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Resumen

Título: Análisis Estático de Sistemas Concurrentes y Distribuidos: Objetos Concurrentes
y Bytecode de Ethereum.

Hoy en día la concurrencia y la distribución se han convertido en una parte funda-
mental del proceso de desarrollo de software. Indiscutiblemente, Internet y el uso cada
vez más extendido de los procesadores multicore ha in�uido en el tipo de aplicaciones que
se desarrollan. Esto ha dado lugar a la creación de distintos modelos de concurrencia.
En particular, uno de los modelos de concurrencia que está ganando importancia es el
modelo de objetos concurrentes basado en actores. En este modelo, los objetos (denomi-
nados actores) son las unidades de concurrencia. Cada objeto tiene su propio procesador
y un estado local. La comunicación entre los mismos se lleva a cabo mediante el paso
de mensajes. Cuando un objeto recibe un mensaje puede: actualizar su estado, mandar
mensajes o crear nuevos objetos.

Es bien sabido que la creación de programas concurrentes correctos es más compleja
que la de programas secuenciales ya que es necesario tener en cuenta distintos aspectos
inherentes a la concurrencia como los errores asociados a las carreras de datos o a los
interbloqueos. Con el �n de asegurar el correcto comportamiento de estos programas
concurrentes se han desarrollado distintas técnicas de análisis estático y veri�cación para
los diversos modelos de concurrencia existentes.

El análisis de May-Happen-in-Parallel (Puede-Ocurrir-en-Paralelo) es un análisis es-
tático que in�ere pares de puntos del programa que pueden ejecutarse en paralelo en
distintas componentes distribuidas. En el modelo basado en actores, el análisis utiliza la
información de los puntos del programa en los que se producen las llamadas asíncronas
a métodos (es decir, los puntos donde se crean nuevas tareas), y las primitivas de sin-
cronización (es decir, los puntos donde se espera a que las tareas terminen para continuar
con su ejecución). Esta información ha resultado ser esencial para inferir propiedades
de corrección (ausencia de bloqueo) y propiedades de viveza (terminación y consumo de
recursos) de programas asíncronos.

Otro de los aspectos que ha in�uido en el desarrollo de sistemas distribuidos ha sido el
auge de tecnologías y plataformas basadas en cadena de bloques (en adelante utilizaremos
el término inglés blockchain) y los protocolos de consenso. Estos avances tecnológicos han
permitido el desarrollo de plataformas descentralizadas como Bitcoin o Ethereum junto
a sus respectivas criptomonedas: el Bitcoin y el Ether. Más allá de las criptomonedas,
gracias a los contratos inteligentes (smart contracts) que han surgido en las plataformas
blockchain, las aplicaciones de tecnologías basadas en blockchain son cada vez mayores.
Los contratos inteligentes son programas informáticos donde se recogen los términos de
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un contrato y son capaces de reaccionar de forma automática ante los distintos eventos
especi�cados en los mismos. Los contratos pueden ser creados por cualquier usuario, y
por tanto son susceptibles a errores de programación. Estos errores pueden provocar que
se aborte la ejecución, lo que supone un coste económico necesario para revertir el estado
de todos los nodos del sistema. Es por ello que el desarrollo de técnicas de análisis y
veri�cación que permitan asegurar el correcto funcionamiento de los contratos inteligentes
se ha convertido en un tema de investigación de gran interés y relevancia.

Dentro de este marco, los principales objetivos que se han perseguido con el desarrollo
de esta tesis son:

• Estudiar los análisis de May-Happen-in-Parallel (MHP) existentes para distintos
lenguajes y modelos de concurrencia. Concretamente se ha profundizado en el análi-
sis MHP desarrollado para el lenguaje ABS [61], un lenguaje que implementa el
modelo basado en actores y se han investigado mejoras en el análisis para mejorar
su precisión y escalabilidad. También se ha estudiado la combinación de otros análi-
sis para incrementar su precisión así como su aplicación a los contratos inteligentes.

• Desarrollar una representación intermedia para el bytecode de Ethereum. Esta
representación permite la aplicación de análisis de alto nivel para inferir propiedades
sobre el bytecode de Ethereum.

• Desarrollar análisis que permitan estudiar vulnerabilidades sobre contratos inteligentes
de Ethereum. En particular se han estudiado las vulnerabilidades derivadas del con-
sumo de gas asociado a la ejecución de los contratos inteligentes y las provocadas
por la ejecución del bytecode INVALID.

Los objetivos anteriormente mencionados se ven re�ejados en las siguientes publica-
ciones:

(i) El trabajo publicado en SAS'15 [22] presenta un análisis MHP con sincronización
interprocedimental para lenguajes basados en objetos concurrentes. En él se extiende
el análisis básico de MHP descrito en [19] para permitir la sincronización de una tarea
en un entorno distinto al que la generó, es decir, una tarea generada por otra puede
ser sincronizada (esperada) dentro de otra tarea distinta.

(ii) El trabajo presentado en ATVA'17 [23] presenta un análisis de MHP para programas
asíncronos que utilizan variables futuras como mecanismo de sincronización. Este
análisis es capaz de inferir la relación MHP existente entre variables futuras devueltas
por tareas asíncronas. Al igual que el análisis anterior, extiende el análisis básico de
MHP desarrollado en [19].

(iii) La publicación en ATVA'18 [24] presenta el framework EthIR para poder aplicar
análisis de alto nivel sobre el código de bytes de Ethereum. EthIR decompila el
bytecode de Ethereum en una representación intermedia de alto nivel basada en
reglas. Esta representación reconstruye el �ujo de control y de datos del bytecode a
partir de una codi�cación de bajo nivel.

(iv) La publicación en ISSTA'19 [17] presenta SAFEVM, un veri�cador de contratos
inteligentes de Ethereum que es capaz de hacer uso de tecnologías de veri�cación
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existentes para programas en C. SAFEVM veri�ca condiciones introducidas en el
código fuente original mediante aserciones, accesos a arrays y divisiones por 0.

(v) Por último, la publicación en VECoS'19 [25] presenta la herramienta Gastap, ca-
paz de inferir de forma automática sobreaproximaciones del gas que van a consumir
las funciones públicas del contrato inteligente durante su ejecución. Gastap im-
plementa un análisis estático que in�ere cotas superiores sobre el consumo de gas
parametrizadas en función del tamaño de los argumentos de las funciones del con-
trato, del estado del contrato, o de datos del blockchain.

Finalmente, todos los análisis y técnicas desarrolladas son accesibles a través de inter-
faces web.
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Abstract

Title: Static Analysis of Concurrent and Distributed Systems: Concurrent Objects and
Ethereum Bytecode.

Nowadays concurrency and distribution have become a fundamental part in the soft-
ware development process. The Internet and the more extended use of multicore processors
have in�uenced the type of the applications which are being developed. This has lead to
the creation of several concurrency models. In particular, a concurrency model that is
gaining popularity is the actor model, the basis for concurrent objects. In this model,
the objects (actors) are the concurrent units. Each object has its own processor and a
local state, and the communication between them is carried out using message passing.
In response to receiving a message, an actor can update its local state, send messages or
create new objects.

Developing correct concurrent programs is known to be harder than writing sequential
ones because of inherent aspects of concurrency such as data races or deadlocks. To ensure
the correct behavior of concurrent programs, static analyses and veri�cation techniques
have been developed for the diverse existent concurrency models.

The May-Happen-in-Parallel (MHP) analysis is a static analysis that infers pairs of
program points that may execute in parallel across the di�erent distributed components.
In the actor model, the analysis uses the information from those program points where
asynchronous calls to methods are made (i.e., the points where new tasks are spawned),
and the synchronization primitives (i.e., the points where the tasks are awaited). This
information has been proven to be essential to infer both safety properties (deadlock
freedom) and liveness properties (termination and resource consumption) of asynchronous
programs.

Other aspects that have in�uenced the progress of distributed systems are the growth
of technologies and platforms based on blockchain and consensus protocols. These techno-
logical advances have allowed the development of decentralized platforms such us Bitcoin
and Ethereum with their respective cryptocurrencies: Bitcoin and Ether. In addition,
thanks to the smart contracts, the applications of these blockchain-based technologies are
increasing.

Smart contracts are computing programs that contain the terms of a real contract and
are able to react automatically to the various events speci�ed on them. The contracts can
be written by any user and, therefore, are prone to programming errors. These errors may
abort the execution, which cause an economical cost to revert the state of each node of
the system. Thus, analysis and veri�cation techniques urge to ensure the correct behavior
of smart contracts.
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Within this framework, the main objectives achieved by this thesis are:

• Improving the existing MHP analyses. There are numerous MHP analyses developed
for several languages and concurrency models. In particular, this thesis bases on the
MHP analysis developed for the ABS language [61], a language based on the actor
model and proposes improvements on the analysis to enhance its scalability and
accuracy. It also studies how this analysis can be combined with others to increase
its precision as well as its applicability to smart contracts.

• Developing an intermediate representation for Ethereum bytecode. This representa-
tion allows applying existent high level analyses to infer properties over the bytecode.

• Developing analyses to study vulnerabilities over Ethereum smart contracts. Spe-
cially, we have investigated vulnerabilities related to the gas consumption associated
with the execution of smart contracts and those related to the execution of the
bytecode instruction INVALID.

The objectives mentioned above are re�ected in the following publications:

(i) The paper published at SAS'15 [22] presents an MHP analysis with inter-procedural
synchronization for languages based on concurrent objects. This work extends the
basic MHP analysis introduced in [19] to allow for the synchronization of a task in
a distinct scope from the one where it was created, i.e., a task spawned by one task
can be awaited within a di�erent task.

(ii) The paper published at ATVA'17 [23] presents an MHP analysis for asynchronous
programs that use future variables as synchronization mechanism. This analysis
is able to infer the MHP relations that involve future variables that are returned
by asynchronous tasks. As the previous analysis, it is based on the basic analysis
presented in [19].

(iii) The paper published at ATVA'18 [24] presents the tool EthIR which decompiles
the Ethereum bytecode into a high-level rule-based intermediate representation. This
representation reconstructs the control and data �ow of the bytecode from a low-level
codi�cation.

(iv) The paper published at ISSTA'19 [17] presents SAFEVM, a veri�er of Ethereum
smart contracts that makes use of state-of-the art veri�cation engines for C programs.
SAFEVM is able to verify conditions introduced in the original source code via
assertions, array accesses and divisions by 0.

(v) Finally, the paper published at VECoS'19 [25] presents Gastap, a tool that is able
to infer automatically overapproximations of the gas that a public function of a
smart contract is going to consume during its execution. Gastap implements a
static analysis that infers gas upper bounds parameterized in terms of the size of the
arguments of the functions of the contract, the state of the contract or blockchain
data.

Finally, all analyses and techniques developed are available online using a web interface.
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Chapter 1

Introduction

1.1 The Actor Concurrency Model

The actor model [13] is a concurrent programming model that has been gaining popularity
and is used by languages such as ABS, Erlang or Scala. A program based on this model
will de�ne a number of actors, which represent the computing units. Each actor has its
own local state and thread of control and communicates with other actors by sending
messages asynchronously. Each actor enqueues the pending messages that has received
and at each step in the computation of an actor system, an actor is scheduled to process
one of its pending messages.

Concurrent objects allow implementing actor systems in an object-oriented style of
programming. The model considers the objects as actors, which are the concurrency
units, with their own dedicated processor. The communication process is modeled with
asynchronous calls (tasks) to methods of the same or di�erent object. An intrinsic feature
of this model is that the scheduling is cooperative (or non-preemptive), i.e., switching
between tasks of the same object happens only at speci�c synchronization program points
during its execution, which are explicit in the source code. This contrasts with other
concurrency models such as the P-thread model used by Java, where the user does not
have any control over the threads that are been executed.

The concurrent objects model uses future variables [48, 44] to synchronize the execution
of the tasks. A method call m on some parameters ȳ, written as x=o!m(ȳ), spawns an
asynchronous task on object o, and the future variable x allows synchronizing with the
termination of such task by means of the instruction await x?; which checks if method m has
�nished its execution and releases the processor of the current task, allowing other available
task to take it. A future variable can be awaited inside the same task that spawned the
method which the future variable is bound to (intra-procedural synchronization) or the
task bound to the future variable can be awaited in a di�erent task to the one that spawned
it (inter-procedural synchronization). Future variables are available in most concurrent
languages: Java, Scala and Python allow creating pools of threads. The users �x the set of
the pool indicating how many threads it will contain. They can submit tasks to the pool,
which are executed when a thread of the pool is idle, and may return future variables to
synchronize with the tasks termination. The pool has an internal queue which holds the
extra tasks in case that there are more tasks submitted to the pool than threads created.
C++ includes the components async, future and promise in its standard thread library,
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Figure 1.1: Partial data-�ow graph with a deadlock cycle.

which allow programmers to create tasks (instead of threads) and return future variables
in the same way as we do. The users can create tasks using the async instruction, which
receives the name of the method to execute and its arguments or a lambda function. These
tasks return future variables that allow the users synchronize with the result of the tasks
via the get statement, which blocks the execution until the result is available. The promise
objects are related to the future objects because they share the data. The promise objects
are used to set the value of their futures inside tasks.

MHP is a fundamental analysis to prove both liveness and safety properties of con-
current programs. The analysis over-approximates which are the pairs of program points
whose execution might happen in parallel in an (concurrent) interleaved way within one
processor or in parallel across di�erent processors. In this fragment of code x=o!m(ȳ);...;

await x?; the execution of the instructions of the asynchronous task m may happen in par-
allel with the instructions between the asynchronous call and the await. However, due to
the await instruction, the MHP analysis is able to ensure that they will not run in parallel
with the instructions after the await. This piece of information can be used to prove more
complex safety and liveness properties:

• in [49], MHP pairs are used to discard unfeasible deadlock cycles. Figure 1.1 contains
a possible deadlock cycle showed with bold arrows in the graph that involves two
concurrent objects A and B. The execution starts from a main block by creating the
two concurrent objects that make an asynchronous call to f and m respectively. The
call to f in object A spawns a new task n on object B and gets blocked waiting
for its termination. The task m on object B, that is running in parallel with f,
proceeds in the same way. It spawns task g on object A and waits until it �nishes
its execution. Thus, if the MHP analysis infers that tasks n and g cannot run in
parallel, the deadlock cycle in Figure 1.1 represents an unfeasible one and has to be
discarded.

• in [20], the use of MHP pairs allows proving termination and inferring the resource
consumption of loops with concurrent interleavings. As a simple example, consider
a task p that contains as unique instruction y=−1, where y is a global variable. The
following loop y=1; while(i>0){i=i−y;} contained in a task r might not terminate if
p runs in parallel with it, since p can modify y to a negative value and the loop
counter in r will continue increasing. However, if the MHP analysis can guarantee
that p will not run in parallel with r, the program terminates and we can infer
resource-boundedness for the loop.
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1.2. ETHEREUM SMART CONTRACTS

1.2 Ethereum Smart Contracts

Ethereum [95] is one of the most popular blockchain based technologies. It improves the
blockchain platform of Bitcoin [78] adding more functionalities to it. The blockchain of
Bitcoin only stores information about the transaction executed. However, the blockchain
of Ethereum is able to keep not only information about the transactions, but also data
structures and objects. Ethereum adds to its blockchain platform a Turing-complete
virtual machine, the Ethereum Virtual Machine (EVM) and hence, it is able to execute
programs (known as smart contracts). Smart contracts are programs that contain the
terms of a real contract and are able to react automatically to events speci�ed on them.
Typical applications of smart contracts involve implementations of multi-party accounting,
voting systems and games with reward distributions. There are several languages to write
them as Vyper [6], Serpent [4] or Bamboo [1] although Solidity [5] is the most popular one.
Solidity [5] is an object-oriented, high-level language. It is statically typed and supports
multiple inheritance, libraries and user-de�ned types.

The code of a smart contract is compiled into EVM bytecode, which is deployed and
stored in the blockchain. The EVM bytecode is a stack-based language that contains a small
set of primitives and instructions that allow computing arithmetic and logic operations,
calling other contracts, accessing the global blockchain state, initiating sub-transactions
or creating new contracts among others. EVM has three di�erent allocations to store items:
(a) the storage is where the state variables (global variables) of the contract reside, is
persistent to external function calls and each contract has its own storage; (b) the memory
is a volatile storage used to keep temporary values and local to each transaction, i.e, each
transaction starts with an empty memory; (c) the stack is used to compute operations
and can only keep a limited amount of elements.

EVM provides a compilation target for the di�erent high-level languages mentioned
above. In addition, analyzing the bytecode rather than the source code of a smart contract
could be necessary because (i) the blockchain only stores the bytecode of the contracts (it
contains the source code for less than 1% of the contracts that it holds [52]); (ii) there is
information needed by analyzers that is only available at the bytecode level such as these
related to gas consumption or veri�cation purposes; (iii) to avoid that the analyses get
a�ected by optimizations of the compiler. However, the di�erences between EVM bytecode
and the bytecode of other high-level languages like Java make its analysis more challenging:

• Although the source code is typed, EVM bytecode is an untyped language.

• There is no notion of method or data structure. An EVM bytecode can be seen as
one function and calls between methods of the contract are translated into jumps
between di�erent addresses of the bytecode.

• The jump addresses are not known statically. When a jump instruction is executed
it takes the destination address from the top of the stack.

• The size of the stack is not �xed. A program point of the bytecode can be reached
with di�erent sizes of the stack due to several calling contexts, i.e, a function call
executed in di�erent program points of the contract may be translated into jumps
to the same code address (the starting address of the function called) that can be
reached with a di�erent number of items in the stack.

5



CHAPTER 1. INTRODUCTION

Once a smart contract is deployed, it can be invoked by parties involved in the protocol.
The execution of a transaction includes calls to methods of the contract. The transaction
is replicated across all the system. To maintain its consistency, Ethereum uses the notion
of gas, a monetary value in Ether (the cryptocurrency of Ethereum), that measures the
amount of computational resources that a transaction needs to be executed. Computations
that requiremore computational or storage resources, cost more gas than those that require
fewer resources. The gas consumption of each bytecode instruction is speci�ed in [95] and
is independent of the platform where the transactions are executed. The execution of a
transaction using the same context always costs the same amount of gas. Gas is used to
avoid potential denial-of-service attacks on the system. When a transaction is executed, a
node pays for the cost of executing it using Ether. Thus, if the amount of gas is insu�cient
to execute the transaction, it will be aborted. It also disincentives consuming unnecessary
storage as it is more expensive than the memory.

Note that smart contracts are inmutable once they are deployed in the blockchain, i.e,
their behavior can not be modi�ed. Thus, it is of utmost importance to have tools that
allow the developers to analyze and test the contracts before they are deployed.

1.3 Smart Contracts as Actors

Smart contracts behave as concurrent objects. Like concurrent objects, they have its own
mutable state, represented by state variables and the blockchain data, and public methods
that are executed atomically. A contract can be accessed by accounts or addresses that
belong to users or contracts. As mentioned above, the execution of a transaction consists
in executing a concurrent call that runs a corresponding method of the smart contract
and is able to modify the contract state. The execution of the methods involved in
the transaction in principle is atomic. However, the atomicity can be broken using the
�call� primitive (as we will discuss later). As regards the scheduling of transactions, it is
cooperative (as explained in Section 1.1). This implies that the order in which they are
executed is not known and can lead to di�erent outcomes.

Figure 1.2 shows to the left a fragment of the EthereumPot [7] smart contract written
in Solidity and to the right the implementation using the concurrent objects language
ABS [61]. EthereumPot implements a simple lottery. During a game, players call a method
joinPot to buy lottery tickets; each player's address is appended to an array addresses

of current players, and the number of tickets is appended to an array slots, both having
variable length. After some time has elapsed, anyone can call rewardWinner which calls the
Oraclize service to obtain a random number for the winning ticket. If all goes according
to plan, the Oraclize service then responds by calling the __callback method with this
random number and the authenticity proof as arguments. A new instance of the game is
then started, and the winner is allowed to withdraw the balance using a withdraw method.

Note that the di�erences between the Solidity and ABS programs mainly are syntactic:

• Contracts are concurrent objects (Line 1 and Line 26 in Figure 1.2).
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1 contract EthereumPot is usingOraclize{
2 address[ ] public addresses;
3 address public winnerAddress;
4 uint[ ] public slots ;
5 · · ·
6 function __callback(bytes32 _queryId,· · ·)
7 oraclize_randomDS_proofVerify(_queryId,· · ·){
8 if (msg.sender != oraclize_cbAddress()) throw;
9 · · ·
10 winnerAddress = �ndWinner(rnd_nmbr);
11 amount = this.balance ∗ 98 / 100 ;
12 winnerAnnounced(winnerAddress, amount);
13 if (winnerAddress.send(amount)){
14 if (owner.send(this.balance)){
15 openPot();
16 }}
17 }
18 function �ndWinner(uint random) returns(address){
19 for(uint i = 0; i < slots .length; i++){
20 if (random <= slots[i]) {
21 return addresses[i ];
22 }}
23 }
24 · · ·
25 }

26 class EthereumPot{
27 Array<Address> addresses;
28 Address winnerAddress;
29 Array<Int> slots;
30 Oraclize o;
31 Address owner;
32 Int balance = 1000;
33 · · ·
34 Unit __callback(AddressI msg_sender){
35 Fut<Unit> x;
36 Fut<Address> y;
37 Fut<Bool> s;
38 x = o!oraclize_randomDS_proofVerify();
39 await x?;
40 y = o!oraclize_cbAddress();
41 await y?;
42 if (msg_sender != y.get) return;
43 · · ·
44 winnerAddress = �ndWinner(rnd_nmbr);
45 amount = balance ∗ 98 / 100 ;
46 winnerAnnounced(winnerAddress, amount);
47 s = winnerAddress!send(amount);
48 await s?;
49 if (s .get){
50 s = owner!send(balance)
51 await s?;
52 if (s .get){
53 openPot();
54 }}
55 }
56 Address �ndWinner(Int random){
57 for(Int i = 0; i < length(slots) ; i++){
58 if (random <= slots[i]){
59 return addresses[i ];
60 }}
61 }

Figure 1.2: Fragment of EthereumPot contract. Solidity implementation (left). Concurrent
objects implementation in ABS (right).

