1], s)}) · a(o1, tk
′, h′,Q′∪{tk(tk1,m1, l1, body(m1))})

(syn)
tk = tk(tk ,m, l,m1(z); s) l1=newlocals(z̄,m1, l)

(syn) a(o, tk h,Q∪ {tk})· o·tk; a(o, tk , h,Q∪{tk(tk ,m, l1, body(m1); s)})

(new)

tk = tk(tk ,m, l, x = new D(ȳ); s) o1=fresh()
h′ = newheap(D) l′ = l[x→ o1] class D(f̄){. . .}

a(o, tk , h,Q∪ {tk}) o·tk
; a(o, tk , h,Q∪ {tk(tk ,m, l′, s)}) · a(o1,⊥, h′[f̄ 7→ l(ȳ)], ∅)

(await)1
tk = tk(tk ,m, l ,await xf; s) l(xf) = tk1 tk(tk1,m1, l1, ε) ∈ S

a(o, tk , h,Q∪ {tk}) o·tk
; a(o, tk , h,Q∪ {tk(tk ,m, l , s)})

(await)2
tk = tk(tk ,m, l ,await xf; s) l(xf) = tk1 tk(tk1,m1, l1, ε) 6∈ S
a(o, tk , h,Q∪ {tk}) o·tk

; a(o,⊥, h,Q∪ {tk(tk ,m, l ,await xf; s)})

(return)
tk = tk(tk ,m, l , ε)

a(o, tk , h,Q∪ {tk}) o·tk
; a(o,⊥, h,Q∪ {tk})

Figure 4: Semantics of concurrent primitives of actor programs

m is the method name executing in the task, l is a mapping from local vari-
ables to V, and s is the sequence of instructions to be executed. Finally, a
global state S is a set of actors. As actors do not share their states, the se-
mantics can be presented as a macro-step semantics [10] (defined by means of
the transition “ 7−→”) in which the evaluation of all statements of a task takes
place serially (without interleaving with any other task) until it gets to a re-
lease point, i.e., a point in which the actor’s processor becomes idle due to the
return or an await instruction. In this case, rule (mstep) is applied to select
an available task from an actor, namely relation selectAct(S) is applied to se-
lect non-deterministically an actor a(o,⊥, h,Q) in the state with a non-empty
queue Q, and, selectTask(a(o,⊥, h,Q)) to select non-deterministically a task of

Q. Micro-step transitions are written
o·tk
; and define evaluations in task tk by

actor o within a given macro-step. As before, the sequential instructions are
standard and thus omitted. In (new), an active task tk in actor o creates a new
actor of class D with a fresh identifier o1 = fresh(), which is introduced to the
state with a free lock. Here h′ = newheap(D) stands for a default initialization

10

on the fields of class D. Rule (syn) simply replaces in task tk the statement
with the method call to m1 by its body. Rule (asy) spawns a new task (the ini-
tial state is created by newlocals) with a fresh task identifier tk1 which is stored
in the future variable xf. We assume o 6= o1, but the case o = o1 is analogous,
the new task tk1 is simply added to the queue Q′ of actor o1. In rule (await)1,
the future variable xf we are awaiting for points to a finished task and thus the
await can be completed. The finished task identified with tk1 is looked up
in all actors in the current state (written as tk(tk1,m1, l1, ε) ∈ S). Otherwise,
(await)2 yields the lock so that any other task of the same actor can take it.
The behaviour of await on Boolean conditions is analogous. When rule (re-
turn) is executed, the task is finished, but it remains in the queue so that rules
(await)1 and (await)2 can be applied. A derivation E ≡ S0 7−→ · · · 7−→ Sn is
complete if S0 is the initial state and all actors in Sn are of the form a(o,⊥, h,Q),
where for all tk ∈ Q it holds that tk ≡ tk(tk ,m, l , ε). We use exec(S) to denote
the set of all possible executions starting at state S.

4. SDN-Actors: an actor based encoding of SDN programs

We present the concept of SDN-Actor in 3 steps: Section 4.1 describes the
creation and initialization of the actors according to the topology. Section 4.2
provides the encoding of the operations and communication for Switch and Host

actors. Section 4.3 proposes the encoding of the controller. Altogether, our
encoding provides an actor-based semantics foundation of SDN networks that
follow the OpenFlow specification [11] captured by the semantics in Section 3.1.

4.1. Network topology

The topology can be given as a relation with two types of links:

1. SHlink(s,h,o): switch s is connected to host h through the port o

2. SSlink(s1,i1,s2,i2): switch s1 is connected via port i1 to port i2 ofs s2

from which we automatically generate the initial configuration as follows.

Definition 4.1 (initial configuration). Let S and H be, respectively, the set
of different switch and host identifiers available in the link relations that define
the network topology. The initial configuration (method init conf) is defined as:

• We create a controller actor Controller ctrl=new Controller()

• For each sid∈S, we create an actor Switch s=new Switch(sid,ctrl)

• For each hid∈H, we create an actor Host h=new Host(hid,s,o) where s is the
reference to the switch actor, o the port identifier, that hid is connected to.

• The data structures srefs and hrefs store, respectively, the relations between
identifier in the topology and reference in the program, for all switches in
S and hosts in H.

11

• The data structure ntw contains the link relations in the network topology.

• The synchronous call ctrl.addConfig(srefs,hrefs,ntw) initializes in the con-
troller the topology relations and the references to switches and hosts such
that the controller can send control messages to redirect the traffic to the
involved links.

Example 4.2. By applying Definition 4.1 to the topology in Figure 1, given as
the relation: SHlink(S1, H0, 0), SHlink(S2, R1, 0), SHlink(S3, R2, 0), SSlink(S1, 1, S2, 1),
and SSlink(S1, 2, S3, 1), we obtain the following initial configuration which con-
stitutes the init conf method from which the execution starts:

1 init conf() { Controller ctrl = new Controller(); Switch s1 = new Switch("S1",ctrl);
2 Switch s2 = new Switch("S2",ctrl); Switch s3 = new Switch("S3",ctrl);
3 Host h0 = new Host("H0",s1,0); Host r1 = new Host("R1",s2,0);
4 Host r2 = new Host("R2",s3,0);
5 Map<SwitchId,Switch> srefs = {"S1":s1, "S2":s2, "S3":s3};
6 Map<HostId,Host> hrefs = {"H0":h0, "R1":r1, "R2":r2};
7 List<Link> ntw = [SHLink("S1","H0",0), SSLink("S1",1,"S2",1),..];
8 ctrl.addConfig(srefs,hrefs,ntw); }

The data structures srefs and hrefs are implemented using maps, and the network
ntw as a heterogeneous list. The use of data structures is nevertheless orthog-
onal to the encoding as actors. We just assume standard functions to create,
initialize, access them (like getters, put, take, lookup, etc.) that will appear in
italics in the code.

4.2. The switch and host classes

Figure 5 presents the actor-based Switch and Host classes. We include at the
top some type declarations that are assumed and must be implemented (such as
identifiers, packets and their headers, etc.). There are two main data structures
implemented in more detail to make explicit the information they contain:

• the buffer at Line 22 (L22 for short) is a map that must contain pairs of
packet and input port indexed by their PacketId.

• the flow table flowT (L21) is implemented as a map indexed by the so-
called match field [11] represented by type MatchF in Figure 5. The match
field is composed by information stored in the header of a Packet (retrieved
by function getHeader) and the input port. For a given matching, the
flow table contains the Action the switch has to perform upon the reception
of the Packet. An action l can be of three types: i) send the packet to a
host h, ii) send the packet to the port o of a switch s, iii) drop the packet.
Given an action l, function isSwitch respectively isHost succeeds if the
action is of type ii) respectively i), and functions getSwitch, getHost
and getPort return the s, h and o respectively. The full implementation
must allow duplicate entries (non-deterministically selected), and the use
of wildcards in the match fields, but these aspects are unrelated to the
encoding of SDN actors, and skipped for simplicity.

12

9 type SwitchId=... type HostId=... type PortId=... type PacketId=...
10 type PacketH=... type Packet=... type Action=... type Link=...
11 type MatchF=(PacketH,PortId);

12 class Host(HostId hid, Switch s, PortId o) {
13 Unit sendIn(Packet p){
14 s!switchHandlePacket(p,o);
15 }
16 Unit hostHandlePacket(Packet p){
17 / ∗ output packet ∗ /
18 }
19 }
20 class Switch(SwitchId sid, Controller ctrl) {
21 Map<MatchF,Action> flowT={};
22 Map<PacketId,(Packet,PortId)> buffer={};
23 Unit switchHandlePacket(Packet p, PortId o){
24 Action l=lookup(flowT,(getHeader(p),o));
25 if (isSwitch(l))
26 getSwitch(l)!switchHandlePacket(p,getPort(l));
27 else if (isHost(l))
28 getHost(l)!hostHandlePacket(p);
29 else {
30 buffer=put(buffer,getId(p),(p,o));
31 ctrl!controlHandleMessage(sid,o,getId(p),getHeader(p));
32 }
33 }
34 Unit sendOut(PacketId pi){
35 Packet p; PortId o;
36 (p,o)=take(buffer,pi);
37 Action l=lookup(flowT,(getHeader(p),o));
38 if (isSwitch(l))
39 getSwitch(l)!switchHandlePacket(p,getPort(l));
40 else if (isHost(l))
41 getHost(l)!hostHandlePacket(p);
42 / ∗ else packet is dropped ∗ /
43 }
44 Unit switchHandleMessage(MatchF m, Action a){
45 flowT=put(flowT,m,a);
46 }
47 }

Figure 5: Type declarations (top) and actor-based host and switch classes (bottom)

13

Upon creation, hosts receive their identifier and a reference to the switch and
the port identifier they are connected to (defined as class parameters that are
initialized at the actor creation). Their method sendIn is used to send a packet
to the switch, and method hostHandlePacket to receive a packet from the switch.
Switches receive upon creation their identifier and a reference to the controller.
They have as additional fields: (a) the flow table flowT (as described above) in
which they store the actions to take upon receiving each kind of package, and
(b) a buffer in which they store packets that are waiting for a response from
the controller. Switches can perform three operations: (1) switchHandlePacket

receives a packet, looks up in the flow table the action to be made L24, and, if
there is an entry for the packet in the table, it asynchronously makes the corre-
sponding action (either send it to a host L27 or to a switch L25). Otherwise, it
sends a controlHandleMessage request and puts the packet and input port in the
buffer (L30 and L31) until it can be handled later upon receipt of a sendOut;
(2) sendOut receives a packet identifier that corresponds to a waiting packet, re-
trieves it from the buffer (L35), looks up the action l to be performed in the flow
table, and makes the corresponding asynchronous call (as in switchHandlePacket);
(3) switchHandleMessage corresponds to a message received from the controller
with an instruction to update the flow table. Other switch operations like for-
ward packet, that is similar to sendOut but directly tells the switch the action to
be performed, or flood, that sends a packet through all ports except the input
port, can be encoded similarly and are used in the experiments in Section 7.

Example 4.3. In init conf, after L8, we add h0!sendIn(p), where p is a packet to
be sent to the IP address of the replica servers (the information on the destina-
tion is part of the packet header). This is the only asynchronous task that init conf

spawns. Its execution in turn spawns a new task s1!switchHandlePacket(p,0) at
L13, that does not find an entry in flowT at L24 and spawns a controlHandleMessage

task on the controller at L31, whose code is presented in the next section.

4.3. The controller

After creating the controller actor, the method addConfig is invoked syn-
chronously to initialize the references to switches and hosts and set up the initial
network topology (see L8). A simple controller is presented in Figure 6. When
a switch asynchronously invokes controlHandleMessage, the controller applies the
current policy—function applyPolicy must be implemented for each different
type of controller. The implementation of the policy typically requires the def-
inition of new data structures in the controller to store additional information
(see Section 7). When applying the policy for a given SwitchId, PortId and PacketH

, we obtain a list of switch identifiers and corresponding actions to be applied
to them (as a data-structure of type List<(SwitchId,MatchF,Action)>). The while
loop at L57 in controlHandleMessage asynchronously invokes switchHandleMessage

at L82 on each of the switches in the list, and passes as parameter the corre-
sponding action to be applied for the given match entry. Finally, it notifies at
L63 the switch from which the packet came that this can be sent out. More so-
phisticated controllers that build upon this encoding are described in Section 7.

14

48 class Controller() {
49 Map<SwitchId,Switch> srefs={};
50 Map<HostId,Host> href={};
51 List<Link> ntw=[];
52 Unit addConfig(Map<SwitchId,Switch> sr, Map<HostId,Host> hr, List<Link> n){
53 / ∗ references to switches and hosts and network topology initialized ∗ /
54 }
55 Unit controlHandleMessage(SwitchId sid, PortId o, PacketId p, PacketH h){
56 List<(SwitchId,MatchF,Action)> l=applyPolicy(sid,o,h);
57 while (not(isEmpty(l))) {
58 SwitchId s1; Action a1; MatchF m1;
59 (s1,m1,a1)=head(l);
60 lookup(srefs,s1)!switchHandleMessage(m1,a1);
61 l=tail(l);
62 }
63 lookup(srefs,sid)!sendOut(p);
64 }
65 }

Figure 6: Controller class (without barriers)

Example 4.4. In the example, applyPolicy corresponds to the load-balancer de-
scribed in Section 2, which directs external requests to a chosen replica in a
round-robin fashion. For the call applyPolicy(s1,0,h), it chooses r1 and thus,
it returns in L56 two actions: (s1→s2), (s2→r1), i.e., one action to install in
s1 the rule to send the packet to s2, and the second to install in s2 the rule to
send it to r1. For simplicity, we assume that the Action just contains the loca-
tion to which the packet has to be sent (without including the port). The while
loop thus spawns two asynchronous calls, s1!switchHandleMessage(m1,s2) and s2

!switchHandleMessage(m1,r1). Besides, it sends a s1!sendOut(p) in L63. Several
problems may arise in this implementation. One problem, as explained in Sec-
tion 2, is that the packet is sent from s1 to s2 before the control message is
processed by s2. Then, s2 gets the packet and it does not find any matching rule,
thus it sends a controlHandleMessage to the controller. Applying the above policy,
the controller chooses now as replica r2 and returns the actions: (s2→s1), (s1→
s3), (s3→r2), i.e., the packet should be sent to r2 by first sending from s2 to s1

(first action), and so on. This might create the circularity depicted in Figure 1.

4.4. Soundness of the Encoding

An execution in the network is characterized by the messages in the queues of
the switches, hosts, and controller and the state of their data structures. First
of all, let us define the equivalence between an input channel with its buffer
(in, b) and a queue of pending tasks with its buffer (Q,buffer). Let us notice
here that even though we have used different notation for b and buffer, we use
b = buffer to denote the equality of information in both structures, that is, they
have exactly the same packets and with the same ports.

15

Definition 4.5. An input channel in with a buffer of pending packets b and a
queue of pending tasks Q with a buffer of pending packets buffer are equivalent,
written (in, b) ≡ (Q, buffer) if and only if:

1. in = ∅ = Q and b = buffer or

2. otherwise on the following holds:

pktOut: in = {pktOut(ph)}∪in′, ∃tk, p such that Q = {tk(, sendOut, l,)}∪
Q′, b = b’ ∪ {o:p}, buffer = buffer′ ∪ {(p, o)}, getId(p) = l[pi] and
getHeader(p) = ph, and (in′, b′) ≡ (Q′, buffer’).

modState: in = {modState(〈ph,o〉 7→ a)} ∪ in′,∃tk such that Q = Q′ ∪
{tk(, switchHandleMessage, l,)}, (〈ph,o〉 7→ a) = (l[m] 7→ l[a]) and
(in′, b) ≡ (Q′, buffer),

pktIn: in = {pktIn(sid,o,pid,ph)} ∪ in′, ∃tk such that Q = Q′ ∪
{tk(, controlHandleMessage, l,)}, sid = l[sid], pid = l[p], ph =
l[h], o = l[o] and (in′, b) ≡ (Q′, buffer).

packet: in = {o:p}∪in′, ∃tk such that Q = {tk(, switchHandlePacket, l,)}∪
Q′, o = l[o], p = l[p] and (in′, b) ≡ (Q′, buffer).

packet-out: in = {p}∪in′, ∃tk such that Q = {tk(, hostHandlePacket, l,)}∪
Q′, p = l[p], and (in′, b) ≡ (Q′, buffer).

packet-in: in = {new(pkt)}∪in′, ∃tk such that Q = {tk(, sendIn, l,)}∪
Q′, pkt = l[p], and (in′, b) ≡ (Q′, buffer).

Now, we can define the equivalence between an SDN state and an SDN-Actor
state.

Definition 4.6 (equivalence). An SDN state S = 〈H,Sw,C〉 and an SDN-
actor state Sa are equivalent, written S ≡ Sa, if and only if:

Host: ∀h(id, sid, o, in) ∈ H,∃!a(, , h,Q) ∈ Sa such that (in, ∅) ≡ (Q, ∅),
id = h[hid], sid = h[s], and o = h[o].

Switch: ∀s(id, ft, b, in) ∈ Sw,∃!a(, , h,Q) ∈ Sa such that (in, b) ≡ (Q, h[buffer]),
id = h[sid], and ft = h[flowT].

Controller: C = c(top, cin) and ∃!a(id, , h,Q) ∈ Sa such that
(cin, ∅) ≡ (Q, ∅), related(top, {h[srefs], h[href], h[ntw]}),
and ∀a(, , h′,) ∈ Sa, id = h′[ctrl].

Let us notice here that we use related(top, {h[srefs], h[href], h[ntw]}) to clarify
that information about the topology is coherent in both the controller and the
controller actor.

The following theorem ensures the soundness of our modelling. Essentially
we guarantee that, for a given SDN network that follows the OpenFlow specifica-
tion, any execution in the network has an equivalent execution in the SDN-Actor
model. The proof can be found in the appendix. We denote as Sini

a the SDN-
Actor state defined in Definition 4.1, i.e., after executing method init conf() and

16

all asynchronous calls to method sendIn containing the packets to be delivered.
Furthermore, Sini ≡ Sini

a .

Theorem 4.7. Let Sini and Sini
a be an SDN state and an SDN-Actor state,

respectively.

1. For every execution Sini → S1 → ...→ Sn ∈ exec(Sini),∃Sini
a 7−→ ... 7−→

Sn
a ∈ exec(Sini

a) such that Sn ≡ Sn
a .

2. For every execution Sini
a 7−→ S1

a 7−→ ... 7−→ Sn
a ∈ exec(Sini

a),∃Sini →
...→ Sn ∈ exec(Sini) such that Sn ≡ Sn

a .

5. Implementing barriers using conditional synchronization

Barriers [11] have been designed to force a switch to handle previous control
messages, and thus avoid problems such as the one described above.

Definition 5.1 (OF barrier). Following OpenFlow [11], upon receipt of a bar-
rier message, the switch must finish processing all previously-received controller
messages, before executing any messages received after the barrier message.

Figure 7 shows our modelling that intuitively consists in the controller not
sending further messages to any switch on which a barrier has been activated,
until this switch acknowledges that all previous control messages have been
already processed. The main points in the implementation are:

1. The controller creates a future variable at L82 for every asynchronous task
that it posts on all switches.

2. it keeps in barrierMap the list of future variables (not yet acknowledged)
for each of the switches (putAdd in L82 adds the future variable to the list
indexed by s1 in the map).

3. The controller keeps in barrierOn the set of switches with an active barrier.

4. A barrier on a switch consists in the controller awaiting on the list of
future variables that the switch needs to acknowledge to ensure that its
control messages have already been processed (method barrierRequest).

5. All control messages must be now preceded by a call to barrierWait that
checks if the corresponding switch has an active barrier, L97. This is
because while suspended in a barrier, the controller can start to process
another controlHandleMessage unrelated to the previous one, but which af-
fects (some of) the same switches for which a barrier was set. So, we
cannot send messages to them until their barriers are set to off. Similarly,
the call to barrierRequest must also be preceded by a call to barrierWait

since barrierRequest is indeed modelling the send to the switch of a control
message (the barrier message).

17

66 class Controller() {
67 Map<SwitchId,Switch> srefs={};
68 Map<HostId,Host> href={};
69 List<Link> ntw=[];
70 Map<SwitchId,List<Fut<Unit>> barrierMap={};
71 Set<SwitchId> barrierOn = ∅;
72 Unit addConfig(Map<SwitchId,Switch> sr, Map<HostId,Host> hr, List<Link> n){
73 / ∗ references to switches and hosts and network topology initialized ∗ /
74 }
75 Unit controlHandleMessage(SwitchId sid, PortId o, PacketId p, PacketH h){
76 List<(SwitchId,MatchF,Action)> l=applyPolicy(sid,o,h);
77 List<SwitchId> ls = [];
78 while (not(isEmpty(l))) {
79 SwitchId s1; Action a1; MatchF m1;
80 (s1,m1,a1)=head(l);
81 barrierWait(s1);
82 Fut<Unit>f=lookup(srefs,s1)!switchHandleMessage(m1,a1);
83 barrierMap=putAdd(barrierMap,s1,f);
84 ls = add(ls,s1);
85 l=tail(l);
86 }
87 while(not(isEmpty(ls))) {
88 barrierWait(head(ls));
89 barrierRequest(head(ls));
90 ls=tail(ls);
91 }
92 barrierWait(sid);
93 Fut<Unit>f=lookup(srefs,sid)!sendOut(p);
94 barrierMap=putAdd(barrierMap,sid,f);
95 }
96 Unit barrierWait (SwitchId sid){
97 await not(contains(barrierOn,sid))?;
98 }
99 Unit barrierRequest (SwitchId sid){

100 barrierOn=add(barrierOn,sid);
101 List<Fut<Unit>> futSid=take(barrierMap,sid);
102 while (not(isEmpty(futSid)) {
103 Fut<Unit> fi=head(futSid);
104 await fi?;
105 futSid=tail(futSid);
106 }
107 barrierOn=delete(barrierOn,sid);
108 }
109 }

Figure 7: Extension of Controller class with barriers

18

Note that this is not a restriction on the type of controllers we model, but
rather an effective way to encode barriers using actors and conditional syn-
chronization (by means of the await instructions) that ensures the behaviour of
OpenFlow barriers.

The next theorem states that our implementation of barriers via methods
barrierRequest and barrierWait provide a sound encoding of the OF barrier mes-
sages in Definition 5.1.

Theorem 5.2 (soundness of barriers). Given any state S in any execution
of the SDN-Actor model right before executing L89 with switch sid as parameter
(i.e., the state before activating a barrier over sid), and the state S′ right before
executing L90 (i.e., the state after receiving the acknowledgement of the barrier),
the following holds:

• All switchHandleMessage and sendOut tasks in the queue of switch sid in
state S have been completely executed in state S′.

• No switchHandleMessage nor sendOut task have been spawned over switch
sid in any middle state between S and S′.

• No other barrierRequest call for switch sid is performed between S and S′.

Proof.
Let us firstly define an invariant which holds for every possible state S′′ of any
execution of the SDN-Actor model:

∀a(sid, , ,Q) ∈ S′′ and ∀tk(tk,m, ,) ∈ Q, m ∈ {switchHandleMessage, sendOut}

∃!a(cid, , h,) ∈ S′′ such that tk ∈ h[barrierMap][sid]

The invariant states that every spawned switchHandleMessage or sendOut task tk
on a switch sid is recorded by means of a future variable in the list associated to
sid in the barrierMap field of the controller (i.e. tk ∈ h[barrierMap][sid]). Note the
abuse of notation ∈ to check existence of an element in a List data-structure,
and [] to access the value of a key in a Map data-structure. It can be seen
that after making any asynchronous call to method switchHandleMessage (L82)
or sendOut (L93), the corresponding future variable is always recorded in the
barrierMap field (L83 and L94).