• Implicit parameters, mainly blockchain data and information about the transac-
tion such as the balance or the address of the sender of the transaction, of the
smart contracts are translated into explicit parameters of the functions that use
them (msg.sender on Line 8 is translated into the argument msg_sender of function
__callback at Line 34).

• The balance is translated into a �eld variable on the object (Line 11 and Line 32) in
ABS language.

• Accounts (Line 1, Line 3, Line 14) are concurrent objects (Line 30, Line 28, 31).

• Calls to methods of the same contract (Line 10 and Line 12) are translated into
synchronous calls (Line 44 and Line 46).

• Calls to methods of di�erent contracts (Line 8, Line 13 and Line 14) are translated
into asynchronous calls to methods of other object that is stored as a �eld variable
(Line 40, Line 47 and Line 50).

7
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• Returned values of external methods to the contract (Line 8, Line 13 and Line 14) are
translated into future variables. The future variables are awaited until the methods
bound to them �nish their execution in the await statement. After that, the value
can be accessed using the get instruction (Lines 40-42, Lines 47-49 and Lines 50-52).

Therefore, techniques and analyses developed for languages based on the actor model
can be adapted or applied directly on smart contracts. Interestingly, the MHP analysis
can be considered as a previous step to study reentrancy vulnerabilities on smart contracts.
Reentrancy vulnerabilities are a well-known type of security bug [27, 55] that may make
a contract lose all the funds that it owns. The cause of these bugs is related to the �call�
primitive. When you call a contract, you can transfer Ether to the account of the contract
or execute a public function of the contract. In particular, when you use the call instruction
without specifying a function, the fallback (an anonymous method) of the called contract
will be executed. Then, the fallback can invoke any function of the caller contract. If
it invokes the same function, it can create a chain of calls that will run until (i) all the
Ether of the contract is sent to the called contract (the one that executes the fallback),
(ii) the stack limit is reached or, (iii) the execution runs out-of-gas. Although these three
cases will throw an exception, the instruction call does not propagate it (call primitives
as call , send, delegatecall and staticcall return true or false depending on whether the
execution of the called method �nishes correctly or not). Hence, only the execution of the
last call is reverted and the called contract drains all the funds that the sender contract
has. This is the main logic of the DAO attack [74], one of the most popular attacks that
caused a contract to lose 60 million dollars in June 2016 [2]. Figure 1.3 shows a sample of
its behavior: mainly, the EasyDAO contract has a map of addresses and balances (Line 3)
and a function payout (Line 8) that checks if the balance bound to the account of the
caller contract is positive (Line 9). In this case, it transfers the corresponding amount of
Ether to this account with a call primitive (Line 10) and after that, updates the balance
of the account (Line 11). However, this sequence is not atomic due to the use of call .
Assume that a malicious user creates the Attacker contract. Once it is deployed, it puts
some Ether in EasyDAO using the function setBalance (Line 14). After that, Attacker calls
the function payout that transfers to Attacker all the balance that it owns. As the call
instruction does not specify any function, the fallback of the Attacker contract (Line 23) is
executed and calls payout (Line 24) which starts running. At that point, the balance has
not been updated yet so it transfers the speci�ed amount of Ether again, creating a loop
between these two calls until it gets all the Ether that the EasyDAO holds. Finally, when
the execution ends, Attacker can transfer all the Ether that has drained to a speci�c user
account.

If we view the smart contracts as concurrent objects, we can adapt existing tools to
reason and verify their behavior. The MHP analysis could be used to �nd concurrency
vulnerabilities on smart contracts. It could infer the MHP relations between contracts to
analyze which functions may interleave their execution or be adapted to build happens-
before relations together with a must-have-�nished [22] analysis that allows establishing
an order in the execution of the functions of the contracts [64]. The MHP analysis is used
also as part of other analyses that can be applied to smart contracts such as termination
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1 contract EasyDAO{
2 · · ·
3 mapping (address => uint) public balances;
4 · · ·
5 function getBalance(address account){
6 return balances[account];
7 }
8 function payout(uint amount){
9 if (balances[msg.sender]>0){
10 msg.sender.call .value(amount)();
11 balances[msg.sender]−=amount;
12 }
13 }

14 function setBalance(){
15 balances[msg.sender] += msg.value;
16 }
17 · · ·
18 }
19 contract Attacker{
20 · · ·
21 EasyDAO d = EasyDAO(· · ·);
22 · · ·
23 function (){
24 d.payout(dao.getBalance(this));
25 }
26 · · ·
27 }

Figure 1.3: Sample of the behavior of DAO contract.

analyses. Although the execution of a transaction always �nishes, an in�nite loop would
provoke the loss of all the Ether that the user has.

Although concurrency does not exist in smart contracts (and Ethereum), they may
behave as distributed systems due to the execution of callbacks. Informally, there is a
callback when two smart contracts interact in the following way: a function of the �rst
smart contract calls a function of the second one, and the function of the callee calls back
a function of the �rst object. Thus, the execution of a callback can modify the state of the
initial smart contract and break its modularity. The fragment of Solidity code of the smart
contract EthereumPot shown in Figure 1.2 contains a callback. The callback is executed
when a function of the Oraclize services is invoked.

It is di�cult to reason about distributed properties of smart contracts due to two
reasons: (i) a smart contract may have several di�erent clients, and (ii) the code of the
smart contract that calls the callback is not usually available. State-of-the-art techniques
try to prove that callbacks do not a�ect the modularity of the contract [64, 9, 55] instead
of reasoning about distributed aspects. To this end, the MHP analysis can only be used
to reason on the clients whose code is available, but would not be useful to infer the
e�ectively callback-free property of [64, 9, 55].

1.4 Contributions and Structure of the Thesis

This thesis is presented in �publication format�. These publications contain all the techni-
cal details and results obtained from the di�erent research works developed. All the papers
have been published in the proceedings of international conferences. In what follows, we
summarize the main contributions of the thesis.

1. Enhanced MHP Analyses. We present to the best of our knowledge the �rst MHP
analyses [22, 23] that captures MHP relations that involve tasks that are awaited in
an outer or inner scope from the scope in which they were created. This happens
when future variables are returned by the asynchronous tasks or when they are
passed to the asynchronous task as parameters respectively, as it can be performed
in all programming languages that have future variables. Our analyses are built on
top of an existing MHP analysis [21] that is not able to track information propagated
through future variables that are returned by tasks or passed as arguments to them.
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The original MHP analysis [21] involves two phases: (1) a local analysis which
consists in analyzing the instructions of the individual tasks to detect the tasks
that it spawns and awaits, and (2) a global analysis which propagates the local
information compositionally.

In this thesis we have enhanced the MHP analysis [21] to handle the synchronization
of future variables in inner [22] and outer [23] scopes from the scope in which they
were created:

• In [22], we develop a novel must-have-�nished (MHF) analysis which infers
inter-procedural dependencies among the tasks. Such dependencies allow us to
determine that, when a task �nishes, those that are awaited for on it must
have �nished as well. The analysis is based on using Boolean logic to represent
abstract states and simulate the corresponding operations. The local phase
needs to integrate the above MHF information to consider the inter-procedural
dependencies inferred. The global phase has to be the re�ned in order to elimi-
nate spurious MHP pairs which appear when inter-procedural dependencies are
not tracked.

• In [23], the local phase needs to be modi�ed to backpropagate the additional
inter-procedural relations that arise from the returned future variables. Back-
propagation is achieved by modifying the data-�ow of the analysis so that it
iterates to propagate the new dependencies. The global phase has to be modi-
�ed by re�ecting in the analysis graph the additional information provided by
the local phase.

2. The EthIR framework for smart contracts. In this thesis we also present a �rst
prototype of a decompiler [24] called EthIR, that creates an intermediate represen-
tation for Ethereum bytecode which we have later improved in [25]. It translates
the bytecode of the contract into a rule-based representation (RBR) that can be
injected to existing analyzers with minor changes to infer properties of the EVM. The
rule-based representation contains a set of rules that maintains the control-�ow and
data-�ow of the program. It uses explicit variables to represent the data stored in
the stack, state and local variables and blockchain data. It uses the Oyente tool
in order to generate a control-�ow graph (CFG) of the contract. We had to modify
the Oyente tool to capture all feasible execution paths and enrich the informa-
tion gathered in the CFG. The RBR is built translating each block of the CFG
into rules. The decompilation phase is enhanced in [25] making the CFG built by
Oyente complete. In particular, the goal of Oyente is to perform symbolic execu-
tion in order to detect bugs rather than to generate a complete CFG. We have had
to remove execution bounds of Oyente such as loop bound and depth bound and
use information about the path under analysis in order to build a complete CFG.

The RBR generated by EthIR is used by the two next analysis tools presented in
this thesis.

3. A Safety Analyzer for smart contracts. SAFEVM [17] is, to the best of our knowl-
edge, the �rst tool that uses existing veri�cation engines developed for C programs
to verify low-level EVM code. It takes as input a public function of a smart contract
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and the source code or the bytecode of the contract and transforms it into a C
program. Using C veri�cation engines, SAFEVM produces a veri�cation result for
guaranteeing the unreachability of the INVALID operations. The reachability of the
INVALID bytecode instruction means that the transaction analyzed aborts its exe-
cution reverting the state of the contract and not refunding the initial gas of the
transaction.

4. A Resource Analyzer for smart contracts. Finally, Gastap [25] is, to the best of
our knowledge, the �rst automatic gas analyzer for smart contracts. Gastap takes
as input a smart contract and automatically infers an upper bound on the gas
consumption for each of its public functions. The upper bounds that Gastap infers
are given in terms of the sizes of the input parameters of the functions, the contract
state and/or on blockchain data. It takes the RBR generated by EthIR, abstracts
it and infers size relations using an adaptation of the size analyzer of SACO [15]
that are used to compute the gas equations, which are solved by PUBS [16] to infer
closed-form gas bounds.

The remaining of this thesis is structured as follows. In Chapter 2 we �rst describe
an existing MHP analyses and in Section 2.1 and Section 2.2 we introduce the local and
global phases of our extensions with inter-procedural synchronization and returned future
variables respectively. In Chapter 3 we introduce how the RBR is built taking a CFG
as starting point. In Chapter 4 we describe the translation from the RBR of a smart
contract into a C program. In Chapter 5 we introduce the generation of size relations and
gas equations to infer gas upper-bounds improving the state-of-the art tools. In Chapter 6
we conclude and discuss future work. Finally Chapter 7 includes the papers that make
up this thesis where the technical parts of each chapter is explained in detail. The list of
papers included in the thesis in chronological order is the following:

• Elvira Albert, Samir Genaim and Pablo Gordillo. May-Happen-in-Parallel Anal-
ysis for Asynchronous Programs with Inter-Procedural Synchronization. In Static
Analysis - 22nd International Symposium, SAS 2015. Proceedings, volume 9291 of
Lecture Notes in Computer Science, pages 72-89. Springer, September 2015.

• Elvira Albert, Samir Genaim and Pablo Gordillo. May-Happen-in-Parallel Analysis
with Returned Futures. In 15th International Symposium on Automated Technology
for Veri�cation and Analysis, ATVA 2017. Proceedings, volume 10482 of Lecture
Notes in Computer Science, pages 42-58. Springer, October 2017.

• Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio and Ilya Sergey.
EthIR: A Framework for High-Level Analysis of Ethereum Bytecode. In 16th Inter-
national Symposium on Automated Technology for Veri�cation and Analysis, ATVA
2018. Proceedings, volume 11138 of Lecture Notes in Computer Science, pages 513-
520. Springer, October 2018.

• Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert
Rubio. SAFEVM: A Safety Veri�er for Ethereum Smart Contracts. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019. ACM, pages 386�389, July 2019.

11



CHAPTER 1. INTRODUCTION

• Elvira Albert, Pablo Gordillo, Albert Rubio, and Ilya Sergey. Running on Fumes:
Preventing Out-Of-Gas Vulnerabilities in Ethereum Smart Contracts using Static
Resource Analysis. In 13th International Conference on Veri�cation and Evaluation
of Computer and Communication Systems 2019, VECoS 2019. Proceedings, volume
11847 of Lecture Notes in Computer Science, pages 63-78. Springer, October 2019.
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Chapter 2

May-Happen-in-Parallel Analysis

This thesis extends the original MHP analysis of Albert et al. [21]. MHP analysis [21] is a
static analysis for languages based on concurrent objects [13] that over-approximates the
pairs of program points that can interleave their execution. As mentioned in Chapter 1,
the concurrent objects model uses a cooperative scheduler, i.e, the tasks are synchronized
at speci�c program points that are explicit in the code. The MHP analysis learns from the
future variables used in synchronization instructions when tasks are terminated, so that
the analysis can discard unfeasible MHP pairs. The analysis is carried out in two phases:

• Local phase: It considers the methods separately and infers information related to
the status (active, pending or �nished) of the tasks that are created locally in the
method under analysis for each of its program points. It does not take into account
transitive calls.

• Global phase: It composes the information inferred in the local phase in a MHP
graph where the transitive relations are re�ected. The analysis uses the graph to
infer the set of MHP pairs.

The original analysis [21] only supports intra-procedural synchronization, i.e, the tasks
must be awaited in the same scope in which they were created. In this thesis we enhance
the original MHP analysis in order to track inter-procedural synchronization arising from
(1) passing future variables as method parameters [22]; or (2) returning future variables
from one method to another [23]. Both analyses have been implemented in SACO [15],
a static analyzer for ABS [61] programs. The ABS language allows inter-procedural and
intra-procedural synchronization. SACO has a web interface and can be used online at
https://costa.fdi.ucm.es/saco/web.

2.1 MHP Analysis with Interprocedural Synchronization

In this section we present a MHP analysis with inter-prodecural synchronization [22],
which is based on incorporating a MHF set into the original analysis [21]. In Section 2.1.1
we describe the MHF analysis and the information that it provides, and in sections 2.1.2
and 2.1.3 we describe how we modify the two phases of the original analysis, and describe
the gain of precision with respect to the original MHP analysis [21] (see Sections 4 and 5
in [22] for technical details).
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Figure 2.1 shows a simple program that starts executing method main1. The skip

statement abstracts all instructions that do not a�ect to the concurrency of the program.
The call to f at program point 3 creates a task bound to future variable x. At program
point 5, method main1 calls g that receives the future variable x as parameter and is bound
to the future variable z. Task g is active until the program reaches program point 7 where
the task becomes �nished. Task g receives a future variable as parameter and gets blocked
at program point 16 until the task bound to the future variable passed as parameter to g

�nishes its execution. Thus, task f terminates its execution at program point 16.
The original MHP analysis infers that task g �nished its execution at program point 7

but it is not able to infer that at this program point task f has �nished too. Our goal is to
infer precise MHP information that describes, among others, the following representative
cases:

(1) any program point of g cannot run in parallel with program point 8, because at
program point 7 method main1 awaits for g to terminate;

(2) program point 11 cannot run in parallel with program point 8, since when waiting for
the termination of g at program point 7 we know that f must-have-�nished as well due
to the dependency relation that arises when main1 implicitly waits for the termination
of f; and

(3) program point 11 cannot run in parallel with program point 17, because f must-have-
�nished due to the synchronization on the local future variable w at program point 16
that refers to future variable x of main1.

2.1.1 Must-Have-Finished Analysis

The must-have-�nished (MHF) analysis captures inter-method synchronization and uses
it to improve the local and the global phases of the MHP analysis. For instance, this
analysis will infer that when reaching program point 17 (L17 for short) in Figure 2.1, it is
guaranteed that whatever task bound to w has �nished already, and that when reaching
program point 8, it is guaranteed that whatever tasks bound to x and z have �nished
already.

MHF analysis computes, for each program point ` of the program, a set of �nished
future variables, i.e., whenever ` is reached those variables are either not bound to any

1 main1() {
2 skip ;
3 x=o1!f();
4 skip ;
5 z=o2!g(x);
6 skip ;
7 await z?;
8 skip ;
9 }

10 f () {
11 skip ;
12 }
13

14 g(w) {
15 skip ;
16 await w?;
17 skip ;
18 }

Figure 2.1: Example for MHP analysis with inter-procedural synchronization.
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task (i.e., have value ⊥) or their corresponding tasks are guaranteed to have terminated.
We refer to such sets as MHF sets.

Example 2.1. The MHF sets for the program points of Figure 2.1 are:

L2: {x,z}
L3: {x,z}
L4: {z}
L5: {z}
L6: {}
L7: {}
L8: {x,z}

L9 : {x,z}
L11: {}
L12: {}
L15: {}
L16: {}
L17: {w}
L18: {w}

At program points that correspond to method entries, all local variables (but not the pa-
rameters) are �nished since they point to no task. For g: at program point 15 and program
point 16 no task is guaranteed to have �nished, because the task bound to w might be still
executing; at program point 17 and program point 18, since we passed through await w?
already, it is guaranteed that w is �nished. For main1: at program point 8 and program
point 9 both z and x are �nished. Note that z is �nished due to await z?, and x is �nished
due to the implicit dependency between the termination of x and z.

MHF analysis over-approximates the MHF set for each program point. It uses Boolean
formulas to represent MHF states, since their models naturally represent MHF sets, and,
moreover, Boolean connectives to model the abstract execution of the di�erent instruc-
tions. An MHF state for the program points of a method m is a propositional formula.
The set of all models of this propositional formula coincide with the MHF sets of method
m. The execution of the di�erent instructions can be modeled with Boolean formulas.
Given a program point, a MHF state and a instruction to execute, we compute a new
MHF state that represents the e�ect of executing the instruction. The procedure builds
a set of data-�ow equations whose solutions associate with each program point a MHF
state that over-approximates the real one.

2.1.2 Local MHP

The local MHP analysis (LMHP) considers each method m separately, and for each pro-
gram point ` it infers an LMHP state that describes the tasks that might be executing
when reaching ` (considering only tasks invoked in m). An LMHP state Ψ is a multiset
of MHP atoms, where each atom represents a task and can be of the form:

(1) y:`′:T(m, act)(x̄), which represents an active task that might be at any of its program
points, including the exit one, and is bound to future variable y. Moreover, this task
is an instance of method m that was called at program point `′ (the calling site) with
future parameters x̄; or

(2) y:`′:T(m, fin)(x̄), which di�ers from the previous one in that the task can only be at
the exit program point, i.e., it is a �nished task.

In both cases, future variables y and x̄ can be ?, which is a special symbol indicating that
we have no information on the future variable.
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Intuitively, the MHP atoms of Ψ represent (local) tasks that are executing in parallel.
However, since a variable y cannot be bound to more than one task at the same time,
atoms bound to the same variable (it could happen in conditional statements) represent
mutually exclusive tasks, i.e., cannot be executing at the same time. The same holds for
atoms that use mutually exclusive calling sites `1 and `2 (i.e., there is no path from `1 to
`2 and vice versa) cannot be executing at the same time.

The use of multisets allows including the same atom several times to represent di�erent
instances of the same method. We let (a, i) ∈ Ψ indicate that a appears i times in Ψ.
Note that i can be ∞, which happens when the atom corresponds to a calling site inside
a loop, this guarantees convergence of the analysis. Note that the MHP atoms of the
original MHP analysis do not use the parameters x̄ and the calling site `′, since they do
not bene�t from such extra information.

Example 2.2. The following are LMHP states for some program points from Figure 2.1:

L2: {}
L3: {}
L4: {x:3:T(f, act)()}
L5: {x:3:T(f, act)()}
L6: {x:3:T(f, act)(),z:5:T(g, act)(x)}
L7: {x:3:T(f, act)(),z:5:T(g, act)(x)}
L8: {x:3:T(f, fin)(),z:5:T(g, fin)(x)}

L9 : {x:3:T(f, fin)(),z:5:T(g, fin)(x)}
L11: {}
L12: {}
L15: {}
L16: {}
L17: {}
L18: {}

Let us explain some of the above LMHP states. The state at L6 includes x:3:T(f, act)()
and z:5:T(g, act)(x) for the active tasks invoked at L3 and L5.

The LMHP states are inferred by a data-�ow analysis which is de�ned as a solution
of a set of LMHP constraints obtained by applying a transfer function to the instructions.
Recall that the role of the transfer function in a data-�ow analysis is to abstractly exe-
cute the di�erent instructions, i.e., transforming one LMHP state to another. The main
di�erence w.r.t. the original MHP analysis of [21] is the treatment of await z?: while we
use an MHF set computed using the inter-procedural MHF analysis of Section 2.1.1 to
modify the state of all the tasks that have �nished their execution when the task bound
to z ends, the original MHP analysis only changes the status of the task bound to future
variable z, which is obtained syntactically from the instruction. Our LMHP analysis, as
in the original MHP analysis, is de�ned as a solution of a set of LMHP constraints.

2.1.3 Global MHP

The results of the LMHP analysis are used to construct an MHP graph, from which we
can compute the desired set of MHP pairs. The construction is exactly as in the original
MHP analysis except that we carry the new information in the MHP atoms. However,
the process of extracting the MHP pairs from such graphs will be modi�ed.

In what follows, we use y:`:T(m,X)(x̄) to refer to an MHP atom without specifying
if it corresponds to an active or �nished task, i.e., the symbol T(m,X) can be matched
to T(m, act) or T(m, fin). We let ppoints(m) and ppoints(P ) be the set of program
points of method m and program P respectively. As in the original MHP analysis, the
nodes of the MHP graph consist of two method nodes T(m, act) and T(m, fin) for each
method m, and a program point node ` for each ` ∈ ppoints(P ). Edges from T(m, act) to
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Gmain1

Figure 2.2: MHP graph Gmain1
corresponds to analyzing main1.

each ` ∈ ppoints(m) indicate that when m is active, it can be executing at any program
point, including the exit, but only one. An edge from T(m, fin) to `m indicates that
when m is �nished it can be only at its exit program point. The out-going edges from a
program point node ` re�ect the atoms of the corresponding LMHP state Ψ` as follows:
if (y:`′:T(m,X)(x̄), i) ∈ Ψ`, then there is an edge from node ` to node T(m,X) and it
is labeled with i:y:`′:x̄. These edges simply indicate which tasks might be executing in
parallel when reaching `, exactly as the LMHP set does.