Now, given the controller of the state S, a(cid, , hc,Qc) ∈ S, for every task
tk(tid, controlHandleMessage, lc, barrierRequest(l); s) ∈ Qc, we have a derivation

S = S0

cid.tid

;∗ S1 7−→ ... 7−→ Sn
cid.tid7−→ Sn+1 = S′ such that S1 is the global

state after executing the micro-step transitions of such task until it stops at
L104, and Sn+1 is the first state where hc[barrierOn] does not contain the switch
sw = l[sid]. Let us notice that if such stop is not performed, then every task
in sw has already finished and barrierRequest is performed in a single macro-step
(S0 = Sn). Then, we know that ∀i ∈ {0, ..., n + 1},∃a(sw, , ,Qi) ∈ Si with
Qi = SHPi ∪ SOi ∪ SHMi such that:

19

• SHP i contains all switchHandlePacket tasks,

• SO i contains all sendOut tasks, and,

• SHM i contains all switchHandleMessage tasks.

By the definitions of the states S1 and Sn+1, we know that ∀i ∈ {1, ..., n},
sw ∈ hc[barrierOn]. Hence, ∀i ∈ {1, ..., n}, the condition of the await instruction
at L97 does not hold, thus, the task is suspended in state Si, and, consequently,
no switchHandleMessage nor sendOut task can be spawned in any state Si. There-
fore, ∀i ∈ {1, ..., n},∀j ∈ {i, ..., n},SHM j (resp. SOj) never contains more tasks
than SHM i (resp. SO i). Similarly, no other call to barrierRequest can be per-
formed due to the call to barrierWait in L88, which implies that there cannot be
two active barriers over the same switch.

Finally, since sw no longer belongs to barrierOn in Sn+1, we know that ∀fut ∈
hc[barrierMap][sid], the task lc[fut] has finished, since for each variable fut , the
await statement in L104 has succeeded. Moreover, using the invariant, we know
that all the tasks in SHMn and SOn have their corresponding future variable
in hc [barrierMap][sid], and therefore all of them have finished.

2

6. DPOR-based model checking of SDN-Actors

Model checking tools deal with a combinatorial blow-up of the state space
(a.k.a. the state space explosion problem) that must be faced to solve real-
world problems. This problem is exacerbated in the context of SDN programs,
because of the concurrent and distributed nature of networks: all network com-
ponents (switches, hosts, controllers) are distributed nodes that run in parallel
and whose concurrent tasks can interact. As we have seen, a controller message
sent from a switch can change the state of another switch, and affect the route
of an incoming packet. Thus, a model checker needs to explore all possible re-
orderings of dependent tasks (i.e., those whose execution might interfere with
each other) leading to a huge number of possible executions even for networks
with a low number of nodes and packets. Additionally, the state space is un-
bounded because hosts may generate unboundedly many packets that could be
simultaneously traversing the network.

There are two incomplete approaches to handle unbounded inputs: one is to
impose a bound k on the number of packets of each type (as e.g. in[12]) and
the other one is to use abstraction (as e.g. in [13]). In the former, the search
space is exhausted for the considered input, but there could be bugs that only
show up when more packets are considered. In the latter, abstraction requires
to lose information and bugs may only show up when the omitted information
is considered. Therefore, the sources of incompleteness are different, and the
approaches can complement each other. Our tool SYCO uses the former, e.g.,
in Example 4.3 we have considered one packet (limit k = 1). The rest of the
section presents the key features of our approach assuming such a k bound.

20

10
11

16

9

1:h0!sendIn

1

2:s1!shp

2

3:c!chm

3

4, 6

4

6

5, 6

7: s2!shp, 6
7 6

8: c!chm, 6

8

6

6, 9, 10, 12

11

9, 10, 12

12 6

6, 9, 10, 13:s1!shp

9

10

15

5

so: sendOut

hhp: hostHandlePacket

shm: switchHandleMessage

shp: switchHandlePacket

4:s1!shm(s2), 5:s1!so, 6:s2!shm(r1)

15:r1!hhp, 9, 10

6, 9:s1!shm(s3), 10:s3!shm(r2), 11:s2!shm(s1), 12:s2!so 17:r1!hhp

7

7

9, 10, 11, 12

12

9, 10, 12

a

b c

d

e

chm: controlHandleMessage

9, 10, 11, 16: r1!hhp

EXECUTIONS

ABBREVIATIONS

a: packet not sent from s1

b,c: packet not sent from s2

d,g: cycle sending from s1 to s2 and back

e,f: packet sent to r1, wrong flow tables

h : packet sent to r1, one rule per switch

5 4

17

h

12

9
9
11

12 6
 6, 9, 10, 11

11

10

f
g

complete exec.

incomplete exec.

10
6 11

Figure 8: Search tree for running example w/o barriers (rightmost branch w/ barriers)

6.1. DPOR-based model checking in actors

DPOR [14] is able to dynamically identify and avoid the exploration of re-
dundant executions and prune the search space exponentially. It is based on
the idea of initially exploring an arbitrary interleaving of the various concurrent
tasks, and dynamically tracking dependent interactions between them to iden-
tify backtracking points where alternative paths in the state space need to be
explored. Two tasks are independent when changing their order of execution
will not affect their combined effect. When DPOR is applied to actor systems,
there are inherent reductions [15] because: (i) we can atomically execute each
task (without re-orderings) until a return or an await instruction are found, as
concurrency is non-preemptive and the active task cannot be interrupted. This
avoids having to consider the reorderings at the level of instructions (as one
must do in thread-based concurrency), and allows us to work at the level of
tasks. (ii) Also, two tasks can have a dependency only if they belong to the
same actor. This is because only the actor itself can modify its private memory.

Example 6.1. Figure 8 shows the search tree computed by DPOR for our SDN-
Actor program without barriers. It has no redundancy, i.e., each execution cor-
responds to a different behavior on the packet arrival and/or the actions in-
stalled in the flow tables (see top right descriptions). At each node (i.e., state),

21

we show the available tasks. A task is given an identifier the first time it ap-
pears, and afterwards only its identifier is shown. Method names are abbreviated
as shown in the top left, and parameters are omitted except in tasks executing
switchHandleMessage, for which we only include the switch identifier that is part
of the Action to be installed. For instance, 4:s1!shm(s2) is a task with identifier
4, that will execute method switchHandleMessage on s1 and will add to its flow ta-
ble the information that the packet must be sent to s2. Labels on the edges show
the task(s) that have been executed. At each state, we underline the tasks which
have an interacting dependency. The execution starts by executing the init conf

method in Example 4.2 with the instruction sendIn added in Example 4.3 which
appears in the root. The next two steps have one task available, but in the fourth
state we have tasks 4 and 5, belonging to the same actor, whose reordering needs
to be considered (leading to branching), while 6 is independent of them. Out of
the 8 branches of the tree, only the rightmost execution h corresponds to the
correct behavior in which the packet is actually sent to r1 and the actions are
installed in the flow tables in the expected order. In execution a the packet does
not arrive at the destination because the sendOut is executed before the action
has been installed. Executions d and g correspond to the cycle described in
Section 2, each of them with different installations of actions.

Importantly, we do not need specific optimizations to use the DPOR algorithm
in [16] to model check SDN-Actors. The use of await (is already covered by
DPOR and) does not require any change either and, as expected, the search tree

for the implementation with barriers only contains branch h . The difference
arises from task 3 in the tree: in the presence of barriers, this leads to a state in
which we have asynchronous calls 4 and 6 and task 3 suspended at the await in
L104 (awaiting for the termination of 4 and then of 6). Therefore, the dependent
tasks 4 and 5 will not coexist because 5 is not spawned until 4 and 6 terminate.

6.2. Entry-level and context-sensitive independence

When two tasks that belong to the same actor are found, in the context of
DPOR techniques, independence is commonly over-approximated by requiring
that actor fields accessed by one task are not modified by the other. In our
model, all tasks posted on a given switch access its flow table, namely sendOut

and switchHandlePacket read it and switchHandleMessage writes it. Thus, in princi-
ple, any task executing switchHandleMessage is considered dependent on the other
two. This explains the tasks underlinings in the figure and the branching in the
tree. When there are multiple packets traversing the network usually different
packets access distinct entries in the flow table. This results in the inaccurate
detection of many dependencies hence producing redundant executions. Using
Constrained DPOR [5], we alleviate this state space explosion:

1. Entry-level independence. We adopt a finer-grained notion of entry-level
independence for which an access to entry i is independent from an access
to j if i 6= j. This aspect is not visible when considering a single packet
as in the example, as all accesses to the flow table refer to the same entry.

22

However, by simply adding another packet to the erroneous program, the
state explosion is huge and the system times out if entry-level indepen-
dence is not implemented, while it computes 92 executions (exploring 761
states) with entry-level independence.

2. Context-sensitiveness. Even when two tasks t and p access the same entry,
Constrained DPOR [5] introduces some further checks that avoid redun-
dant explorations. If the state before executing both tasks satisfies a
certain independence annotation, then the executions of p and q are guar-
anteed to commute. Hence, one of the derivations can be pruned and
further exploration from it is avoided. For instance, executing two consec-
utive switchHandleMessage on the same entry might lead to the same state
if the flow table contains duplicate entries, as our implementation allows.
An example of independence annotation for these two tasks is the check
of duplicate entries in the state.

Although entry-level independence in theory could be proved automatically by
using SMT solvers (see [5]), this is not yet possible in our system, and we have
declared annotations which are valid for any SDN model. Let us explain the
most representative annotations for method switchHandleMessage(m,a):

1. indep(switchHandlePacket(pi,pk),!matchHead&Port(getHeader(pk),pi,m)) denotes
that tasks executing switchHandleMessage(m,a) are independent of those ex-
ecuting switchHandlePacket(pi,pk) if the matched field of the message does
not match the header and the input port of the packet (the condition is
checked by the auxiliary function matchHead&Port).

2. indep(switchHandleMessage(m2,a2),indepSwitchMsgeMsge(m,a,m2,a2)) denotes
that tasks executing switchHandleMessage(m,a) are independent of those ex-
ecuting switchHandleMessage(m2,a2) if the matched fields m and m2 are in-
dependent (they do not match with the same entries in the flow table),
but actions a and a2 are equals (the condition is checked by the auxiliary
function indepSwitchMsgeMsge).

6.3. Comparison of DPOR reductions with related work

Other model checkers for SDN programs have used DPOR-based algorithms
before [12, 13]. According to the experiments in the NICE tool, DPOR only
achieves a 20% reduction of the search space because even the finest granular-
ity does not distinguish independent flows. The reason for this modest reduc-
tion might be that it does not take advantage of the inherent independence of
the code executed by the distributed elements of the network (switches, host,
clients), nor to the fact that barriers allow removing dependencies, as our actor-
based SDN model does. In Kuai [13], a number of optimizations are defined
to take advantage of these aspects. Such optimizations must be (1) identified
and formalized in the semantics, (2) proven correct and, (3) implemented in
the model checker. Instead, due to our formalization using actors, the opti-
mizations are already implicit in the model and handled by the model checker

23

without requiring any extension. Another main difference with Kuai is that
they make two important simplifications to the kind of SDNs they can handle:
(i) they assume a simplified model of switches in which a switch gets suspended
(i.e., does not process further packets nor controller messages) while awaiting a
controller request. The error showed in Example 1 would thus not be captured.
We do not make any simplification and thus a switch can start to process a new
packet while awaiting the controller and can also receive other controller actions
(triggered by other switches). (ii) It works on a class of SDNs in which the size
of the controller queue is one. Therefore, it will not capture potential errors
that arise due to the reordering of messages by the controller. In contrast, our
model checker works on the general model of SDN networks.

7. Implementation and experimental evaluation

This section describes how to use our model checking tool and its visual-
ization capabilities in Section 7.1, and then the experimental evaluation carried
out on a series of standard SDN benchmarks in Section 7.2.

7.1. The model checking tool and its visualization capabilities

We have built an extension for property model checking on top of the
SYCO tool [3]. It can be used through an online web interface available at:
http://costa.fdi.ucm.es/syco by selecting the POR algorithm CDPOR and
disabling the automatic generation of independence constraints. All benchmarks
we are describing in this section can be found in the folder JSS19. In order to
run the model checker, the user first opens one of these benchmarks and clicks
over the button Apply. By default SYCO makes a full exploration of the ex-
ecution. However, by using the Settings, it is possible to change the default
options. In particular, by selecting Property checking, the exploration finishes
after finding an execution trace that violates the property being checked. In or-
der to define the property P under test, we add to the controller a new method
called error message and encode P as a Boolean function Fp using the pro-
gramming language itself. Then, in all places where the property has to hold,
we add an if statement checking the negation of Fp and if it holds we call
asynchronously to error message on the controller. Then property holds for
the given input if and only if there is no trace in the execution tree including a
call to error message.

The result of executing the model checker is shown in the console at the bot-
tom, where SYCO first prints the number of executions explored and the output
state for each explored execution. The output state contains the actors mod-
elling the controller, the switches and the hosts created during the execution.
Each actor is represented as a term with three arguments: the actor identifier,
the actor type or class, and the final values of their fields.

7.2. Checking SDN properties in case studies

To evaluate our approach, we have implemented a series of standard SDN
benchmarks used in previous work [13, 17, 6]. Our goal is on the one hand to

24

show the versatility of our approach to check properties that are handled using
different approaches in the literature (e.g., programming errors in the controller
as in [17], safety policy violations as in [17, 13], or loop detection as in [6]). And,
on the other hand, to show that we are able to handle networks larger than in
related systems [13], but without requiring simplifications to the SDN models,
nor extensions for DPOR reduction, and in spite of using a non-distributed
model checker. We should note though that a precise comparison of figures
is not possible due to the differences described in Section 6.3 and the use of
different implementations of controllers.

Times are obtained on an Intel Core i7 at 3.4Ghz with 8GB of RAM (Linux
Kernel 3.2). For each benchmark, we show in the second column the number
of switches, hosts and packets, Execs corresponds to the number of different
executions (i.e., branches in the search tree), States to the number of nodes in
the search tree, and Time is the time taken by the analysis in ms. Results are
shown in Figure 9.

Controller with load balancer [6] (LB/LBB). This corresponds to the controller
of [6], similar to our running example. It performs stateless load balancing
among a set of replica identified by a virtual IP (VIP) address. When receiving
packets destined to a VIP, the controller selects a particular host and installs
flow rules along the entire path. For a buggy controller without barriers (LB)
and a network with 3 switches and 3 hosts, we detect that there is a forwarding
loop (i.e., that a packet reaches a switch more than once) in 9ms after exploring
21 states. For this, we have added to the switches a field to store the packet
identifiers that they have already received, and when the same packet reaches
it, it sends an error message, which is observable from the final state. We are
able to scale this version up to 302 hosts and 300 packets. Once we check the
correct version with barriers (LBB), we are able to scale up to 127 hosts and
125 packets. As it can be observed, for the largest network, 1499 states are
explored and in all cases we verify that the traffic is balanced. The experiments
in [6] do not specify the time to detect the bug for this controller (they only
mentioned that their analysis finishes in less than 32s in the vast majority of
cases). Nevertheless, the underlying techniques to find the bugs are unrelated
(see Section 8), and thus time comparison is not meaningful.

SSH controller [13] (SSHE/SSHB). This case study is based on a controller that
dynamically modifies the behaviors of the switches as follows: it can update the
switches with a rule that states that no SSH packets are forwarded, and another
that states that all non-SSH packets are forwarded. We have two versions of
the SSH controller. The first three evaluations correspond to an erroneous SSH
controller that installs the rule to forward packets and the rule to drop SSH
packets with the same priority, and thus the safety policy can be violated. As
in [13], we evaluate a network with 2 switches and 2 hosts. As for packets, we
write 100ssh, 120other, and 50each to indicate that we send 100 SSH packets,
120 non-SSH packets and 50 of each type. We detect the error by checking in
the switch if two contradictory drop and forward packet actions are received

25

Name SxHxP Execs States Time

LB 3x52x50 4 313 1305
LB 3x102x100 4 613 7301
LB 3x202x200 4 1213 38203
LB 3x302x300 4 1813 110220

LBB 3x52x50 1 599 11117
LBB 3x77x75 1 899 31644
LBB 3x102x100 1 1199 68059
LBB 3x127x125 1 1499 127740

(a) Controller with load balancer.

Name SxHxP Execs States Time

SSH 2x2x100ssh 1 407 83824
SSH 2x2x120oth 1 490 146151
SSH 2x2x50each 1 410 117245

SSH 2x2x2cor 179 1691 1340

SSHB 2x2x2 6 120 104
SSHB 2x2x3 65 1419 2506
SSHB 3x3x4 421 10951 33470

(b) SSH controller.

Name SxHxP Execs States Time

LE 3x3x2 3 71 42
LE 3x3x5 10 383 355
LE 6x3x2 5 217 272
LE 6x3x5 16 1040 2045
LE 9x2x2 10 787 4570
LE 15x2x2 16 2074 49274

(c) Network authentication with learning.

Name SxHxP Execs States Time

MIb 1x5x12 32 599 1029
MIb 1x5x14 64 1107 2730
MIb 1x5x16 748 9418 24870
MIb 1x8x20 2242 45539 153419

MI 1x5x8 32 1004 865
MI 1x5x10 256 9436 9176
MI 1x5x12 960 17941 29675
MI 1x8x14 1727 55200 119908

(d) Firewall with migration.

Figure 9: Experimental results.

26

for the same entry. The results that we obtain for 1 packet suggest higher
performance of our approach: in [13] they find the bug in 0.1s and we do it
in 0.004s or 0.007s, depending on the type of packet. The last evaluation 2

cor corresponds to the correct SSH controller for which we achieve a notable
improvement as we have now less tasks that match the same entry (as priority
is different). The row SSHB is a correct implementation with barriers that
reduces the number of executions for 2 packets notably because it guarantees
that forward rules are installed and thus switches will not send further requests.
They prove the correctness for SSHB-2-2 in 6.4 seconds by exploring 13 states,
we explore 15 states (in 6ms) or 18 states (in 8 ms), depending on the type of
packet. Furthermore we are able to scale up to 3 hosts and 3 switches.

Network authentication with learning [17, 13] (LE). This implements a com-
position of a learning switch with authentication in [17]. Also, [13] evaluates a
MAC learning controller but using a different implementation. LE implements
a controller with barriers for which we can verify flow-table consistency and that
the packet flows satisfy the intended policy. We have considered configurations
of 3x3, 6x3, 9x2 and 15x2. When compared to [13], we handle larger sizes of
networks and for similar sizes, we explore less States in less Time. We note
that this might be due to the differences pointed out in Section 6.3 and different
implementations of the controller.

Firewall with migration[17] (MIb/MI). MI is the implementation of a firewall
that supports migration of trusted hosts. A host is trusted if it either sent/re-
ceived (on some switch) a message through/from port 1. Thus, when a trusted
host migrates to a new switch, the controller will remember it was trusted before
and will allow communication from either port. For the same network 1x5 as
[17], we can scale the number of packets up to 12 packets that actually modify
the data base for trusted hosts. We can keep on adding more packets if those
do not affect the shared data base. In MIb, we introduce the same bug in the
controller as [17], which forgets to check if trusted on events from port 2. We
detect the error by checking in the final state of the derivations that a packet
arrives to a host that is not in the trusted data base. The scalability of MI and
MIb are rather similar. However, we can handle larger sizes of networks (1x8).
Both [17] and us find the bug in a negligible time.

8. Conclusions

We have proposed an actor-based framework to model and verify SDN pro-
grams. A unique feature of our approach is that we can use existing advanced
verification algorithms without requiring any specific extension to handle SDN
features. This has allowed us to model and analyse several SDN scenarios: a
controller with load balancer, an SSH controller, a learning switch with authen-
tication, and a firewall with migration. Experiments have given evidence of the
versatility and scalability of our approach.

We conclude with a review of related work in verification of software-defined
networks and some directions for future work.

27

8.1. Related work

Static and Dynamic verification.. The last years have witnessed the develop-
ment of many static and dynamic techniques for verification that are closely
related to our approach. Static approaches have the main advantage that, when
the property can be proved, it is ensured for any possible execution, while using
dynamic analysis only guarantees the property for the considered inputs. As
a counterpart, in order to cover all possible behaviors, static analysis needs to
perform abstraction, which can give a don’t-know answer, and, possibly, false
positives. In [17], the work on Horn-based verification is lifted to the SDN pro-
gramming paradigm, but excluding barriers. Using this kind of verification, one
can prove safety invariants on the program. Our framework can additionally
check liveness invariants (e.g., loop detection) by inspecting the traces com-
puted by the model checker. Static algebraic techniques are used in NetKAT
[18, 19, 20], to prove properties of SDN programs. NetKAT does not include
primitives for concurrency, and has a significantly higher level of abstraction.
Therefore capturing features and scenarios we are interested in would be diffi-
cult. In [21], a particular type of attacks in the context of SDN networks has
been modeled in Maude using the so-called hierarchically structured composite
actor systems described in [22]. This work does not provide a general model
for SDN networks and, besides, barriers are not considered. On the other hand,
it applies a statistical model checker, which requires to have a given scheduler
for the messages. Such scheduler determines the exact order in which messages
are handled while our framework captures all possible behaviours. Hence, both
their aim and their SDN model are radically different from ours.

Concerning dynamic techniques, our work is mostly related to the model
checkers NICE and Kuai for SDN programs, which have been compared in
detail in Section 6.3. Our approach could be adapted to apply abstractions that
bound the size of buffers [13] and to consider environment messages [23]. The
approach of [6, 24] is based on analyzing dynamically given snapshots of the
network from real executions. Instead, we try to find programming errors by
inspecting only the SDN program and considering all possible execution traces,
thus enabling verification at system design time.

Data and Control-plane verification. There is a substantial body of work on
verification techniques for SDN focussing specifically on the data or the control
plane. Data-plane approaches include: Anteater [25], which uses static analy-
sis via SAT solving; FlowChecker [26], which applies symbolic model-checking
to OpenFlow configurations; VeriFlow [27], which provides an infrastructure
to check data-plane properties in real-time. Control-plane approaches include:
Flowlog [28], a declarative language to program SDN controllers, which uses the
Alloy model-checker to perform verification; [29], which uses differential analysis
to discover bugs in different versions of the same controller program.

We stress that our approach targets both control and data-plane, and in par-
ticular it is capable of detecting bugs that arise from their interaction. Moreover,
concurrency and barriers are not considered in the mentioned works.

28

Quantitative verification. In [30], SDN components are modelled via a quanti-
tative process algebra. Their focus is on quantitative properties, e.g., latency
and congestion. In particular, concurrency and barriers are not considered.

Network verification via actors. Another actor-based verification framework is
Rebeca (see [31] for a survey). Rebeca supports a variety of state-reduction
techniques, and has been used to model and verify wireless networks [32, 33].
Our approach uses the ABS language and the SYCO tool. SYCO includes recent
DPOR techniques [5, 16] which, by exploiting specific features of SDNs, enabled
us to better scale and analyse larger networks.

8.2. Future Work

Although we did not explore it in this article, the encoding we provide opens
the door to apply a range of techniques other than model checking. For in-
stance, static analysis, runtime monitoring or simulation of network behavior
can be done now using the ABS toolsuite [7]. Other tools and methods for ver-
ification of message-passing and concurrent-object systems could be also easily
adapted [34, 35, 36, 37]. In addition, because the encoding is not very far from
the original flow tables, both model extraction from existing network code and
code generation from an actor model should be achievable with a small extension
of the tool. This is left for future work.

Acknowledgments This work was partially funded by the Spanish MECD
Salvador de Madariaga Mobility Grants PRX17/00297 and PRX17/00303, the
Spanish FPU Grant FPU15/04313, the Spanish MINECO projects TIN2015-
69175-C4-2-R, TIN2015-69175-C4-3-R, the Spanish MCIU, AEI and FEDER
(EU) through projects RTI2018-094403-B-C31 and RTI2018-094403-B-C33 and
the CM project S2018/TCS-4314, the ERC starting grant Profoundnet (679127)
and a Leverhulme Prize (PLP-2016-129).

References

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, Cambridge, MA, 1986.

[2] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: A
core language for abstract behavioral specification, in: FMCO, 2010, pp.
142–164.

[3] E. Albert, M. Gómez-Zamalloa, M. Isabel, SYCO: a systematic
testing tool for concurrent objects, in: CC, 2016, pp. 269–270.
doi:10.1145/2892208.2892236.