Example 2.3. The MHP graph Gmain1
Figure 2.2 corresponds to method main1, analyzed

together with its reachable methods. For simplicity, the graph includes only some program
points of interest. Note that the out-going edges of program point nodes coincide with the
LMHP states of Example 2.2.

The procedure of the original MHP analysis for extracting the MHP pairs from the
(modi�ed) MHP graph of a program P , denoted GP , is based on the following principle:
(`1, `2) is an MHP pair induced by GP i�

(i) `1 ; `2 ∈ GP or `2 ; `1 ∈ GP ; or

(ii) there is a program point node `3 and paths `3 ; `1 ∈ GP and `3 ; `2 ∈ GP , such that
the �rst edges of these paths are di�erent and they do not correspond to mutually
exclusive MHP atoms, i.e., they use di�erent future variables and do not correspond
to mutually exclusive calling sites (see Section 2.1.2). Edges with multiplicity i > 1
represent i di�erent edges.

The �rst (resp. second) case is called direct (resp. indirect) MHP.

Example 2.4. Let us explain some of the MHP pairs induced by Gmain1
of Figure 2.2.

Since 6 ; 11 and 6 ; 15, we conclude that (6,11) and (6,15) are direct MHP pairs.
Moreover, since these paths originate in the same node 6, and the �rst edges use di�erent
future variables, we conclude that (11,15) is an indirect MHP pair. To see the improvement
w.r.t. to the original MHP analysis note that node 8 does not have an edge to T(f, act),
since our MHF analysis infers that x is �nished at L8. The original MHP analysis would
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have an edge to T(f, act) instead of T(f, fin), and thus it produces spurious pairs such as
(8,11).

Now consider nodes 11 and 17, and note that we have 6 ; 11 and 6 ; 17, and
moreover these paths use di�erent future variables. Thus, we conclude that (11,17) is an
indirect MHP pair. However, carefully looking at the program we can see that this is a
spurious pair, because x (to which task f is bound) is passed to method g, as parameter w,
and w is guaranteed to �nish when executing await w? at L16.

The spurious pairs in the above example show that even if we used our improved
LMHP analysis when constructing the MHP graph, using the procedure of the original
MHP analysis to extract MHP pairs might produce spurious pairs. Next we handle this
imprecision, by modifying the process of extracting the MHP pairs to have an extra
condition to eliminate such spurious MHP pairs. This condition is based on identifying,
for a given path T(m,X) ; ` in the graph of a program under analysis, which of the
parameters of m are guaranteed to �nish before reaching `, and thus, any task that is
passed to m in those parameters cannot execute in parallel with `.

Intuitively, a future variable passed as parameter to a task is not alive along a path p
if the MHF analysis infers that the task bound to this future variable is �nished at some
point in p. Thus, any task bound to the future variable cannot execute in parallel with
the corresponding program point.

Example 2.5. Consider p ≡ T(g, act) ; 17, then w is not alive along p since it is a path
that consists of a single edge and w is in the MHF set associated with L17.

The notion of �not alive along a path� can be used to eliminate spurious MHP pairs
as follows.

Example 2.6. We reconsider the spurious indirect MHP pairs of Ex. 2.4. Consider �rst
(11,17), which originates from

p1 ≡ 6
1:x:3: []−→ T(f, act) ; 11 and p2 ≡ 6

1:z:5:[x]−→ T(g, act) ; 17.

We have that x is in the MHF set at L17, thus p1 and p2 are mutually exclusive and we
eliminate this pair.

1817151211 9 8 6 4
4 • •
6 • • • • •
8 • • ×
9 • • ×
11× × ◦
12 ◦ ◦
15
17
18

Figure 2.3: MHP pairs from main1
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Example 2.7. In Figure 2.3 all MHP pairs from method main1 are shown. In the table
we can distinguish between di�erent types of pairs. If the cell that connects two nodes is
marked with •, it indicates that the pair is a direct MHP. Cells marked with ◦ indicate that
the pair is an indirect MHP. Cells marked with ×represent spurious pairs that the original
MHP analysis will infer.

2.2 MHP Analysis with Returned Futures

In this section we present a MHP analysis with returned future variables [23], which
modi�es the local and global phases of the original analysis [21] to track the returned
futures and backpropagates the new relations between the tasks. These modi�cations
are described in Sections 2.2.1 and 2.2.2 respectively (see Section 4 in [23] for technical
details).

1 main2() {
2 x=o1!g();
3 skip ;
4 await x?;
5 z = x.get;
6 await z?;
7 skip ;
8 }

9 g() {
10 skip ;
11 y = o2!f();
12 w = o3!q();
13 skip ;
14 return y;
15 }

16 f () {
17 skip ;
18 }
19

20

21 q() {
22 skip ;
23 }

Figure 2.4: Example for MHP analysis with returned futures.

Figure 2.4 shows a simple program that has four methods main2, g, f and q. As
before, the skip statement abstracts all instructions that do not a�ect the concurrency of
the program. Method g spawns task f which is bound to future variable y at program
point 11. At program point 12, g spawns a new task q, which is running in parallel with f

in a di�erent object. Finally, it returns the future variable y at program point 14. Method
main2 is the starting one. It calls g asynchronously at program point 2 and gets blocked
at program point 4 until g �nishes its execution. At program point 5, the task bound to
the future variable returned by the method bound to x is assigned to future z, i.e, task f,
that is the one returned by g, is bound to the new future z. Finally, main2 gets blocked
again at program point 6 waiting for the termination of f.

The original MHP analysis infers that task g �nishes its execution at program point 4
but it is not able to infer that the task bound to future variable z at program point 5 is f

and that f �nishes its execution at program point 6. Thus, it infers that program point 6
of main2 can run in parallel with program point 17 of f though f has already terminated
its execution.

2.2.1 Local MHP

As explained in Section 2.1.2, the local analysis is based on a transfer function. In this case,
it is similar to the one presented on [21] except for the case of get statement which is novel
to our extension. The LMHP atoms remain the same as those explained in Section 2.1.2.
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Example 2.8. In Figure 2.4 we have a method g with an instruction �return x�, and at
the exit program point of g we have a LMHP state

Ψ0 = {y:T(f, act), w:T(q, act)},

which means that at the exit program point of g we have two active instances of methods f

and q, bound to future variables y and w respectively. This means that g returns a future
variable that is bound to an active instance of f. Now at program point 5, we have a state

Ψ1 = {x:T(g, fin)},

which means that before reaching the corresponding program point, we have invoked g and
waited for it to �nish (via future variable x). Let us now execute the instruction z = x.get
in the context of Ψ1 and generate a new LMHP state Ψ2. Since x is bound to a task that
is an instance of g, Ψ2 should include an atom representing that z is bound to an active
task which is an instance of f (which is returned by g via a future variable). Having this
information in Ψ2 allows us to mark f as �nished when executing await z? later. We do
this as follows:

• any MHP atom from Ψ1 that does not involve z or x is copied to Ψ2.

• any MHP atom from Ψ1 that involves z is copied to Ψ2 but with z renamed to ?
because z is overwritten.

• we transfer the atom x:T(f, act) from Ψ0 to Ψ2, by adding z:T(f, act) to Ψ2 since
now the corresponding task is bound to z as well.

• the atom x:T(g, fin) must be copied to Ψ2 as well, but we �rst rewrite it to x:T(g, fin)
(in Ψ2) to indicate that we have incorporated the information from the exit program
point of g already. This is important because after executing the get, we will have
two instances of f in Ψ0 and Ψ2 that refer to the same task, and we want to avoid
considering them as two di�erent ones in the global phase that we will describe in
the next section.

This results in
Ψ2 = {x:T(g, fin), z:T(f, act)}.

To summarize the above example, the local phase of our analysis extends that of [21] in
two ways: it introduces a new kind of LMHP atom; and it has to treat the get instruction
in a special way. Assume that method m is being analyzed. To incorporate this new
information to the transfer function, the analysis computes a set of MHP atoms at the
exit program point of method m, that are bound to a future variable that is returned by
method m.

Due to the new case added, we need to modify the work-�ow of the corresponding data-
�ow analysis in order to backpropagate the information learned from the returned future
variables. This is because the LMHP analysis of one method depends on the LMHP states
of other methods. This means that a method cannot be analyzed independently from the
others as in [21, 22], but rather we have to iterate over their analysis results, in the reverse
topological order induced by the corresponding call graph, until their corresponding results
stabilize.
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Example 2.9. The left column of the table below shows the LMHP states resulting from
applying once the transfer function of the local analysis to selected program points, the
right column shows the result after one iteration of the transfer function over the results
in the left column:

L2 : {}
L3 : {x:T(g, act)}
L4 : {x:T(g, act)}
L5 : {x:T(g, fin)}
L6 : τ(z = x.get, L5)
L7 : τ(await z?, L6)
L8 : L7
L11: {}
L12: {y:T(f, act)}
L13: {y:T(f, act), w:T(q, act)}
L14: {y:T(f, act), w:T(q, act)}
L15: {y:T(f, act), w:T(q, act)}
L17: {}
L18: {}
L22: {}
L23: {}

L2 : {}
L3 : {x:T(g, act)}
L4 : {x:T(g, act)}
L5 : {x:T(g, fin)}
L6 : {x:T(g, fin), z:T(f, act)}
L7 : {x:T(g, fin), z:T(f, fin)}
L8 : {x:T(g, fin), z:T(f, fin)}
L11: {}
L12: {y:T(f, act)}
L13: {y:T(f, act), w:T(q, act)}
L14: {y:T(f, act), w:T(q, act)}
L15: {y:T(f, act), w:T(q, act)}
L17: {}
L18: {}
L22: {}
L23: {}

Let us explain some of the above LMHP states. In the left column, L4 corresponds to the
state when reaching program point L4, i.e., before executing the statement await x?. It
includes x:T(g, act) for the active task invoked at L2. The state L4 includes the �nished
task corresponding to the await instruction of the previous program point. L6 cannot be
solved, as we need the information from state L15, which has not been computed yet.
Something similar happens with the state L7, which cannot be calculated as the state L6
has not been totally computed. Atoms y:T(f, act) and w:T(q, act) appear in state L14 for
the active tasks invoked at L11 and L12.

In the right column, after one iteration, we observe that most states are not modi�ed
except for L6, L7 and L8. Now that L15 is computed, we can calculate the LMHP state
L6 adding the atom z:T(f, act) and updating the state of g. Having L6 calculated, L7 is
computed modifying the state of f to �nished.

2.2.2 Global MHP

In this section we describe how to use the LMHP information, inferred by the local phase,
in order to construct an MHP graph from which an over-approximation of the set of MHP
pairs can be extracted. The construction of the MHP graph is di�erent from the one of the
original MHP analysis [21] in that we need to introduce new kind of nodes to re�ect the
information carried by the new kind of MHP atom y:T(m, fin). However, the procedure
for computing the MHP pairs from the MHP graph is the same.

The MHP graph of a given program P is denoted by GP . We include the following
nodes to the ones explained in Section 2.1.3: (i) the node fin(m) to represent the new
MHP atom added to the local phase; (ii) each program point ` that is an exit program
point, of some method m, contributes a node ¯̀and (iii) each future variable contributes a
node `y. Note that nodes fin(m) and ¯̀ are particular to our extension and will be used,
as we will see later, to avoid duplicating tasks that are returned to some calling context.
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Figure 2.5: MHP graph Gmain2
corresponds to analyzing main2.

The edges of GP are constructed as in the original MHP analysis except for the new
nodes. There is an edge from fin(m) to the corresponding return node ¯̀, i.e., ` here
is the exit program point of m. In addition, if ` is an exit program point and y is not
a returned future we add an edge from node ¯̀ to node `y. Note that when ` is an exit
program point, the di�erence between node ` and ¯̀ is that the later ignores tasks that were
returned via future variables. As explained in the previous section, when a task returns a
future variable, the MHP atom that represents the state of the task returned will appear
at least in two LMHP states. Thanks to the new nodes and edges in the graph, we avoid
to consider them as di�erent instances of the same method.

Example 2.10. Figure 2.5 shows the MHP graph for some program points of interest
for our running example. Note that the out-going edges of program point nodes in Gmain2

coincide with the LMHP states at these program points depicted in Example 2.9. Note that
we have two nodes 15 and 15 to represent the exit program point L15, connected to fin(g)
and fin(g). The edges that go out from 15 correspond to the atoms in L15. As L15 is the
exit program point of method g, we have to build an edge. This edge goes from 15 to 15w
and from there to act(q) and corresponds to the atom in L15 whose future variable is not
returned by g.

Given GP , using the same procedure as in the original MHP analysis, we say that two
program points `1, `2 may run in parallel if one of the following conditions hold:

1. there is a non-empty path from `1 to `2 or vice versa; or

2. there is a program point `3 and non-empty paths from `3 to `1 and from `3 to `2
such that the �rst edge is di�erent, or they share the �rst edge but it has weight
i > 1.
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23221817151312 8 6 5 3
3 • • • • • • •
5 • • • • •
6 • • • • •
8 • • • ×
12 • •
13 • • • •
15 • • • •
17 ◦ ◦ × ×
18 ◦ ◦ ×
22
23

Figure 2.6: MHP pairs from main2.

Example 2.11. Let us explain some of the MHP pairs induced by Gmain2
. (14,17) and

(14,22) are direct MHP pairs as we can �nd the paths 14 ; 17 and 14 ; 22 in Gmain2
.

In addition, as the �rst edge is di�erent, we can conclude that (17,22) is an indirect pair.
In contrast to the graph that would be obtained for the original analysis, (7,17) is not an
MHP pair.

Instead of it, we have the path 7 ; 18 which indicates that the task f is �nished.

Example 2.12. In Figure 2.6 the MHP pairs from method main2 of Figure 2.4 are shown.
In this table we can distinguish between di�erent types of pairs. If the cell that connects
two nodes is marked with •, it indicates that the pair is a direct MHP, if it is marked with
◦ indicates that the pair is an indirect MHP and if it is marked with × indicates that the
pair is spurious and would be inferred by the original MHP analysis if the new nodes are
not included.

2.3 Related Work

The closest approach to the original MHP analysis [21] is an analysis developed for X10
in [66, 12, 67, 85]. X10 uses an async-�nish concurrency model. The async construct
allows forking a process in a new thread and the �nish primitive waits until the execution
of all the tasks called in this scope �nish before the execution continues. Note that the
async-�nish model simpli�es the inference of the status of the task. Namely, it is easier
to infer the escaped tasks, i.e, those that are still running though the tasks that have
spawned them asynchronously �nished their execution, since the �nish construct ensures
that all methods called within its scope terminate before the execution continues to the
next instruction. [66] presents a MHP analysis speci�ed with a type system. They de�ne
a set of type rules to represent the program. The type inference is done in two steps. First
they rephrase the type inference problem as a constraint problem and afterwards they
solve the constraint system obtained using algorithms for iterative data-�ow analysis.
In [12], the authors propose a MHP analysis in two steps. First, it performs a Never-
Execute-in-Parallel (NEP) analysis (complement of MHP) to discard some pairs. Then,
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a Place-Equivalent analysis is performed to know if all instances of two statements are
guaranteed to execute at the same places. Finally, both analyses are combined to obtain
MHP information. To compute that, they use a program structure tree to represent each
procedure. In contrast, we use a graph that represents the whole program analyzed. [67]
improves the analysis presented in [66]. It presents a MHP analysis of a storeless model of
X10. The approach focuses on answering two closely related problems: the MHP decision
problem and the MHP computation problem. The �rst one will be used to answer the
second. To solve the �rst problem they use a reduction to constrained dynamic pushdown
networks (CDPNs). CDPN models collections of sequential pushdown processes running in
parallel. They give a translation from programs in X10 to CDPNs and the MHP decision
problem is solved by performing a reachability test. To solve the MHP computation
problem a type-based analysis that produces a set of candidate pairs is developed. The
type analysis problem is reformulated as a constraint solving problem. Once this set has
been created, the CDPN-based decision procedure is used for each of the candidate pairs in
order to remove those that cannot happen in parallel. [85] improves the analysis presented
in [12] by proposing an incremental MHP analysis based on the tree representation of the
program. It starts with a sequential version of the program, removing the concurrent
instructions. Afterwards, it re-introduces these elements in a particular order updating
the MHP pairs. The main contribution is that the analysis proposed avoids computing
the Never-Execute-in-Parallel analysis of [12]. Instead, the analysis computes the MHP
relation directly, gaining e�ciency.

An MHP analysis for Ada has been presented in [79], and extended later for Java
in [80]. These works have been superseded later by [68, 28, 37]. [79] proposes an MHP
analysis for Ada. Ada has a rendezvous concurrency model based on synchronous message
passing, which is very di�erent to the use of future variables. [80] presents a data �ow
analysis that uses a parallel execution graph (PEG). The PEG represents the control-�ow
graph of each thread created during the execution of the program with additional edges
at the synchronization program points. One of the limitations of [79, 80, 68] is that they
assume that the number of tasks/threads is bounded and known at compilation time.
[28] proposes a non-iterative analysis that uses an intra-procedural control-�ow graph to
represent the execution of each thread. In this work, Java programs are abstracted to an
abstract thread model which is then analyzed in two phases. First, it generates the MHP
graphs for each thread of the program. Afterwards, it computes a must-join relation and
builds a thread creation tree with this new information that contains the global information
of the program. A main di�erence is that our �rst phase infers local information for each
method, while that of [28] infers a thread-level MHP from which it is possible to know
which threads might globally run in parallel. In addition, unlike our local analysis, it does
not consider any synchronization between the threads in the �rst phase, but rather in the
second phase. In [37] an iterative analysis based on a model similar to the previous one
is proposed. In this case, they use a graph-based program representation over which they
de�ne a set of data �ow equations. Then, an iterative process is applied to these equations
to obtain the pairs that may run in parallel.

[46] considers a fork-join semantics and operates over code regions rather than indi-
vidual statements. This analysis uses a control �ow graph and a Happens-Before analysis
to infer the MHP information. It builds a control �ow graph to obtain the dependencies
between the di�erent threads. This graph is used to perform a Happens-Before analysis

24



2.3. RELATED WORK

obtaining thread-order properties, which are used to de�ne regions formed by statements
that share the same properties. Finally, the analysis constructs a region relation graph,
from which it infers the MHP pairs.

In [71, 69], an asynchronous semantics is de�ned for JavaScript programs. These works
formalize an asynchronous execution model to infer fundamental relationships between
asynchronous events of the program. They de�ned a priority promise which are promise
variables, similar to future variables, that have the same semantic of JavaScript promises
and are enriched with a priority value. They de�ned a happens-before relation to infer the
order in which the di�erent events are executed in a trace. In [71] the authors compute
event call-graphs that connect the call sites with the function declarations and include
the happens before relations. Event call-graphs enables discovering potential bugs of
the program such as unreachable functions or mismatches between asynchronous and
synchronous calls. [69] uses the happens-before relation to build a data-race detector. The
analysis de�nes two sets of rules and computes linking and causal contexts to represent the
relations between the promise variables and their synchronization and their continuation.
These contexts are represented using trees that are used to �nd the data-races.

[40] builds a time based model to infer race conditions in high performance systems.
The analysis proposed relies on a MHP analysis which is applied in a segment graph.
Instead of inferring the pairs of statements that may run in parallel, they suppose ini-
tially that all statements can happen in parallel with each other. Iteratively, the analysis
eliminates the spurious ones. [40] is extended in [36], using a model checker to solve the
MHP decision problem. First, the analysis de�nes an automaton for each behavior in
the system. Then, it creates the properties that are going to be processed by the model
checker. In addition, the analysis reduces the number of queries that the model checker
has to compute considering only those program points that a�ect the concurrency, as our
MHP analyses do.

Other analyses for more complex properties can greatly bene�t from the MHP pairs
that our MHP analyses infer. Several proposals for deadlock analysis [77, 49] rely on
the MHP pairs to discard unfeasible deadlocks when the instructions involved in a pos-
sible deadlock cycle cannot happen in parallel. In [20], the MHP analysis also plays a
fundamental role to increase the accuracy of termination and resource analysis.

All the analyses described before do not handle inter-procedural synchronization or
are imprecise when future variables or tasks identi�ers are passed as parameters to the
methods and awaited in an inner scope, or returned by methods and awaited in an outer
one.

Our solutions for the forward and backwards inference, described in Section 2.1 and
Section 2.2 respectively (formalized in [22] and [23] respectively), are technically di�erent,
but fully compatible. Essentially, they only have in common that both the local and global
analysis phases need to be changed. For the forward inference, the analysis includes a
separated must-have-�nished (MHF) pre-analysis that allows inferring, for each program
point, which tasks (both the tasks spawned locally and the passed as arguments) have
�nished their execution when reaching that program point.

In contrast, for the backwards inference, the local phase itself has to be extended to
propagate backwards the new relations created when a future variable is returned, which
requires changing the analysis �ow.

In both analyses, the creation of the graph needs to be modi�ed to re�ect the new
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information inferred by the respective local phases, but in each case is di�erent.
For the forward inference, the way in which the MHP pairs are inferred besides has to

be modi�ed as described in Section 2.1.2. However, both extensions are compatible, and
together provide a full treatment of future variables in the MHP analysis.
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Chapter 3

EthIR: A Framework for High-Level

Analysis of Ethereum Bytecode

Once a smart contract is deployed in the blockchain, its Ethereum bytecode (EVM) is
inmutable. Thus, it is fundamental to �nd security bugs and unwanted behaviors before
they are deployed. Several analysis tools have been developed for analyzing either the
original source code or the EVM bytecode of the contract. Analyzing the Solidity may
bene�t of the high-level representation of the code, as it has the explicit representation of
data structures. However it has much more limited applicability because most of the smart
contracts do not have their source code stored in the blockchain of Ethereum. Analyzing
EVM bytecode is a necessity when: (1) the source code is not available (e.g., the blockchain
only stores the bytecode), (2) the information to be gathered in the analysis is only visible
at the level of bytecode (e.g., gas consumption is speci�ed at the level of EVM instructions),
(3) the analysis results may be a�ected by optimizations performed by the compiler (thus
the analysis should be done ideally after compilation).

The purpose of decompilation, as for other bytecode languages [92], is to make explicit
in a higher-level representation the control �ow of the program (by means of rules which
indicate the continuation of the execution) and the data �ow (by means of explicit vari-
ables, which represent the data stored in the stack, in contract �elds, in local variables,
and in the blockchain), so that an analysis can have this information directly available.

This chapter presents EthIR [24, 25], a framework that generates an intermediate
representation for EVM bytecode. The intermediate representation allows us to analyze the
bytecode of a smart contract using a high-level representation instead of the low-level one
provided by the bytecode. This intermediate representation is formed by guarded rules
that maintain the data- and control-�ow of the original bytecode. The translation is done
in two main steps (see Section 2 in [24] and Sections 2.1 and 2.2 in [25] for technical
details):

1. EthIR takes a smart contract written in Solidity, EVM bytecode or disassembled code
and generates the control-�ow graph (CFG) of the contract. EthIR uses a modi�ed
version of tool Oyente [70, 9] to build the CFG.

2. EthIR translates the CFG into a Rule-based Representation (RBR). Each block of
the CFG corresponds to a set of rules depending on the type of the block (conditional
or unconditional). The rules may contain a guard to de�ne the conditions for their
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applicability. The RBR makes the stack explicit and it also has a representation of
the contract state variables, memory and blockchain data.

As Oyente's goal is symbolic execution for the sake of bug detection, rather than the
generation of a complete CFG, the method proposed in [24] returns an incomplete CFG.
In [25], we improve the generation of the CFG and modi�ed Oyente to avoid the source
of incompleteness.

EthIR is open-source, it is implemented in Python and is available at https://

github.com/costa-group/EthIR.

3.1 From EVM Bytecode to a Control-Flow Graph

Given some EVM code, the Oyente tool generates a set of blocks that store the information
needed to represent the CFG of such EVM code. The original version of Oyente does not
generate complete CFGs. In order to �x this issue, the following extensions have been
needed:

1. To recover the list of addresses for unconditional blocks with more than one possible
jump address (asOyente originally only kept the last processed one) due to di�erent
calling points.

2. To add more explicit information to the CFG: jump operations are decorated with
the jumping address, discovered by Oyente, and other operations such as SSTORE,
MSTORE, SLOAD or MLOAD are also decorated with the address they operate: the number
of state variable for operations on storage; and the memory location for operations
on memory if Oyente is able to discover it. These annotations cannot be generated
when the address is not statically known, (for instance, when we have an array access
inside a loop with a variable index). In such cases, we annotate the corresponding
instructions with �?�.

3. To remove the execution bound (as well as other checks that were only used for their
particular applications), and add information to the path under analysis. Namely,
every time a new JUMP command is found, we check if the jumping point is already
present in the path. In such case, an edge to that point is added and the exploration
of the trace is stopped. As a side e�ect, we not only produce a complete CFG,
but also avoid much useless exploration for our purposes which results in important
e�ciency gain.

As an example, Figure 3.1 shows the Solidity source code for a fragment of EthereumPot
contract explained in Section 1.3 (left), and the corresponding EVM disassembled code
(right). In Figure 3.2, part of the CFG associated to the __callback method is displayed.
The call from __callback to findWinner happens in block2369. Observe that, instead of
using a CALL opcode, there is a PUSH of the return address 0x0954 (2388) and a JUMP to
block1611 where the code of findWinner starts. The decorations mentioned in point (2)
above can be observed e.g., in block1619 or block1647, where SLOAD and MSTORE opcodes
are labeled, resp., with a 3, and with 0 and �?�.
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1 contract EthereumPot {
2 address[] public addresses;
3 address public winnerAddress;
4 uint[] public slots;
5 function __callback (bytes32 _queryId, string _result, bytes _proof)
6 oraclize_randomDS_proofVerify (_queryId, _result, _proof) {
7 if (msg.sender != oraclize_cbAddress()) throw;
8 random_number = uint(sha3(_result));
9 winnerAddress = findWinner(random_number);
10 amountWon = this.balance * 98 / 100 ;
11 winnerAnnounced(winnerAddress, amountWon);
12 if (winnerAddress.send(amountWon)) {
13 if (owner.send(this.balance)) {
14 openPot();
15 }
16 }
17 }
18

19 function findWinner (uint random) constant returns (address winner) {
20 for (uint i = 0; i < slots.length; i++) {
21 if (random <= slots[i]) {
22 return addresses[i];
23 }
24 }
25 }
26 // Other functions

27 }

28 · · ·
29 DUP1
30 PUSH1 => 0x00
31 SWAP1
32 POP
33 PUSH1 => 0x03
34 DUP1
35 SLOAD
36 SWAP1
37 · · ·
38 PUSH1 => 0x40
39 MLOAD
40 DUP1
41 SWAP2
42 SUB
43 SWAP1
44 SHA3
45 PUSH1 => 0x01
46 · · ·
47 JUMPDEST
48 MOD
49 ADD
50 PUSH1 => 0x0a
51 DUP2
52 SWAP1
53 SSTORE
54 POP
55 PUSH2 => 0

x0954
56 PUSH1 => 0x0a
57 SLOAD
58 PUSH2 => 0

x064b
59 JUMP
60 · · ·

Figure 3.1: Excerpt of Solidity code for EthereumPot contract (left), and fragment of EVM
code for function __callback (right).

Finally, when we have Solidity code available, we are able to retrieve the name of the
functions invoked from the hash codes. This allows us to statically know the continuation
block and analyze each public function independently.

3.2 From Control-Flow Graph to a Rule-based Representa-

tion

EthIR provides a Rule-Based Representation (RBR) for the CFG obtained. EthIR has
been implemented as a standalone tool to facilitate its integration into other tools in
the future. Intuitively, for each block in the CFG it generates a corresponding rule that
contains a high-level representation of all bytecode instructions in the block (e.g., load and
store operations are represented as assignments) and that has as parameters an explicit
representation of the stack, local, state, and blockchain variables. Conditional branching
in the CFG is represented by means of guards in the rules. The identi�ers given to the rules
�block_x or jump_x� use x, the PC of the �rst bytecode in the block being translated.
We distinguish among three cases: (1) if the last bytecode in the block is an unconditional
jump (JUMP), we generate a single rule, with an invocation to the continuation block,
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JUMPDEST
PUSH1 0x03
DUP1
SLOAD 3
SWAP1
POP
DUP2
LT
ISZERO
PUSH2 0x06d0
JUMPI

Block 1633

PUSH1 0x03
DUP2
DUP2
SLOAD 3
DUP2
LT
ISZERO
ISZERO
PUSH2 0x066f
JUMPI

JUMPDEST
SWAP1
PUSH1 0x00
MSTORE 0
PUSH1 0x20
PUSH1 0x00
SHA3
ADD
SLOAD ?
DUP4
GT
ISZERO
ISZERO
PUSH2 0x06c3
JUMPI

JUMPDEST
DUP1
DUP1
PUSH1 0x01
ADD
SWAP2
POP
POP
PUSH2 0x0653
JUMP

Block 1647

Block 1731

Block 1619
JUMPDEST
PUSH1 0x00
DUP1
PUSH1 0x00  
SWAP1
POP

Block 1611

Block 2369

Block 291

Block 1646

PUSH1 0x01
DUP2
·····
ISZERO
PUSH2 0x0691
JUMPI Block 1680

Block 1667

JUMPDEST    

Block 1744

JUMPDEST    
POP
SWAP2
SWAP1
POP
JUMP

Block 1745

JUMPDEST   
SWAP1
·····
POP
PUSH2 0x06d1
JUMP

Block 1681

Block 2388

Block 322

JUMPDEST
MOD
ADD
PUSH1 0x0a
DUP2
SWAP1
SSTORE 10
POP
PUSH2 0x0954
PUSH1 0x0a
SLOAD 10
PUSH2 0x064b
JUMP

Block 2311

JUMPDEST   
·····
OR
SWAP1
SSTORE 2
…...
ISZERO
PUSH2 0x09ba
JUMPI

JUMPDEST   
PUSH1 0x40
…..
SWAP2
SUB
SWAP1
RETURN

JUMPDEST
POP
PUSH2 0x0142
PUSH1 0x04
DUP1
CALLDATASIZE
SUB
DUP2
…..
PUSH2 0x064b
JUMP

Figure 3.2: Fragment of CFG generated by EthIR for __callback

(2) if it is a conditional jump (JUMPI) we produce two additional guarded rules which
represent the continuation when the condition holds, and when it does not, (3) otherwise,
we continue the execution in block x+s (where s is the size of the EVM bytecodes in the
block being translated). As regards the variables, we distinguish the following types:

• Stack variables: a key ingredient of the translation is that the stack is �attened into
variables, i.e., the part of the stack that the block is using is represented, when it is
translated into a rule, by the explicit variables s0, s1, . . ., where s1 is above s0, and
so on. The initial stack variables are obtained as parameters s0, s1, . . . , sn.

• Local variables: the content of the local memory in numeric addresses appearing in
the code, which are accessed through MSTORE and MLOAD with the given address i, are
modeled with variable li where i is the address involved in the operation. The set
of local variables involved in each rule is passed as parameters. For the translation,
we assume we are given a map which associates a di�erent local variable to every
numeric address memory used in the code. When the address is not numeric, we
represent it using a fresh variable local to the rule to indicate that we do not have
information on this memory location.

• State variables: we model the contract state variables by means of variables named
g0, . . . , gk. The set of state variables involved in each rule is passed as parameters.
Since these state variables are accessed using SSTORE and SLOAD using the number of
the state variable, we associate gi to the ith state variable. As for the local memory,
if the number of the state variable is not numeric because it is unknown (annotated
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block1611 (s6, sv, lv, bc)⇒
. . .

call(block1619 (s8, sv, lv, bc))

block1619 (s8, sv, lv, bc)⇒
. . .

call(jump1619 (s10, sv, lv, bc))

jump1619 (s10, sv, lv, bc)⇒
geq(s10, s9),

call(block1744 (s8, sv, lv, bc))

jump1619 (s10, sv, lv, bc)⇒
lt(s10, s9),

call(block1633 (s8, sv, lv, bc))

block1633 (s8, sv, lv, bc)⇒
s9 = 3, s10 = s8, s11 = s9, s11 = g3, s12 = s10,

call(jump1633 (s12, sv, lv, bc))

jump1633 (s12, sv, lv, bc)⇒
lt(s12, s11),

call(block1647 (s10, sv, lv, bc))

block1647 (s10, sv, lv, bc)⇒
s11 = s9, s9 = s10, s10 = s11, s11 = 0, l2 = s10,
s10 = 32, s11 = 0, s10 = sha3 (s11, s10),
s9 = s10 + s9, gl = s9, s9 = fresh0,

s10 = s6, call(jump1647 (s10, sv, lv, bc))

jump1647 (s10, sv, lv, bc)⇒
gt(s10, s9),

call(block1731 (s8, sv, lv, bc))

block1731 (s8, sv, lv, bc)⇒
(see Figure3.4)

call(block1619 (s8, sv, lv, bc))

Figure 3.3: Fragment of the RBR for the call from __callback to findWinner.

as �?�), we use a fresh local variable to represent it.

• Blockchain data: we model this data with variables bc, which are either indexed with
md0, . . . ,mdq when they represent the message data, or with corresponding names,
if they are precise information of the call, like the gas, which is accessed with the
opcode GAS, or about the blockchain, like the current block number, which is accessed
with the opcode NUMBER. All this data is accessed through dedicated opcodes, which
may consume some o�sets of the stack and normally place the result on top of the
stack (some of them, like CALLDATACOPY, can besides store information in the local
memory).

The translation uses two auxiliary functions to translate each bytecode into corre-
sponding high-level instruction (and updates the size of the stack) and to translate the
guard of a conditional jump.

Example 3.1. Figure 3.3 shows the RBR for selected blocks in Figure 3.2. As can be
seen, for instance, in rule block1647, bytecode instructions that load or store information
are transformed into assignments on the involved variables. For arithmetic operations,
operations on bits, sha, etc., the variables they operate on are made explicit. Since stack
variables are always consecutive we denote by sn the decreasing sequence of all si from n
down to 0. lv includes l2 and l0, which is the subset of the local variables that are needed
in this rule or in further calls (second extension described above). The unknown location
�?� has become a fresh variable fresh0 in block1647. For state variables, sv includes the
needed ones g11, g8, g7, g6, g5, g3, g2, g1, g0 (gi is the i-th state variable). Finally, bc includes
the needed blockchain state variables address, balance and timestamp. The �rst extension
described above is required in the example to connect block2639 (that contains the PUSH)
with block2388, and the same for block291 with block322. Our solution is to make two
clones of the 11 involved blocks in Figure 3.2 for each path. The rules in Figure 3.3 show
only (a fragment of) one of the clones.

Besides, [25] provides two extensions to the initial version of EthIR in [24] which are
required for soundness and e�ciency:
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block1731 (s8, sv, lv, bc)⇒
nop(JUMPDEST ), s9 = s8, nop(DUP1), s10 = s9, nop(DUP1), s11 = 1,
nop(PUSH1), s10 = s11 + s10, nop(ADD), s11 = s8, s8 = s10, s10 = s11,
nop(SWAP2), nop(POP ), nop(POP ), s9 = 3943, nop(PUSH2),

call(block1619 (s8, sv, lv, bc)), nop(JUMP )

Figure 3.4: Selected rule including nop functions.

• The �rst extension is related to the way function calls are handled in the EVM, where
instead of an explicit CALL opcode, as we have seen in the example before, a call to
an internal function is transformed into a PUSH of the return address in the stack
followed by a JUMP to the address where the code of the function starts. If the same
function is called from di�erent points of the program, the resulting CFG shares for
all these calls the same subgraph (the one representing the code of the function)
which ends with di�erent jumping addresses at the end. As described in [52], there
is a need to clone parts of the CFG to explicitly link the PUSH of the return address
with the �nal JUMP to this address. This cloning in our implementation is done at
the level of the RBR as follows: Since the jumping addresses are known thanks to
the symbolic execution applied by Oyente, we can �nd the connection between the
PUSH and the JUMP and clone the involved part of the RBR (between the rule of the
PUSH and of the JUMP) using di�erent rule names for each cloning.

• The second extension is a �ow analysis intended to reduce the number of parameters
of the rules of the RBR. This is crucial for e�ciency as the number of involved
parameters is a bottleneck for the successive analysis steps that we are applying.
Basically, before starting the translation phase, we compute the inverse connected
component for each block of the CFG, i.e, the set of its predecessor blocks. During
the generation of each rule, we identify the local, state or blockchain variables that
are used in the body of the rule. Then, these variables have to be passed as arguments
only to those rules built from the blocks of its inverse connected component.

Optionally, EthIR provides in the RBR the original bytecode instructions (from which
the higher-level ones are obtained) by simply wrapping them within a nop functor (see
Figure 3.4). This is relevant for a gas analyzer to assign the precise gas consumption to
the higher-level instruction in which the bytecode was transformed.

3.3 Related Work

In the past three years, several approaches tackled the challenge of fully formal reasoning
about Ethereum contracts implemented directly in EVM bytecode by modeling its rigorous
semantics in state-of-the art proof assistants [58, 73, 57, 53]. While those mechanisations
enabled formal machine-assisted proofs of various safety and security properties of EVM

contracts [58, 57, 53], none of them provided means for fully automated sound analysis of
EVM bytecode.
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In [58] a formalization of EVM bytecode in Lem [76] is presented. Lem is a language
that can be compiled into Coq [42], Isabelle/HOL [82] and HOL4 [87]. This formaliza-
tion over-approximates the semantics of EVM. First, the rules that represent actions of a
smart contract when a transaction starts are de�ned such as the call environment, delegate
calls or how the values are returned. After that, the de�nition of the rules for a deter-
ministic semantics of the program are given. Finally the approach tests the speci�cation
de�ned using Isabelle/HOL, �nding some di�erences between the speci�cation [95] and
the implementation of Ethereum.

[73] de�nes a semantics for smart contracts based on �nite state machines. The authors
present FSolidM, a framework for designing contracts as Finite State Machines (FSM).
They propose a graphical interface that creates a smart contract as a FMS and generates its
source code in Solidity automatically. To model the smart contracts as FMS, they identify
states that may be modi�ed due to the e�ect of actions invoked by other contracts or
users through functions. They also use guards to de�ne the applicability of the transitions
between the di�erent states of the contract. The paper argues that it is easier to codify a
smart contract as a FSM, reducing the potential programming errors thanks to its well-
de�ned semantics.

In [57] the tool KEVM is presented. It introduces a formal speci�cation of EVM in the
K framework [84], a rewriting based tool that de�nes executable semantics speci�cations.
The aim of the K framework is to separate the construction of the analyses and the
speci�cation of the programming language. It generates a parser given the semantics and
the syntax of EVM. The semantics is built de�ning rewrite rules for the types and bytecode
instructions and con�guration �les for representing the states and the execution model.

Finally, [53, 54] de�ne a formal small-step semantics for Ethereum bytecode using the
F* proof assistant [89]. They present a formalization for the global state of the system
in order to represent all the accounts available on it. It allows modeling the e�ect of
exceptions. They also de�ne a grammar for call stacks and transaction environments that
de�nes the result of executing each of the bytecode instructions in the stack as well as
transaction e�ects that collect the changes on the global state after the transaction �nishes
its execution. The semantics de�ned is used to �nd security bugs on smart contracts. The
authors de�ne the semantics characterization of some signi�cant security properties on
smart contracts to study them using the semantics proposed in the papers.

Concurrently, several other approaches for ensuring correctness and security of Ethe-
reum contracts build an intermediate representation for smart contracts. Some tools
instead, implement automated toolchains for detecting bugs by symbolically executing
EVM bytecode directly.

[10] describes Rattle, a static analysis framework designed to work on deployed smart
contracts. It takes the EVM bytecode of the contract and applies a data-�ow analysis to
recover a complete CFG of the contract. After that, it converts the CFG into a single-
static-assignment (SSA) register form, and �nally optimizes the SSA form removing the
PUSH, DUP, SWAP and POP instructions. This optimization removes most of the EVM instruc-
tions from the original code, making the resulting representation more readable to the user.
To generate the CFG, Rattle splits the EVM code into single blocks, as EthIR does, and
after that builds the links between the blocks. The process to obtain the SSA register form
of the contract is carried out iteratively as each block is translated independently. When
the �rst iteration �nishes, the values of non-resolved registers are propagated. Thanks to
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the SSA form, Rattle is able to remove EVM bytecode, track variable de�nitions and uses,
recover memory and storage locations and check conditions of external calls. However,
some analyses may be a�ected due to the modi�cations of the original bytecode.

[75] presents Mythril, a security analysis tool for smart contracts. Mythril [8] decom-
piles EVM bytecode using the dynamic symbolic execution engine Laser-Ethereum [3]. It
produces traces that are used to build an intermediate representation. Laser-Ethereum
is a symbolic interpreter for EVM bytecode. It takes one or more contracts as input and
returns a set of abstract program states representing the world state (a mapping between
addresses to accounts), the machine state (program counter, memory and stack) and exe-
cution environment (implicit variables such as caller address or transaction values). Using
these abstract states, it generates a CFG with edges labeled with constraints. Thus,
Mythril represents the execution of a smart contract as a set of states and path formulas
in propositional logic.

[33] presents Vandal, a tool that accepts EVM bytecode and decompiles it into a struc-
tured intermediate representation. Vandal consists of an analysis pipeline that converts
EVM bytecode to logic relations that re�ect the semantics of the contract. The translation
is done in four main steps: (1) the Scraper traverses all transactions in all blocks of the live
Ethereum blockchain searching for the contract creation and, when it is found, it stores the
EVM bytecode of the contract that is going to be decompiled locally, (2) the Disassembler
takes the sequence of hexadecimal numbers that represents the bytecode of the contract
and returns a series of readable low-level instructions annotated with program counter
addresses, (3) the Decompiler translates the disassembled bytecode into a register transfer
language using a CFG and a data-�ow analysis to expose data- and control-�ow structures
of the bytecode, and (4) the Extractor that translates the register language into logic re-
lations expressed in �les that can be read by analyses. [51] improves the decompilation
process of [33]. The authors use Datalog [56], a declarative logical language, as speci�-
cation language for the decompiler. The decompilation can be summarized in �ve steps:
(1) it �nds the basic blocks of the bytecode, (2) performs local analysis of stack e�ects
of basic blocks (it introduces variables and performs a �rst value analysis), (3) analyzes
the bytecode and builds a CFG to produce a three-address intermediate representation,
(4) infers function boundaries (entry and exit blocks and function calls) heuristically that
are used to split the global CFG into several local CFGs and a call graph, and (5) infers
function arguments and return arguments for all functions to generate the intermediate
representation of the bytecode.

[86] presents Scilla, an intermediate language for veri�ed smart contracts. This
work provides a translation from Solidity to Scilla. The authors de�ne an automata-
based model to represent smart contracts. It separates the communication aspects and
the programming components of the smart contracts. The contract under analysis is
translated into a communicating automata that reacts to actions. Each function of the
contract leads to an atomic transition on the automata. The transitions are invoked by
messages containing a tag to identify the transition and its arguments. Scilla is able
to model external calls as continuations, a special kind of transitions that represent the
code that is executed after an external call. However, it does not support loop constructs
although the authors plan to include them via recursive function de�nitions. The semantics
of Scilla can be speci�ed in the Coq proof assistant [42] to study safety and liveness
properties on smart contracts.
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[93] presents IRSRI, an intermediate representation that is built following similar ap-
proaches to [10] and [51]. The underlying principle is to generate a CFG formed by basic
blocks, use SSA to represent variables and three-address code (3AC) for statements. Ba-
sic blocks of the CFG keep continuations like [86], i.e., each block takes arguments and
a pointer to the next block. The author proposes to use attribute grammars in order to
build the intermediate representation. First it takes the abstract syntax tree (AST) of the
Solidity code using the compiler of Solidity and builds the CFG using the attribute gram-
mars de�ned. The paper speci�es attribute grammar rules to translate the AST nodes
into blocks, for handling variables and the statements.