[4] E. Albert, M. Gómez-Zamalloa, A. Rubio, M. Sammartino, A. Silva, Sdn-
actors: Modeling and verification of SDN programs, in: FM, 2018, pp.
550–567. doi:10.1007/978-3-319-95582-7 33.

29

[5] E. Albert, M. Gómez-Zamalloa, M. Isabel, A. Rubio, Constrained dynamic
partial order reduction, in: CAV, 2018, pp. 392–410. doi:10.1007/978-3-
319-96142-2 24.

[6] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, M. T. Vechev, Sdnracer:
concurrency analysis for software-defined networks, in: POPL, 2016, pp.
402–415. doi:10.1145/2908080.2908124.

[7] The ABS tool suite, http://abs-models.org.

[8] F. S. de Boer, D. Clarke, E. B. Johnsen, A Complete Guide to the Future,
in: ESOP, Vol. 4421, 2007, pp. 316–330.

[9] A. Guha, M. Reitblatt, N. Foster, Machine-verified network controllers, in:
PLDI, 2013, pp. 483–494. doi:10.1145/2491956.2462178.

[10] K. Sen, G. Agha, Automated Systematic Testing of Open Distributed Pro-
grams, in: FASE, 2006, pp. 339–356.

[11] Openflow switch specification, version 1.4.0 (October 2013).

[12] M. Canini, D. Venzano, P. Pereśıni, D. Kostic, J. Rexford, A NICE way to
test openflow applications, in: NSDI, 2012, pp. 127–140.

[13] R. Majumdar, S. D. Tetali, Z. Wang, Kuai: A model checker
for software-defined networks, in: FMCAD, 2014, pp. 163–170.
doi:10.1109/FMCAD.2014.6987609.

[14] C. Flanagan, P. Godefroid, Dynamic partial-order reduction for model
checking software, in: POPL, 2005, pp. 110–121.

[15] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov,
G. Agha, Transdpor: A novel dynamic partial-order reduction technique
for testing actor programs, in: FMOODS/FORTE, 2012, pp. 219–234.

[16] E. Albert, P. Arenas, M. G. de la Banda, M. Gómez-Zamalloa, P. J. Stuckey,
Context-sensitive dynamic partial order reduction, in: CAV, Vol. 10426,
2017, pp. 526–543.

[17] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sa-
giv, M. Schapira, A. Valadarsky, Vericon: towards verifying controller
programs in software-defined networks, in: PLDI, 2014, pp. 282–293.
doi:10.1145/2594291.2594317.

[18] N. Foster, D. Kozen, M. Milano, A. Silva, L. Thompson, A coalge-
braic decision procedure for netkat, in: POPL, 2015, pp. 343–355.
doi:10.1145/2676726.2677011.

[19] C. J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen, C. Schlesinger,
D. Walker, Netkat: semantic foundations for networks, in: POPL, 2014,
pp. 113–126. doi:10.1145/2535838.2535862.

30

[20] R. Beckett, M. Greenberg, D. Walker, Temporal netkat, in: PLDI, 2016,
pp. 386–401. doi:10.1145/2908080.2908108.

[21] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, V. Nigam, Slow TCAM ex-
haustion ddos attack, in: SEC, 2017, pp. 17–31.

[22] J. Eckhardt, T. Mühlbauer, J. Meseguer, M. Wirsing, Statistical model
checking for composite actor systems, in: WADT, 2012, pp. 143–160.

[23] D. Sethi, S. Narayana, S. Malik, Abstractions for model checking SDN
controllers, in: FMCAD, 2013, pp. 145–148.

[24] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: Static
checking for networks, in: NSDI, 2012, pp. 113–126.

[25] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, B. Godfrey, S. T. King,
Debugging the data plane with anteater, in: ACM SIGCOMM, 2011, pp.
290–301. doi:10.1145/2018436.2018470.

[26] E. Al-Shaer, S. Al-Haj, Flowchecker: configuration analysis and verifica-
tion of federated openflow infrastructures, in: SafeConfig, 2010, pp. 37–44.
doi:10.1145/1866898.1866905.

[27] A. Khurshid, X. Zou, W. Zhou, M. Caesar, P. B. Godfrey, Veriflow: Veri-
fying network-wide invariants in real time, in: NSDI, 2013, pp. 15–27.

[28] T. Nelson, A. D. Ferguson, M. J. G. Scheer, S. Krishnamurthi, Tierless
programming and reasoning for software-defined networks, in: NSDI, 2014,
pp. 519–531.

[29] T. Nelson, A. D. Ferguson, S. Krishnamurthi, Static differential pro-
gram analysis for software-defined networks, in: FM, 2015, pp. 395–413.
doi:10.1007/978-3-319-19249-9 25.

[30] V. Galpin, Formal modelling of software defined networking, in: IFM, 2018,
pp. 172–193. doi:10.1007/978-3-319-98938-9 11.

[31] M. Sirjani, M. M. Jaghoori, Ten years of analyzing actors: Rebeca expe-
rience, in: Formal Modeling: Actors, Open Systems, Biological Systems,
2011, pp. 20–56. doi:10.1007/978-3-642-24933-4 3.

[32] B. Yousefi, F. Ghassemi, R. Khosravi, Modeling and efficient verification of
wireless ad hoc networks, Formal Asp. Comput. 29 (6) (2017) 1051–1086.
doi:10.1007/s00165-017-0429-z.

[33] E. Khamespanah, M. Sirjani, K. Mechitov, G. Agha, Modeling and analyz-
ing real-time wireless sensor and actuator networks using actors and model
checking, STTT 20 (5) (2018) 547–561. doi:10.1007/s10009-017-0480-3.

[34] M. Christakis, A. Gotovos, K. F. Sagonas, Systematic Testing for Detecting
Concurrency Errors in Erlang Programs, in: ICST, 2013, pp. 154–163.

31

[35] S. Lauterburg, R. K. Karmani, D. Marinov, G. Agha, Basset: a tool for
systematic testing of actor programs, in: SIGSOFT FSE, 2010, pp. 363–
364. doi:10.1145/1882291.1882349.

[36] A. Bouajjani, M. Emmi, C. Enea, J. Hamza, Tractable refine-
ment checking for concurrent objects, in: POPL, 2015, pp. 651–662.
doi:10.1145/2676726.2677002.

[37] H. Liang, X. Feng, A program logic for concurrent objects under fair
scheduling, in: POPL, 2016, pp. 385–399. doi:10.1145/2837614.2837635.

32

Appendix A. Soundness Proofs

Appendix A.1. Proof of Theorem 4.7

Let α be the one-to-one function that pairs each element of S with its unique
actor in Sa such that S ≡ Sa.

Assumption 1. Given an SDN state S = 〈H,Sw,C〉 and an SDN-Actor state
Sa such that S ≡ Sa, C = c(top, cin) and a(c, tk, h,Q) ∈ Sa with α(C) =
a(c, tk, h,Q), then

applyPol(top, sid, o, ph) = applyPolicy(sid, o, ph)

Assumption 2. Sini ≡ Sini
a , where Sini

a is the SDN-Actor state defined in
Def.4.1, that is, the state after executing method init conf() and all asynchronous
calls to method sendIn containing the packets to be delivered.

Definition Appendix A.1 (succ(S) (succ(Sa))). Given an SDN(resp. SDN-
Actor) state S (resp. Sa), succ(S) (resp. succ(Sa)) denotes the set of final states
of the executions in exec(S) (resp. exec(Sa)).

Lemma Appendix A.2. Given an SDN state and an SDN-Actor state Sa

such that S ≡ Sa and S ∈ succ(Sini) and Sa ∈ succ(Sini
a),

1. If S → S′, then ∃S′a such that Sa 7−→ S′a and S′ ≡ S′a.

2. If Sa 7−→ S′a, then ∃S′ such that S → S′ and S′ ≡ S′a.

Proof.
Let us see reason about both points at the same time. We distinguish several
cases depending on the semantics rule applied during the step S → S′. Let S
and S′ be 〈H,Sw,C〉 and 〈H ′, Sw′, C ′〉, respectively.

1. If rule (si) is applied,

• H = H ′′∪{h(id, sid, o, in∪{new(p)})} andH ′ = H ′′∪{h(id, sid, o, in)}
• Sw=Sw′′∪{s(sid, ft , b, in′)} and Sw′=Sw′′∪{s(sid, ft , b, in′∪{o:p})}
• C = C ′

Moreover, we know that S ≡ Sa, hence α(h(id, sid, o, in ∪ {new(p)})) =
a(hoid, , h,Q) ∈ Sa and Q = {tk(tid, sendIn, l,)}∪Q′. Thus, task tid can
be executed in state Sa by actor hoid and it will send a task shp (where shp

stands for switchHandlePacket) to h[s] such that h[s] = α(s(sid, ft , b, in′)) =
a(soid, , h2,Q′′) ∈ Sa (by the equivalence of S and Sa).

a) Sa = S′′a ∪ {a(hoid, , h,Q), a(soid, , h2,Q′′), }
b) S′a = S′′a ∪ {a(hoid, , h,Q′), a(soid, , h2,Q′′ ∪ {tk(, shp, l2,)})},

such that l2[p] = l[p] and l2[o] = h[o].

33

By such equivalence we know that (1) 〈H ′′, Sw′′, C〉 ≡ S′′a , (2) (in, ∅) ≡
(Q′, ∅) and by a) and b) (in′ ∪ {o : p}, ∅) ≡ (Q′′ ∪ {tk(, shp, l2,)}, ∅)
Consequently, S′ ≡ S′a.

2. If rule (hhp) is applied,

• H = H ′′ ∪ {h(id, sid, o, in ∪ {p})} and H ′ = H ′′ ∪ {h(id, sid, o, in)}
• Sw = Sw′ and C = C ′

We also know S ≡ Sa, hence α(h(id, sid, o, in ∪ {p})) = a(hoid, , h,Q) ∈
Sa and Q = {tk(tid, hhp, l,)}∪Q′ (where hhp stands for hostHandlePacket

). Therefore task tid can be executed in state Sa by hoid and the packet
is removed from the buffer.

• Sa = S′′a ∪ {a(hoid, , h,Q)}
• S′a = S′′a ∪ {a(hoid, , h,Q′)}.

Furthermore, p = l[p]. By the equivalence between Sa and S, we know
that (in ∪ {p}, ∅) ≡ (Q, ∅) and then, (1) (in, ∅) ≡ (Q′, ∅) and also, (2)
〈H ′′, Sw,C〉 ≡ S′′a . Consequently, S′ ≡ S′a.

3. If rule (shp1) is applied,

• H = H ′′ ∪ {h(id, sid, o, in′} and H ′ = H ′′ ∪ {h(id, sid, o, in′ ∪ {p})}
• Sw=Sw′′∪{s(sid, ft , b, in∪{o2 : p})} and Sw′=Sw′′∪{s(sid, ft , b, in)}
• C = C ′ and 〈send(id)〉 = lookup(ft , 〈header(p), o〉).

Moreover, we know S ≡ Sa, hence α(s(sid, ft , b, in)) = a(soid, , h,Q) ∈
Sa and Q = {tk(tid, shp, l,)} ∪ Q′. Therefore, task tid can be executed
and by the equivalence, we know that ft = h[flowT], thus the action re-
turned by flowT is the same that the one returned by ft , that is send(id).
Therefore, the check in line 21 does not succeed, but the check in line
22 does, and, consequently, it spawns a task hhp to α(h(id, sid, o, in′)) =
a(hoid, , h2,Q′′) ∈ Sa. As a result

• Sa = S′′a ∪ {a(hoid, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {a(hoid, , h2,Q′′ ∪ {tk(, hhp, l2,)}), a(soid, , h,Q′)}

where l[p] = l2[p]. We also know by S ≡ Sa, that (1) 〈H ′′, Sw′′, C〉 ≡ S′′a ,
(2) (in ∪ {o2 : p}, b) ≡ (Q, h[buffer]). Since p = l2[p], then (in′ ∪ {p}, b) ≡
(Q′′ ∪ {tk(, hhp, l2,)}, h[buffer]). Consequently, we have that S′ ≡ S′a.

4. If rule (shp2) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b, in ∪ {o2 : p}), s(sid′, ft ′, b′, in′)}
• Sw′ = Sw′′ ∪ {s(sid, ft , b, in), s(sid′, ft ′, b′, in′ ∪ {o : p})}
• H = H ′, C = C ′ and send(sid′, o) = lookup(ft , 〈header(p), o2〉).

34

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b, in)) = a(soid, , h,Q) ∈
Sa and Q = {tk(tid, shp, l,)} ∪Q′. Hence, task tid can be executed, and
by the equivalence, we know that ft = h[flowT], thus the action returned
by flowT is the same that the one returned by ft , that is send(soid′, o).
Therefore, the check in line 21 succeeds and, consequently, it spawns a
task shp to α(s(sid′, ft ′, b′, in′)) = a(soid′, , h2,Q′′) ∈ Sa. As a result

• Sa = S′′a ∪ {a(soid′, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {s(soid′, , h2,Q′′ ∪ {tk(, shp, l2,)}), a(soid, , h,Q′)}

where l[p] = l2[p]. We also know by S ≡ Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a ,
(2) (in∪ {o2 : p}, b) ≡ (Q, h[buffer]). Finally, we also know that (in′ ∪ {o :
p}, b′) ≡ (Q′′ ∪ {tk(, shp, l2,)}, h2[buffer]) because o = l2[o], p = l2[p].
Consequently, we have that S′ ≡ S′a.

5. If rule shp3 is applied,

• Sw = Sw′′∪{s(sid, ft , b, in∪{o : p})} and Sw = Sw′′∪{s(sid, ft , b∪
{o : p}, in)}

• C = c(top, in′) and C ′ = c(top, in′ ∪ {pktIn(sid,o,id(p),header(p))})
• H = H ′ and ⊥ = lookup(ft , 〈header(p), o〉).

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b, in)) = a(soid, , h,Q) ∈
Sa and Q = {tk(tid, shp, l,)} ∪ Q′. Hence, task tid can be executed and
by the equivalence, we know that ft = h[flowT], so the action returned
by flowT is the same that the one returned by ft , that is ⊥. Therefore,
the checks in line 21 and 22 do not succeed and, consequently, it (1)
spawns a task chm (where chm stands forcontrolHandleMessage) to h[ctrl] =
α(c(top, in′)) = a(coid, , h2,Q′′) ∈ Sa, and, (2) it stores the packet and
the port o : p in h[buffer]. As a result

• Sa = S′′a ∪ {a(soid, , h,Q), a(coid, , h2,Q′′)}.
• S′a = S′′a ∪ {a(soid, , h′,Q′), a(coid, , h2,Q′′ ∪ {tk(, chm, l2,)})}

and h′ := h but h′[buffer] := h[buffer] ∪ {(p, o)}.

Furthermore, we know that (1) 〈H,Sw′′, C〉 ≡ (S′′a ∪ {a(coid, , h2,Q′′)})
and (2) (in, b ∪ {o : p}) ≡ (Q′, h[buffer] ∪ {(p, o)}). Moreover, we have
(in′, ∅) ≡ (Q′′ ∪ {task (, chm, l2, }, ∅) since soid = l2[sid], p = l[p] and
o = l[o]. Consequently, we have S′ ≡ S′a.

6. If rule (so1) is applied,

• H = H ′′∪{h(id, sid, o, in′} and H ′ = H ′′∪{h(id, sid, o, in′∪{o : p})}
• Sw = Sw′′ ∪ {s(sid, ft , b ∪ {o2 : p}, in ∪ {pktOut(ph)})} and Sw′ =
Sw′′ ∪ {s(sid, ft , b, in)}

• C = C ′, ph = header(p) and send(id) = lookup(ft , 〈header(p), o〉).

35

We also know S ≡ Sa, so α(s(sid, ft , b ∪ {o2 : p}, in ∪ {pktOut(ph)})) =
a(soid, , h,Q) ∈ Sa and Q = {tk(tid, sendOut, l,)} ∪ Q′. Hence, task
tid can be executed and by the equivalence, we know that ft = h[flowT],
so the action returned by flowT is the same that the one returned by ft ,
that is send(soid, o). Therefore, the check in line 28 does not succeed,
but the check in line 29 does, and, consequently, it spawns a task hhp to
α(h(id, sid, o, in′)) = a(hoid, , h2,Q′′) ∈ Sa. As a result

• Sa = S′′a ∪ {a(hoid, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {a(hoid, , h2,Q′′ ∪ {tk(, hhp, l2,)}), a(soid, , h′,Q′)}

where h′ := h but h′[buffer] := take(h[buffer], l[pi]). We also know by S ≡
Sa, that (1) 〈H ′′, Sw′′, C〉 ≡ S′′a , (2) (in ∪ {o2 : p}, b) ≡ (Q, h[buffer]). Fi-
nally, we also know that (in′∪{o : p}, b) ≡ (Q′′∪{tk(, hhp, l2,)}, h[buffer])
since (p, o) = take(h[buffer], l[pi]) = (l2[p], o). Consequently, we have that
S′ ≡ S′a.

7. If rule (so2) is applied,

• Sw = Sw′′∪{s(sid, ft , b∪{o2 : p}, in∪{pktOut(ph)}), s(sid′, ft ′, b′, in′)}
• Sw′ = Sw′′ ∪ {s(sid, ft , b, in), s(sid′, ft ′, b′, in′ ∪ {o : p})}
• H = H ′, C = C ′ and send(sid′, o) = lookup(ft , 〈header(p), o2〉).

Moreover, we know S ≡ Sa, so α(s(sid, ft , b∪{o2 : h}, in∪{pktOut(ph)})) =
a(soid, , h,Q) ∈ Sa and Q = {tk(tid, sendOut, l,)} ∪ Q′. Hence, task tid
can be executed and, by the equivalence, we know that ft = h[flowT], so
the action returned by flowT is the same that the one returned by ft , that is
send(soid′, o). Therefore, the check in line 28 succeeds, and consequently,
it spawns a task shp to α(s(sid′, ft ′, b′, in′)) = a(soid′, , h2,Q′′) ∈ Sa. As
a result

• Sa = S′′a ∪ {a(soid′, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {s(soid′, , h2,Q′′ ∪ {tk(, shp, l2,)}), a(soid, , h,Q′)}

where h′ := h but h′[buffer] := take(h[buffer], l[pi]). We also know by S ≡
Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a , (2) (in ∪ {o2 : p}, b) ≡ (Q, h[buffer]). Fi-
nally, we also know that (in′∪{o : p}, b) ≡ (Q′′∪{tk(, shp, l2,)}, h[buffer])
since (p, o) = take(h[buffer], l[pi]) = (l2[p], l2[o]). Consequently, we have
that S′ ≡ S′a.

8. If rule (so3) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b ∪ {o : p}, in ∪ {pktOut(ph)})}
• Sw′ = Sw′′ ∪ {s(sid, ft , b, in)}
• H=H ′, C=C ′, and ph=header(p) and ⊥=lookup(ft , 〈header(p), o〉).

36

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b∪{o:p}, in∪{pktOut(ph)}))
= a(soid, , h,Q) ∈ Sa and Q = {tk(tid, sendOut, l,)} ∪ Q′. Hence, task
tid can be executed, and by the equivalence, we know that ft = h[flowT],
thus the action returned by flowT is the same that the one returned by
ft , that is ⊥. Therefore, the checks in line 28 and 29 do not succeed, and
consequently, it drops the packet without spawning any other task. As a
result

• Sa = S′′a ∪ {a(soid, , h,Q)}
• S′a = S′′a ∪ {a(soid, , h′,Q′)}

where h′ := h but h′[buffer] := take(h[buffer], l[pi]). We also know by S ≡
Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a , (2) (in, b) ≡ (Q′, h′[buffer]). Consequently,
we have that S′ ≡ S′a.

9. If rule (shm) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b, in ∪ {modState(〈ph, o〉 7→ a)})}
• Sw′ = Sw′′ ∪ {s(sid, put(ft , 〈ph, o〉, a), b, in)}
• H = H ′, C = C ′.

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b, in∪{modState(〈ph,o〉 7→
a)})) = a(soid, , h,Q) ∈ Sa and Q = {tk(tid, switchHandleMessage, l,)} ∪
Q′. Therefore, task tid can be executed, and by the equivalence, we know
that ft = h[flowT], hence put(ft ,m, a) = put(h[flowT], 〈ph, o〉, a), and m =
〈ph, o〉 because of Assumption 1, that is, applyPol and applyPolicy behaves
similarly for α(s) and s, ∀s ∈ Sw and α(s) ∈ S.

• Sa = S′′a ∪ {a(soid, , h,Q)}
• S′a = S′′a ∪ {a(soid, , h′,Q′)}

where h′ := h but h′[flowT] := put(h[flowT],m, a). We also know by S ≡
Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a , (2) (in, b) ≡ (Q′, h[buffer]). Consequently,
we have that S′ ≡ S′a.

10. If rule (chm) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b, in)}
• Sw′ = Sw′′ms ∪ {s(sid, ft , b, in ∪mssid ∪ {pktOut(ph)}},
• H = H ′, C = c(top, cin ∪ {pktIn(sid,o,pid,ph)}) and C ′ = c(top, cin)

where ms = applyPol(top, sid, o, ph) and msid = {m|〈id,m〉 ∈ ms}.
Moreover, we know that S ≡ Sa, so α(c(top, cin∪{pktIn(sid,o,pid,ph)})) =
a(coid, , h,Q) ∈ Sa and Q = {tk(tid, chm, l1,)} ∪ Q′ (where chm stands
for chm) such that soid = l1[sid], o = l1[o], pid = l1[p] and ph = l1[h].
Therefore, task tid can be executed, and by the equivalence of S and Sa

37

and Assumption 1, we know that the list l is equivalent to ms, in the sense
that it contains exactly the same switches and the same actions. Hence,
in line 41, actor coid spawns tasks shm to every switch in the list l (where
shm stands for switchHandleMessage) and finally, it spawns a a task sendOut

to actor soid in line 43. Let us see the equivalence between S′a and S′.

• ∀s(sid′, ft ′, b′, in′) ∈ Sw′′ such thatmssid′ = ∅, then s(sid, ft ′, b′, in′) ∈
Sw′′ms. Furthermore, if mssid′ = ∅, then sid′ 6∈ l, hence sid′ will not
receive any message. Therefore, α(s(sid′, ft ′, b′, in′)) ∈ Sa ∩ S′a.

• ∀s(sid′, ft ′, b′, in′) ∈ Sw′′ such that mssid′ 6= ∅,then s(sid, ft ′, b′, in′∪
mssid′) ∈ Sw′′ms. Then, coid will spawn as many shm tasks as mes-
sages in {(m, a)|(soid′,m, a) ∈ l} (and in mssoid′). By Sa ≡ S, we
know α(s(sid, ft ′, b′, in′)) = a(soid′, , h2,Q′′) ∈ Sa and (in′, b′) ≡
(Q′′, h2[buffer]). Furthermore, a(soid′, , h2,Q′′ ∪ tksl,soid′) ∈ S′a,
where tksl,soid′ :={tk(, shm, l′,) |(soid′,m, a)∈l, l′[m]:=m, l′[a]:=a}
which is equivalent to the information contained in mssid′ . Then,
(in′ ∪mssid′ , b) ≡ (Q′′ ∪ tksl,soid′ , h2[buffer]).

• Regarding the switch s(sid, ft , b, in), by the equivalence of S and Sa,
we know that α(s(sid, ft , b, in)) = a(soid, , h1,Qsoid) ∈ Sa and since
soid = l[sid], actor coid spawns a task sendOut, and as many shm tasks
as messages in {(m, a)|(soid,m, a) ∈ l}, and then a(soid, , h1,Qsoid∪
tksl,soid∪{tk(, sendOut, l′,)}) ∈ S′a. Again, by the equivalence of S
and Sa, we know that (in, b) ≡ (Qsoid, h1[buffer]) and, since tksl,soid is
the equivalent information contained in mssid, then we get that (in∪
mssid, b) ≡ (Qsoid∪ tksl,soid, h1[buffer]). Finally, pktOut(ph) contains
the equivalent information to tout:=tk(, sendOut, l′,), thus we get
(in′ ∪ (mssid′ ∪ {pktOut(ph)}, b) ≡ (Q′′ ∪ tksl,soid′ ∪ {tout}, h[buffer]).