[70] presents Oyente, a popular tool for analysis of Ethereum smart contracts [9].
Oyente takes a smart contract written in Solidity or its EVM bytecode and models the
stack, the memory and the storage to symbolically execute the contract. However it
does not implement all the instructions available in EVM. It uses Z3 [45] to decide if an
execution path is unfeasible and abort the exploration of the path under analysis. The
representation of Oyente is too low-level to implement analyses of high-level properties,
e.g., loop complexity or commutative conditions.

Zeus [63], a tool for analyzing Ethereum smart contracts via symbolic execution wrt.
client-provided policies where some conditions to be checked are de�ned. In contrast to
EthIR, it operates directly on Solidity source code. In addition, it is not fully automatic as
the users have to de�ne the policies. The authors de�ne an abstract language to translate
the source code of the contracts. Finally, it generates LLVM bytecode from the abstract
language presented in the paper. Soundness of Zeus depends on the semantics of Solidity,
which is not formally de�ned.

All the tools mentioned above generate an intermediate representation to analyze either
the Solidity source code or the EVM bytecode of a smart contract. Most of them generate
a CFG to represent the control-�ow of the contract and use it to build an intermediate
representation of it. They build several analyses on top of their intermediate representation
to study di�erent properties of the contract and �nd vulnerabilities. In [24] we propose an
intermediate representation of the EVM bytecode of a smart contract that makes explicit
the stack, blockchain data, the memory and the storage. Our intermediate representation
can be used by the di�erent analyses developed with minor changes. The intermediate
representation generated by [51] is the most similar to the one built by EthIR. The
main di�erence is that [51] implements a data-�ow analysis to propagate constants and
expressions. Hence, it is able to generate more complex expressions, rather than binary
assignments as EthIR does. However, the expressions are equivalent. A unique feature
of EthIR (that none of the intermediate representations has) is that we maintain the
original bytecode decompiled code. This information could be essential to develop more
complex analyses as we will see in Chapter 5.
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Chapter 4

SAFEVM: A Veri�er for Ethereum

Smart Contracts

The Solidity language contains the veri�cation-oriented functions assert and require to
check for safety conditions or requirements. If they do not hold, the execution of the
transaction terminates. Namely, when the Solidity code is compiled into EVM bytecode,
the require condition is transformed into a test that checks the condition and invokes
a REVERT bytecode if it does not hold. REVERT aborts the whole execution of the smart
contract, reverts the state and all remaining gas is refunded to the caller. On the other
hand, assert checks the condition and invokes an INVALID bytecode if it does not hold.
When executing INVALID, the state is reverted but no gas is refunded and hence, it has
more serious consequences than REVERT: besides the economic consequences of losing the
gas, the only information given to the transaction is an out-of-gas error message.

This chapter presents SAFEVM [17], a veri�er for smart contracts that uses veri�ca-
tion engines for C programs. The analysis is applied in two steps (see Section 2 in [17] for
technical details):

• SAFEVM generates a C program from the RBR built by EthIR. It translates
the recursive guarded rules generated by EthIR into an iterative C program that
abstracts the contract.

• The program generated is analyzed using a veri�er for C programs. The veri�ers
try to prove the reachability of the bytecode instruction INVALID and generate a
veri�cation report. SAFEVM has been tested with CPAchecker [29], VeryMax [35]
and SeaHorn [62] as backend C veri�ers.

SAFEVM has a very large (potential) user base, as Ethereum is currently the most
advanced platform for coding and processing smart contracts with more than 50,000 con-
tracts available. We have automatically veri�ed 6,301 real Solidity �les, which contain
INVALID instructions in their EVM code, pulled from the Ethereum blockchain. These �les
contain 24,294 smart contracts with 44,046 public functions that may lead to an INVALID

instruction and 177,549 INVALID-free functions. From these functions, SAFEVM veri�es
automatically safety of around 20% of the functions (see Section 3 in [17] for more details).
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Figure 4.1: SAFEVM's architecture

4.1 Architecture of SAFEVM

Figure 4.1 depicts the main components of SAFEVM that are as follows (shaded boxes
are o�-the-shelf used systems not developed by us):

1. Input. SAFEVM takes a smart contract, optionally with assert and require ver-
i�cation annotations. The smart contract can be given in Solidity source code or
in EVM compiled code. In the latter case, the annotations have been compiled into
bytecode as described above.

2. CFG. In either form, the code is given to our CFG generator built on top of Oyente
[9]. As Oyente does not handle recursive functions, they are already discarded at
this step (Section 3.1).

3. EthIR. The decompilation of the EVM bytecode into a higher-level rule-based repre-
sentation (RBR) is carried out from the generated CFG by EthIR (Section 3.2).

4. C+SV-COMP translator. We have implemented a translator for the recursive RBR
representation into an abstract Integer C program (i.e., all data is of type Integer)
with veri�cation annotations using the SV-COMP [11] format. Features of the EVM

that we cannot handle yet (e.g., bit-wise operations) are abstracted away in the
translation. INVALID instructions are transformed into ERROR annotations in the C
program following the SV-COMP format.

5. Veri�cation. Any veri�cation tool for Integer C programs that uses SV-COMP an-
notations can be used to verify the safety of our C-translated contracts. We have
evaluated our approach using three state-of-the-art C veri�ers, CPAchecker [29], Very-
Max [35], and SeaHorn [62], and the veri�cation report they produce is processed by
us to report the results in terms of functions of the smart contract.
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1 contract SmartBillions {
2 struct Wallet {
3 ..., uint16 lastDividendPeriod ;}
4 uint public dividendPeriod ;
5 uint [] public dividends ;
6 mapping(address => uint) balances;
7 uint public totalSupply ;
8 mapping (address => Wallet) wallets;
9 function commitDividend(address _who) {
10 +© //require ( totalSupply > 0);
11 +© //require (dividendPeriod < dividends. length) ;
12 uint last=wallets[_who].lastDividendPeriod;
13 +© //require (dividendPeriod >= last);
14 ...
15 !© uint share=balances[_who]∗0x����/totalSupply;
16 uint balance = 0;
17 for (; last<dividendPeriod; last++) {
18 !© balance += share ∗ dividends[ last ];
19 }
20 !©+© assert ( last == dividendPeriod);
21 balance = (balance / 0x����);
22 ...
23 }
24 }

block734(s5 ,..., s0,g4,g1,g0,l3,l2) ←
...
call (jump734(s7,...,s0,g4,g1,g0,l3,l2))

jump734(s7,...,s0,g4,g1,g0,l3,l2) ←
// last≥dividendPeriod
geq(s7,s6),
call (block789(s5 ,..., s0,g4,g0,l3,l2))

jump734(s7,...,s0,g4,g1,g0,l3,l2) ←
// last<dividendPeriod
lt (s7,s6),
call (block745(s5 ,..., s0,g4,g1,g0,l3,l2))

block745(s5 ,..., s0,g4,g1,g0,l3,l2) ←
call (jump745(s9,...,s0,g4,g1,g0,l3,l2))

jump745(s9,...,s0,g4,g1,g0,l3,l2) ←
// last<dividends.length
lt (s9,s8),
call (block759(s7 ,..., s0,g4,g1,g0,l3,l2))

jump745(s9,...,s0,g4,g1,g0,l3,l2) ←
// last≥dividends.length
geq(s9,s8),
call (block758(s7 ,..., s0))

block758(s7 ,..., s0) ←
INVALID

block759(s7 ,..., s0,g4,g1,g0,l3,l2) ←
...
s7 = sha3(s8,s7), // KECCAK256
s6 = s7+s6, // ADD
s6 = fresh0, // SLOAD
s7 = s4, // DUP3
s6 = s7∗s6, // MUL
...
call (block734(s5 ,..., s0,g4,g1,g0,l3,l2))

Figure 4.2: Solidity code (left) and excerpt of RBR rules of for loop (lines 21-23)

4.2 From RBR to C Program

As motivating example, we use a Solidity contract that implements a lottery system called
SmartBillions (available at https://smartbillions.com/). We illustrate the safety ver-
i�cation of its internal function commitDividend (an excerpt of its code appears to the left
of Figure 4.2) that commits remaining dividends to the user wh. We have shortened the
variable names by removing the vowels from the names. Lines marked with !© might lead
to executing di�erent sources of INVALID: L15 to a division by zero when ttlSpply is 0; at
L18 when lst ≥ dvdnds.length and thus it is accessing a position out of the bounds of
the array; and at L20 when the condition within the assert does not hold. In order to be
able to verify its safety (i.e., absence of INVALID executions), we add the lines marked with
+© that introduce error-handling functions require and assert in the veri�cation process.

The starting point of our translator is the RBR produced by EthIR (Section 3.2). To
the right of Figure 4.2 we show the fragment of the RBR produced by EthIR for the loop
of L17-L19.

Observe that the fragment of the RBR contains an INVALID instruction within block758
and such block can be executed when geq(s9, s8) (see rule jump745). By tracking variable
assignments, we can infer that s9 contains the value of lst and s8 the size of dvdnds,
hence the comparison is checking out-of-bounds array access. The RBR is translated into
an abstract Integer C program in four phases:
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25 // dividendPeriod
26 int g0 = __VERIFIER_nondet_int();
27 // wallets
28 int g4 = __VERIFIER_nondet_int();
29 // last
30 int l0 = __VERIFIER_nondet_int();
31 int l3 = __VERIFIER_nondet_int();
32 // who
33 int who = __VERIFIER_nondet_int();
34 . . .
35 void jump734(int s7 ,..., int s0){
36 // last>=dividendPeriod
37 if (s7>=s6) block789(s5 ,..., s0) ;
38 else block745(s5 ,..., s0) ;
39 }
40 void jump745(int s9 ,..., int s0){
41 // last < dividens . length
42 if (s9<s8) block759(s7 ,..., s0) ;
43 else block758(s7 ,..., s0) ;
44 }

46 void block734(int s5 ,..., int s0){
47 ...
48 jump734(s7 ,..., s0) ;
49 }
50 void block745(int s5 ,..., int s0){
51 ...
52 jump745(s9 ,..., s0) ;
53 }
54 void block759(int s7 ,..., int s0){
55 ...
56 s7 = __VERIFIER_nondet_int();
57 s6 = s7 + s6;
58 s6 = __VERIFIER_nondet_int();
59 ...
60 block734(s5 ,..., s0) ;
61 }
62 void block758(int s7 ,..., int s0) {
63 ERROR: __VERIFIER_error();
64 }

Figure 4.3: C translated code with SV-COMP annotations

1. C functions: Our translation produces, for each non-recursive rule de�nition in the
RBR, a C function without parameters that returns void. Recursive rules produced
by loops are translated into iterative code. For this part of the translation, we
compute the strongly connected component (SCC) from the CFG (see Figure 4.1)
and model the detected loops by means of goto instructions. Figure 4.3 shows the
obtained C functions from the RBR program of Figure 4.2. Note that jump rules
are translated into an if-then-else structure.

2. Types of variables: Solidity basic, signed and unsigned data types are stored into
untyped 256-bit words in the EVM bytecode, and the bytecode does not include
information about the actual types of the variables. Moreover, most EVM opera-
tions do not distinguish among them except for few speci�c signed operations (SLT,
SGT, SIGNEXTEND, SDIV and SMOD). As veri�ers behave di�erently w.r.t. over�ow
[29, 35, 62], our translation allows the user to choose (by means of a �ag) if all
variables are declared with type int in the C program, or of type unsigned int with
casting to int for sign-speci�c operations. The code in Figure 4.3 uses the default
int transformation. Thus, although in EVM integers have over�ow, the interpretation
of them as unbounded integers or with over�ow will be determined by the available
options in the C veri�cation tool (e.g., VeryMax only handles unbounded integers).
Besides, instructions that contain fresh variables or that are not handled (like SLOAD)
are translated into a call to function __VERIFIER_nondet_int in order to model the
lack of information for them during veri�cation. Arrays or maps are not visible
in the EVM (nor in the RBR). The only information that is trackable about arrays
corresponds to their sizes as it is stored in a stack variable that in the C program is
stored in an integer variable.

3. Variable de�nitions: In order to enable reasoning on them (within their scopes) dur-
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ing veri�cation, SAFEVM translates them in the C program as follows: (i) as we
�attened the execution stack, we declare the stack variables as global C variables
to make them accessible to all C functions. These variables do not need to be ini-
tialized as they take values in the program code; (ii) local variables are de�ned as
global C variables (L30-L31) because a function of the contract might be translated
into several C functions, and all of them need to access the local data. They are
initialized at the beginning of the function corresponding to the block in which they
are �rstly used; (iii) state variables are also translated into global variables acces-
sible by all functions and, as their values when functions are veri�ed are unknown,
they are initialized using __VERIFIER_nondet_int (L26-L28); and (iv) function input
parameters are also de�ned as global variables (for the same reason as (ii)), whose
initial values are not determined (L33).

4. SV-COMP annotations: The veri�cation of Ethereum smart contracts is done in
SAFEVM by guaranteeing the unreachability of the INVALID operations in the C-
translated code. Following the SV-COMP rules, we translate INVALID operations into
calls to the __VERIFIER_error function so that its unreachability can be proven by
any veri�cation tool compatible with the SV-COMP annotations. An example of an
INVALID operation can be seen in L63. Veri�cation tools return that the program
in Figure 4.2 cannot be veri�ed as the INVALID instruction could be executed. This
is due to the fact that contract state values are unknown, that is: ttlSpply is not
guaranteed to be di�erent from 0 at L15 and the size of the array dvdnds is not
guaranteed to be greater than the value of lst at L18. Lines L10 and L11 contain
the Solidity instructions needed to guarantee that L15 and L18, respectively, will
never execute an INVALID instruction. The assert at L20 can be veri�ed by using the
require at L13. The inclusion of the require annotation also improves the contract
as, if it is violated, a REVERT rather than an INVALID bytecode will be executed, not
causing a loss of gas of the transaction (the gas needed to check it is negligible).

4.3 Related Work

Veri�cation of Ethereum smart contracts for potential safety and security vulnerabilities
is becoming a popular research topic with numerous tools being developed. Among them,
we have tools based on symbolic execution [70, 55, 81, 65, 63, 91], tools based on SMT
solving [72, 64, 75], runtime veri�cation tools [60, 88] and tools based on certi�ed pro-
gramming [30, 53, 26]. There are also some tools that aim at detecting, analyzing and
verifying non-functional properties of smart contracts, e.g., those focused on reasoning
about the gas consumption [25, 38, 52, 72] that will be discussed in further detail in the
next chapter.

As mentioned before, Oyente does not build a complete CFG and thus, the analysis
presented in [70] is unsound. The paper identi�es four vulnerabilities: (1) transaction-
ordering dependence happens when the �nal state of the contract depends on the order
in which two di�erent transactions are executed, (2) timestamp dependence appears on
contracts that use the timestamp as a triggering condition to start an event while the
timestamp can be varied by the miners in 900s, (3) exceptions dependence occurs when
the contract does not check the return value of a call to an external contract explicitly, and
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(4) reentrancy vulnerability appears when the recipient of the call makes use of the current
state of the caller. The work proposes programming patterns to avoid the vulnerabilities.
The analysis is based on searching traces that meet di�erent conditions. However, as the
CFG generated is not complete, it is not able to analyze all possible traces and the results
are not sound. It also raises false alarms. After publishing the paper, new vulnerabilities
have been included in the tool such as integer over�ow.

In [55], an algorithm to study reentrancy vulnerabilities is introduced. It de�nes
a safety property called E�ectively Callback Free (ECF), for objects and executions in
order to allow modular reasoning on smart contracts. An object is ECF in a given trace if
there exists an equivalent execution trace without callbacks that leads to the same state.
The idea behind it is to check if the callback may a�ect to the atomic behavior of the
transaction or not. Thus, the objects that satisfy the ECF property can be trusted. They
also present an online algorithm for checking if the execution under analysis is ECF. It is
based on detecting con�icting memory accesses and uses a relation similar to a happens-
before, in an e�ective way, i.e., it is not computed for all possible permutations of the
traces.

MAIAN [81] is a tool for precisely specifying and reasoning about trace properties on
smart contracts. It employs inter-procedural symbolic analysis and concrete validation.
The approach focuses on three trace properties that lead to vulnerabilities: (1) those that
lock the funds of a contract inde�nitely, (2) those that transfer the funds to arbitrary
users, and (3) those that can be killed by any user. The tool is able to �nd both safety (if
there exists a trace from a speci�ed state that causes a violation of the condition under
analysis) and liveness (if some action cannot be taken in any execution starting from a
speci�ed state) properties over traces. It is based on a modi�ed version of the semantics
de�ned in [70] and in the notion of contract trace according to the semantics. [81] also
characterizes the safety and liveness properties formally in terms of contract traces. In a
�rst step MAIAN executes a symbolic analysis to recover the possible traces of the public
functions of the contract. When it �nds a state where the desired property does not hold,
it emits a warning classifying the contract as potentially vulnerable. It returns constraint
paths whose feasibility is proven using Z3 [45]. Finally, in a second step they check the
vulnerabilities with a concrete validator that forks a private copy of the original Ethereum
blockchain and runs the concrete trace found.

In [65], teEther is presented, a tool that allows creating and exploiting smart con-
tracts given their EVM bytecode. As the previous tools, it is based on searching execution
traces. The tool identi�es paths that lead to a critical instruction. Critical instructions
are those that cause a direct transfer of gas (CALL and SELFDESTRUCT) or that allow arbi-
trary code to be executed in the context of the main contract that starts the transaction
(CALLCODE and DELEGATECALL). The tool recovers the CFG of the contract and then searches
for critical paths. Once a critical one is found, it creates a set of path constraints through
symbolic execution. Finally, the constraints of critical paths are solved using Z3 [45] to
check if the path is feasible and reproduce the vulnerability. teEther is able to deal with
inter-procedural communications between di�erent contracts.

In [91], the authors present Securify, a security analyzer for smart contracts. It is
able to prove contract behavior as safe or unsafe with respect to a given property. First
the analysis extracts semantic information from the code. Then, it proves if a property
holds through compliance or violation patterns. The analysis of Securify is applied in
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three steps: (1) Securify decompiles the EVM bytecode of the contract into a SSA form
similarly to [10] and constructs a CFG, (2) it infers the semantic information needed for
the analysis using inference rules speci�ed in Datalog [56], as [52] does, and (3) it checks
if the prede�ned security patterns are violated using the Datalog solver. If the analysis
discovers a violation pattern that matches the inferred semantic facts, Securify returns
the vulnerable instructions. Otherwise the tool reports a warning to indicate that the
contract may or may not be vulnerable.

[64] investigates vulnerabilities de�ned as event-ordering (EO) bugs. These vulnera-
bilities are related to the dynamic order in which the contract events are executed. They
present EthRacer, an automatic analyzer that works on the EVM bytecode of the con-
tract to �nd EO bugs. Intuitively, the analysis constructs inputs and tries all the possible
function orderings until an EO bug or a timeout is reached. It �nds out if reordering
the function calls of a contract produces di�erent �nal states. Note that this can lead
to an intractable analysis because of the state explosion. Thus, the analysis implements
partial-order-reduction techniques to reduce the search space based on the classical notion
of happens-before relation. EthRacer uses a symbolic analysis to recover all the public
functions of the contract under analysis and dynamic symbolic execution techniques to
reason about the output of each public function separately. After that, similarly to other
state-of-the-art tools, the constraints generated by each execution path are solved by a
SMT solver to infer the happens-before relations and transform the symbolic values into
concrete ones in each path.

[47] shows how standard techniques from runtime veri�cation can be applied to smart
contracts. It proposes a new stake-based instrumentation technique to infer the violating
parties of a contract. [47] presents ContractLarva, a proof-of-concept tool that imple-
ments these techniques. The veri�cation framework proposed enables the combination of
the contract and its speci�cation. The contract behaves as the original one but can identify
the speci�cation violated. To de�ne properties they use an automaton-based approach, a
subset of Dynamic Automata with Timers and Events (DATE) [41]. DATE monitors for
events on the contract and allows specifying the behavior of vulnerable event traces. Con-
tractLarva monitors control- and data-�ow events expressed as a symbolic automata
that listens to contract events. The tool parses the source code of the contract and, thanks
to DATE speci�cation is able to generate a safe contract including the monitoring logic
in the code as Solidity modi�ers.

Zeus [63] translates Solidity code of a smart contract into LLVM and uses SeaHorn [62]
to classify six types of vulnerabilities: (1) reentrancy, (2) unchecked send, (3) failed send,
(4) integer over�ow/under�ow, (5) block/transaction state dependence, and (6) transac-
tion order dependence. To check vulnerabilities (2) and (3) Zeus introduces a condition
to validate if a send instruction has been executed correctly into an assert statement.
To test (5), which is detected when block variables such as timestamp a�ect to send or
call instructions, Zeus implements a taint analysis and uses a symbolic model checker
to eliminate unfeasible paths. However the transformation from Solidity to LLVM is not
complete.

[88] presents Solitor, a tool that applies runtime veri�cation techniques to make smart
contracts more secure. As proposed in [47], it allows the user to specify the behavior
of the contracts using annotations. The tool parses and translates the annotations into
Solidity and checks them at runtime. Annotations are logical expressions that can reference
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contract variables or blockchain identi�ers to de�ne contract invariants or pre and post
conditions for functions. First the contract code has to be annotated according to a
grammar generated by the tool ANTLR. ANTLR [83] generates a parser that is used to
transform Solidity code and annotations into a parse tree. The parse tree allows analyzing
di�erent parts of the contract. The next step is type checking the annotations to prove
that they are valid and generating parse tree objects that correspond to type-checked
annotations. Finally the information generated by the type checker is used together with
the Solidity source code to obtain the runtime monitored contract.

[60] presents ContractFuzzer, a generator of fuzzing inputs based on the ABI speci-
�cation of smart contracts. It de�nes test oracles to detect security vulnerabilities, in-
struments EVM code to generate logs with information about the behavior of the contract
and analyzes these log �les to report security vulnerabilities. ABI (application binary
interface) de�nes the interface between two program modules. Data is encoded according
to its type. The tool takes an instrumented EVM code as input and the ABI speci�cation
of the deployed contract. It obtains the signature of the functions and the types of its
arguments. Knowing the signature of the functions, the tool is able of analyzing the in-
teraction between di�erent contracts. Thanks to the analysis of the instrumented EVM and
the ABI speci�cation, ContractFuzzer generates valid fuzzing inputs and starts to execute
functions randomly. Finally it analyzes the log reports created by the executions in order
to �nd seven types (all of them explained before) of vulnerabilities: (1) unchecked send,
(2) unhandled exception, (3) reentrancy, (4) timestamp dependence, (5) block number
dependence, (6) dangerous DELEGATECALL, and (7) freezing contracts.