• Regarding the controller C, we know that (cin∪{pktIn(sid,o,pid,ph)}, ∅)
≡ (Q ∪ {tk(tkid, chm, l1,)}, ∅). Furthermore, by Assumption 1, we
know that related(top, {h[srefs, href, ntw]}). As a consequence (cin, ∅)
≡ (Q, ∅).

All in all, we conclude that S′ ≡ S′a.

Let us notice here that even though we have distinguished the different cases
depending on the semantics rule for SDN networks, the previous reasoning also
includes each possible execution of a task in the SDN-Actor model. Hence, each
possible execution of a task corresponds exactly with one of the semantics rule
for SDN networks. 2

Theorem 4.7. Let Sini and Sini
a be an SDN state and an SDN-Actor state,

respectively.

1. For every execution Sini → S1 → ...→ Sn ∈ exec(Sini),∃Sini
a 7−→ S1

a 7−→
... 7−→ Sn

a ∈ exec(Sini
a) such that Sn ≡ Sn

a .

38

2. For every execution Sini
a 7−→ S1

a 7−→ ... 7−→ Sn
a ∈ exec(Sini

a),∃Sini →
S1 → ...→ Sn ∈ exec(Sini) such that Sn ≡ Sn

a .

Proof.
Let us prove both cases by induction on the length n of the execution.

• If n = 0, it is straightforward to see that S0 = Sini ≡ Sini
a = S0

a.

• Let us suppose that both cases are true for n and let us prove them for
n+ 1

1. We need to prove that for every execution Sini → S1 → ...→ Sn+1 ∈
exec(Sini), ∃Sini

a 7−→ S1
a 7−→ ... 7−→ Sn

a 7−→ Sn+1
a ∈ exec(Sini

a) such
that Sn+1 ≡ Sn+1

a . Applying the induction hypothesis we know
that ∃Sini

a 7−→ S1
a 7−→ ... 7−→ Sn

a ∈ exec(Sini
a) such that Sn ≡ Sn

a .
Therefore, now we have Sn → Sn+1, and Sn ≡ Sn

a , hence, applying
Lemma Appendix A.2.1 we get that ∃Sn+1

a such that Sn
a 7−→ Sn+1

a

and Sn+1 ≡ Sn+1
a .

2. We need to prove that for every execution Sini
a 7−→ S1

a 7−→ ... 7−→
Sn+1
a ∈ exec(Sini

a), ∃Sini → S1 → ... → Sn → Sn+1 ∈ exec(Sini)
such that Sn+1 ≡ Sn+1

a . Applying the induction hypothesis we know
that ∃Sini → S1 → ... → Sn ∈ exec(Sini) such that Sn ≡ Sn

a .
Therefore, now we have Sn

a 7−→ Sn+1
a , and Sn ≡ Sn

a , hence, applying
Lemma Appendix A.2.2 we get ∃Sn+1 such that Sn → Sn+1 and
Sn+1 ≡ Sn+1

a .

2

39

CHAPTER 7. PUBLICATIONS

134

Conditional Dynamic Partial Order Reduction
and Optimality Results

Miguel Isabel
Complutense University of Madrid

Spain
miguelis@ucm.es

ABSTRACT
Testing concurrent systems requires exploring all possible non-
deterministic interleavings that the concurrent execution may have,
as any of the interleavings may reveal an erroneous behaviour
of the system. This introduces a combinatorial explosion on the
number of states that must be considered, which leads often to a
computationally intractable problem. In the present PhD thesis,
this challenge will be addressed through the development of new
Partial Order Reduction techniques (POR). The cornerstone of POR
theory is the notion of independence, that is used to decided whether
each pair of concurrent events p and t are in a race and thus both
executions p · t and t · p must be explored. A fundamental goal
of this thesis is to introduce notions of conditional independence
–which ensure the commutativity of the considered events p and
t under certain conditions that can be evaluated in the explored
state–with a DPOR algorithm in order to alleviate the combinatorial
explosion problem. The new techniques that we propose in the
thesis have been implemented within the SYCO tool. We have
carried out accompanying experimental evaluations to prove the
effectiveness and applicability of the proposed techniques. Finally,
we have successfully verified a range of properties for several case
studies of Software-Defined Networks to illustrate the potential of
the approach, scaling to larger networks than related techniques.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.

KEYWORDS
Testing, Software Verification, Partial-Order Reduction

ACM Reference Format:
Miguel Isabel. 2019. Conditional Dynamic Partial Order Reduction and
Optimality Results. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’19), July 15–19, 2019,
Beijing, China. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3293882.3338987

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3338987

1 INTRODUCTION
Due to increasing performance demands, application complexity
andmulti-core parallelism, concurrency is present everywhere in to-
day’s software applications. It is widely recognized that concurrent
programs are difficult to develop, debug, test and analyze. This is
even more so in the context of concurrent imperative languages that
use a global memory (so called heap) to which the different tasks
can have access. These accesses introduce additional hazards not
present in sequential programs such as race conditions, data races,
deadlocks, and livelocks. Therefore, software validation techniques
urge especially in the context of concurrent programming.

Testing is the most widely-used methodology for software vali-
dation. However, due to the non-deterministic interleaving of tasks,
traditional testing for concurrent programs is not as effective as for
sequential programs. In order to ensure that all behaviors of the
program are tested, the testing process, in principle, must system-
atically explore all possible ways in which the tasks can interleave.
This is known as systematic testing [24] in the context of concurrent
programs. Such full systematic exploration of all task interleavings
produces the well known state explosion problem and is often
computationally intractable (see, e.g., [25] and its references).

Partial-order reduction (POR) [14] is a general theory that helps
mitigate this combinatorial explosion by formally identifying equiv-
alence classes of redundant explorations. POR is based on the idea
that two interleavings can be considered equivalent if one can be
obtained from the other by swapping adjacent, non-conflicting
independent execution steps. Such equivalence class is called a
Mazurkiewicz trace [21], and POR guarantees that it is sufficient
to explore one interleaving per equivalence class. For this purpose,
a happens-before partial order among the events of the execution
sequences is defined. This order relation induces a set of equivalent
execution sequences, i.e., those sequences with the same happens-
before order belong to the same equivalence class. As a result, only
one of them needs to be explored.

2 STATE OF THE ART
Early POR algorithms [12, 14, 26] relied on static over-approximations
to detect possible future conflicts. The Dynamic-POR (DPOR) algo-
rithm, introduced by Flanagan and Godefroid [13] in 2005, was a
breakthrough in the area because it does not need to look at the
future. It keeps track of the independence races witnessed along
its execution and uses them to decide the required exploration
dynamically, without the need of static approximation. DPOR is
nowadays considered one of the most scalable techniques for con-
current software testing. The key of DPOR algorithms is in the
dynamic construction of two types of sets at each scheduling point:
the sleep set that contains processes whose exploration has been

433

ISSTA ’19, July 15–19, 2019, Beijing, China Miguel Isabel

proven to be redundant (and hence should not be selected), and
the backtrack set that contains the processes that have not been
proven independent with previously explored steps (and hence may
need to be explored). Source-DPOR (SDPOR) [1, 2] improves the
precision computing backtrack sets (named there source sets).

An extension of the DPOR algorithm, named Optimal DPOR
(ODPOR) [2], guarantees the optimality of the exploration, i.e., the
proposed DPOR algorithm never explores redundant states (they
are equivalent to others already explored). In addition to using
source sets, a major extension is needed to achieve optimality: the
use of wakeup trees to guide the initial steps in the exploration.
By means of these extensions, ODPOR guarantees that redundant
explorations are never even initiated, proving optimality for any
number of processes w.r.t. an unconditional independence relation.

Both the original DPOR and its extension ODPOR are based on
an unconditional dependency relation (also called unconditional
happens-before relation) which determines the partial order of
transitions, i.e., for two transitions be considered independent they
must commute in all possible contexts. Let us consider the following
three simple processes {p,q, r } and the initial state x = 0:

p: write(x=5), q: write(x=5), r : assert(x>0).
The transitions write(x=5) and write(x=5) are uncondi-

tionally independent but write(x=5) and assert(x>0) are
not. The latter are independent only if x > 0.

Conditional independence was earlier introduced in the context
of POR [19], where it was proven that only uniform conditional inde-
pendence can be used, i.e., independence must hold along the whole
trace. A notion of uniformity is needed because, unlike uncondi-
tional independence, pruning the DPOR search space by relying on
whether conditions like x > 0 above, called independence constraints
(ICs), are satisfiable in the explored state is unsound in general. The
ICs provide the conditions under which each pair of transitions com-
mutes, i.e., both execution orders leads to the same state. The first
algorithm that took advantage of independence constraints is [27],
but this algorithm can only ensure optimality between two threads,
(while DPOR ensures it among any number of threads) and infers
ICs for single instructions. The first algorithm that has used notions
of conditional independence within the state-of-the-art DPOR algo-
rithm is Context-Sensitive DPOR (DPORcs) [4]. However, DPORcs
does not use ICs (it rather checks state equivalence dynamically
during the exploration) and exploits conditional (context-sensitive)
independence only partially to extend the sleep sets. ODPOR with
Observers (ODPORob) [3] introduces the notion of observability,
where dependencies between execution steps p and t are condi-
tional to the existence of future steps, called observers, which read
the values modified by p and t . For the previous example, when
ODPORob explores the execution r .p.q, we have that p and q are
considered as independent, since there is not a observer executed
after them. This is because r is executed before, so it does not read
the value written by p and q.

3 GOALS OF THE RESEARCH
The overall goal of this PhD thesis is to be able to explote notions
of conditional independence –which ensure the commutativity of
the considered events p and t under certain conditions that can
be evaluated in the explored state– within DPOR algorithms in

order to alleviate the combinatorial explosion problem described
in Section 1. This goal is materialized in the following research
challenges:

i) combine and exploit the notions of Context-Sensitive DPOR,
Optimal DPOR with Observers and study their synergies to
gain further pruning,

ii) propose (sufficient) conditions that ensure uniformity and
enable new forms of pruning using ICs,

iii) integrate the notion of uniform conditional independence
(which requires to look ahead) to prune the search space in
a dynamic algorithm using ICs,

iv) statically synthesize ICs for atomic blocks of instructions in
a pre-analysis using a SMT approach,

v) extend the DPOR framework, that ensures optimality for any
number of processes, to exploit ICs during the exploration
in order to both reduce the backtrack sets and expand the
sleep sets as much as possible,

vi) carry out a thorough experimental evaluation to compare
the different extensions, and

vii) apply the techniques to a realistic setting.

4 CURRENT STATE OF THE RESEARCH
At the Conference ISSTA 2019 [6], we have presented Optimal
Context-Sensitive DPOR with Observers which addresses the first
challenge. We have formulated Context-Sensitive DPOR over Op-
timal DPOR, which is named Optimal Context-Sensitive DPOR
(ODPORcs), and it includes the extension of wakeup trees used to
ensure optimality. Furthermore, we have also integrated the notion
of observability into ODPORcs and the resulting algorithm is called
Optimal Context-Sensitive DPOR with Observers (ODPORobcs). To il-
lustrate this, let us consider again the previous example. ODPORobcs
detectsp.q.r andq.p.r as redundant, because in both sequences r ob-
serves the same result (the assert holds). Consequently, ODPORobcs
only needs to explore one of them, whereas ODPORob explores
both executions. Finally, we have implemented this new algorithm
and perform an experimental evaluation that shows it can explore
exponentially less sequences than DPORcs and ODPORobcs .

At the Conference CAV 2018 [5], we have presented Constrained
Dynamic Partial Order Reduction (CDPOR) which addresses the sec-
ond, third and fourth challenges. As a result, we have introduced
sufficient conditions –that can be checked dynamically– to soundly
exploit ICs within the DPOR framework. Moreover, we have ex-
tended the state-of-the-art DPOR algorithm with new forms of
pruning (by means of expanding sleep sets and reducing backtrack
sets). We have also presented an SMT-based approach to automat-
ically synthesize ICs for atomic blocks, whose applicability goes
beyond the DPOR context. For write(x) and write(x), it in-
fers true as IC (that is, they are unconditional independent) and, for
write(x) and assert(x>0) it infers x > 0. During the explo-
ration, CDPOR detects p and r as dependent in the execution p.r .q
(because the condition does not hold in the initial state) and as inde-
pendent in the execution q.p.r (since after q, the IC holds), avoiding
the exploration of q.r .p. Moreover, we have experimentally shown
the exponential gains achieved by CDPOR.

However, CDPOR extends Source-DPOR only with sound ways
of exploiting ICs and, although it has experimentally shown to

434

Conditional DPOR and Optimality Results ISSTA ’19, July 15–19, 2019, Beijing, China

achieve exponential reductions, they have not been proven optimal
w.r.t. the equivalence classes induced by a conditional happens-
before relation. Currently, we are working on a new direction to
address the fifth challenge. We aim at characterizing the properties
of a conditional happens-before relation which allows defining the
equivalence classes to be explored by an optimal DPOR algorithm
as a disjunction of partial orders. Furthermore, we aim at defining
a provably Optimal Constrained DPOR algorithm that varies from
unconditional ODPOR in the construction of the sequences to be
explored when races are detected. We plan to use a conditional
happens-before relation that can be checked efficiently during the
execution of the DPOR algorithm and is sufficiently accurate to
detect redundancies that can only be captured using a conditional
relation. Finally, wewill perform an experimental evaluation against
ODPOR and CDPOR to show the gains of this new approach.

5 EXPERIMENTS
The thesis will be backed up by a thorough experimental evalua-
tion that addresses goal vi). Namely, in [5], we have reported on
experimental results that compare the performance of three DPOR
algorithms: SDPOR [1, 2], DPORcs [4] and our proposal CDPOR [5].
We have implemented and experimentally evaluated CDPORwithin
the SYCO tool [4], a systematic testing tool for message-passing
concurrent programs. SYCO can be used online through its web in-
terface available at http://costa.fdi.ucm.es/syco. To generate the ICs,
SYCO calls a new feature of the VeryMax program analyzer [10]
which uses Barcelogic [9] as SMT solver.

As benchmarks, we have borrowed the examples from [4] (avail-
able online from the previous url) that were used to compare SDPOR
with DPORcs (see Table 1). They are classical concurrent applica-
tions: a concurrent sorting algorithm (QS), concurrent Fibonacci
(Fib) and several distributed workers (Pi, PS). These benchmarks
feature the typical concurrent programming methodology in which
computations are split into smaller atomic subcomputations which
concurrently interleave their executions, and which work on the
same shared data. Therefore, the concurrent processes are highly in-
terfering, and both inferring ICs and applying DPOR algorithms on
them becomes challenging. We have executed each benchmark with
size increasing input parameters. As it can be observed in the table,
he results show that the gains of CDPOR increase exponentially in
all examples respect to the size of the input. When compared with
DPORcs , we achieve reductions up to 4 orders of magnitude for
the largest inputs on which DPORcs terminates. W.r.t. SDPOR, we
achieve reductions of 4 orders of magnitude even for smaller inputs
for which SDPOR terminates. In QS and PS, though the gains are
linear for the small inputs, when the size of the problem increases
both SDPOR and DPORcs time out, while CDPOR can still handle
them efficiently. As regards the time to infer ICs, we observe that in
most cases it is negligible compared to the exploration time of the
other methods. Let us also notice that the inference is a pre-process
which does not add complexity to the actual DPOR algorithm.

In [6], we have reported on an experimental comparison of the
performance of DPORcs , ODPORob and our proposal ODPORobcs .
We have used two sets of benchmarks: the same set described above,
and a subset of the synthetic examples used in [3] to compare
Optimal DPOR and Optimal DPOR with Observers. In general, we
obtain speedups with respect to both methods, although when

the reduction in explored sequences is small, the overhead of the
complex context-sensitive checks does not pay off. Furthermore,
our proposal obtains gains, scaling by several orders of magnitude.

In summary, we conclude that our experimental results in [5]
and [6] show exponential reductions of explored executions and
our gains increase exponentially.

A potential hazard of using conditional independence within
DPOR algorithms is that it needs to check independence with re-
spect to states explored in the current execution sequence but not
in the current state. It does not need to revisit states that have been
completely explored and backtracked, but only those in the cur-
rent execution sequence. There are several strategies to confront
this challenge: on-demand recomputing, all states are recomputed
following the same events order that led to them (and then no mem-
ory usage is needed); full storage, all states are stored to be used
until the state is backtracked; and state caching [23], where states
are stored until the memory is approaching full utilization. Our
current implementation follows the second strategy. To the light of
our experimental results, full storage performs efficiently, since the
number of stored states is limited by the number of events in each
execution sequence and it remains quite low for the experiments.

6 FOR THE VERIFICATION OF
SOFTWARE-DEFINED NETWORKS

To address the vii) challenge, we want to apply our techniques
for the verification of Software-Defined Network (SDN). SDN is a
relatively recent networking paradigm which is now widely used
in industry, with many companies—such as Google and Facebook—
using SDN to control their backbone networks and data-centers.
The core principle in SDN is the separation of control and data
planes—there is a centralized controller which operates a collection
of distributed interconnected switches. Hosts communicate with
each other by sending packets to their switches. Each switch checks
if its own flow table contains the destination of the packet. If it does,
the packet is sent to the next switch or to the final host. Otherwise,
it sends a message to the controller in order to receive information
about the destination of the packet. The controller answers by
means of messages and dynamically updates switches’ policies
depending on the observed flow of packets, which is a simple but
powerful way to react to unexpected events in the network.

Network verification has become increasingly popular since
SDN was introduced, because in this new paradigm the amount of
detailed information available about network events is rich enough
and can be centrally gathered to check for properties of the network
behavior. Moreover, the controller itself is a program which can be
analyzed and verified before deployment.

We have encoded all basic components of an SDN network
(switches, hosts, controller) into the message-passing concurrent
language ABS [17]. Furthermore, we have formalized the semantics
of SDN networks that allows us to prove soundness of the equiva-
lence between such semantics and the semantics of our encoding.
Furthermore, we have overcome one of themost challenging aspects
to encode SDN networks, which is the barrier messages, special
instructions used by the controller to force switches to execute all
their messages previously received. We have built a model checker
for our SDN models on top of SYCO (choosing the appropriate con-
figuration). This tool uses the DPOR algorithms proposed in this

435

ISSTA ’19, July 15–19, 2019, Beijing, China Miguel Isabel

Table 1: Experimental evaluation comparing SDPOR, DPORcs and CDPOR

SDPOR DPORcs CDPOR Speed-up

Bench. Tr S T Tr S T Tr S T Tsmt Gs Gcs Gsmt

Fib(7) >13k >160k 60.0 1 551 0.3 1 82 0.05 0.12 >1364 6 1.4
Fib(8) >8k >101k 60.0 1 2k 0.7 1 134 0.12 >527 6 3.0
Fib(9) >4k >51k 60.0 1 3k 2.8 1 218 0.25 >242 12 7.5
Fib(10) >2k >27k 60.0 1 8k 11.5 1 354 0.69 >88 17 14.3
Fib(14) >10 >3k 60.0 >1 >4k 60.0 1 3k 42.67 >2 >2 >1.5
QS(13) 5k 91k 29.5 1 29k 7.9 1 50 0.03 11.99 1474 395 0.7
QS(15) >7k >157k 60.0 1 115k 42.6 1 58 0.05 >1500 1064 3.6
QS(20) >4k >98k 60.0 >1 >148k 60.0 1 78 0.04 >1539 >1539 >5.0
QS(25) >3k >96k 60.0 >1 >133k 60.0 1 98 0.06 >1017 >1017 >5.0
QS(200) >5 >2k 60.0 >1 >87k 60.0 1 798 4.45 >14 >14 >3.7
Pi(8) >10k >105k 60.0 264 5k 1.7 1 26 0.02 0.05 >4616 128 26.9
Pi(9) >11k >120k 60.0 2k 19k 7.0 1 29 0.02 >4000 465 108.9
Pi(10) >10k >128k 60.0 6k 91k 45.2 1 32 0.02 >3530 2655 683.7
Pi(12) >9k >122k 60.0 >7k >128k 60.0 1 38 0.03 >2400 >2400 >810.9
Pi(20) >5k >101k 60.0 >5k >115k 60.0 1 62 0.09 >723 >723 >454.6
PS(5) 35k 156k 43.2 8 142 0.1 1 22 0.01 0.59 5391 5 0.1
PS(6) >32k >141k 60.0 72 2k 0.4 1 29 0.02 >4286 28 0.7
PS(7) >29k >130k 60.0 2k 28k 7.5 1 37 0.03 >2858 357 12.3
PS(9) >25k >109k 60.0 >11k >165k 60.0 1 56 0.06 >1053 >1053 >92.9
PS(11) >23k >103k 60.0 >9k >132k 60.0 1 79 0.09 >690 >690 >88.8

thesis to avoid exploring redundant executions and incorporates
visualization tools to view the exploration and execution diagram.

To evaluate this approach, we have modelled and analysed sev-
eral SDN scenarios: a controller with load balancer, a SSH controller,
a learning switch with authentication, and a firewall with migra-
tion. We have found bugs related to programming errors in the
controller [7], forwarding loops [15] and violation of safety policies
[7, 20]. SYCO needs to explore all possible reorderings of dependent
messages and packets, leading to a combinatorial explosion. Thanks
to the use of conditional independence within DPOR algorithms,
SYCO can handle networks larger than in related systems [20],
but without requiring simplifications to the SDN models. This is
achieved by means of ICs that are satisfied if two messages or pack-
ets are independent (for instance, they do not access to the same
entries of the flow table) and they can be proven automatically by
using SMT solvers, as in [5]. In our current experiments, we have
declared by-hand ICs which are valid for any SDN model. It is part
of our future work to infer them automatically.

7 RELATED AND FUTUREWORK
The work in [18, 27] generated for the first time ICs for processes
with a single instruction following some predefined patterns. This
is a problem strictly simpler than our inference of ICs both in the
type of IC generated (restricted to the patterns) and on the single-
instruction blocks they consider. Furthermore, our approach using
an AllSAT SMT solver is different from the CEGAR approach in
[8]. The ICs are used in [18, 27] for SMT-based bounded model
checking, an approach to model checking fundamentally different
from our stateless model checking setting. Consequently ICs are
used in a different way, in our case with no bounds on number
of processes, nor derivation lengths, but requiring a uniformity
condition on independence in order to ensure soundness.

It remains as future work the combination of Constrained DPOR
and Context-Sensitive ODPOR with Observers. To the best of our
knowledge, it has not been studied yet. We believe the integration
of both techniques can achieve exponential gains compared with

these approaches. Data-centric DPOR (DCDPOR) [11] presents a
new DPOR algorithm based on a different notion of dependency
according to which the equivalence classes of derivations are based
on the pairs read-write of variables. Let us consider again the run-
ning example with the three processes {p,q, r } and the initial state
x = 0. In DCDPOR, we have only three different observation func-
tions: (r ,x) (reading the initial value), (r ,p) (reading the value that
p writes), (r ,q) (reading the value that q writes). Therefore, this no-
tion of relational independence is finer grained than the traditional
one in DPOR. However, DCDPOR does not consider conditional
dependency, i.e., it does not realize that (r ,p) and (r ,q) are equiva-
lent, and hence only two explorations are required. In conclusion,
our approaches and DCDPOR can complement each other and it is
in our agenda to study this integration.

ACKNOWLEDGMENTS
This work was funded partially by the Spanish MECD FPU Grant
FPU15/04313, the MINECO/FEDER, UE project TIN2015-69175-
C4-3-R, the Spanish MINECO project TIN2015-69175-C4-2-R, the
Spanish MICINN/FEDER, UE projects RTI2018-094403-B-C31 and
RTI2018-094403-B-C33, and by the CM project P2018/TCS-4314.

REFERENCES
[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.

Source sets: A foundation for optimal dynamic partial order reduction. J. ACM,
64(4):25:1–25:49, 2017.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos F. Sagonas.
Optimal Dynamic Partial Order Reduction. In POPL, pages 373–384, 2014.

[3] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. Optimal
dynamic partial order reduction with observers. In Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, pages
229–248, 2018.

[4] Elvira Albert, Puri Arenas, Maria Garcia de la Banda, Miguel Gómez-Zamalloa,
and Peter J. Stuckey. Context-sensitive dynamic partial order reduction. In CAV,
pages 526–543, 2017.

[5] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. Con-
strained Dynamic Partial Order Reduction. In CAV, volume 10982 of - Lecture
Notes in Computer Science, pages 392–410. Springer, 2018.

436

Conditional DPOR and Optimality Results ISSTA ’19, July 15–19, 2019, Beijing, China

[6] Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel,
and Peter J. Stuckey. Optimal Context-sensitive Dynamic Partial Order reduction
with Observers. In ISSTA, 2019.

[7] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon: towards
verifying controller programs in software-defined networks. In PLDI, pages
282–293, 2014.

[8] Kshitij Bansal, Eric Koskinen, and Omer Tripp. Commutativity condition refine-
ment, 2015.

[9] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell,
and Albert Rubio. The barcelogic SMT solver. In CAV, pages 294–298, 2008.

[10] Cristina Borralleras, Daniel Larraz, Albert Oliveras, José Miguel Rivero, Enric
Rodríguez-Carbonell, and Albert Rubio. VeryMax: Tool description for term-
COMP 2016. In WST, 2016.

[11] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Kapil Vaidya, and
Nishant Sinha. Data-centric dynamic partial order reduction. In POPL 2018, 2018.

[12] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron A. Peled. State
space reduction using partial order techniques. STTT, 2(3):279–287, 1999.

[13] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

[14] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer,
1996.

[15] Ahmed El-Hassany, JeremieMiserez, Pavol Bielik, Laurent Vanbever, andMartin T.
Vechev. Sdnracer: concurrency analysis for software-defined networks. In POPL,
pages 402–415, 2016.

[16] Shiyou Huang and Jeff Huang. Speeding up maximal causality reduction with
static dependency analysis. In ECOOP, pages 16:1–16:22, 2017.

[17] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. FMCO’10, LNCS 6957,
pp. 142-164. Springer, 2012.

[18] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction:
An optimal symbolic partial order reduction technique. In CAV, pages 398–413,
2009.

[19] Shmuel Katz and Doron A. Peled. Defining conditional independence using
collapses. TCS, 101(2):337–359, 1992.

[20] Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. Kuai: A model checker for
software-defined networks. In FMCAD, pages 163–170, 2014.

[21] Antoni W. Mazurkiewicz. Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad
Honnef, Germany, 8-19 September 1986. pages 279–324, 1986.

[22] Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure
Petrucci. Quasi-optimal partial order reduction. CoRR, abs/1802.03950, 2018.

[23] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.
Unfolding-based partial order reduction. In CONCUR, pages 456–469, 2015.

[24] Koushik Sen and Gul Agha. Automated Systematic Testing of Open Distributed
Programs. In FASE, pages 339–356, 2006.

[25] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha.
TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. In FMOODS/FORTE, volume 7273 of Lecture Notes in Computer
Science, pages 219-234. Springer, 2012.

[26] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In Advances
in Petri Nets, pages 491–515, 1990.

[27] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial
order reduction. In TACAS, pages 382–396, 2008.

437

CHAPTER 7. PUBLICATIONS

140

Combining Static Analysis and Testing
for Deadlock Detection

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel(B)

Complutense University of Madrid (UCM), Madrid, Spain
miguelis@ucm.es

Abstract. Static deadlock analyzers might be able to verify the absence
of deadlock. However, they are usually not able to detect its presence.
Also, when they detect a potential deadlock cycle, they provide little
(or even no) information on their output. Due to the complex flow of
concurrent programs, the user might not be able to find the source of
the anomalous behaviour from the abstract information computed by
static analysis. This paper proposes the combined use of static analysis
and testing for effective deadlock detection in asynchronous programs.
When the program features a deadlock, our combined use of analysis and
testing provides an effective technique to catch deadlock traces. While
if the program does not have deadlock, but the analyzer inaccurately
spotted it, we might prove deadlock freedom.

1 Introduction

In concurrent programs, deadlocks are one of the most common programming
errors and, thus, a main goal of verification and testing tools is, respectively,
proving deadlock freedom and deadlock detection. We consider an asynchronous
language which allows spawning asynchronous tasks at distributed locations,
with no shared memory among them, and which has two operations for blocking
and non-blocking synchronization with the termination of asynchronous tasks.
In this setting, in order to detect deadlocks, all possible interleavings among
tasks executing at the distributed locations must be considered. Basically, each
time that the processor can be released, any of the available tasks can start its
execution, and all combinations among the tasks must be tried, as any of them
might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks. As
static analysis examines all possible execution paths and variable values, it can
reveal deadlocks that could not manifest until weeks or months after releasing
the application. This aspect of static analysis is especially important in security
assurance – security attacks try to exercise an application in unpredictable and

This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the Spanish
MINECO projects TIN2012-38137 and TIN2015-69175-C4-2-R, and by the CM
project S2013/ICE-3006.

c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 409–424, 2016.
DOI: 10.1007/978-3-319-33693-0 26

410 E. Albert et al.

untested ways. However, due to the use of approximations, most static analyses
can only verify the absence of deadlock but not its presence, i.e., they can produce
false positives. Moreover, when a deadlock is found, state-of-the-art analysis tools
[6,7,12] provide little (and often no) information on the source of the deadlock.
In particular, for deadlocks that are complex (involve many tasks and locations),
it is essential to know the task interleavings that have occurred and the locations
involved in the deadlock, i.e., provide a concrete deadlock trace that allows the
programmer to identify and fix the problem.

In contrast, testing consists of executing the application for concrete input
values. Since a deadlock can manifest only on specific sequences of task inter-
leavings, in order to apply testing for deadlock detection, the testing process
must systematically explore all task interleavings. The primary advantage of sys-
tematic testing [4,14] for deadlock detection is that it can provide the detailed
deadlock trace. There are two shortcomings though: (1) Although recent research
tries to avoid redundant exploration as much as possible [1,3–5], the search space
of systematic testing (even without redundancies) can be huge. This is a threat
to the application of testing in concurrent programming. (2) There is only guar-
antee of deadlock freedom for finite-state terminating programs (terminating
executions with concrete inputs).

This paper proposes a seamless combination of static analysis and testing for
effective deadlock detection as follows: an existing static deadlock analysis [6] is
first used to obtain abstract descriptions of potential deadlock cycles which are
then used to guide a testing tool in order to find associated deadlock traces (or
discard them). In summary, the main contributions of this paper are:

1. We extend a standard semantics for asynchronous programs with information
about the task interleavings made and the status of tasks.

2. We provide a formal characterization of deadlock state which can be checked
along the execution and allows us to early detect deadlocks.

3. We present a new methodology to detect deadlocks which combines testing
and static analysis as follows: the deadlock cycles inferred by static analysis
are used to guide the testing process towards paths that might lead to a
deadlock cycle while discarding deadlock-free paths.

4. We have implemented our methodology in the SYCO system (see Sect. 6) and
performed a thorough experimental evaluation on some classical examples.

2 Asynchronous Programs: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each loca-
tion represents a processor with a procedure stack and an unordered buffer of
pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its
own processor’s global storage, each task can post tasks to the buffers of any
processor, including its own, and synchronize with the termination of tasks.
The language uses future variables to check if the execution of an asynchronous

Combining Static Analysis and Testing for Deadlock Detection 411

Fig. 1. Macro-step semantics of asynchronous programs

task has finished. An asynchronous call m(z̄) spawned at location x is associ-
ated with a future variable f as follows f = x ! m(z̄). Instructions f.block and
f.await allow, respectively, blocking and non-blocking synchronization with the
termination of m. When a task completes, or when it is awaiting with a non-
blocking await for a task that has not finished yet, its processor becomes idle
again, chooses the next pending task, and so on. The number of distributed
locations need not be known a priori (e.g., locations may be virtual). Syntac-
tically, a location will therefore be similar to a concurrent object and can be
dynamically created using the instruction new. The program consists of a set
of methods of the form M ::=T m(T̄ x̄){s}, where statements s take the form
s::=s; s | x=e | if e then s else s | while e do s | return | b = new | f =
x ! m(z̄) | f.await | f.block. For the sake of generality, the syntax of expressions
e and types T is left open.

Figure 1 presents the semantics of the language. The information about ρ in
bold font is part of the extensions for testing in Sect. 4 and should be ignored
for now. A state or configuration is a set of locations and future variables
loc0 · · · locn · fut0 · · · futm. A location is a term loc(�, tk , h,Q) where � is the
location identifier, tk is the identifier of the active task that holds the location’s
lock or ⊥ if the location’s lock is free, h is its local heap, and Q is the set of tasks
in the location. A future variable is a term fut(id, �, tk ,m) where id is a unique

412 E. Albert et al.

future variable identifier, � is the location identifier that executes the task tk
awaiting for the future, and m is the initial program point of tk . A task is a
term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method name
executing in the task, l is a mapping from local variables to their values, and s is
the sequence of instructions to be executed or ε if the task has terminated. We
assume that the execution starts from a main method without parameters. The
initial state is St={loc(0, 0, ⊥, {tsk(0,main, l, body(main))} with an initial loca-
tion with identifier 0 executing task 0. Here, l maps local variables to their initial
values (null in case of reference variables) and ⊥ is the empty heap. body(m) is
the sequence of instructions in method m, and we can know the program point
pp where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
macro-step semantics [14] (defined by means of the transition “−→”) in which
the evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it gets to an await or return instruction. In this case, we
apply rule mstep to select an available task from a location, namely we apply the
function selectLoc(S) to select non-deterministically one active location in the
state (i.e., a location with a non-empty queue) and selectTask(�) to select non-
deterministically one task of �’s queue. The transition � defines the evaluation
within a given location. newloc creates a new location without tasks, with a
fresh identifier and heap. async spawns a new task (the initial state is created
by buildLocals) with a fresh task identifier tk1, and it adds a new future to the
state. ini(m) refers to the first program point of method m. We assume � �= �1,
but the case � = �1 is analogous, the new task tk1 is added to Q of �. The
rules for sequential execution are standard and are thus omitted. Await1: If the
future variable we are awaiting for points to a finished task, the await can be
completed. The finished task t1 is only looked up but it does not disappear from
the state as its status may be needed later on. Await2: Otherwise, the task yields
the lock so that any other task of the same location can take it. Return: When
return is executed, the lock is released and will never be taken again by that
task. Consequently, that task is finished (marked by adding the instruction ε).
Block2: A y.block instruction waits for the future variable but without yielding
the lock. Then, when the future is ready, Block1 allows continuing the execution.

In what follows, a derivation or execution E ≡ St0 −→ · · · −→ Stn is a
sequence of macro-steps (applications of rule mstep). The derivation is complete
if St0 is the initial state and � Stn+1 �= Stn such that Stn −→ Stn+1. Since the
execution is non-deterministic, multiple derivations are possible from a state.
Given a state St, exec(St) denotes the set of all possible derivations starting at
St. We sometimes label transitions with �·tk , the name of the location � and task
tk selected (in rule mstep) or evaluated in the step (in the transition �). The
systematic exploration of exec(St) thus corresponds to the standard systematic
testing setting with no reduction of any kind.

Combining Static Analysis and Testing for Deadlock Detection 413

Fig. 2. Classical sleeping barber problem (left) and execution tree (right)

3 Motivating Example

Our running example is a simple version of the classical sleeping barber problem
where a barber sleeps until a client arrives and takes a chair, and the client
wakes up the barber to get a haircut. Our implementation in Fig. 2 has a main

method shown on the left and three classes Ba, Ch and Cl implementing the
barber, chair and client, respectively. The main creates three locations barber,
client and chair and spawns two asynchronous tasks to start the wakeup task
in the client and sleeps in the barber, both tasks can run in parallel. The
execution of sleeps spawns an asynchronous task on the chair to represent the
fact that the client takes the chair, and then blocks at line 11 (L11 for short)
until the chair is taken. The task taken first adds the task sits on the client,
and then awaits on its termination at L17 without blocking, so that another
task on the location chair can execute. On the other hand, the execution of
wakeup in the client spawns an asynchronous task cuts on the barber and one
on the chair, isClean, to check if the chair is clean. The execution of the client
blocks until cuts has finished. We assume that all methods have an implicit
return at the end.

Figure 2 summarizes the systematic testing tree of the main method by show-
ing some of the macro-steps taken. Derivations that contain a dotted node are
not deadlock, while those with a gray node are deadlock. A main motivation of
our work is to detect as early as possible that the dotted derivations will not lead
us to deadlock and prune them. Let us see two selected derivations in detail. In
the derivation ending at node 5, the first macro-step executes cl.wakeup and
then ba.cuts. Now, it is clear that the location cl will not deadlock, since the
block at L24 will succeed and the other two locations will be also able to com-
plete their tasks, namely the await at L17 of location ch can finish because the
client is certainly not blocked, and also the block at L11 will succeed because
the task in taken will eventually finish as its location is not blocked. However,
in the branch of node 4, we first select wakeup (and block client), then we select

414 E. Albert et al.

sleeps (and block barber), and then select taken that will remain in the await
at L17 and will never succeed since it is awaiting for the termination of a task of
a blocked location. Thus, we have a deadlock. Let us outline five states of this
derivation:

St1 ≡ loc(ini, ..)·loc(cl, .., {tsk(1, wk, ..)})·loc(ba, .., {tsk(2, sp, ..)})·loc(ch, ..)
cl,1−→

St2 ≡ loc(cl, .., {tsk(1, wk, f0.block)})·loc(ba, .., {tsk(3, cut, ..), ..})·fut(f0, ba, 3, 12)·.. ba,2−→
St3 ≡ loc(ba, .., {tsk(2, sp, f1.block)})·loc(ch, .., {tsk(5, tk, ..), ..})·fut(f1, ch, 5, 15)·.. ch,5−→
St4 ≡ loc(ch, .., {tsk(5, tk, f2.await), ..})·loc(cl, .., {tsk(6, st, ..), ..})·fut(f2, cl, 6, 25)·..
ch,4−→ St′4 ≡ loc(ch, ..{tsk(4, isClean, ε), ..})·..

Fig. 3. mstep2 rule for combined testing and analysis

The first state is obtained after executing the main where we have the initial
location ini, three locations created at L2, L3 and L4, and two tasks at L5
and L6 added to the queues. Note that each location and task is assigned a
unique identifier (we use numbers as identifiers for tasks and short names as
identifiers for locations). In the next state, the task wakeup has been selected
and fully executed (we have shortened the name of the methods, e.g., wk for
wakeup). Observe at St2 the addition of the future variable created at L22. In
St3 we have executed task sleeps in the barber and added a new future term.
In St4 we execute task taken in the chair (this state is already deadlock as we
will see in Sect. 4.2), however location chair can keep on executing an available
task isClean generating St′4. From now on, we use the location and task names
instead of numeric identifiers for clarity.

4 Testing for Deadlock Detection

The goal of this section is to present a framework for early detection of deadlocks
during systematic testing. This is done by enhancing our standard semantics with
information which allows us to easily detect dependencies among tasks, i.e., when
a task is awaiting for the termination of another one. These dependencies are
necessary to detect in a second step deadlock states.

4.1 An Enhanced Semantics for Deadlock Detection

In the following we define the interleavings table whose role is twofold: (1) It
stores all decisions about task interleavings made during the execution. This
way, at the end of a concrete execution, the exact ordering of the performed

Combining Static Analysis and Testing for Deadlock Detection 415

macro-steps can be observed. (2) It will be used to detect deadlocks as early as
possible, and, also to detect states from which a deadlock cannot occur, therefore
allowing to prune the execution tree when we are looking for deadlocks. The
interleavings table is a mapping with entries of the form t�,tk ,pp �→ 〈n, ρ〉, where:

– t�,tk ,pp is a macro-step identifier, or time identifier, that includes: the identi-
fiers of the location � and task tk that have been selected in the macro-step,
and the program point pp of the first instruction that will be executed;

– n is an integer representing the time when the macro-step starts executing;
– ρ is the status of the task after the macro-step and it can take three values as

it can be seen in Fig. 1: block or await when executing these instructions on
a future variable that is not ready (we also annotate in ρ the information on
the associated future); return that allows us to know that the task finished.

We use a function clock(n) to represent a clock that starts at 0, is increased
by one in every execution of clock, and returns the current value n. The initial
entry is t0,0,1 �→ 〈0, ρ0〉, 0 being the identifier for the initial location and task,
and 1 the first program point of main. The clock also assigns the value 0 as the
first element in the tuple and a fresh variable in the second element ρ0. The next
macro-step will be assigned clock value 1, next 2, and so on. As notation, we
define the relation t ∈ table if there exists an entry t �→ 〈n, ρ〉 ∈ table, and the
function status(t , table) which returns the status ρt such that t �→ 〈n, ρt 〉 ∈ table.
The semantics is extended by changing rule mstep as in Fig. 3. The function
deadlock will be defined in Theorem 1 to stop derivations as soon as deadlock
is detected. Function checkC should be ignored for now, it will be defined in
Sect. 5.2. Essentially, there are two new aspects: (1) The state is extended with
the status ρ, namely all rules include a status ρ attached to the state using the
symbol
. The status is showed in bold font in Fig. 1 and can get a value in rules
block2, await2 and return. The initial value ρ0 is a fresh variable. (2) The state
for the macrostep is extended with the interleavings table table, and a new entry
t�,tk ,pp �→ 〈n, ρ〉 is added to table in every macrostep if there has been progress
in the execution, i.e., S′ �= S, n being the current clock time.

Example 1. The interleavings table below (left) is computed for the derivation in
Sect. 3. It has as many entries as macro-steps in the derivation. We can observe
that subsequent time values are assigned to each time identifier so that we can
then know the order of execution. The right column shows the future variables
in the state that store the location and task they are bound to.

St1 tini,main,1 �→ 〈0, return〉 ∅
St2 tcl,wakeup,21 �→ 〈1, 24:f0.block〉 fut(f0, ba, cuts, 12)

St3 tba,sleeps,9 �→ 〈2, 11:f1.block〉 fut(f1, ch, taken, 15)

St4 tch,taken,15 �→ 〈3, 17:f2.await〉 fut(f2, cl, sits, 25)

416 E. Albert et al.

4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-
tion selectLoc so that only locations that can proceed are selected. If, at a given
state, no location is selected but there is at least a location with a non-empty
queue then there is a deadlock. However, deadlocks can be detected earlier. We
present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other’s termina-
tion and none of them can make any progress. Note that, from a deadlock state,
there might be tasks that keep on progressing until the deadlock is finally made
explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock
will not be captured using this naive extension. The early detection of deadlocks
is crucial to reduce state exploration as our experiments show in Sect. 6.

We first introduce the auxiliary notion of waiting interval which captures the
period in which a task is waiting for another one to terminate. In particular, it
is defined as a tuple (tstop, tasync, tresume) where tstop is the macro-step at which
the location stops executing a task due to some block/await instruction, tasync is
the macro-step at which the task that is being awaited is selected for execution,
and, tresume is the macro-step at which the task will resume its execution. tstop,
tasync and tresume are time identifiers as defined in Sect. 4.1. tresume will also be
written as next(tstop). When the task stops at tstop due to a block instruction,
we call it blocking interval, as the location remains blocked between tstop and
next(tstop) until the awaited task, selected in tasync, has already finished. The
execution of a task can have several points at which macro-steps are performed
(e.g., if it contains several await or block the processor may be lost several times).
For this reason, we define the set of successor macro-steps of the same task from a
macro-step: suc(t�,tk ,pp0

, table) = {t�,tk ,ppi
: t�,tk ,ppi

∈ table, t�,tk ,ppi
≥ t�,tk ,pp0

}.

Definition 1 (Waiting/Blocking Intervals). Let St = (S, table) be a state,
I = (tstop, tasync, tresume) is a waiting interval of St, written as I ∈ St, iff:

1. ∃ tstop = t�,tk0,pp0
∈ table, ρstop = status(tstop) ∈ {pp1 : x.await, pp1:

x.block},
2. tresume ≡ t�,tk0,pp1

, fut(x, �x, tkx, pp(M)) ∈ S,
3. tasync ≡ t�x,tkx,pp(M), � t ∈ suc(tasync, table) with status(t) = return.
If ρstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at tasync has finished, then
it is not a waiting interval. This is known by checking that this task has not
reached return, i.e., � t ∈ suc(tasync, table) such that status(t) = return. In
condition 1, we see that in ρstop we have the name of the future we are awaiting
(whose corresponding information is stored in fut, condition 2). In order to
define tresume in condition 2, we search for the same task tk0 and same location
� that executes the task starting at program point pp1 of the await/block, since
this is the point that the macro-step rule uses to define the macro-step identifier
t�,tk0,pp1

associated to the resumption of the waiting task.

Combining Static Analysis and Testing for Deadlock Detection 417

Example 2. Let us consider again the derivation in Sect. 3. We have the
following blocking interval (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24) ∈ St2 with
St2 ≡ (S2, table2), since tcl,wakeup,21 ∈ table2, status(tcl,wakeup,21, table2) =
[24:f.block], (f, ba, cuts, 12) ∈ St2 and tba,cuts,12 �∈ table2. This blocking
interval captures the fact that the task at tcl,wakeup,21 is blocked waiting for
task cuts to terminate. Similarly, we have the following two intervals in St4:
(tba,sleeps,9, tch,taken,15, tba,sleeps,11) and (tch,taken,15, tcl,sits,25, tch,taken,17).

The following notion of deadlock chain relies on the waiting/blocking intervals
of Definition 1 in order to characterize chains of calls in which intuitively each
task is waiting for the next one to terminate until the last one which is waiting
on the termination of a task executing on the initial location (that is blocked).
Given a time identifier t, we use loc(t) to obtain its associated location identifier.

Definition 2 (Deadlock Chain). Let St = (S, table) be a state. A chain
of time identifiers t0, ..., tn is a deadlock chain in St, written as dc(t0, ..., tn)
iff ∀ti ∈ {t0, ..., tn−1} s.t. (ti, t

′
i+1, next(ti))∈St one of the following conditions

holds:

1. ti+1 ∈ suc(t′i+1, table), or
2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking.

and for tn, we have that tn+1 ≡ t0, and condition 2 holds.

Let us explain the two conditions in the above definition: In condition (1), we
check that when a task ti is waiting for another task to terminate, the waiting
interval contains the initial time t′i+1 in which the task will be selected. However,
we look for any waiting interval for this task ti+1 (thus we check that ti+1 is
a successor of time t′i+1). As in Definition 2, this is because such task may
have started its execution and then suspended due to a subsequent await/block
instruction. Abusing terminology, we use the time identifier to refer to the task
executing. In condition (2), we capture deadlock chains which occur when a task
ti is waiting on the termination of another task t′i+1 which executes on a location
loc(t′i+1) which is blocked. The fact that is blocked is captured by checking that
there is a blocking interval from a task ti+1 executing on this location. Finally,
note the circularity of the chain, since we require that tn+1 ≡ t0.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if
and only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations.
We prove that our definition of deadlock is equivalent to the standard definition
of deadlock in [6] (proof can be found in [16]).

Example 3. Following Example 1, St4 is a deadlock state since there exists
a deadlock chain dc(tcl,wakeup,21, tba,sleeps,9, tch,taken,15). For the second ele-
ment in the chain tba,sleeps,9, condition 1 holds as (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) ∈ St4 and tch,taken,15 ∈ suc(tch,taken,15, table4). For the first element

418 E. Albert et al.

tcl,wakeup,21, condition 2 holds since (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24)∈St4
and (tba,sleeps,9, tch,taken,15, tba,sleeps,11) is blocking. Condition 2 holds analo-
gously for tch,taken,15.

5 Combining Static Deadlock Analysis and Testing

This section proposes a deadlock detection methodology that combines static
analysis and systematic testing as follows. First, a state-of-the-art deadlock
analysis is run, in particular that of [6], which provides a set of abstractions
of potential deadlock cycles. If the set is empty, then the program is deadlock-
free. Otherwise, using the inferred set of deadlock cycles, we systematically test
the program using a novel technique to guide the exploration towards paths that
might lead to deadlock cycles. The goals of this process are: (1) finding concrete
deadlock traces associated to the feasible cycles, and, (2) discarding unfeasible
deadlock cycles, and in case all cycles are discarded, ensure deadlock freedom
for the considered input or, in our case, for the main method under test. As
our experiments show in Sect. 6, our technique allows reducing significantly the
search space compared to the full systematic exploration.