The tools proposed in [63] and [75] are the most similar to SAFEVM. Zeus [63]
and SAFEVM have the same target of veri�ers because Zeus generates LLVM code
and we produce C programs. However we cannot compare both approaches because the
code of Zeus is not public. Mythril [75, 8] obtains the constraint paths generated by its
intermediate representation and solves them using Z3 [45] as SMT solver. The di�erence
between Mythril and SAFEVM relies on the way in which the assert statement is treated.
Both tools study the reachability of INVALID bytecode instructions but Mythril obtains the
corresponding set of constraints from its intermediate representation and SAFEVM leaves
this task to the veri�ers.

To conclude, to the best of our knowledge, SAFEVM is the �rst tool that uses existing
veri�cation engines developed for C programs to verify low-level EVM code. This opens
the door to the applicability of advanced techniques developed for the veri�cation of C
programs to the new languages used to code smart contracts.
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Chapter 5

Gastap: A Gas Analyzer for Smart

Contracts

This chapter presents Gastap [25], a Gas-Aware Smart contracT Analysis Platform.
Gastap infers gas upper bounds for all public functions of a contract, i.e., it infers upper
bounds of the gas that each function of the contract needs to be executed without aborting
the execution due to run-out-gas exceptions. The upper gas bounds inferred by Gastap
can be parametric in terms of the size of the arguments of the functions of the contract,
the state of the contract or blockchain data. The inference of gas requires complex trans-
formation and analysis processes on the code (see Section 2 in [25] for technical details):
(1) construction of CFGs, (2) decompilation from low-level code to a higher-level repre-
sentation, (3) inference of size relations, (4) generation of gas equations, and (5) solving
the equations into gas bounds.

We have used Gastap to analyze more than 29,000 real smart contracts pulled from
Ethereum blockchain. In total Gastap has inspected 258,541 public functions (and all
auxiliary functions that are used from them). For the analyzed contracts, a large number
of functions, 86.37% and 87.36% have a constant opcode and memory gas consumption
respectively. This is as expected because of the nature of smart contracts. There is
a relevant number of functions (5.48% and 5.15%) for which we obtain an opcode and
memory gas bound that is not constant and hence are potentially vulnerable (see Section
3.2 in [25] for details).

Gastap is available online and can be tried at https://costa.fdi.ucm.es/gastap.

5.1 Architecture of Gastap

Figure 5.1 shows the main components of Gastap that are as follows:

1. Input. Gastap takes as input a smart contract that can be written in Solidity, EVM
code or disassembled code.

2. CFG. Independently of the input, it recovers the CFG of the smart contract under
analysis.

3. RBR. It uses EthIR (Section 3.2) to decompile the low-level code represented in
the CFG to a higher-level representation based on guarded rules.
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Figure 5.1: Architecture of Gastap.

4. Size relations. It uses the RBR to infer size relations (SR) that show the relation
between the input and output data and how the data are modi�ed in each rule.

5. Gas equations. It generates a gas equation for each rule of the RBR taking into
account the SR inferred in the previous step. They depend on the opcodes executed
and the memory used during the transaction.

6. Gas upper-bounds. The gas equations are solved to infer closed-form gas upper
bounds.

Therefore, building an automatic gas analyzer from EVM code requires a daunting im-
plementation e�ort that has been possible thanks to the availability of a number of existing
open-source tools that we have succeeded to extend and put together in the Gastap sys-
tem. In particular, the modi�ed version of the tool Oyente is used for point (1) (see
Section 3.1), the intermediate representation of EthIR [24] is used for point (2) (see Sec-
tion 3.2 for details), an adaptation of the size analyzer of Saco [15] is used to infer the
size relations, and the Pubs [16] solver for point (5).

Gastap takes as a starting point the RBR introduced in Chapter 3. In what follows
we discuss the components related to points 4, 5 and 6.

5.2 Size Relations

Assuming that we have the intermediate representation generated by EthIR, the next step
is to generate size relations (SR) from the RBR using the Saco tool [15]. SR are equalities
and inequalities that state how the sizes of data change in the rule [43]. This information
is obtained by analyzing how each instruction of the rules modi�es the sizes of the data
it uses, and propagating this information as usual in data�ow analysis. SR are needed to
build the gas equations and then generate gas bounds in the last step of the process. The
size analysis of Saco has been slightly modi�ed to ignore the nop instructions. Besides,
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block1611 (s6, sv, lv, bc) =

15 + block1619 (s8, sv, lv, bc)
{s8 = 0, s7 = 0}

block1619 (s8, sv, lv, bc) =

234 + jump1619 (s10, sv, lv, bc)
{s10 = s8, s9 = g3}

jump1619 (s10, sv, lv, bc) =

block1744 (s8, sv, lv, bc)
{s10 ≥ s9}

jump1619 (s10, sv, lv, bc) =

block1633 (s8, sv, lv, bc)
{s10 < s9}

jump1633 (s12, sv, lv, bc) =

block1647 (s10, sv, lv, bc)
{s11 > s12}

block1647 (s10, sv, lv, bc) =

244 + jump1647 (s′10, s
′
9, s8, sv, l

′
2, l0, bc)

{s′10 = s6, l
′
2 = s9}

jump1647 (s10, sv, lv, bc) =

block1731 (s8, sv, lv, bc)
{s10 > s9}

block1731 (s8, sv, lv, bc) =

41 + block1619 (s′8, s7, sv, lv, bc)
{s′8 = 1 + s8}

Figure 5.2: Gas equations for opcode gas model obtained by Gastap.

before sending the rules to Saco, we replace the instructions that cannot be handled
(e.g., bit-wise operations, hashes) by assignments with fresh variables (to represent an
unknown value). Apart from this, we are able to adjust our representation to make use of
the approach followed by Saco, which is based on abstracting data (structures) to their
sizes. For integer variables, the size abstraction corresponds to their values and thus it
works directly. However, a language speci�c aspect of this step is the handling of data
structures like arrays, strings or bytes (an array whose elements are of type byte). In the
case of array state variables, Saco's size analysis works directly as in EVM the slot assigned
to the variable contains indeed its length (and the address where the array content starts
is obtained with the hash of the slot address).

Example 5.1. In Figure 5.2, we can see, inside the braces, the generated SR for every
rule of the RBR depicted in Figure 3.3. Note that it corresponds to the decompilation of
the code showed in Figure 3.1. For instance, the size relations for the jump1619 function
involve the slots array length (g3 stored in s9) and the local variable i (in s8 and copied
to s10). It corresponds to the guard of the for-loop in function findWinner that compares
i and slots.length and either exits the loop or iterates (and hence consume di�erent
amount of gas). The size relation on s8 for block1731 corresponds to the increase in the
loop counter.

5.3 Generation of Gas Equations

This section describes the process of generating gas equations, given the RBR in Section 3.2
and the SR produced in Section 5.2. The generation is split into two steps, the generation
of the equations for opcode gas cost and for memory gas cost. Both types of equations
can then be solved using an o�-the-shelf cost relation solver as described in Section 5.4.

In order to generate gas equations (GE), we need to de�ne an EVM gas model, which
over-approximates the speci�cation of the gas consumption for each EVM instruction as
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provided in [95]. The EVM gas model is complex and unconventional, it has two components,
one which is related to the memory consumption, and another one that depends on the
bytecode executed. The �rst component is computed separately as will be explained below.
To compute the gas attributed to the opcodes, we de�ne a function Copcode : s 7→ g which,
for an EVM opcode, takes a stack s and returns a gas g associated to it. We distinguish
three types of instructions:

1. Most bytecode instructions have a �xed constant gas consumption that we encode
precisely in the cost model Copcode , i.e., g is a constant.

2. Bytecode instructions that have di�erent constant gas consumption g1 or g2 depend-
ing on some given condition. This is the case of SSTORE that costs g1 = 20000 if
the storage value is set from zero to non-zero (�rst assignment), and g2 = 5000
otherwise. But it is also the case for CALL and SELFDESTRUCT. In these cases, for
soundness, we use g = max(g1, g2) in Copcode .

3. Bytecode instructions with a non-constant (parametric) gas consumption that de-
pends on the value of some stack location. For instance, the gas consumption of
EXP is de�ned as 10 + 10 · (1 + blog256(µs[1])c) if µs[1] 6= 0 where µs[0] is the top of
the stack. Therefore, we have to de�ne g in Copcode as a parametric function that
uses the involved location. Other bytecode instructions with parametric cost are
CALLDATACOPY, CODECOPY, RETURNDATACOPY, CALL, SHA3, LOG*, and EXTCODECOPY.

Given the RBR annotated with the nop information, the size relations, and the cost
model Copcode , we can generate GE that de�ne the gas consumption of the corresponding
code applying the classical approach to cost analysis [94] which consists of the following
basic steps:

• Each rule is transformed into a corresponding cost equation that de�nes its cost.
Figure 5.2 displays the GE obtained for the rules of Figure 3.3.

• The nop instructions determine the gas that the rule consumes according to the
gas cost model Copcode explained above. Those are the accumulated costs in the
equations, e.g., block1611 accumulates 15 units that correspond to the gas consumed
by the instructions in this block. In the example, the accumulated cost is always
constant, however, there are equations whose accumulated cost is parametric with
respect to some of the entries of the function analyzed, e.g., the equation for block561,
that is generated from the RBR of method __callback (omitting rule arguments
and constraints) is: 447 + 3 · result/32 + 3 · proof/32 + block2187. The parametric
accumulated cost comes from the two CALLDATACOPY opcodes that appear in this
block.

• Calls to other rules are replaced by calls to the corresponding cost equations. See
for instance the call to block1619 from rule block1611 that is transformed into a call
to the cost function block1619.

• Size relations are attached to rules to de�ne their applicability conditions and how
the sizes of data change when the equation is applied. See for instance the size
relations attached to jump1619 that have been explained in Example 5.1.
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As said before, the gas cost model includes a cost that comes from the memory con-
sumption. Intuitively, the memory gas cost depends on the highest memory address ac-
cessed during the execution of the function under analysis. It is obtained by computing
the highest slot of memory accessed for each bytecode executed and paying a fee every
time that the memory is extended. Besides MLOAD or MSTORE, instructions like SHA3 or CALL,
among others, make use of the local memory, and hence can increase the memory gas cost.

This is not a standard memory consumption analysis in which one obtains the total
amount of memory allocated by the function. Instead, in this case, we need to infer the
actual value of the highest slot accessed by any operation executed in the function.

In order to estimate the cost associated to all EVM instructions in the code of the
function, we �rst make the following observation: Computing the sum of all the memory
gas cost amounts to computing the memory cost function for the highest memory slot
accessed by the instructions of the function under analysis.

One possible way to infer this information is by means of a size analysis [34] that
computes upper bounds on sizes of all expressions used to access the memory (note that
they can be parametric). After this, in a second step, a maximization of all these upper
bound expressions is required.

Our approach to solve this problem is to view it as an instance of the peak resource
analysis problem [18, 59]. This analysis, rather than accumulating all costs as in standard
resource analysis, computes the peak (i.e., the maximal) of the resource consumption of
the whole execution. In order to use the peak analysis to our end, for each instruction
that accesses a memory location l we count as it allocates l resources.

Example 5.2. Let us show how we obtain the memory gas cost for block1647. In this
case, the two instructions in this block that cost memory correspond to a MSTORE and SHA3

bytecodes. In this block, both bytecodes operate on slot 0 of the memory, and they cost 3
units of gas because they only activate up to slot 1 of the memory.

5.4 From Equations to Close-Form Bounds

The last step of the gas bounds inference is the generation of a closed-form gas upper bound,
i.e., a solution for the GE as a non-recursive expression. As the GE we have generated have
the standard form of cost relations systems, they can be solved using o�-the-shelf solvers,
such as Pubs [16] or Cofloco [50] (Pubs can �nd logarithmic bounds too), without
requiring any modi�cation. These systems are able to �nd polynomial, logarithmic, and
exponential solutions for the input cost relations in a fully automated way.

The gas bounds computed for __callback and findWinner from the equations in Fig-
ure 3.3 using Pubs are 229380+3 ·(proof/32)+103 ·(result/32)+50 ·(32−result)+5836 ·
g3 + 5057 · g1 and 1555 + 779 · g3 respectively. Note that they are parametric on di�erent
state variables, input and blockchain data. For instance, the upper bound inferred for the
function findWinner is linear on the size of the third state variables g3, that represents
the size of the array slots and is the bound of the for-loop that findWinner contains.
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5.5 Related Work

As mentioned in the previous chapter, the analysis of Ethereum smart contracts to identify
vulnerabilities before the contract is deployed is a topic that is gaining popularity in the
last years. The state-of-the art tools are based on symbolic execution [70, 55, 81, 65, 63, 91],
SMT solving [72, 64], and certi�ed programming [30, 53, 26]. However, most of them ignore
resource usage, focusing on non-gas-related safety, security, and temporal properties. As
Gastap is not meant to be an all-in-one smart contract analyzer and focuses exclusively
on gas consumption, in this section we only review to the tools and approaches that are
concerned with gas usage and the corresponding out-of-gas vulnerabilities.

The GASPER tool identi�es gas-costly programming patterns [38], which can be
optimized to consume less. For doing so, it relies on matching speci�c control-�ow patterns,
SMT solvers and symbolic computation, which makes their analysis neither sound, nor
complete for determining gas usage bounds. The authors classify the patterns in two
groups: useless-code related patterns and loop-related patterns. Although they de�ne
seven di�erent patterns, GASPER is able to identify only three of them, that covers the
two categories mentioned above. The aim of the �rst pattern depicted in [38] is to detect
dead code (code whose execution depends on a condition that has to be tested at execution
time) on the smart contract, the second detects opaque predicates (code that depends on
the value of a condition that is set at compilation time) and the third one �nds expensive
operations in a loop (recall that the operations over storage are more expensive than
those that operate in memory). GASPER takes the bytecode of a contract and generates
a CFG through symbolic execution using Z3 solver to check if the guards of conditional
branches are feasible. When the CFG is constructed, it analyzes the code to recognize
the patterns. To detect dead code, GASPER compares the blocks of the CFG (which
are known statically) with those executed during the symbolic execution. Opaque code is
detected by testing if there is any branch that is never executed. Finally, the expensive
operations in loops are analyzed searching the loops inside the CFG and identifying if
any of the blocks involved in the loop contains the bytecode instructions SSTORE, SLOAD or
BALANCE. These techniques focus on detecting code patterns to improve the development
of the contract rather than inferring gas consumption bounds. In fact the gas information
does not take part in the analysis presented.

The previous work is extended in [39], where they present GasReducer. GasRe-

ducer also works at EVM bytecode level. GasReducer takes the bytecode of a smart
contract and outputs an optimized version of the original one that consumes less gas. The
authors increase the number of de�ned patterns from seven to twenty-four. In this case the
patterns are de�ned as a sequence of EVM instructions that can be replaced by another one
that consumes less gas but has the same semantics as the original sequence. To identify
the patterns, the authors inspect several instances from the execution traces of deployed
smart contracts. GasReducer transforms the EVM bytecode into the disassembled one.
Then, it analyzes the disassembled code iteratively until no pattern is found. When the
tool identi�es a pattern, it generates a report containing the location of the pattern and
the corresponding optimized code. After replacing the code of the pattern with the e�-
cient one, GasReducer reconstructs the disassembled code of the new contract executing
it symbolically as the jump address may have changed.

In a similar vein, the work [52] identi�es several classes of gas-focused vulnerabilities,

50



5.5. RELATED WORK

and provides MadMax, a static analysis, also working on decompiled EVM bytecode, that
combines techniques from �ow analysis together with control-�ow analysis (CFA), context-
sensitive analysis and modeling of memory layout. MadMax uses Vandal [33] as its
decompiler in order to get an intermediate representation of the contract. The analysis is
implemented in Datalog [56]. They de�ne a set of Datalog rules in order to model memory
and storage layouts. In a �rst step, MadMax infers loop and data-�ow information.
From loops, it infers information related to the exit condition of the loop or induction
variables, i.e., those that are incremented by a concrete value inside the loop. The data-
�ow analysis provides information such as aliasing or dependencies between variables.
It also implements a constant propagation. However, the data-�ow analysis is neither
sound nor complete. Using the basic loop and data-�ow analysis, MadMax is able to
infer high-level concepts such as array iterators or if the storage is increased on public
functions. MadMax di�ers from Gastap as it focuses on identifying control- and data-
�ow patterns inherent for the gas-related vulnerabilities, thus, working as a bug-�nder,
rather than complexity analyzer.

Since deriving accurate worst-case complexity boundaries is not a goal of any of
GASPER, GasReducer and MadMax, they are unsuitable for inferring gas upper
bounds.

Other tools based on proof assistants [58, 73, 57, 53] may reason about out-of-gas
exceptions. They can model how gas is updated along the execution of the trace and
encode it as constraint formulas. However these tools are not able to infer loop invariants.
They have to be speci�ed manually. Thus, they are not able no infer gas bounds for
programs that involve loops.

In a concurrent work [72], the authors identify three cases in which computing gas
consumption can help in making Ethereum more e�cient: (1) preventing contracts get-
ting stuck with out-of-gas exception, (2) placing the right price on the gas unit, and (3)
recognizing semantically-equivalent smart contracts and optimize the code. They propose
a methodology, based on the notion of the so-called gas consumption paths (GCPs), to
estimate the worst-case gas consumption using techniques from symbolic bounded model
checking [31]. Their approach is based on symbolically enumerating all execution paths
and unwinding loops to a limit. The authors suggest two algorithms for studying GCPs.
Instead of working in EVM bytecode, the analysis is based on Solidity. However, the analysis
computes EVM gas bound using concrete execution paths that cover all Solidity GCPs. In-
tuitively, the analysis extends the CFG to GCP, and returns the GCP that maximizes the
gas consumption. In the �rst algorithm presented, Gas Consumption Path Enumeration,
the authors translate the Solidity code into an unwound SSA (USSA) form. This form
consists of a sequence of guarded assignments. Then all the constraints that a�ect the
gas consumption of the USSA form are sent to a SMT solver. From the results of the
satis�able queries the algorithm simulates the transaction precisely and gets the highest
gas estimation. In the second algorithm, Function-Oriented Gas Consumption Path Enu-
meration, the algorithm constructs GCP for each function as cost-equivalence classes. In
that case the paths are computed gradually starting from the low-level instructions and
increasing the set of GCPs built recursively. It relies on the notion of cost equivalence
classes: set of conditions under which the behavior of a function or a block of instruc-
tions changes with respect to the gas consumption. Cost equivalence classes correspond
to the GCPs of the function that is being analyzed. Once the classes are computed, the
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algorithm infers the exact cost of each class and returns the maximum. Instead of using
resource analysis, Gastap infers the maximal number of iterations for loops and generates
accurate gas bounds which are sound for any possible execution of the function and not
only for the unwound paths. Therefore, our results are sound for any possible execution
of the smart contract (where loops can be executed any number of times). As we have
seen, using a resource analysis approach, in addition to inferring precise cost expressions
for constant gas consumption as in [72], we can go beyond that, and generate parametric
gas bounds. Besides, to the best of our knowledge, the approach proposed in [72] has not
been implemented in the context of EVM and has not been evaluated on real-world smart
contracts as ours.

Gastap is to the best of our knowledge, the �rst automatic gas analyzer for smart
contracts.
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Chapter 6

Conclusions and Future Work

In this thesis we have presented two MHP analyses (Section 2.1 and Section 2.2) for
asynchronous programs based on the actor model. In this model, the objects (actors)
are the concurrency units. An MHP analysis infers the pairs of program points that may
interleave their execution. The termination of asynchronous calls can be awaited using
speci�c instructions and future variables [48, 44]. The MHP analysis learns from the future
variables used in the synchronization instructions when tasks are terminated, so that the
analysis can accurately eliminate unfeasible MHP pairs that would be inferred otherwise.

There are several MHP analysis developed for multiples languages and concurrency
models [79, 12, 67, 85, 46, 28, 37, 40, 36]. In [12, 67, 85], the problem of developing a
MHP analysis is studied for the concurrency model with �async-�nish parallelism�. In
[79], an MHP analysis for Ada is developed. Ada has a rendezvous concurrency model
based on synchronous message passing. [28] and [37] infer a thread-level MHP analysis
for programs in Java and its concurrency model based on threads. The analysis presented
in [40, 36] builds a time based model to infer race conditions in high performance systems.
The analysis relies on an MHP analysis which is applied in a segment graph. On one
hand, some of these analyses [79, 12, 67, 85] do not support that the synchronization of
asynchronous calls is carried out in a di�erent scope from that in which they were created.
On the other hand, existent analyses [28, 37, 40, 36] allow synchronization of asynchronous
tasks in di�erent scopes but they are not precise enough.

The analyses presented [22, 23] extend the MHP analysis developed in [21]. The
information is inferred in two phases: (i) the local phase infers the information local to
each method, and (ii) the global phase where all the information of the previous step is
composed in order to infer transitive relations. This original analysis only supports intra-
procedural synchronization, i.e., the tasks can only be awaited in the same scope in which
they were spawned. Thus, we have enhanced the original MHP analysis [21] in order to
analyze inter-procedural synchronization:

• In Section 2.1, we present a MHP analysis [22] where the tasks can be synchronized
in inner scopes so the future variables can be passed to the methods as parameters.
It proposes a MHF analysis, a novel pre-analysis that infers, for each program point,
which tasks must have �nished their execution. This information is incorporated to
both phases of the analysis.

• In Section 2.2, we present a MHP analysis [23] that allows awaiting the tasks in
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outer scopes from those that spawn them as the tasks can return future variables.
It modi�es both phases in order to back-propagate the new information generated
by the returned future variables.

These extensions improve signi�cantly the precision of the initial MHP analysis [21].
The MHP information has revealed to be fundamental to build more complex analysis of
safety and liveness properties such as deadlock, termination or resource analysis. Improv-
ing the precision of the MHP analysis, we increase also the accuracy of these analysis.

As future work we highlight the following directions:

• Improving the precision of the MHP analysis when future variables are declared as
global variables, i.e., �elds of classes. It introduces new challenges to the analysis
as it would require tracking all the �elds along all the analysis because they can
be updated at any program point. Our current approach is to apply the technique
proposed in [14] for handling �elds that consists in transforming �elds to local vari-
ables and pass them in arguments whenever it is sound to do so (i.e., when the tasks
that interleave with the current one will not modify them). If �elds then become
arguments that are returned, we can apply our approach to handle returned future
variables.

• Although the MHP analysis has been studied for many languages and concurrency
models, there are a few publications related to decidability of the analysis. [90]
proves that for a rendezvous based concurrency model the problem is undecidable.
In contrast, the problem has been proven to be, under some conditions, decidable in
lineal time for concurrency models based on X10 [12, 67]. An interesting direction
is to study the computational complexity of deciding MHP, for our language, in a
similar way to the one presented in [32] for the problem of state reachability.

• The two MHP analyses presented in this thesis are fully compatible. The next step
would be the integration of both approaches in a unique framework having the MHF
analysis as a precomputation and rede�ning the local and the global phases.

• Studying how the previous analyses can be combined, their possible applications and
their use as part of more complex analyses. The enhancement of precision of the
analyses a�ects directly to other analyses, increasing their complexity. Sometimes
the analyses have to be adapted in order to support the improvement of the precision.

• An important aspect related to the applicability of the analyses is the possibility
of adapting and generalizing them to di�erent languages and concurrency models.
Other concurrency models are less restrictive than the actor model which makes
its analysis more di�cult. The MHP analyses can be adapted to other concurrent
programming patterns.

This thesis also presents a method to decompile Ethereum smart contracts. EthIR [24,
25] is a framework for high-level analysis of smart contracts that takes the bytecode of the
smart contract as input and builds an intermediate representation based on guarded rules.
The aim of the intermediate representation is to make explicit the control- and data-�ow
of the contract. The analysis is applied in two main steps:
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1. EthIR takes a smart contract written in Solidity, EVM bytecode or disassembled code
and generates a CFG. The CFG generator has been built on top of the tool Oyente.
It uses the parser of Oyente to simulate the e�ects of each EVM instruction on the
stack. The logic to infer all the possible jump addresses and recover the connections
between the blocks of the CFG has been reimplemented in order to obtain a complete
CFG.

2. Each block is translated into a set of guarded rules. These rules have explicit vari-
ables to represent the stack, memory, storage and blockchain data involved in the
contract. Optionally, the rules keep the original bytecodes in the code using nop

instructions.

Current state-of-the art tools follow two di�erent approaches: analyzing the source
code [47, 63, 88, 72] or analyzing the EVM bytecode [55, 81, 65, 91] of the contract. Analyzing
Solidity source code has advantages over the analysis of EVM bytecode as it contains the
high-level representation of the contract. The control-�ow of the contract is available in
the code as well as the data structures. However, the semantics of Solidity is not formally
de�ned and the number of smart contracts whose source code is stored in the Ethereum
blockchain is very low (less than 1%). In addition, some properties can be only analyzed
at EVM level because they depend on the bytecode instructions of the smart contract.

In the past years, multiple tools for decompiling contracts and building intermediate
representations have been published. Some of them have tried to formally reason about
Ethereum contracts modeling its semantics [58, 73, 57, 53]. Others symbolically execute
the EVM bytecode to generate an intermediate representation [70, 10, 75].

Regarding decompilation of EVM bytecode, we plan to continue the development of the
tool in the following directions:

• As mentioned before, the data structures are only explicit at the source code level. In
Solidity, the user can de�ne arrays, maps, and structs as data structures. However,
when the contract is compiled into EVM code these structures are converted into
separated variables and are accessed through hash codes. We aim at making the data
structures explicit in our intermediate representation and being able to distinguish
them.

• Although there exist types in Solidity, EVM is an untyped language. However, some
EVM instructions such as SMOD, SDIV, SLT, SGT or SIGNEXTEND allow detecting the type of
the data on which they operate. These EVM instructions di�er from the original ones
(MOD,DIV,etc.) in that the numbers on which they operate are known to be signed
integers represented in two's complement. We plan to use this information to infer
the types of the variables. Tools like SAFEVM will bene�t from this information.

EthIR constitutes the basis for the two analyzers for smart contracts presented in this
thesis: SAFEVM [17] and Gastap [25]. They consider the RBR generated by EthIR as
their starting point.

SAFEVM uses C veri�cation tools to prove safety on Ethereum smart contracts. The
idea behind the veri�er is to study the reachability of the bytecode instruction INVALID.
The execution of this opcode has economical consequences: the transaction that is cur-
rently running is aborted, the state is reverted to the initial one but the gas spent until
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this point is not refunded. Hence, SAFEVM is able to ensure if there exists a possible
execution on the smart contract that leads to an INVALID. This is done in two steps:

1. By transforming the recursive RBR into an iterative goto-based C program with
ERROR annotations following the SV-COMP format.

2. The C program generated is analyzed by a C veri�er. The veri�er proves if the ERROR
annotations are reachable by a possible executions and generates a report. Although
we have tested SAFEVM using CPAchecker, VeryMax and SeaHorn as veri�ers, the
C program that represents the contract can be analyzed by any other veri�er that
supports SV-COMP annotations.

The analysis of properties related to the security and safety of smart contracts has
become an interesting research topic. Ethereum smart contracts cannot be modi�ed once
they are deployed. A vulnerability in the code may have a high economical impact. There
are several tools whose aim is to verify properties of smart contracts. Each tool tries to �nd
di�erent types of vulnerabilities being the most common bugs those related to reentrancy,
integer over�ows, frozen funds or unhandled exceptions. Some of the tools [70, 55, 81, 65,
63, 91] developed in the recent years �nd the vulnerabilities using symbolic execution of
the contract. Other tools [72, 64, 75] employ SMT solvers to obtain the results of certain
constraint systems built during the generation of the intermediate representation of the
EVM code. There are also analyzers [60, 88] that apply runtime veri�cation techniques
to �nd potential vulnerabilities. Finally, some of the state-of-the art tools are based on
certi�ed programming [30, 53, 26].

Despite the high number of existing analyzers, SAFEVM is to the best of our knowl-
edge the �rst veri�er of Ethereum smart contracts that uses C engines. Although SAFEVM
is still in a prototypical stage, it provides a proof-of-concept of the transformational ap-
proach, and we argue that it constitutes a promising basis to build veri�cation tools for
EVM smart contracts.

Some of the aspects that we aim at improving in future work are:

• We have identi�ed smart contracts that we are not able to verify due to the memory
abstraction performed by EthIR. The development of a memory analysis for EVM

smart contracts can be crucial for the accuracy of veri�cation.

• Handling bit-wise operations in the future that are extensively used in the EVM byte-
code. In the current version they have to be abstracted as most of the veri�ers do
not support them.

• Amore advanced reasoning for arrays and maps (the only data structures available in
Ethereum smart contracts) can be added to the framework to gain further accuracy.

• Improving the tool to be able to reason about properties which are global to the
contract. To verify some properties the analyzer needs to ensure, for instance, that
the state variables involved in the property are not modi�ed by any other function
of the contract or that two data structures always have the same size.

The last tool presented in this thesis is Gastap [25]. Gastap is a resource analyzer to
infer gas upper bounds on smart contracts. In order to execute a transaction on Ethereum
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blockchain, an amount of gas must be provided. If the gas provided is less than the gas
that the transaction needs to be executed, the transaction will be aborted. Gastap allows
calculating a gas upper bound for each public function of the contract. Assuming that the
analysis has the RBR generated by EthIR, it is implemented in three phases:

1. It computes the size relations that represent how the variables are modi�ed along
the rule.

2. It generates gas equations for each rule of the RBR. The gas can be separated in
two parts: opcode gas that depends on the EVM instruction and memory gas that
depends on the memory consumed in the execution of the transaction.

3. The Pubs solver [16] takes the gas equations and the size relations to generate
closed-form gas upper bounds.

Automated sound static reasoning about resource consumption is critical for developing
safe and secure blockchain-based replicated computations, managing billions of dollars
worth of virtual currency. We have adapted and extended state-of-the art techniques
in resource analysis, showing that such reasoning is feasible for Ethereum, where it can
be used for preventing vulnerabilities and veri�cation or certi�cation of existing smart
contracts.

None of the state-of-the art tools presented is able to compute gas bounds for smart
contracts. In fact, only a small fraction of tools [38, 39, 52, 72] are focused on analyzing
gas consumption. Gastap is to the best of our knowledge, the �rst automatic gas analyzer
for smart contracts.

As future work, we plan:

• The only di�erence between our cost model and the speci�cation of the gas con-
sumption given in [95] is that we are not including the cost associated to the gas-cap
of the opcodes CALLCODE, CALL and DELEGATECALL, denoted in [95] by CGASCAP. This
cost is not real as it is just a cap on the gas consumption of the call and it can be,
for instance, all the available gas. Adding the gas-cap would give an unacceptably
high estimate. Therefore, our cost analysis only includes the instructions of the code
we are actually analyzing and does not include the cost of the code of the external
functions if we do not know such code. As future work, we plan to improve the
analysis by searching for the code of external calls and, if available, infer its gas
consumption and add it.

• Gastap over-approximates the gas consumption of the public functions of the con-
tract. Some EVM opcodes consume a constant gas fee that depends on some condition.
Our current approach, to make the analyzer sound, is to keep the more expensive
fee. We plan to improve the gas model in order to infer more accurate bounds, e.g.,
in the case of SSTORE that consumes 20,000 units of gas if we are writing in a position
that previously contained a 0 or 5,000 otherwise.

• Finally, as in the Solidity compiler, we are measuring the gas consumption of the
analyzed instructions and not adding to our analysis the so called intrinsic gas cost
of the execution. The intrinsic gas includes a transaction fee of 21,000 plus an
amount that depends on the input data of the transaction and another amount that
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might be added for contract-creating transactions. We plan to add a �ag to our tool
to optionally include this cost as well.
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Abstract. A may-happen-in-parallel (MHP) analysis computes pairs of
program points that may execute in parallel across different distributed
components. This information has been proven to be essential to infer
both safety properties (e.g., deadlock freedom) and liveness properties
(e.g., termination and resource boundedness) of asynchronous programs.
Existing MHP analyses take advantage of the synchronization points to
learn that one task has finished and thus will not happen in parallel
with other tasks that are still active. Our starting point is an exist-
ing MHP analysis developed for intra-procedural synchronization, i.e.,
it only allows synchronizing with tasks that have been spawned inside
the current task. This paper leverages such MHP analysis to handle
inter-procedural synchronization, i.e., a task spawned by one task can be
awaited within a different task. This is challenging because task synchro-
nization goes beyond the boundaries of methods, and thus the inference
of MHP relations requires novel extensions to capture inter-procedural
dependencies. The analysis has been implemented and it can be tried
online.

1 Introduction

In order to improve program performance and responsiveness, many modern
programming languages and libraries promote an asynchronous programming
model, in which asynchronous tasks can execute concurrently with their caller
tasks, and their callers can explicitly wait for their completion. Our analysis is
formalized for an abstract model that includes procedures, asynchronous calls,
and future variables for synchronization [7,8]. In this model, a method call m on
some parameters x, written as f=m(x) , spawns an asynchronous task. Here, f
is a future variable which allows synchronizing with the termination of the task
executing m. The instruction await f? allows checking whether m has finished,
and blocks the execution of the current task if m is still running. As concurrently-
executing tasks interleave their accesses to shared memory, asynchronous
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programs are prone to concurrency-related errors [6]. Automatically proving
safety and liveness properties still remains a challenging endeavor today.

MHP is an analysis of utmost importance to ensure both liveness and safety
properties of concurrent programs. The analysis computes MHP pairs, which are
pairs of program points whose execution might happen in parallel across differ-
ent distributed components. In this fragment of code f=m(..);...; await f?; the
execution of the instructions of the asynchronous task m may happen in parallel
with the instructions between the asynchronous call and the await. However,
due to the await instruction, the MHP analysis is able to ensure that they will
not run in parallel with the instructions after the await. This piece of informa-
tion is fundamental to prove more complex properties: in [9], MHP pairs are
used to discard unfeasible deadlock cycles; in [4], the use of MHP pairs allows
proving termination and inferring the resource consumption of loops with con-
current interleavings. As a simple example, consider a procedure g that contains
as unique instruction y=-1, where y is a global variable. The following loop
y=1;while(i>0){i=i-y;} might not terminate if g runs in parallel with it, since g
can modify y to a negative value and the loop counter will keep on increasing.
However, if we can guarantee that g will not run in parallel with this code, we
can ensure termination and resource-boundedness for the loop.

This paper leverages an existing MHP analysis [3] developed for intra-
procedural synchronization to the more general setting of inter-procedural syn-
chronization. This is a fundamental extension because it allows synchronizing
with the termination of a task outside the scope in which the task is spawned,
as it is available in most concurrent languages. In the above example, if task g
is awaited outside the boundary of the method that has spawned it, the analysis
of [3] assumes that it may run in parallel with the loop and hence it fails to prove
termination and resource boundedness. The enhancement to inter-procedural
synchronization requires the following relevant extensions to the analysis:

1. Must-Have-Finished Analysis (MHF): the development of a novel MHF analy-
sis which infers inter-procedural dependencies among the tasks. Such depen-
dencies allow us to determine that, when a task finishes, those that are awaited
for on it must have finished as well. The analysis is based on using Boolean
logic to represent abstract states and simulate corresponding operations. The
key contribution is the use of logical implication to delay the incorporation of
procedure summaries until synchronization points are reached. This addresses
a challenge in the analysis of asynchronous programs.

2. Local MHP Phase: the integration of the above MHF information in the local
phase of the original MHP analysis in which methods are analyzed locally, i.e.,
without taking indirect calls into account. This will require the use of richer
analysis information in order to consider the inter-procedural dependencies
inferred in point 1 above.

3. Global MHP phase: the refinement of the global phase of the MHP analysis –
where the information of the local MHP analysis in point 2 is composed– in
order to eliminate spurious MHP pairs which appear when inter-procedural
dependencies are not tracked. This will require to refine the way in which
MHP pairs are computed.
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We have implemented our approach in SACO [2], a static analyzer for concurrent
objects which is able to infer the aforementioned liveness and safety properties.
The system can be used online at http://costa.ls.fi.upm.es/saco/web, where the
examples used in the paper are also available.

2 Language

Our analysis is formalized for an abstract model that includes procedures, asyn-
chronous calls, and future variables [7,8]. It also includes conditional and loop
constructs, however, conditions in these constructs are simply non-deterministic
choices. Developing the analysis at such abstract level is convenient [11], since
the actual computations are simply ignored in the analysis and what is actually
tracked is the control flow that originates from asynchronously calling methods
and synchronizing with their termination. Our implementation, however, is done
for the full concurrent object-oriented language ABS [10] (see Sect. 6).

A program P is a set of methods that adhere to the following grammar:

M : := m(x̄) {s}
s : := ε | b; s
b : := if (∗) then s1 else s2 | while (∗) do s | y = m(x̄) | await x? | skip

Here all variables are future variables, which are used to synchronize with the
termination of the called methods. Those future variables that are used in a
method but are not in its parameters are the local future variables of the method
(thus we do not need any special instruction for declaring them). In loops and
conditions, the symbol ∗ stands for non-deterministic choice (true or false).
The instruction y = m(x̄) creates a new task which executes method m, and
binds the future variable y with this new task so we can synchronize with its
termination later. Inter-procedural synchronization is realized in the language by
passing future variables as parameters, since the method that receives the future
variable can await for the termination of the associated task (created outside its
scope). For simplifying the presentation, we assume that method parameters are
not modified inside each method. For a method m, we let Pm be the set of its
parameters, Lm the set of its local variables, and Vm = Pm ∪ Lm.

The instruction await x? blocks the execution of the current task until the
task associated with x terminates. Instruction skip has no effect, it is simply
used when abstracting from a richer language, e.g., ABS in our case, to abstract
instructions such as assignments. Programs should include a method main from
which the execution (and the analysis) starts. We assume that instructions are
labeled with unique identifiers that we call program points. For if and while the
identifier refers to the corresponding condition. We also assume that each method
has an exit program point �m. We let ppoints(m) and ppoints(P ) be the sets
of program points of method m and program P , resp., I� be the instruction at
program point �, and pre(�) be the set of program points preceding �.

Next we define a formal (interleaving) operational semantics for our language.
A task is of the form tsk(tid , l, s) where tid is a unique identifier, l is a mapping
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Fig. 1. Derivation rules

from local variables and parameters to task identifiers, and s is a sequence of
instructions. Local futures are initialized to the special value ⊥ which is the
default value for future variable (i.e., ⊥ like null for reference variables in Java).
A state S is a set of tasks that are executing in parallel. From a state S we can
reach a state S′ in one execution step, denoted S � S′, if S can be rewritten
using one of the derivation rules of Fig. 1 as follows: if the conclusion of the rule
is A � B such that A ⊆ S and the premise holds, then S′ = (S \ A) ∪ B.
The meaning of the derivation rules is quite straightforward: (skip) advances
the execution of the corresponding task to the next instruction; (if) nondeter-
ministically chooses between one of the branches; (loop) nondeterministically
chooses between executing the loop body or advancing to the instruction after
the loop; (call) creates a new task with a fresh identifier tid ′, initializes the
formal parameters z̄ of m to those of the actual parameters x̄, sets future vari-
able y in the calling task to tid ′, so one can synchronize with its termination
later (other local futures of m are assumed to have the special value ⊥); and
(await) advances to the next instruction if the task associated to x has termi-
nated already. Note that when a task terminates, it does not disappear from the
state but rather its sequence of instructions remains empty.

An execution is a sequence of states S0 � S1 � · · · � Sn, sometimes
denoted as S0 �∗ Sn, where S0 = {tsk(0, l, body(main))} is an initial state
which includes a single task that corresponds to method main, and l is an empty
mapping. At each step there might be several ways to move to the next state
depending on the task selected, and thus executions are nondeterministic.

In what follows, given a task tsk(tid , l, s), we let pp(s) be the program point
of the first instruction in s. When s is an empty sequence, pp(s) refers to the
exit program point of the corresponding method. Given a state S, we define its
set of MHP pairs, i.e., the set of program points that execute in parallel in S, as
E(S) = {(pp(s1), pp(s2)) | tsk(tid1, l1, s1), tsk(tid2, l2, s2) ∈ S, tid1 �= tid2}. The
set of MHP pairs for a program P is then defined as the set of MHP pairs of all
reachable states, namely EP = ∪{E(Sn) | S0 �∗ Sn}.
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Example 1. Figure 2 shows some examples in our language, where m1, m2 and m3

are main methods. The following are some steps in a possible derivation for m2:

S0 ≡ tsk(0, ∅, body(m2)) �∗ S1 ≡ tsk(0, [x �→ 1], {16, . . .}), tsk(1, ∅, body(f)) �∗

S2 ≡ tsk(0, [x �→ 1, z �→ 2], {18, . . .}), tsk(1, ∅, body(f)), tsk(2, [w �→ 1], body(g)) �∗

S3 ≡ tsk(0, [x �→ 1, z �→ 2], {19, . . .}), tsk(1, ∅, ε), tsk(2, [w �→ 1], body(g)) �∗

S4 ≡ tsk(0, [x �→ 1, z �→ 2], {20, . . .}), tsk(1, ∅, ε), tsk(2, [w �→ 1], ε) � . . .

In S1 we execute until the asynchronous call to f which creates a new task
identified as 1 and binds x to this new task. In S2 we have executed the skip
and the asynchronous invocation to g that adds in the new task the binding of
the formal parameter w to the task identified as 1. In S3 we proceed with the
execution of the instructions in m2 until reaching the await that blocks this task
until g terminates. Also, in S3 we have executed entirely f (denoted by ε). S4

proceeds with the execution of g whose await can be executed since task 1 is
at its exit point ε. We have the following MHP pairs in this fragment of the
derivation, among many others: from S1 we have (16,35) that captures that the
first instruction of f executes in parallel with the instruction 16 of m2, from S2

we have (18,35) and (18,38). The important point is that we have no pair (20,35)
since when the await at L19 executes at S4, it is guaranteed that f has finished.
This is due to the inter-procedural dependency at L39 of g where the task f is
awaited: variable x is passed as argument to g, which allows g to synchronize
with the termination of f at L39 even if f was called in a different method.

3 An Informal Account of Our Method

In this section, we provide an overview of our method by explaining the analysis
of m2. Our goal is to infer precise MHP information that describes, among others,
the following representative cases: (1) any program point of g cannot run in
parallel with L20, because at L19 method m2 awaits for g to terminate; (2) L35
cannot run in parallel with L20, since when waiting for the termination of g at
L19 we know that f must-have-finished as well due to the dependency relation
that arises when m2 implicitly waits for the termination of f; and (3) L35 cannot
run in parallel with L40, because f must-have-finished due to the synchronization
on the local future variable w at L39 that refers to future variable x of m2.

Let us first informally explain which MHP information the analysis of [3] is
able to infer for m2, and identify the reasons why it fails to infer some of the
desired information. The analysis of [3] is carried out in two phases: (1) each
method is analyzed separately to infer local MHP information; and (2) the local
information is used to construct a global MHP graph from which MHP pairs are
extracted by checking reachability conditions among the nodes.