5.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [6] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. Three kinds of arrows can be distinguished, namely,
task-task (a task is awaiting for the termination of another one), task-location
(a task is awaiting for a location to be idle) and location-task (the location is
blocked due the task). Location-location arrows cannot happen. The abstrac-
tions for tasks and locations can be performed at different levels of accuracy
during the analysis: the simple abstraction that we will use for our formalization
abstracts each concrete location � by the program point at which it is created
�pp, and each task by the method name executing. They are abstractions since
there could be many locations created at the same program point and many
tasks executing the same method. Both the analysis and the semantics can be
made object-sensitive by keeping the k ancestor abstract locations (where k is
a parameter of the analysis). For the sake of simplicity of the presentation, we
assume k = 0 in the formalization (our implementation uses k = 1).

Example 4. In our working example there are three abstract locations, �2, �3 and
�4, corresponding to locations barber, client and chair, created at lines 2, 3 and
4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean. The

following cycle is inferred by the deadlock analysis: �2
11:sleeps−−−−−−→ taken

17:taken−−−−−→
sits

25:sits−−−−→ �3
24:wakeup−−−−−−−→ cuts

12:cuts−−−−→ �2. The first arrow captures that the location
created at L2 is blocked waiting for the termination of task taken because of the
synchronization at L11 of task sleeps. Observe that cycles contain dependencies

Combining Static Analysis and Testing for Deadlock Detection 419

also between tasks, like the second arrow, where we capture that taken is waiting
for sits. Also, a dependency between a task (e.g., sits) and a location (e.g., �3)
captures that the task is trying to execute on that (possibly) blocked location.
Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies
arise, and in particular the interleavings scheduled to lead to this situation.

5.2 Guiding Testing Towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the
systematic execution towards paths that might contain a representative of that
abstract deadlock cycle, by discarding paths that are guaranteed not to contain
such a representative. The main idea is as follows: (1) From the abstract dead-
lock cycle, we generate deadlock-cycle constraints, which must hold in all states
of derivations leading to the given deadlock cycle. (2) We extend the execu-
tion semantics to support deadlock-cycle constraints, with the aim of stopping
derivations as soon as cycle-constraints are not satisfied. Uppercase letters in
constraints denote variables to allow representing incomplete information.

Definition 3 (Deadlock-cycle constraints). Given a state St = (S, table),
a deadlock-cycle constraint takes one of the following three forms:

1. ∃tL,T,PP �→ 〈N, ρ〉, which means that there exists or will exist an entry of this
form in table (time constraint)

2. ∃fut(F,L,Tk , p), which means that there exists or will exist a future variable
of this form in S (fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function φ computes the set of deadlock-cycle constraints associ-
ated to a given abstract deadlock cycle.

Definition 4 (Generation of deadlock-cycle constraints). Given an

abstract deadlock cycle e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ . . .
pn:tkn−−−−→ e1, and two fresh vari-

ables Li,Tk i, φ is defined as φ(ei
pi:tki−−−→ ej

pj :tkj−−−−→ . . . ,Li,Tk i) =

⎧
⎨

⎩

{∃tLi,Tki, �→〈 , sync(pi,Fi)〉, ∃fut(Fi,Lj ,Tkj , pj)} ∪ φ(ej
pj :tkj−−−−→ . . . ,Lj ,Tkj) if ej=tkj

{pending(Tk i)} ∪ φ(ej
pj :tkj−−−−→ . . . ,Li,Tkj) if ej = �

Notation sync(pi, Fi) is a shortcut for pi:Fi.block or pi:Fi.await. Uppercase let-
ters appearing for the first time in the constraints are fresh variables. The first
case handles location-task and task-task arrows (since ej is a task abstraction),
whereas the second case handles task-location arrows (ej is an abstract location).
Let us observe the following: (1) The abstract location and task identifiers of
the abstract cycle are not used to produce the constraints. This is because con-
straints refer to concrete identifiers. Even if the cycle contains the same identifier
on two different nodes or arrows, the corresponding variables in the constraints

420 E. Albert et al.

cannot be bound (i.e., we cannot use the same variables) since they could refer
to different concrete identifiers. (2) The program points of the cycle (pi and
pj) are used in time and fut constraints. (3) Location and task identifier vari-
ables of fut constraints and subsequent time or pending constraints are bound
(i.e., the same variables are used). This is done using the 2nd and 3rd parameters
of function φ. (4) In the second case, Tk j is a fresh variable since the location
executing Tk i can be blocked due to a (possibly) different task. Intuitively,
deadlock-cycle constraints characterize all possible deadlock chains representing
the given cycle.

Example 5. The following deadlock-cycle constraints are computed for the cycle
in Example 4: {∃tL1,Tk1, �→〈 , 11:F1.block〉,∃fut(F1,L2,Tk2, 15),∃tL2,Tk2, �→〈 ,
17:F2.await〉,∃fut(F2,L3,Tk3, 25), pending(Tk3),∃tL3,Tk4, �→〈 , 24:F3.block〉,∃
fut(F3,L4,Tk5, 12), pending(Tk5)}. They are shown in the order in which they
are computed by φ. The first four constraints require table to contain a concrete
time in which some barber sleeps waiting at L11 for a certain chair to be taken
at L15 and, during another concrete time, this one waits at L17 for a certain
client to sit at L25. The client is not allowed to sit by the 5th constraint. Fur-
thermore, the last three constraints require a concrete time in which this client
waits at L24 to get a haircut by some barber at L12 and that haircut is never
performed. Note that, in order to preserve completeness, we are not binding the
first and the second barber. If the example is generalized with several clients and
barbers, there could be a deadlock in which a barber waits for a client which
waits for another barber and client, so that the last one waits to get a haircut
by the first one. This deadlock would not be found if the two barbers are bound
in the constraints (i.e., if we use the same variable name). In other words, we
have to account for deadlocks which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle con-
straints for the given cycle, with the aim of stopping derivations at states that
do not satisfy the constraints. The following boolean function checkC checks the
satisfiability of the constraints at a given state.

Definition 5. Given a set of deadlock-cycle constraints C, and a state St =
(S, table), check holds, written checkC(St), if ∀tLi,Tki,PP �→ 〈N, sync(pi, Fi)〉 ∈
C, fut(Fi,Lj ,Tk j , pj) ∈ C, one of the following conditions holds:

1. reachable(tLi,Tki,pi
, S)

2. ∃t�i,tki,pp �→ 〈n, sync(pi, fi)〉 ∈ table ∧ fut(fi, �j , tk j , pj) ∈ S ∧
(pending(Tk j) ∈ C ⇒ getTskSeq(tk j , S) �= ε)

Function reachable checks whether a given task might arise in subsequent states.
We over-approximate it syntactically by computing the transitive call relations
from all tasks in the queues of all locations in S. Precision could be improved
using more advanced analyses. Function getTskSeq gets from the state the
sequence of instructions to be executed by a task (which is ε if the task has
terminated). Intuitively, check does not hold if there is at least a time constraint
so that: (i) its time identifier is not reachable, and, (ii) in the case that the

Combining Static Analysis and Testing for Deadlock Detection 421

interleavings table contains entries matching it, for each one, there is an asso-
ciated future variable in the state and a pending constraint for its associated
task which is violated, i.e., the associated task has finished. The first condition
(i) implies that there cannot be more representatives of the given abstract cycle
in subsequent states, therefore if there are potential deadlock cycles, the asso-
ciated time identifiers must be in the interleavings table. The second condition
(ii) implies that, for each potential cycle in the state, there is no deadlock chain
since at least one of the blocking tasks has finished. This means there cannot be
derivations from this state leading to the given cycle, hence the derivation can
be stopped.

Definition 6 (Deadlock-cycle guided-testing (DCGT)). Consider an
abstract deadlock cycle c, and an initial state St0. Let C = φ(c,Linit,Tk init)
with Linit,Tk init fresh variables. We define DCGT, written execc(St0), as the
set {d : d ∈ exec(St0), deadlock(Stn)}, where Stn is the last state in d.

Example 6. Let us consider the DCGT of our working example with the
deadlock-cycle of Example 4, and hence with the constraints C of Exam-
ple 5. The interleavings table at St5 contains the entries tini,main,1 �→〈0, return〉,
tcl,wakeup,21 �→〈1, 24:f0.block〉 and tba,cuts,12 �→〈2, return〉}. checkC does not hold
since tL1,Tk1,24 is not reachable from St5 and constraint pending(Tk5) is violated
(task cuts has already finished at this point). The derivation is hence pruned.
Similarly, the rightmost derivation is stopped at St11. Also, derivations at St4,
St8 and St10 are stopped by function deadlock of Theorem 1. Since there are no
more deadlock cycles, the search for deadlock detection finishes with this DCGT.
Our methodology therefore explores 19 states instead of the 181 explored by the
full systematic execution.

Theorem 2 (Soundness). Given a program P, a set of abstract cycles C in P
and an initial state St0, ∀d ∈ exec(St0) if d is a derivation whose last state is
deadlock, then ∃c ∈ C s.t d ∈ execc(St0). (The proof can be found in App. A)

6 Experimental Evaluation

We have implemented our approach within the SYCO tool, a testing tool for
concurrent objects which is available at http://costa.ls.fi.upm.es/syco, where most
of the benchmarks below can also be found. Concurrent objects communicate via
asynchronous method calls and use await and block, resp., as instructions for
non-blocking and blocking synchronization. This section summarizes our exper-
imental results which aim at demonstrating the effectiveness and impact of the
proposed techniques. The benchmarks we have used include: (i) classical concur-
rency patterns containing deadlocks, namely, SB is an extension of the sleeping
barber, UL is a loop that creates asynchronous tasks and locations, PA is the
pairing problem, FA is a distributed factorial, WM is the water molecule making
problem, HB the hungry birds problem; and, (ii) deadlock free versions of some
of the above, named fX for the X problem, for which deadlock analyzers give
false positives. We also include here a peer-to-peer system P2P.

422 E. Albert et al.

Table 1 shows, for each benchmark, the results of our deadlock guided test-
ing (DGT) methodology for finding a representative trace for each deadlock
compared to those of the standard systematic testing. Partial-order reduction
techniques are not applied since they are orthogonal. This way we focus on
the reductions obtained due to our technique per-se. For the systematic testing
setting we measure: the number of solutions or complete derivations (column
Ans), the total time taken (column T) and the number of states generated
(column S). For the DGT setting, besides the time and number of states
(columns T and S), we measure the “number of deadlock executions”/“number
of unfeasible cycles”/“number of abstract cycles inferred by the deadlock analy-
sis” (column D/U/C), and, since the DCGTs for each cycle are independent and
can be performed in parallel, we show the maximum time and maximum number
of states measured among the different DCGTs (columns Tmax and Smax). For
instance, in the DGT for HB the analysis has found five abstract cycles, we only
found a deadlock execution for two of them (therefore 3 of them were unfeasible),
44 s being the total time of the process, and 15 s the time of the longest DCGT
(including the time of the deadlock analysis) and hence the total time assuming
an ideal parallel setting with 5 processors. Columns in the group Speedup show
the gains of DGT over systematic testing both assuming a sequential setting,
hence considering values T and S of DGT (column Tgain for time and Sgain for
number of states), and an ideal parallel setting, therefore considering Tmax and
Smax (columns Tmax

gain and Smax
gain). The gains are computed as X/Y , X being the

measure of systematic testing and Y that of DGT. Times are in milliseconds
and are obtained on an Intel(R) Core(TM) i7 CPU at 2.3 GHz with 8 GB of
RAM, running Mac OS X 10.8.5. A timeout of 150 s is used. When the timeout
is reached, we write >X to indicate that for the corresponding measure we have
got X units in the timeout. In the case of the speedups, >X indicates that the
speedup would be X if the process finishes right in the timeout, and hence it is
guaranteed to be greater than X. Also, we write X∗ when DGT times out.

Our experiments support our claim that testing complements deadlock analy-
sis. In the case of programs with deadlock, we have been able to provide concrete
traces for feasible deadlock cycles and to discard unfeasible cycles. For deadlock-
free programs, we have been able to discard all potential cycles and therefore
prove deadlock freedom. More importantly, the experiments demonstrate that
our DGT methodology achieves a notable reduction of the search space over
systematic testing in most cases. Except for benchmarks HB and WM which are
explained below, the gains of DGT both in time and number of states are enor-
mous (more than three orders of magnitude in many cases). It can be observed
that the gains are much larger in the examples in which the deadlock analysis
does not give false positives (namely, in SB, UL and PA). In general, the gener-
ated constraints for unfeasible cycles are often not able to guide the exploration
effectively (e.g. in HB and WM). Even in these cases, DGT outperforms system-
atic testing in terms of scalability and flexibility. Let us also observe that the
gains are less notable in deadlock-free examples. That is because, each DCGT

Combining Static Analysis and Testing for Deadlock Detection 423

Table 1. Experimental results: deadlock-guided testing vs. systematic testing

Systematic DGT (deadlock-per-cycle) Speedup

Bm. Ans T S D/U/C T Tmax S Smax Tgain Sgain T max
gain Smax

gain

HB 35k 32k 114k 2/3/5 44k 15k 103k 34k 0.73 0.9 2.15 3.33

FA 11k 11k 41k 2/1/3 2k 759 3k 2k 5.5 13.7 15.1 22.2

UL >90k >150k >489k 1/0/1 133 133 5 5 >1.1k >2.5k >2.5k >98k

SB >103k >150k >584k 1/0/1 59 59 23 23 >2.5k >25k >2.5k >25k

PA >121k >150k >329k 2/0/2 42 4 12 6 >3.6k >27k >38k >55k

WM >82k >150k >380k 1/0/2 >150k >150k >258k >258k 1∗ 1.47∗ 1∗ 1.47∗

fFA 5k 7k 25k 0/1/1 5k 5k 11k 11k 1.61 2.35 1.61 2.35

fP2P 25k 66k 118k 0/1/1 34k 34k 52k 52k 1.96 2.28 1.96 2.28

fPA 7k 7k 30k 0/2/2 4k 2k 9k 4k 1.75 3.33 3.73 6.98

fUL >102k >150k >527k 0/1/1 410 410 236 236 >1k >2k >1k >2k

cannot stop until all potential deadlock paths have been considered. As expected,
when we consider a parallel setting, the gains are much larger.

All in all, we argue that our experiments show that our methodology com-
plements deadlock analysis, finding deadlock traces for the potential deadlock
cycles and discarding unfeasible ones, with a significant reduction.

7 Conclusions and Related Work

There is a large body of work on deadlock detection including both dynamic and
static approaches. Much of the existing work, both for asynchronous programs
[6,7] and thread-based programs [11,13], is based on static analysis techniques.
Static analysis can ensure the absence of errors, however it works on approx-
imations (especially for pointer aliasing) which might lead to a “don’t know”
answer. Our work complements static analysis techniques and can be used to
look for deadlock paths when static analysis is not able to prove deadlock free-
dom. Using our method, we try to find a deadlock by exploring the paths given
by our deadlock detection algorithm that relies on the static information.

Deadlock detection has been also studied in the context of dynamic testing
and model checking [4,9,10,15], where sometimes has been combined with sta-
tic information [2,8]. As regards combined approaches, the approach in [8] first
performs a transformation of the program into a trace program that only keeps
the instructions that are relevant for deadlock and then dynamic testing is per-
formed on such program. The approach is fundamentally different from ours: in
their case, since model checking is performed on the trace program (that over-
approximates the deadlock behaviour), the method can detect deadlocks that do
not exist in the program, while in our case this is not possible since the testing is
performed on the original program and the analysis information is only used to
drive the execution. In [2], the information inferred from a type system is used to
accelerate the detection of potential cycles. This work shares with our work that
information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for
Java threads captures deadlocks due to the use of locks and cannot handle wait-
notify, while our technique is not developed for specific patterns but works on a

424 E. Albert et al.

general characterization of deadlock of asynchronous programs; their underlying
static analysis is a type inference algorithm which infers deadlock types and the
checking algorithm needs to understand these types to take advantage of them,
while we base our method on an analysis which infers descriptions of chains of
tasks and a formal semantics is enriched to interpret them.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial order
reduction. In: Proceedings of POPL 2014, pp. 373–384. ACM (2014)

2. Agarwal, R., Wang, L., Stoller, S.D.: Detecting potential deadlocks with static
analysis and run-time monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC
2005. LNCS, vol. 3875, pp. 191–207. Springer, Heidelberg (2006)

3. Albert, E., Arenas, P., Gómez-Zamalloa, M.: Actor- and task-selection strategies
for pruning redundant state-exploration in testing. In: Ábrahám, E., Palamidessi,
C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 49–65. Springer, Heidelberg (2014)

4. Christakis, M., Gotovos, A., Sagonas, K.F.: Systematic testing for detecting con-
currency errors in erlang programs. In: ICST 2013, pp. 154–163. IEEE (2013)

5. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings POPL 2005, pp. 110–121. ACM (2005)

6. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FORTE 2013
and FMOODS 2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013)

7. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock
analysis of concurrent objects: theory and practice. In: Johnsen, E.B., Petre, L.
(eds.) IFM 2013. LNCS, vol. 7940, pp. 394–411. Springer, Heidelberg (2013)

8. Joshi, P., Naik, M., Sen, K., Gay, D.: An effective dynamic analysis for detecting
generalized deadlocks. In: Proceedings of FSE 2010, pp. 327–336. ACM (2010)

9. Joshi, P., Park, C., Sen, K., Naik, M.: A randomized dynamic program analysis
technique for detecting real deadlocks. In: Proceedings of PLDI 2009. ACM (2009)

10. Kheradmand, A., Kasikci, B., Candea, G.: Lockout: efficient testing for deadlock
bugs. Technical report (2013)

11. Masticola, S.P., Ryder, B.G.: A model of ada programs for static deadlock detection
in polynomial time. In: Parallel and Distributed Debugging. ACM (1991)

12. Naik, M., Park, C., Sen, K., Gay, D.: Effective static deadlock detection. In: Pro-
ceedings of ICSE, pp. 386–396. IEEE (2009)

13. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser:
a dynamic data race detector for multithreaded programs. ACM TCS 15(4),
391–411 (1997)

14. Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer,
Heidelberg (2006)

15. Havelund, K.: Using runtime analysis to guide model checking of java programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
245–264. Springer, Heidelberg (2000)

16. Albert, E., Gómez-Zamalloa, M., et al.: Combining Static Analysis and Testing for
Deadlock Detection. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol.
9681, pp. 409–424. Springer, Heidelberg (2016). http://costa.ls.fi.upm.es/papers/
costa/AlbertGI15.pdf

Generation of Initial Contexts
for Effective Deadlock Detection

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel(B)

Complutense University of Madrid (UCM), Madrid, Spain
{elvira,mzamalloa}@fdi.ucm.es, miguelis@ucm.es

Abstract. It has been recently proposed that testing based on sym-
bolic execution can be used in conjunction with static deadlock analysis
to define a deadlock detection framework that: (i) can show deadlock
presence, in that case a concrete test-case and trace are obtained, and
(ii) can also prove deadlock freedom. Such symbolic execution starts from
an initial distributed context, i.e., a set of locations and their initial tasks.
Considering all possibilities results in a combinatorial explosion on the
different distributed contexts that must be considered. This paper pro-
poses a technique to effectively generate initial contexts that can lead
to deadlock, using the possible conflicting task interactions identified by
static analysis, discarding other distributed contexts that cannot lead
to deadlock. The proposed technique has been integrated in the above-
mentioned deadlock detection framework hence enabling it to analyze
systems without the need of any user supplied initial context.

1 Motivation

Deadlocks are one of the most common programming errors and they are there-
fore one of the main targets of verification and testing tools. We consider a
distributed programming model with explicit locations (or distributed nodes)
and asynchronous tasks that may be spawned and awaited among locations.
Each location represents a processor with a procedure stack and an unordered
queue of pending tasks. Initially all processors are idle. When an idle proces-
sor’s task queue is non-empty, some task is selected for execution, this selection
is non-deterministic. Let us see now our motivating example in Fig. 1 which
simulates a simple communication protocol between a database location and
a worker location. Our implementation has the main method, and two classes
Worker and DB implementing the worker and the database, respectively. The
main method creates two distributed locations: the database and the worker,
and (asynchronously) invokes methods register and work on each of them, respec-
tively. The work method of a worker simply accesses the database (invoking
asynchronously method getData) and then blocks until it gets the result, which

This work was funded partially by the Spanish MINECO project TIN2015-69175-
C4-2-R, and by the CM project S2013/ICE-3006.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Fioravanti and J. P. Gallagher (Eds.): LOPSTR 2017, LNCS 10855, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-94460-9_1

4 E. Albert et al.

1 main(){
2 DB db = new DB();
3 Worker w = new Worker();
4 db!register(w);
5 w!work(db);}
6

7 class Worker{
8 Data data;
9 int work(DB db){

10 Future〈Data〉 f;
11 f = db!getData(this);
12 data = f.get;
13 return 0;
14 }
15 int ping(int n){return n;}
16 }// end of class Worker
17

18 class DB{
19 Data data = ...;
20 Worker client = null;
21 int connected = 1;

22 int connect(){
23 connected = 3;
24 return connected;
25 }
26 int register(Worker w){
27 connected = 5;
28 Future〈Data〉 g;
29 g = this!getData(w);
30 await g?;
31 if (connected > 0){
32 connected = connected − 1;
33 Future〈int〉 f = w!ping(5);
34 if (f.get == 5) client = w;
35 }
36 return 0;
37 }
38 Data getData(Worker w){
39 if (client == w) return data;
40 else return null;
41 }
42 }// end of class DB

Fig. 1. Working example. Communication protocol between a DB and a worker

is assigned to its data field. The instruction get blocks the execution in the cur-
rent location until the awaited task has terminated. We use future variables
[7,8] to detect the termination of asynchronous tasks. The register method of
the database makes a call to getData and waits for its execution. Once it has
finished, it checks if the number of possible connections is bigger than 0. In
that case connected is decreased by one, and the database makes sure that the
worker is online. This is done by invoking asynchronously method ping with a
concrete value and blocking until it gets the result with the same value. Then,
the database registers the provided worker reference storing it in its client field.
Method getData of the database returns its data field if the caller worker is regis-
tered, otherwise it returns null. Finally, method connect sets the field connected
to 3. Depending on the sequence of interleavings, the execution of this program
can finish: (1) as one would expect, i.e., with worker.data = db.data, (2) with
w.data = null if getData is executed before the assignment at line 34, or, (3) in
a deadlock.

We have recently proposed a deadlock detection framework [2,3] that com-
bines static analysis and symbolic execution based testing [1,3,6,14]. The dead-
lock analysis (for example, [9]) is first used to obtain descriptions of potential
deadlock cycles which are then used to guide the testing process. The resulting
deadlock detection framework hence can: (i) show deadlock presence, in which
case a concrete test-case and trace are obtained, and (ii) prove deadlock free-
dom (up to the symbolic execution exploration limit). However, the symbolic

Generation of Initial Contexts for Effective Deadlock Detection 5

execution phase needs to start from a concrete initial distributed context, i.e., a
set of locations and their initial tasks. In our example, such an initial context is
provided by the main method, which creates a Database and a Worker location,
and schedules a work task on the worker with the database as parameter, and,
a register task on the database with the worker as parameter. This is however
only one out of the possible contexts, and, of course, it could be the case that it
does not expose an error that occurs in other contexts (for example, it does not
manifest any deadlock). This clearly limits the framework potential.

A fundamental challenge for a symbolic execution framework of distributed
programs is to automatically and systematically generate relevant distributed
contexts for the type of error that it aims at detecting. This would allow for
instance applying symbolic execution for system and integration testing. The
generation of relevant contexts involves two challenging aspects: (1) A first chal-
lenge is related to the elimination of redundant (useless) contexts. Observe that
there is a combinatorial explosion on the different possible distributed contexts
that can be generated when one considers all possible types and number of dis-
tributed locations and tasks within them. Therefore, it is crucial to provide the
minimal set of initial contexts that contains only one representative of equiva-
lent contexts. (2) For the particular type of error that one aims at detecting, an
additional challenge is to be able to only generate initial contexts in which the
error can occur. In the case of generating initial contexts for deadlock detection
in our working example, this would mean generating for instance, a context with
a database location and some worker location with a scheduled work task and a
register task on the database for it, i.e., the context created by the main method.
For instance, contexts that do not include both tasks would be useless for dead-
lock detection. Let us observe that if the assignment at Line 23 is changed to
assign 0, then the initial contexts must also include a connect task, otherwise
no deadlock will be produced. Interestingly, deadlock analyses provide [9,11,12]
potential deadlock cycles which contain the possibly conflicting task interactions
that can lead to deadlock. This information will be used to help our framework
anticipate this information and discard initial distributed contexts that cannot
lead to deadlock from the beginning. Briefly, the main contributions of this paper
are the following:

– We introduce the concept of minimal set of initial contexts and extend a
static testing framework to automatically and systematically generate them.

– We present a deadlock-guided approach to effectively generate initial contexts
for deadlock detection and prove its soundness.

– We have implemented our proposal within the aPET/SYCO system [4] and
performed an experimental evaluation to show its efficiency and effectiveness.

2 Asynchronous Programs

A program consists of a set of classes that define the types of locations, each of
them defines a set of fields and methods of the form M ::=T m(T̄ x̄){s}, where
statements s take the form s::=s; s | x=e |if e then s else s | while e do s | return x; |

6 E. Albert et al.

b=new T(z̄) | f = x ! m(z̄) | await f? | x = f.get. Syntactically, a location will
therefore be similar to a concurrent object that can be dynamically created
using the instruction new T(z̄). The declaration of a future variable is as follows
Future〈T〉 f, where T is the type of the result r, it adds a new future variable
to the state. Instruction f = x ! m(z̄) spawns a new task (instance of method m)
and it is set to the future f in the state. Instruction await f? allows non-blocking
synchronization. If the future variable f we are awaiting for points to a finished
task, then the await can be completed. Otherwise the task yields the lock so that
any other task of the same location can take it. On the other hand, instruction
f.get allows blocking synchronization. It waits for the future variable without
yielding the lock, i.e., it blocks the execution of the location until the task that
is awaiting is finished. Then, when the future is ready, it retrieves the result and
allows continuing the execution. This instruction introduces possible deadlocks
in the program, as two tasks can be awaiting for termination of tasks on each
other’s locations. Finally, instruction return x; releases the lock that will never be
taken again by that task. Consequently, that task is finished and removed from
the task queue. All statements of a task takes place serially (without interleaving
with any other task) until it gets to a return or await f? instruction. Then, the
processor becomes idle again, chooses non-deterministically the next pending
task, and so on.

A program state or configuration is a set of locations {loc0, ..., locn}. A loca-
tion is a term loc(o, tk , h,Q) where o is the location identifier, tk is the identi-
fier of the active task that holds the location’s lock or ⊥ if the location’s lock
is free, h is its local heap, and Q is the set of tasks in the location. A task
is a term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method
name executing in the task, l is a mapping from local variables to their val-
ues, and s is the sequence of instructions to be executed. We assume that the
execution starts from a main method without parameters. The initial state is
S={loc(0, 0,⊥, {tsk(0,main, l, body(main))} with an initial location with iden-
tifier 0 executing task 0, maps local variables to their initial values, and body(m)
is the sequence of instructions in method m and ini(main) is the initial program
point in method m. From now on, we represent the state as a Prolog list, and
we write [x �→ v] to denote h(x) = v (resp. l(x) = v), that is, field x in the heap
h (resp. local variable x in the mapping l) takes the value v.

In what follows, a derivation or execution [20] is a sequence of states S0
o1.t1−→

...
on.tn−→ Sn, where Si

oi.ti−→ Si+1 denotes the execution of task ti in location oi ∈ Si.
The derivation is complete if S0 is the initial state and � loc(o, , , {tk}∪Q) ∈ Sn

such that Sn
o.tk−→ Sn+1 and Sn 	= Sn+1. Given a state S, exec(S) denotes the set

of all possible complete executions starting at S.

3 Specifying and Generating Initial Contexts

In our asynchronous programs, the most general initial contexts consist of sets
of locations with free variables in their fields, and initial tasks in each location

Generation of Initial Contexts for Effective Deadlock Detection 7

queue with free variables as parameters, i.e., neither the fields nor the param-
eters have concrete values. A first approach to systematically generate initial
contexts could consist in generating, on backtracking, all possible multisets of
initial tasks (method names), and for each one, generate all aliasing combina-
tions with the locations of the tasks belonging to the same type of location.
They are multisets because there can be multiple occurrences of the same task.
To guarantee termination of this process we need to impose some limit in the
generation of the multisets. For this, we could simply set a limit on the multiset
global size. However it would be more reasonable and useful to set a limit on the
maximum cardinality of each element in the multiset. To allow further flexibility,
let us also set a limit on the minimum cardinality of each element. For instance,
if we have a program with just one location type A with just one method m, and
we set 1 and 2 as the minimum and maximum cardinalities respectively, then
there are two possible multisets, namely, {m} and {m,m}. The first one leads
to one initial context with one location of type A with an instance of task m in
its queue. The second one leads to two contexts, one with one location of type A
with two instances of task m in its queue, and the other one with two different
locations, each with an instance of task m in its queue.

On the other hand, it makes sense to allow specifying which tasks should be
considered as initial tasks and which should not. A typical scenario is that the
user knows which are the main tasks of the application and does not want to
consider auxiliary or internal tasks as initial tasks. Another scenario is in the
context of integration testing, where the tester might want to try out together
different groups of tasks to observe how they interfere with each other. Also,
the use of static analysis can help determine a subset of tasks of interest to
detect some specific property. This is the case of our deadlock-guided approach
of Sect. 4. With all this, the input to our automatic generation of initial contexts
is: a set of tuples (C.M,Cmin, Cmax), where C.M is an abstract task, i.e., a task
name, being C and M the class and method name resp., and, Cmin resp. Cmax

is the associated minimum resp. maximum cardinality. Note that this does not
limit the approach in any way since one could just include in Tini all methods
in the program and set Cmin = 0 and a sufficiently large Cmax.

Example 1. Let us consider the set Tini = {(DB.register, 1, 1), (DB.connect, 0, 1)}.
The corresponding multisets are {register} and {register, connect}. All contexts
must contain exactly one instance of task register and at most one instance of
task connect. This leads to three possible contexts: (1) a DB location instance
with a task register in its queue, (2) a DB location instance with tasks register
and connect in its queue, and, (3) two different DB location instances, one of
them with an instance of task register and the other one with an instance of task
connect. For instance, the state corresponding to the latter context would be:

S = [loc(DB1, bot, [data �→ D1, clients �→ Cl1, checkOn �→ B1],
[tsk(1, register, [this �→ r(DB1), m �→ W1], body(register))])

loc(DB2, bot, [data �→ D2, clients �→ Cl2, checkOn �→ B2],
[tsk(2, connect, [this �→ r(DB2)], body(connect))])],

8 E. Albert et al.

where D1,Cl1, and B1 (resp. D2,Cl2, and B2) are the fields data, clients, and
checkOn of location DB1 (resp. DB2), and W1 resp. W2 the parameter of the task
register resp. connect, and body(m) is the sequence of instructions in method m.
Note that both fields and task parameters are fresh variables so that the context
is the most general possible. Note that the first parameter of a task is always
the location this and it is therefore fixed. �

In the following, we formally define the contexts that must be produced
from a set of abstract tasks Tini with associated cardinalities. We use the
notation {[m1, ...,mn]oi

} for an initial context where there exists a loca-
tion loc(oi,⊥, h, {tk(tk1,m1, l1, body(m1))} ∪ ... ∪ {tk(tkn,mn, ln, body(mn))}).
Note that we can have mi = mj with i 	= j. For instance, the three con-
texts in Example 1 are written as {[register]db1}, {[register, connect]db1} and
{[register]db1 , [connect]db2}, respectively. Let us first define the set of initial con-
texts from a given Tini when all tasks belong to the same class.

Definition 1 (Superset of initial contexts (same class Ci)). Let Tini =
{(Ci.m1, C

min
1 , Cmax

1), . . . , (Ci.mn, Cmin
n , Cmax

n)} be the set of abstract tasks

with associated cardinalities. Let us have
n∑

i=1

Cmax
i different identifiers:

o1,1, . . . , o1,Cmax
1

, . . . , on,1, . . . , on,Cmax
n

. We can find at most
n∑

i=1

Cmax
i instances

of class Ci, that is, each abstract task mi (i ∈ [1, n]) has at most Cmax
i instances

and each of them can be inside a different instance of class Ci. Let umk
i,j be an

integer variable that denotes the number of instances of task mk inside the loca-
tion oi,j and let us consider the following integer system:

⎧
⎪⎨
⎪⎩

Cmin
1 ≤ um1

1,1 + . . . + um1

1,Cmax
1

+ . . . + um1
n,1 + . . . + um1

n,Cmax
n

≤ Cmax
1

. . .

Cmin
n ≤ umn

1,1 + . . . + umn

1,Cmax
1

+ . . . + umn
n,1 + . . . + umn

n,Cmax
n

≤ Cmax
n

Each formula requires at least Cmin
k and at most Cmax

k instances of task mk.
Each solution to this system corresponds to an initial context.
Let (dm1

1,1 , . . . , dm1

n,Cmax
n

, . . . , dmn
1,1 , . . . , dmn

n,Cmax
n

) be a solution, then the correspond-
ing initial context contains:

– loc(oi,j ,⊥, h,Q), that is, a location oi,j whose lock is free, the fields in h
are mapped to fresh variables, and the queue Q contains: dm1

i,j instances of
abstract task m1,. . . , and dmn

i,j instances of mn, if i ∈ [1, n], j ∈ [1, Cmax
i]

and ∃dmk
i,j > 0, k ∈ [1, n], where each instance of mi is tsk(tk ,mi, l, body(mi))

and every argument in l is mapped to a fresh variable.

Example 2. Let us consider the example Tini =
{
(DB.register, 0, 1), (DB.connect,

1, 1)
}
. The identifiers are o1,1 and o2,1, and the variables of the system are ureg

1,1 ,

ureg
2,1 , uget

1,1 and uget
2,1 . Finally, we obtain the next system:

{
0 ≤ ureg

1,1 + ureg
2,1 ≤ 1

1 ≤ uget
1,1 + uget

2,1 ≤ 1

Generation of Initial Contexts for Effective Deadlock Detection 9

We obtain 6 solutions: (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0) and
(0, 1, 0, 1). Then, the superset of initial contexts is

{{[connect]o1,1}, {[connect]o2,1}, {[register, connect]o1,1}, {[register, connect]o2,1},

{[register]o2,1 , [connect]o1,1}, {[register]o1,1 , [connect]o2,1}}
�

Let us observe that the two last contexts are equivalent since they are both
composed of two instances of DB with tasks register and connect respectively.
Therefore, we only need to consider one of these two contexts for symbolic exe-
cution. Considering both would lead to redundancy. The notion of minimal set
of initial contexts below eliminates redundant contexts, hence avoiding useless
executions.

Definition 2 (Equivalence relation ∼). Two contexts C1 and C2 are equiv-
alent, written C1 ∼ C2, if C1 = C2 = ∅ or C1 = {loc(o1,⊥, h1,Q1)} ∪ C ′

1, and
∃ o2 ∈ C2 such that:

1. C2 = {loc(o2,⊥, h2,Q2)} ∪ C ′
2,

2. Q1 and Q2 contain the same number of instances of each task, and
3. C ′

1 ∼ C ′
2.

Example 3. The superset in Example 2 contains 3 equivalence classes induced by
the relation ∼: (1) the class {{[connect]o1,1}, {[connect]o2,1}}, where both contexts
are composedof a locationwitha task connect, (2) the class{{[register, connect]o1,1},
{[register, connect]o2,1

}}, whose locations have two tasks register and connect.
and, finally, (3) the class {{[register]o2,1 , [connect]o1,1}, {[register]o1,1 , [connect]o2,1}},
where both contexts have two locations with a task register and a task connect,
respectively. �

Definition 3 (Minimal set of initial contexts ICi (same class Cli)). Let
Tini be the set of abstract tasks, then the minimal set of initial contexts ICli is
composed of a representative of each equivalence class induced by the relation ∼
over the superset of initial contexts for the input Tini.

Example 4. As we have seen in the previous example, there are three different
equivalence classes. So, the minimal set of initial contexts is composed of a
representative of each class (we have renamed the identifiers for the sake of
clarity):

IDB = {{[connect]db1}, {[register, connect]db1}, {[register]db1 , [connect]db2}}

�

Let us now define the set of initial contexts I when the input set Tini contains
tasks of different types of locations.

10 E. Albert et al.

Definition 4 (Minimal set of initial contexts I (Different classes)). Let
Tini = {(C1.m1, C

min
1 , Cmax

1), . . . , (Cn.mn, Cmin
n , Cmax

n)} be the set of abstract
tasks with associated cardinalities, and let us consider a partition of this set where
every equivalence class is composed of abstract tasks of the same class. Hence,
we have: T C1

ini = {C1.m
′
1, . . ., C1.m

′
j1

}, . . . , T Cn
ini = {Cn.m′′

1, . . . , Cn.m′′
jn

} where
Ci 	= Cj ,∀i, j ∈ [1, n], i 	= j.

Then, let ICi be the minimal set of initial contexts for the input T Ci
ini , i ∈ [1, n]

and U : IC1 × . . . × ICn → I , defined by U(s1, . . . , sn) = s1 ∪ . . . ∪ sn. The set
I is defined by the image set of application U .

Example 5. Let us consider the set Tini =
{
(DB.register, 1, 1), (DB.connect, 1, 1),

(Worker.work, 1, 1)
}

from which we get the initial contexts IWorker =
{{[work]w1}} and IDB = {{[register, connect]db,1}, {[register]db1 , [connect]db2}}.
Then, by Definition 4,

I ={{[register, connect]db1 , [work]w1}, {[register]db1 , [connect]db2 , [work]w1}}

�

It is straightforward to implement a function that generates the minimal set
of initial contexts from a provided set of initial tasks (for instance [5]). Such
a function is denoted as generate contexts(Tini). The main complication is to
avoid the generation of equivalent contexts (Definition 2) as soon as possible
during the process. For this aim one can rely on the definition of a normal form
according to the number of tasks inside each location.

4 On Automatically Inferring Deadlock-Interfering Tasks

The systematic generation of initial contexts produces a combinatorial explosion
and therefore it should be used with small sets of abstract tasks (and low cardi-
nalities). However, in the context of deadlock detection, in order not to miss any
deadlock situation, one has to consider in principle all methods in the program,
hence producing scalability problems. Interestingly, it can happen that many of
the tasks in the generated initial contexts do not affect in any way deadlock exe-
cutions. Our challenge is to only generate initial contexts from which a deadlock
can show up. For this, the deadlock analysis provides the possibly conflicting
task interactions that can lead to deadlock. We propose to use this information
to help our framework discard initial contexts that cannot lead to deadlock from
the beginning. Section 4.1 summarizes the concepts of the deadlock analysis used
to obtain the deadlock cycles, and Sect. 4.2 presents the algorithm to generate
the set of initial tasks Tini.

4.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [9] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

Generation of Initial Contexts for Effective Deadlock Detection 11

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. The abstractions for tasks and locations can be per-
formed at different levels of accuracy during the analysis: the simple abstraction
that we will use for our formalization abstracts each concrete location o by the
program point at which it is created opp, and each task by the method name exe-
cuting (as in Sect. 3). They are abstractions since there could be many locations
created at the same program point and many tasks executing the same method.
Points-to analysis [9,18] can be used to infer such abstractions with more preci-
sion, for instance, by distinguishing the actions performed by different location

abstractions. Each arrow e
p:tk−−→ e′ should be interpreted like “abstract location

or task e is waiting for the termination of abstract location or task e′ due to the
synchronization instruction at program point p of abstract task tk”. Three kinds
of arrows can be distinguished, namely, task-task (an abstract task is awaiting
for the termination of another one), task-location (an abstract task is awaiting
for an abstract location to be idle) and location-task (the abstract location is
blocked due the abstract task). Location-location arrows cannot happen.

Example 6. In our working example there are two abstract locations, o2, cor-
responding to location database created at line 2 and o3, corresponding to the
n locations worker, created inside the loop at line 3; and four abstract tasks,
register, getD, work and ping. The following cycle is inferred by the deadlock

analysis: o2
34:register−−−−−−−→ ping

15:ping−−−−−→ o3
12:work−−−−−→ getD

38:getD−−−−−→ o2. The first arrow
captures that the location created at Line 2 is blocked waiting for the termina-
tion of task ping because of the synchronization at L34 of task register. Also, a
dependency between a task and a location (for instance, ping and o3) captures
that the task is trying to execute on that (possibly) blocked location. Abstract
deadlock cycles can be provided by the analyzer to the user. But, as it can be
observed, it is complex to figure out from them why these dependencies arise,
and more importantly the interleavings scheduled to lead to this situation. �

4.2 Generation of Initial Tasks

The underlying idea is as follows: we select an abstract cycle detected by the
deadlock analysis, and extract a set of potential abstract tasks which can be
involved in a deadlock. In a naive approximation, we could take those abstract
tasks that are inside the cycle and contain a blocking instruction. We also need
to set the maximum cardinality for each task to ensure finiteness (by default 1)
and require at least one instance for each task (minimum cardinality).

This approach is valid as long as we only have blocking synchronization prim-
itives, i.e., when the location state stays unchanged until the resumption of a
suspended execution. However, this kind of concurrent/distributed languages
usually include some sort of non-blocking synchronization primitive. When a
location stops its execution due to an await instruction, another task can inter-
leave its execution with it, i.e., start to execute and, thus, modify the location
state (i.e., the location fields). Then, if a call or a blocking instruction involved
in a deadlock depends on the value of one of these fields, and we do not consider

12 E. Albert et al.

all the possible values, a deadlock could be missed. As a consequence, we need
to consider at release points, all possible interleavings with tasks that modify
the fields in order to capture all deadlocks.

Let us consider now a simple modification of our working example. Line 27
is replaced by connected = 0. Now it is easy to see that if we only consider
register and work as input, deadlocks are lost: once register is executed and the
instruction at line 30 is reached, the location’s queue only contains task getData
but no connect and, therefore, when task register is resumed, field connected stays
unchanged and the body of the condition is not executed, so we cannot have a
deadlock situation.

In the following we define the deadlock-interfering tasks for a given abstract
deadlock cycle, i.e., an over-approximation of the set of tasks that need to be
considered in initial contexts so that we cannot miss a representative of the given
deadlock cycle. In our extended example, those would be, register and work but
also connect.

Definition 5 (initialTasks(C)). Let C an abstract deadlock cycle. Then,

initialTasks(C) :=
⋃

icall∈t∈C

initialTasks(t, icall, C) ∪
⋃

isync∈t∈C

initialTasks(t, isync, C)

where:

– initialTasks(t, i, C) = ∅ if o
t−→ t2 �∈ C and i �= imod and � ∃ iawait ∈[t0, i]

– initialTasks(t, i, C) = {t} if (o
t−→ t2 ∈ C or i = imod) and � ∃ iawait ∈[t0, i]

– initialTasks(t, i, C)

= {t} ∪ ⋃
f∈fields(i)

(
⋃

(imod,tmod)∈mods(f)

initialTasks(tmod, imod, C)

)

if ∃ iawait ∈ [t0, i]

The definition relies on function fields(I) which, given an instruction I, returns
the set of class fields that have been read or written until the execution of instruc-
tion I. Let mods(f) be the set of pairs (instruction,task) that modify field f. We
can observe that initialTasks(C) is the union of the initial tasks for each relevant
instruction inside the cycle C, i.e., asynchronous calls and synchronization prim-
itives. We can also observe in the auxiliary function initialTasks(t,i,C) that: (1)
if the instruction i is not producing a location-task edge and it is not an instruc-
tion modifying a field, then t does not need to be added as initial task, (2) if
i produces a location-task edge or is modifying a field, and we do not have any
await instruction between the beginning of the task and i, then i is going to
be executed under the most general context, so we do not need to add more
initial tasks but t, and (3) on the other hand, if there exists an await instruction
between the beginning of task t, namely t0, and instruction i, each field f inside
the set fields(i) could be changed before the resumption of the await by any task
modifying f . Thus, tasks containing any of the possible f -modifying instructions
must be considered and, recursively, their initial tasks.

It is important to highlight that this definition could be non-terminating
depending on the program we are working with. For instance, if we apply the

Generation of Initial Contexts for Effective Deadlock Detection 13

Data: An abstract cycle C and a maximum cardinality M
Result: A list with the interfering tasks for C
Q = ∅; L = ∅;
forall the t ∈ C do

icall = receiveCall(t,C); enqueue(Q,(icall,t));
iawait = receiveSync(t,C); enqueue(Q,(iawait,t));
iget = receiveSync(t,C); enqueue(Q,(iget,t));

if ∃ ∈ o
t−→ t2 ∈ C then

insert(L,(iget,t));
end

end
while !empty(Q) do

(i,t) = dequeue(Q);
if ∃iawait ∈ t between the beginning of t and i then

forall the f ∈ fields(i) do
forall the (imod, tmod) ∈ mods(f) do

if !member(L,(imod, tmod)) then
insert(L,(imod, tmod));
enqueue(Q,(imod, tmod));

end

end

end

end

end
return [(m,1,M) : m ∈ set(projecty(L))];

Algorithm 1. Algorithm to infer interfering tasks for a given deadlock cycle

definition to the abstract cycle C in Example 6, initialTasks(db.register, 32, C)
will be evaluated. It fits well with the conditions on the third clause, as there
exists an await instruction, fields(32) = {connected} and then again 32 is a
modifier instruction of field connected, so initialTasks(db.register, 32, C) will be
evaluated again recursively.

Algorithm 1 shows how to finitely infer the interfering-tasks for a
given deadlock cycle as defined by Definition 5. Function receiveCall(t, C)
(receiveSync(t, C)) receives the asynchronous call (synchronization instruction)
of a task t inside the cycle C. Q is the queue of pending pairs {instruction,
task}, and L is the list containing all such pairs whose tasks we have to con-
sider. Finiteness is guaranteed because each instruction is added to Q and L at
most once, and the number of instructions is finite. For each task in the cycle,
we take the call and the corresponding synchronization instruction, and we add
them to Q. Instructions get producing a location-task edge, are also added to
L, as they have to be inside the initial context. The other tasks included in the
initial context are the ones which could affect the conditions of the aforemen-
tioned instructions.

In the second loop, we take a pending instruction inside Q and we check
if there exists an await instruction where the field values could be changed

14 E. Albert et al.

(third clause in Definition 5). In case it does, we need to include all tasks which
contain instructions modifying such field. However, this change could be inside
an if-else body and we also need to consider the fields inside such condition.
Therefore, we add the modifier instruction to the pending instructions queue
Q. The algorithm finishes when Q is empty and L is the list of pairs with
all interfering instructions and their container tasks. Finally, we only take the
tasks, i.e., the second component of each pair (projecty), remove duplicates (set)
and set their minimum and maximum cardinalities. From now on, we denote
initial tasks(c,M), the set of initial tasks inferred for the abstract deadlock cycle
c and the maximum cardinality M.

Example 7. Let us show how the algorithm works for our modified example and
the maximum cardinality M = 1. For the sake of clarity, instructions are identi-
fied by their line numbers. After executing the first forall loop, the value of Q and
L is {(33,DB.register), (34,DB.register), (11,Worker.work), (12,Worker.work)}
and [(34,DB.register), (12,Worker.work)], respectively. Let us assume Q uses
a LIFO policy, hence (12,Worker.work) is taken first. Since fields(12) = ∅,
L stays unchanged. The same happens with (11,Worker.work). At the
beginning of the third loop, Q is {(33,DB.register), (34,DB.register)} and
(34,DB.register) is taken. Now, fields(34) = {connected} and ∃instawait

(line 30) between lines 26 and 34. We find three pairs modifying the
field connected: (23,DB.connect), (27,DB.register) and (32,DB.register). None
of them is a member of L and hence they are added to both queues.
Now, Q is {(33,DB.register), (27,DB.register), (32,DB.register), (23,DB.connect)}
but again fields(32) = fields(23) = ∅ and, thus, L stays unchanged.
Finally, both (33,DB.register) and (27,DB.register) are taken and fields(33)=
fields(27)={connected}, but the modifier instructions have been previously added
to L, hence L remains unchanged. At the end of while, L is

{
(34,DB.register),

(12,Worker.work), (27,DB.register), (32,DB.register),(23,DB.connect)
}
. Finally,

the algorithm projects over the second component of each pair in
the list, removes duplicates and returns the set Tini={(DB.register, 1, 1),
(Worker.work, 1, 1), (DB.connect, 1, 1)}. Our generation of initial contexts for this
set (see Example 5) produces

I = { {[register, connect]db1 [work]w1},
{[register]db1 , [connect]db2 , [work]w1}},

where both initial contexts are composed of a worker location with a task work.
However, the former context contains a database location with tasks register and
connect, whereas the latter one contains two locations with a task register and a
task connect, respectively. �

The next theorem establishes the soundness of our approach. Intuitively,
soundness states that, for a given deadlock cycle c and maximum cardinality M ,
if there is an initial context, fulfilling M , from which a deadlock representative of
c can be obtained, then our approach will generate a context (possibly different
from the above) from which a deadlock representative of c is obtained.

Generation of Initial Contexts for Effective Deadlock Detection 15

Theorem 1 (Soundness). Given a program P , an abstract deadlock cycle c
and a maximum cardinality M, if there exists a derivation starting at a state
Sini and ending at Send such that the cardinality of each task in Sini is less than
M and Send is a representative of the cycle c, then there exists an initial context
St0 ∈ generate contexts(initial tasks(c,M)) such that Send2

∈ exec(St0) and
Send2

is also a representative of the cycle c.

Proof. (Sketch) Let us define a task t as necessary in Sini for the deadlock

cycle c if and only if �Se′ such that Sini\{t} ∗−→ Se′ and Se′ is a representa-
tive of c, where S\{t} denotes the context S without the task t. Let us define
now an initial context nec(S) as the initial context that only contains the nec-
essary tasks in S for c. In order to prove soundness, we need to prove that
nec(Sini) ∈ generate contexts(initial tasks(M, c)). We reason by contradiction.
Assume that there exists a necessary task t ∈ nec(Sini), instance of method m,
which is not in any initial context generated. This is equivalent to assume that
method m is not inferred by Algorithm1. We can distinguish two different roles
which task t plays in the deadlock situation:

– If task t gets blocked, then t contains an instruction pp:get where pp is the
program point, and, by the soundness of the deadlock analysis (Theorem 1
of [9]), pp:get is the tag of an edge inside the deadlock cycle c. So, the pair
(pp,m) is added to L in the first loop of Algorithm1 and m is finally inferred.
Thus, we have a contradiction.

– If task t modifies a field f at program point pp that appears in a condition
of another task r, then we cannot get a deadlock if t is not executed before
the evaluation of condition in task r (t is necessary). Here, we need to notice
that if task r does not contain any await, symbolic execution explores all
possible execution paths and t would be unnecessary. But we have supposed
that t is necessary, then r contains an await. Then, (pp,m) will be added to L
because of the third forall in Algorithm1 and m is inferred, what contradicts
our assumption. �

5 Experimental Evaluation

We have implemented the proposed techniques within the aPET/SYCO tool [4],
a testing tool for the ABS [13] concurrent objects language. The tool is avail-
able for online use at http://costa.ls.fi.upm.es/syco, where the benchmarks below
can also be found. This section summarizes our experimental evaluation whose
objectives are the following:

1. Show the effectiveness of our approach in Sect. 4 to generate initial contexts
for deadlock detection w.r.t the full systematic generation of Sect. 3.

2. Demonstrate the potential of the technique when being applied in practice
within our deadlock detection framework.

The benchmarks we have used include classical concurrency patterns contain-
ing deadlocks, namely: DBProt is an extension of the database communication

16 E. Albert et al.

protocol of our working example; Barber is an extension of the sleeping barber
problem, Fact is a distributed and recursive implementation of a factorial func-
tion, Loop is a loop that creates asynchronous tasks and locations, and, Pairing
is the pairing problem.

Effectiveness of generation of initial contexts for deadlock detection:
Table 1 shows, for each benchmark: the number of generated initial contexts
using the full systematic generation of contexts of Sect. 3 (column Syst.), the
number of contexts generated using our deadlock-guided generation of Sect. 4
(column G), and, the number of contexts among those generated that lead to
a deadlock (column D). This is done for three different values of maximum
cardinality, namely, M = 1, M = 2 and M = 3. The rest of the columns are
explained in the next paragraph. A timeout of 30 s is used and, when reached,
we write >X to indicate that we encountered X contexts up to that point. The
reductions of our deadlock guided generation of contexts w.r.t the full systematic
generation are huge. As expected the full systematic generation blows up fast
for most examples. We can also observe that our deadlock guided generation of
contexts is very precise, producing no false positives, i.e., contexts that do not
lead to deadlock, except for DBProt. The reason of the loss of precision in the
DPProt example is that task register only gets blocked if task connect changes
the value of field connected. Therefore, contexts in which these two tasks do not
belong to the same location will not lead to deadlock. This can be observed in
Example 7. Improving our method to capture this situation is left for future
work.

Table 1. Evaluating generation of initial contexts: Systematic vs. deadlock-guided

M = 1 M = 2 M = 3

Bench. TA/C Syst. G D T Syst. G D T Syst. G D T

DBProt 5/1 30 2 1 35 >12960 57 30 101s* >6308 576 156 974s*

Barber 5/1 8 1 1 35 6859 9 9 57 >8310 36 36 309

Fact 6/2 15 2 2 11 2419 6 6 14 >4771 12 12 16

Loop 20/1 3375 1 1 30 >13433 27 27 495 >4771 216 216 77s*

Pairing 4/2 2 2 2 9 57 12 12 37 576 42 42 162

Application within our deadlock detection framework: Our deadlock-
guided generation of initial contexts has been integrated within the deadlock
detection feature of the testing system aPET/SYCO as follows: After running
the static deadlock analysis, and only in case it outputs a non-empty set of
potential abstract cycles (i.e. if the program is not already proven deadlock-free),
we run our deadlock guided generation of initial contexts for each of the cycles
inferred by the analysis. For each generated initial context, we start (possibly
in parallel) a deadlock-guided symbolic execution [2,3] that stops as soon as it
finds a deadlock. As a result, we obtain a concrete test-case with its associated

Generation of Initial Contexts for Effective Deadlock Detection 17

trace and sequence of interleavings. A local timeout for each symbolic execution
is set so that it does not degrade the overall process in case a blowup is produced
before finding a deadlock. This is relatively frequent with false-positive contexts
(see paragraph above). Table 1 shows, for each benchmark, the time of the static
deadlock analysis and the number of generated deadlock cycles (column TA/C),
and, the overall time of the rest of the process (column T), which includes both
the time of the generation of contexts and the symbolic executions. Times are in
milliseconds except where indicated and are obtained on an Intel(R) Core(TM)
i7 CPU at 2.5 GHz with 8 GB of RAM, running Ubuntu 5.4.0. A timeout of 5s is
set for each symbolic execution and an asterisk in the time indicates the timeout
has been reached at least once.

Overall, our deadlock guided generation of initial contexts hence enables our
deadlock detection framework to analyze systems without the need of any user
supplied initial context. Also, it allows generating concrete test cases that lead
to deadlock for integration and system testing.

6 Conclusions and Related Work

We have proposed a framework for the automatic generation of initial contexts
for deadlock-guided symbolic execution. Such initial contexts are composed of
the interfering tasks which, according to a static deadlock analyzer, might lead
to deadlock. Given the initial contexts, we can drive symbolic execution towards
paths that are more likely to manifest a deadlock, discarding safe contexts.
There is a large body of work on deadlock detection including both dynamic and
static approaches. Much of the existing work, both for asynchronous programs
[9,10] and thread-based programs [17,19], is based on static analysis techniques.
Although we have used the static analysis of [9], the information provided by
other deadlock analyzers could be used in an analogous way. Deadlock detec-
tion has been also studied in the context of dynamic testing and model checking
[6,15,16], where sometimes has been combined with static information [1,14].
The initial contexts generated by our framework are of interest also in these
approaches. As regards the application in a thread-based concurrency model,
the fundamental difference is that our whole approach is defined at the level of
atomic tasks that execute concurrently using non-preemptive scheduling, unlike
thread-based preemption. However, our approach would be adaptable to thread-
based applications that rely on synchronized blocks of code (such as in monitors
or concurrent objects). As future work, we plan to investigate how our framework
could be adapted to this model.

18 E. Albert et al.

References

1. Agarwal, R., Wang, L., Stoller, S.D.: Detecting potential deadlocks with static
analysis and run-time monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC
2005. LNCS, vol. 3875, pp. 191–207. Springer, Heidelberg (2006). https://doi.org/
10.1007/11678779 14

2. Albert, E., Gómez-Zamalloa, M., Isabel, M.: Deadlock Guided Testing in CLP.
Technical report (2017). http://costa.ls.fi.upm.es/papers/costa/AlbertGI17tr.pdf

3. Albert, E., Gómez-Zamalloa, M., Isabel, M.: Combining static analysis and testing
for deadlock detection. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 409–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0 26

4. Albert, E., Gómez-Zamalloa, M., Isabel, M.: SYCO: a systematic testing tool for
concurrent objects. In: Proceedings of CC 2016. ACM (2016)

5. Albert, E., Gómez-Zamalloa, M., Isabel, M.: On the generation of initial contexts
for effective deadlock detection. Technical report, October 2017. https://arxiv.org/
abs/1709.04255

6. Christakis, M., Gotovos, A., Sagonas, K.F.: Systematic testing for detecting con-
currency errors in erlang programs. In: Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg, Luxem-
bourg, 18–22 March 2013. IEEE Computer Society (2013)

7. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

8. Flanagan, C., Felleisen, M.: The semantics of future and its use in program opti-
mization. In: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (1995)

9. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 19

10. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock
analysis of concurrent objects: theory and practice. In: Johnsen, E.B., Petre, L.
(eds.) IFM 2013. LNCS, vol. 7940, pp. 394–411. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38613-8 27

11. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 6

12. Laneve, C., Giachino, E., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

14. Joshi, P., Naik, M., Sen, K., Gay, D.: An effective dynamic analysis for detecting
generalized deadlocks. In: Proceedings of FSE 2010. ACM (2010)

15. Joshi, P., Park, C., Sen, K., Naik, M.: A randomized dynamic program analysis
technique for detecting real deadlocks. In: Proceedings of PLDI 2009. ACM (2009)

16. Kheradmand, A., Kasikci, B., Candea, G.: Lockout: Efficient Testing for Deadlock
Bugs. Technical report (2013). http://dslab.epfl.ch/pubs/lockout.pdf

Generation of Initial Contexts for Effective Deadlock Detection 19

17. Masticola, S.P., Ryder, B.G.: A model of Ada programs for static deadlock detec-
tion in polynomial time. In: Parallel and Distributed Debugging, pp. 97–107. ACM
(1991)

18. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

19. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

20. Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693017 25

CHAPTER 7. PUBLICATIONS

174

SYCO: A Systematic Testing Tool for Concurrent Objects

Elvira Albert
Complutense University of Madrid

elvira@fdi.ucm.es

Miguel Gómez-Zamalloa
Complutense University of Madrid

mzamalloa@fdi.ucm.es

Miguel Isabel
Complutense University of Madrid

miguelis@ucm.es

Abstract
We present the concepts, usage and prototypical implementation of
SYCO: a SYstematic testing tool for Concurrent Objects. The sys-
tem receives as input a program, a selection of method to be tested,
and a set of initial values for its parameters. SYCO offers a visual
web interface to carry out the testing process and visualize the re-
sults of the different executions as well as the sequences of tasks
scheduled as a sequence diagram. Its kernel includes state-of-the-
art partial-order reduction techniques to avoid redundant computa-
tions during testing. Besides, SYCO incorporates an option to ef-
fectively catch deadlock errors. In particular, it uses advanced tech-
niques which guide the execution towards potential deadlock paths
and discard paths that are guaranteed to be deadlock free.

Categories and Subject Descriptors D1.3 [Programming Tech-
niques]: Concurrent Programming; D2.5 [Testing and Debug-
ging]: [testing tools, systematic execution]

Keywords systematic testing, concurrency, concurrent objects,
software testing, partial-order reduction

1. Motivation
Testing is the most widely-used methodology for software valida-
tion in industry. Several studies point out that it requires at least
half of the total cost of a software project. Software testing tools
urge especially in the context of concurrent programming. This is
because writing correct concurrent programs is more difficult than
writing sequential ones as with concurrency come additional haz-
ards not present in sequential programs such as race conditions,
deadlocks, and livelocks. In order to catch such errors, the testing
tool must consider the non-determinism caused by the fact that an
execution can lead to different solutions depending on the way that
the involved tasks interleave, and, ideally, all possible interleavings
must be considered. A systematic exploration of the state space is
usually not feasible. A lot of research has been done in the con-
text of testing and model checking with the aim of avoiding redun-
dant state exploration as much as possible [1, 2, 5, 10]. SYCO is
a testing tool that targets the ABS concurrent objects language [8]
and that incorporates state-of-the-art partial-order-reduction (POR)
techniques to avoid redundant exploration.

Essentially, a concurrent object is a monitor that allows at most
one active task to execute within the object. Task scheduling is

non-preemptive, i.e., the active task has to release the object lock
explicitly (using the await or return instructions). Each object has
an unbounded set of pending tasks. When the lock of an object
is free, any task in the set of pending tasks can grab the lock and
start executing. Each object has a local heap or memory (set of
fields) which can only be accessed from the owner object. The
instruction f = ob!m() creates an asynchronous task to execute
method m on object ob. Synchronization can be performed using
the future variable f, namely the instruction await f? checks if the
execution of the asynchronous task has finished. It not, the object
lock is released and the task suspends until the value of f is ready.
In contrast, the instruction v = f.get blocks the task until f is ready
retaining the object lock. Once the execution of the task finishes, it
assigns the obtained value to v.

Running Example. The following example simulates a sim-
ple communication protocol between a database and a worker.

1 {\\main block
2 DB db = new DB();
3 Worker w = new Worker();
4 db!register(w);
5 w!work(db);
6 }
7 class DB{
8 Data data = ...;
9 Worker cl = null;

10 void register(Worker w){
11 Fut〈Int〉 f = w!ping(5);
12 if (f.get == 5) cl = w;
13 }

14 Int getD(Worker w){
15 if (cl == w) return data;
16 else return null;
17 }
18 }// end class DB
19 class Worker{
20 Data data;
21 void work(DB db){
22 Fut〈Data〉 f = db!getD(this);
23 data = f.get;
24 }
25 Int ping(Int n){return n;}
26 }// end of class Worker

The main method creates the two objects and invokes methods
register and work resp. The work method of the worker simply
accesses the database (invoking asynchronously method getD) and
then blocks until it gets the result, which is assigned to its data field.
The register method of the database, first checks that the worker is
online (invoking asynchronously method ping), then blocks until
it gets the result, and finally it registers the worker by storing its
reference in its cl field. Method getD of the database returns its
data field if the caller worker is registered, otherwise it returns null.

Depending on the sequence of interleavings, the execution of
this program can finish: (i) as expected, i.e., with w.data = db.data
, (ii) with w.data = null, or, (iii) in a deadlock. (i) happens when
the worker is registered in the database (assignment in L12) before
getD is executed. (ii) happens when getD is executed before the
assignment at L12. A deadlock is produced if both register and work
start executing before getD and ping.

2. The SYCO Tool
The figure above shows the main architecture of SYCO. Boxes
with dash lines are internal components of SYCO whereas boxes
with regular lines are external components. The user interacts with
SYCO through its web interface which is provided by EasyInter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CC’16, March 17–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-4241-4/16/03...$15.00

http://dx.doi.org/10.1145/2892208.2892236

269

face [7]. Basically EasyInterface provides a generic IDE which can
be instantiated to different languages and compilers and where ex-
ternal plugins can be easily added. The SYCO engine receives an
ABS program and a selection of parameters. The ABS compiler
compiles the program into an abstract-syntax-tree (AST) which is
then transformed into the SYCO intermediate representation (IR).
The DPOR engine carries out the actual systematic testing process.
It comprises the ABS semantics, the DPOR algorithm of [2] and
the stability and dependencies analyses of [2]. The output manager
then generates the output in the format which is required by Easy-
Interface, including an XML file containing all the EasyInterface
commands and actions and the SVG diagrams. In case a deadlock-
guided testing is requested (see the corresponding parameter be-
low), the DECO deadlock analyzer [6] is invoked, whose output
is used by the DPOR engine to guide the testing process (discard-
ing non-deadlock executions) [4]. Let us note that other actor-based
languages with similar features could be handled by SYCO just by
providing a compiler to the SYCO IR.

The web interface of SYCO is available at costa.ls.fi.
upm.es/syco. Essentially, once the input program is ready, either
selected from the available library of ABS programs or supplied
by the user, a set of parameters are provided (or just left with by-
default values), the SYCO engine is run and the output is obtained.

Parameters. The following parameters can be set:
• Partial-order reduction: It enables/disables POR.
• Dependency over-approximation: In case POR is applied, a cen-

tral operation is the detection of independent tasks, which has to
be over-approximated. SYCO includes the over-approximation
of [10] which considers as dependent tasks those in the same
actor, and, also, the enhancement of [2] for actors with local
memory, which looks at field accesses within the involved tasks
and considers as dependent only tasks belonging to the same
actor and accessing at least a common field.
• Deadlock-guided testing: If this parameter is selected, the test-

ing process is guided with the cycles inferred by DECO towards
deadlocks, discarding non-deadlock executions, with the corre-
sponding state space reduction.

Output. As a result, SYCO outputs a set of executions. For each
one, SYCO shows the output state and the sequence of tasks/in-
terleavings and concrete instructions of the execution (highlight-
ing the source code). Also, it allows showing a sequence diagram
from which it can be observed the task/object executing and the
asynchronous calls made (with arrows from caller to callee) at each
time of the simulation, the waiting and blocking dependencies, the
deadlock cycles, etc. SYCO produces 6 executions for the running
example with POR disabled. That covers all possible task interleav-
ings that may occur. SYCO reports that 2 executions are deadlock
executions corresponding to sequences main→register→work and
main→work→register. Those correspond to scenario (iii) at the end
of Sect. 1. Within the remaining 4 executions, two of them corre-
spond to scenario (i) and the other two to scenario (ii). According

to POR theory [2, 10], the remaining 4 executions can be grouped
in two equivalence classes, therefore 2 executions are redundant
and only two different results are obtained. When POR is enabled,
SYCO produces these 4 executions, the two deadlock executions,
and, the executions corresponding to scenarios (i) and (ii).

3. Discussion and Related Work
We have presented a systematic tester for an actor-based concur-
rency model which incorporates state-of-the-art POR methods. The
tool can be used online through its web interface and provides in-
formation about all possible (non-redundant) behaviors that the in-
put concurrent program may have, including trace highlighting and
detailed sequence diagrams. It also has support for deadlock detec-
tion and debugging, incorporating novel techniques for deadlock-
guided testing [4] in which an external deadlock analyzer [6] is
embedded. We claim that the tool is very useful for testing and de-
bugging models of concurrent systems.

Several related tools exist, being the most relevant Microsoft’s
CHESS [9] for .NET, Concuerror [5] for Erlang and Basset [10]
for ActorFoundry. All of them incorporate state-of-the-art POR
techniques. The most advanced in this sense is Concuerror which is
equipped with the most recent Optimal DPOR algorithm [1]. Also,
Concuerror is the only one providing graphical output similar to our
sequence diagrams. None of them provides a web interface. Many
other related tools exist in the context of model-checking that are
left out of this comparison.

As regards future work, we are currently studying the most
advanced POR techniques of [1] and the possibility of adapting
them to our context. Also, we are in the process of incorporating
the symbolic execution engine of [3] so that SYCO also allows
performing static testing.

Acknowledgments. This work was funded partially by the EU
project FP7-ICT-610582 ENVISAGE: Engineering Virtualized
Services (http://www.envisage-project.eu), by the Spanish MINECO
project TIN2012-38137, and by the CM project S2013/ICE-3006.

References
[1] P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal Dy-

namic Partial Order Reduction. In Proc. POPL’14, pp. 373–384.
ACM, 2014.

[2] E. Albert, P. Arenas, and M. Gómez-Zamalloa. Actor- and Task-
Selection Strategies for Pruning Redundant State-Exploration in Test-
ing. In Proc. FORTE’14, LNCS 8461, pp. 49-65. Springer, 2014.

[3] E. Albert, P. Arenas, M. Gómez-Zamalloa, and P. Y.H. Wong. aPET:
A Test Case Generation Tool for Concurrent Objects. In Proc. ES-
EC/FSE’13, pp. 595–598. ACM, 2013.

[4] E. Albert, M. Gómez-Zamalloa, and M. Isabel. Combining Static
Analysis and Testing for Deadlock Detection. Technical report, 2015.

[5] S. Aronis and K. Sagonas. Concuerror: Systematic concurrency test-
ing of Erlang programs.

[6] A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-
in-Parallel based Deadlock Analysis for Concurrent Objects. In
FORTE’13, LNCS 7892, pages 273–288. Springer, 2013.

[7] S. Genaim and J. Doménech. The EasyInterface Framework, 2015.
http://github.com/abstools/easyinterface.

[8] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS:
A Core Language for Abstract Behavioral Specification. In Proc.
FMCO’10, LNCS 6957, pp. 142-164. Springer, 2012.

[9] M. Musuvathi and S. Qadeer. Concurrency Unit Testing with CHESS.
Tech. Report MSR-TR-2008-04, Microsoft Research, January 2008.

[10] D. Marinov G. Agha S. Lauterburg, R. K. Karmani. Basset: A Tool for
Systematic Testing of Actor Programs. In Proceedings of FSE 2010,
pages 363–364. ACM, 2010.

270

	Resumen
	Abstract
	Contents
	I Contents of the Thesis
	Introduction & State-of-the-Art
	Partial Order Reduction
	Basics of Partial Order Reduction
	State-of-the-art DPOR Algorithm
	Optimality in DPOR Algorithms
	On Improving the Dependency Relation

	Deadlock-Guided Testing
	Main Goals and Contributions
	Organization of this Thesis

	Optimal Context-Sensitive DPOR with Observers
	Context-Sensitive DPOR
	Optimal Context-Sensitive DPOR
	Optimal DPOR with Observers
	Context-Sensitive DPOR with Observers
	Contributions [ISSTA'19]
	Related Work

	Constrained DPOR
	Conditional Independence within DPOR
	Independence Constraints
	Sufficient Condition for Uniformity

	The Constrained DPOR Algorithm
	Contributions [CAV'18]
	Related Work

	Application: Software-Defined Networks
	Components of Software-Defined Networks
	Actor-based Concurrency Model
	SDN-Actors: an Actor Based Encoding of SDN Programs
	DPOR-based Model Checking of SDN-Actors
	Contributions
	Related Work

	Combining Static Analysis and Testing for Deadlock Detection
	Deadlock Analysis
	Deadlock-Guided Testing [iFM'16]
	Initial Contexts by Symbolic Executions
	Generating Deadlock Contexts for Symbolic Execution [LOPSTR'17]
	SYCO: Systematic Testing for Concurrent Objects [CC'16]
	Related Work

	Conclusions and Future Work
	Conditional Independence in DPOR Algorithms
	Model-Checking for Software-Defined Networks
	Combining Static Analysis and Testing

	Bibliography

	II Papers of the Thesis
	Publications

		miguelis@ucm.es
	2020-05-13T22:05:21+0200
	Madrid
	ISABEL MARQUEZ MIGUEL - 02274645Z