The local analysis infers, for each program point, a multiset of MHP atoms
where each atom describes a task that might be executing in parallel when
reaching that program point, but only considering tasks that have been invoked
directly in the analyzed method. An atom of the form x:m̃ indicates that there
might be an active instance of m executing at any of its program points, and is
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Fig. 2. (TOP) Examples for MHP analysis (m1, m2, m3 are main methods). (BOT-
TOM) MHP graph Gi corresponds to analyzing mi, and G0 to analyzing m2 as in [3].
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bound to the future variable x. An atom of the form x:m̂ differs from the previous
one in that m must be at its exit program point, i.e., has finished executing
already. For method m2, the local MHP analysis infers, among others, {x:̃f} for
L16, {x:̃f, z:g̃} for L18, and {x:̃f, z:ĝ} for L20 and L21, because g has been awaited

locally. Observe that the sets of L20 and L21 include x:̃f and not x:̂f, although
method f has finished already when reaching L20 and L21 (since g has finished).
This information cannot be inferred by the local analysis of [3] since it is applied
to each method separately, ignoring (a) indirect (non-local) calls and (b) inter-
procedural synchronizations. In the sequel we let Ψ� be the result of the local
MHP analysis for program point �.

In the second phase, the analysis of [3] builds an MHP graph whose purpose
is to capture MHP relations due to indirect calls (point (a) above). The graph
G0 depicted in Fig. 2 for m2 is constructed as follows: (1) every program point
� contributes a node labeled with � – for simplicity we include only program
points of interest; (2) every method m contributes two nodes m̃ and m̂, where
m̃ is connected to all program point nodes of m to indicate that when m is
active, it can be executing at any of its program points, and m̂ is connected
only to the exit program point of m; and (3) if x:m̃ (resp. x:m̂) is an atom of Ψ�

with multiplicity i, i.e., it appears i times in the multiset Ψ�, we create an edge
from � to m̃ (resp. m̂) and label it with i:x. Note such edge actually represents
i identical edges, i.e., we could copy the edge i times and omit the label i.

Roughly, the MHP pairs are obtained from G
0

using the following principle:
program points (�1, �2) might execute in parallel if there is a path from �1 to
�2 or vice versa (direct MHP pair); or if there is a program point �3 such that
there are paths from �3 to �1 and to �2 (indirect MHP pair), and the first edge
of both paths is labeled with two different future variables. When two paths are
labeled with the same future variable, it is because there is a disjunction (e.g.,
from an if-then-else) and only one of the paths might actually occur. Applying
this principle to G

0
, we can conclude that L20 cannot execute in parallel with

any program point of g, which is precise as expected, and that L20 can execute
in parallel with L35 which is imprecise. This imprecision is attributed to the fact
that the MHP analysis of [3] does not track inter-method synchronizations.

In order to overcome the imprecision, we develop a must-have-finished analy-
sis that captures inter-method synchronizations, and use it to improve the two
phases of [3]. This analysis would infer, for example, that “when reaching L40,
it is guaranteed that whatever task bound to w has finished already”, and that
“when reaching L20, it is guaranteed that whatever tasks bound to x and z have
finished already”. By having this information at hand, the first phase of [3] can
be improved as follows: when analyzing the effect of await z? at L20, we change
the status of both g and f to finished, because we know that any task bound z
and x has finished already. In addition, we modify the MHP atoms as follows:
an MHP atom will be of the form y:�:m̃(x̄) or y:�:m̂(x̄), where the new infor-
mation � and x̄ are the calling site and the parameters passed to m. The need
for this extra information will become clear later in this section. In summary,
the modified first phase will infer {x:15:̃f()} for L16, {x:15:̃f(), z:17:g̃(x)} for L18,

and {x:15:̂f(), z:17:ĝ(x)} for L20 and L21.
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In the second phase of the analysis: (i) the construction of the MHP graph
is modified to use the new local MHP information; and (ii) the principle used to
extract MHP pairs is modified to make use to the must-have-finished informa-
tion. The new MHP graph constructed for m2 is depicted in Fig. 2 as G2 . Observe
that the labels on the edges include the new information available in the MHP
atoms. Importantly, the spurious MHP information that is inferred by [3] is not
included in this graph: (1) in contrast to G0 , G2 does not include edges from

nodes 20 and 21 to f̃, but to f̂. This implies that L35 cannot run in parallel with
L20 or L21; (2) in G

2
, we still have paths from 18 to 35 and 40, which means,

if the old principle for extracting MHP pairs is used, that L35 and L40 might
happen in parallel. The main point is that, using the labels on the edges, we
know that the first path uses a call to f that is bound to x, and that this same x
is passed to g, using the parameter w, in the first edge of the second path. Now
since the must-have-finished analysis tell us that at L40 any task bound w is
finished already, we conclude that f must be at its exit program point when the
execution reaches L40, and thus the MHP pair (35,40) is spurious because L35
is not an exit program point of f. This last point explains why the MHP atoms
are designed to include the actual parameters of method calls.

4 Must-Have-Finished Analysis

In this section we present a novel inter-procedural Must-Have-Finished (MHF)
analysis that can be used to compute, for each program point �, a set of finished
future variables, i.e., whenever � is reached those variables are either not bound
to any task (i.e., have the default value ⊥) or their bound tasks are guaranteed
to have terminated. We refer to such sets as MHF sets.

Example 2. The following are MHF sets for the program points of Fig. 2:

L2: {x,w,z}
L3: {z,w}
L4: {w}
L5: {w}
L6: {w}
L7: {}

L9 : {w}
L10: {}
L11: {}
L12: {x,w}
L14: {x,z}
L15: {x,z}

L16: {z}
L17: {z}
L18: {}
L19: {}
L20: {x,z}
L21: {x,z}

L26: {x,z,w}
L27: {x,w}
L28: {x,w}
L29: {w}
L30: {}
L31: {x,w}

L32: {x,w}
L35: {}
L36: {}
L38: {}
L39: {}
L40: {w}

L41: {w}
L44: {z}
L45: {z}
L46: {}
L47: {}
L48: {a,z}

L50: {}
L51: {}
L52: {a}
L53: {a}
L54: {a,b}
L55: {a,b}

L58: {}
L59: {}

Here, at program points that correspond to method entries, all local variables
(but not the parameters) are finished since they point to no task. For g: at
L38 and L39 no task is guaranteed to have finished, because the task bound to
w might be still executing; at L40 and L41, since we passed through awaitw?
already, it is guaranteed that w is finished. For k: at L50 and L51 no task is
guaranteed to have finished; at L52 and L53 a is finished since we already passed
through await a?; and at L54 and L55 both a and b are finished. For m1: at L12
both w and x are finished. Note that w is finished because of awaitw? , and x is
finished due to the implicit dependency between the termination of x and w.
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4.1 Definition of MHF

By carefully examining the MHF sets of Example 2, we can see that an analysis
that simply tracks MHF sets would be imprecise. For example, since the MHF
set at L11 is empty, the only information we can deduce for L12 is that w is
finished. To deduce that x is finished we must track the implicit dependency
between w and x. Next we define a more general MHF property that captures
such dependencies, and from which we can easily compute the MHF sets.

Definition 1. Given a program point � ∈ ppoints(P ), we let F(�) = {f(Si, l) |
S0 �∗ Si, tsk(tid , l, s) ∈ Si, pp(s) = �} where f(S, l) = {x | x ∈ dom(l), l(x) =
⊥ ∨ (l(x) = tid ′ ∧ tsk(tid ′, l′, ε) ∈ S)}.

Intuitively, f(S, l) is the set of all future variables, from those defined in l, whose
corresponding tasks are finished in S. The set F(�) considers all possible ways of
reaching �, and for each one it computes a corresponding set f(S, l) of finished
future variables. Thus, F(�) describes all possible sets of finished future variables
when reaching �. The set of all finished future variables at � is then defined as
mhf(�) = ∩{F | F ∈ F(�)}, i.e., the intersection of all sets in F(�).

Example 3. The values of F(�) for selected program points from Fig. 2 are:

L5 : {{w,x,z},{w,z},{w,x},{w}}
L11: {{w,x,z},{w,x},{x,z},{z},{x},{}}
L12: {{w,x,z},{w,x}}
L20: {{x,z}}
L27: {{w,x,z},{w,x}}
L30: {{w,x,z},{w,x},{x,z},{x},{z},{}}

L31: {{w,x,z},{w,x}}
L32: {{w,x,z},{w,x}}
L35: {{}}
L38: {{w},{}}
L40: {{w}}

L46: {{a,z},{a},{},
{a,b,z},{a,b},{b}}

L48: {{a,z},{a,b,z}}
L52: {{a},{a,b}}
L54: {{a,b}}
L58: {{}}

In L5 different sets arise by considering all possible orderings in the execution
of tasks f, q and m1, but mhf(L5) = {w}. Note that for any F ∈ F(11), if w ∈ F
then x ∈ F , which means that if w is finished at L11, then x must have finished.

4.2 An Analysis to Infer MHF Sets

Our goal is to infer mhf(�), or a subset of it, for each � ∈ ppoints(P ). Note that
any set X that over-approximates F(�), i.e., F(�) ⊆ X, can be used to compute
a subset of mhf(�), because ∩{F | F ∈ X} ⊆ ∩{F | F ∈ F(�)}. In the rest of this
section we develop an analysis to over-approximate F(�). We will use Boolean
formulas, whose models naturally represent MHF sets, and Boolean connectives
to smoothly model the abstract execution of the different instructions.

An MHF state for the program points of a method m is a propositional
formula Φ : Vm �→ {true, false} of the form ∨i∧j cij , where an atomic proposition
cij is either x or y → x such that x ∈ Vm ∪{true, false} and y ∈ Lm. Intuitively,
an atomic proposition x states that x is finished, and y → x states that if y is
finished then x is finished as well. Note that we do not allow the parameters
of m to appear in the premise of an implication (we require y ∈ Lm). When Φ



May-Happen-in-Parallel Analysis for Asynchronous Programs 81

is false or of the form ∨j ∧j xij where xij is a propositional variable, we call
it monotone. Recall that σ ⊆ Vm is a model of Φ, iff an assignment that maps
variables from σ to true and other variables to false is a satisfying assignment
for Φ. The set of all models of Φ is denoted [[Φ]]. The set of all MHF states for
m, together with the formulas true and false, is denoted Am.

Example 4. Assume Vm = {x, y, z}. The Boolean formula x∨y states that either
x or y or both are finished, and that z can be in any status. This information is
precisely captured by the models [[x ∨ y]] = {{x},{y},{x,y},{x,z},{y,z},{x,y,z}}.
The Boolean formula z∧(x → y) states that z is finished, and if x is finished then
y is finished. This is reflected in [[z ∧ (x → y)]] = {{z}, {z, y}, {z, x, y}} since z
belongs to all models, and any model that includes x includes y as well. The
formula false means that the corresponding program point is not reachable. The
following MHF states correspond to some selected program points from Fig. 2:

Φ5 : w
Φ11: w→x

Φ12: w ∧ x
Φ20: x ∧ z

Φ27: w ∧ x
Φ30: w→x

Φ31: w ∧ x
Φ32: w ∧ x

Φ35: true
Φ38: true

Φ40: w
Φ46: z→a

Φ48: a ∧ z
Φ52: a

Φ54: a ∧ b
Φ58: true

Note that the models [[Φ�]] coincide with F(�) from Example 3.

Now, we proceed to explain how the execution of the different instructions can
be modeled with Boolean formulas. Let us first define some auxiliary operations.
Given a variable x and an MHF state Φ ∈ Am, we let ∃x.Φ = Φ[x �→ true]∨Φ[x �→
false], i.e., this operation eliminates variable x from (the domain of) Φ. Note that
∃x.Φ ∈ Am and that [[Φ]] |= [[∃x.Φ]]. For a tuple of variables x̄ we let ∃x̄.Φ be
∃x1.∃x2. . . . .∃xn.Φ, i.e., eliminate all variables x̄ from Φ. We also let ∃̄x̄.Φ stand
for eliminating all variables but x̄ from Φ. Note that if Φ ∈ Am is monotone,
and x ∈ Lm, then x → Φ is a formula in Am as well.

Given a program point �, an MHF state Φ�, and an instruction to execute
I�, our aim is to compute a new MHF state, denoted μ(I�), that represents the
effect of executing I� within Φ�. If I� is skip, then clearly μ(I�) ≡ Φ�. If I� is an
await x? instruction, then μ(I�) is x∧Φ�, which restricts the MHF state of Φ� to
those cases (i.e., models) in which x is finished. If I� is a call y = m(x̄), where
m is a method with parameters named z̄, and, at the exit program point of m
we know that the MHF state Φ�m

holds, then μ(I�) is computed as follows:

– We compute an MHF state Φm that describes “what happens to tasks bound
to x̄ when m terminates”. This is done by projecting Φ�m

onto the method
parameters, and then renaming the formal parameters z̄ to the actual para-
meters x̄, i.e., Φm = (∃̄z̄.Φ�m

)[z̄/x̄] , where [z̄/x̄] denotes the renaming.
– Now assume that ξ is a new (future) variable to which m is bound. Then

ξ → Φm states that “when m terminates, Φm must hold”. Note that it says
nothing about x̄ if m has not terminated yet. It is also important to note that
Φm is monotone and thus ξ → Φm is a valid MHF state.

– Next we add ξ → Φm to Φ�, eliminate (old) y since the variable is rewritten,
and rename ξ to (new) y. Note that we use ξ as a temporary variable just not
to conflict with the old value of y.
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The above reasoning is equivalent to (∃y.(Φ� ∧ (ξ → (∃̄z̄.Φ�m
)[z̄/x̄]))[ξ/y], and

is denoted by ⊕(Φ�, y, Φ�m
, x̄, z̄). Note that the use of logical implication →,

to abstractly simulate method calls, allows delaying the incorporation of the
method summary Φm until corresponding synchronization point is reached.

Example 5. Let Φ11 = x → w be the MHF state at L11. The effect of executing
I11, i.e., awaitw?, within Φ11 should eliminate all models that do not include w.
This is done using w ∧ Φ11 which results in Φ12 = w ∧ x. Now let Φ29 = w be the
MHF state at L29. The effect of executing the instruction at L29, i.e., w=h(x,z),
within Φ29 is defined as ⊕(Φ29,w, Φ48, 〈x, z〉, 〈a, b〉) and computed as follows: (1)
we restrict Φ48 = a ∧ z to the method parameters 〈a, b〉, which results in a; (2)
we rename the formal parameters 〈a, b〉 to the actual ones 〈x, z〉 which results in
Φh = x; (3) we compute ∃w.(Φ29 ∧ (ξ → Φh)), which results in ξ → x; and finally
(4) we rename ξ to w which results in Φ30 = w → x.

Next we describe how to generate a set of data-flow equations whose solutions
associate to each � ∈ ppoints(P ) an MHF state Φ� that over-approximates F(�),
i.e., F(�) ⊆ [[Φ�]]. Each � ∈ ppoints(P ) contributes one equation as follows:

– if � is not a method entry, we generate Φ�=∨{μ(�′) | �′ ∈ pre(�)}. This
considers each program point �′ that immediately precedes �, computes the
effect μ(�′) of executing I�′ within Φ�′ , and the takes their disjunction;

– if � is an entry of method m, we generate Φ� = ∧{x | x ∈ Lm}, i.e., all local
variables point to finished tasks (since they are mapped to ⊥ when entering
a method), and we do not know anything about the parameters.

The set of all equations for a program P is denoted by HP .

Example 6. The following are the equations for the program points of m3:

Φ27= ⊕(Φ26, z, Φ36, 〈〉, 〈〉) ∨ Φ31

Φ30= ⊕(Φ29, w, Φ48, 〈x, z〉, 〈a, b〉)
Φ28= Φ27 Φ29= ⊕(Φ28, x, Φ59, 〈〉, 〈〉)

Φ26= w ∧ x ∧ z
Φ31= w ∧ Φ30

Φ32= Φ27

Note the circular dependency of Φ27 and Φ31 which originates from the corre-
sponding while loop. Recall that m3 is a main method.

The next step is to solve HP , i.e., compute an MHF state Φ�, for each � ∈
ppoints(P ), such that HP is satisfiable. This can be done iteratively as follows.
We start from an initial solution where Φ� = false for each � ∈ ppoints(P ). Then
repeat the following until a fixed-point is reached: (1) substitute the current
solution in the right hand side of the equations, and obtain new values for each
Φ�; and (2) merge the new and old values of each Φ� using ∨. E.g., solving the
equation of Example 6, among other equations that were omitted, results in a
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solution that includes, among others, the MHF states of Example 4. In what
follows we assume that HP has been solved, and let Φ� be the MHF state at �
in such solution.

Theorem 1. For any program point � ∈ ppoints(P ), we have F(�) ⊆ [[Φ�]].

In the rest of this article we let mhfα(�) = {x | x ∈ Vm, Φ� |= x}, i.e., the
set of finished future variables at � that is induced by Φ�. Theorem 1 implies
mhfα(�) ⊆ mhf(�). Computing mhfα(�) using the MHF states of Example 4,
among others that are omitted, results exactly in the MHF sets of Example 2.

5 MHP Analysis

In this section we present our MHP analysis, which is based on incorporating
the MHF sets of Sect. 4 into the MHP analysis of [3]. In Sects. 5.1 and 5.2 we
describe how we modify the two phases of the original analysis, and describe the
gain of precision with respect to [3] in each phase.

5.1 Local MHP

The local MHP analysis (LMHP) considers each method m separately, and for
each � ∈ ppoints(m) it infers an LMHP state that describes the tasks that
might be executing when reaching � (considering only tasks invoked in m). An
LMHP state Ψ is a multiset of MHP atoms, where each atom represents a task
and can be: (1) y:�′:m̃(x̄), which represents an active task that might be at any
of its program points, including the exit one, and is bound to future variable y.
Moreover, this task is an instance of method m that was called at program point
�′ (the calling site) with future parameters x̄; or (2) y:�′:m̂(x̄), which differs from
the previous one in that the task can only be at the exit program point, i.e., it
is a finished task. In both cases, future variables y and x̄ can be �, which is a
special symbol indicating that we have no information on the future variable.

Intuitively, the MHP atoms of Ψ represent (local) tasks that are executing in
parallel. However, since a variable y cannot be bound to more than one task at
the same time, atoms bound to the same variable represent mutually exclusive
tasks, i.e., cannot be executing at the same time. The same holds for atoms that
use mutually exclusive calling sites �1 and �2 (i.e., there is no path from �1 and
�2 and vice versa). The use of multisets allows including the same atom several
times to represent different instances of the same method. We let (a, i) ∈ Ψ
indicate that a appears i times in Ψ . Note that i can be ∞, which happens when
the atom corresponds to a calling site inside a loop, this guarantees convergence
of the analysis. Recall that the MHP atoms of [3] do not use the parameters x̄
and the calling site �′, since they do not benefit from such extra information.
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Example 7. The following are LMHP states for some program points from
Fig. 2:

L5 : {x:2:̃f(),z:3:q̃()}
L7 : {x:2:̃f(),z:3:q̃(),w:6:g̃(x)}
L10: {x:2:̃f(),z:3:q̃(),w:9:k̃(x,z)}
L11: {x:2:̃f(),z:3:q̃(),w:6:g̃(x),w:9:k̃(x,z)}
L12: {x:2:̂f(),z:3:q̃(),w:6:ĝ(x),w:9:k̂(x,z)}
L16: {x:15:̃f()}
L18: {x:15:̃f(),z:17:g̃(x)}
L20: {x:15:̂f(),z:17:ĝ(x)}

L21: {x:15:̂f(),z:17:ĝ(x)}
L27: {z:26:̃f(),(�:28:q̂(),∞),(�:29:ĥ(�,z),∞)}
L29: L27 ∪ {x:28:q̃()}
L30: L29 ∪ {w:29:h̃(x,z)}
L31: {z:26:̃f(),(�:28:q̂(),∞),(�:29:ĥ(�,z),∞)}
L32: {z:26:̃f(),(�:28:q̂(),∞),(�:29:ĥ(�,z),∞)}
L44: {}
L46: {z:45:g̃(a)}
L48: {z:45:ĝ(a)}

Let us explain some of the above LMHP states. The state at L5 includes x:2:̃f()
and z:3:q̃() for the active tasks invoked at L2 and L3. The state at L11 includes
an atom for each task invoked in m1. Note that those of g and h are bound to the
same future variable w, which means that only one of them might be executing
at L11, depending on which branch of the if statement is taken. The state at
L12 includes z:3:q̃() since q might be active at L12 if we take the then branch of
the if statement, and the other atoms correspond to tasks that are finished. The
state at L27 includes z:26:̃f() for the active task invoked at L26, and �:28:q̂()

and �:29:ĥ(�,z) with ∞ multiplicity for the tasks created inside the loop. Note
that the first parameter of h is � since x is rewritten at each iteration.

The LMHP states are inferred by a data-flow analysis which is defined as a
solution of a set of LMHP constraints obtained by applying the following transfer
function τ to the instructions. Given an LMHP state Ψ�, the effect of executing
instruction I� within Ψ�, denoted by τ(I�), is defined as follows:

– if I� is a call y = m(x̄), then τ(I�) = Ψ�[y/�] ∪ {y:�′:m̃(x̄)}, which replaces
each occurrence of y by �, since it is rewritten, and then adds a new atom
y:�:m̃(x̄) for the newly created task. E.g., the LMHP state of L30 in Example 7
is obtained from the one of L29 by adding w:29:h̃(x,z) for the call at L29;

– if I� is await y?, and �′ is the program point after �, then we mark all tasks
that are bound to a finished future variable as finished, i.e., τ(I�) is obtained
by turning each z:�′′:m̃(x̄) ∈ Ψ� to z:�′′:m̂(x̄) for each z ∈ mhfα(�′). E.g., the
LMHP state of L12 in Example 7 is obtained from the one of L11 by turning
the status of g, k, and f to finished (since w and x are finished at L12);

– otherwise, τ(I�) = Ψ�.

The main difference w.r.t. the analysis of [3] is the treatment of await y?: while
we use an MHF set computed using the inter-procedural MHF analysis of Sect. 4,
in [3] the MHF set {y} is used, which is obtained syntactically from the instruc-
tion. Our LMHP analysis, as [3], is defined as a solution of a set of LMHP
constraints. In what follows we assume that the results of the LMHP analysis
are available, and we will refer to the LMHP state of program point � as Ψ�.



May-Happen-in-Parallel Analysis for Asynchronous Programs 85

5.2 Global MHP

The results of the LMHP analysis are used to construct an MHP graph, from
which we can compute the desired set of MHP pairs. The construction is exactly
as in [3] except that we carry the new information in the MHP atoms. However,
the process of extracting the MHP pairs from such graphs will be modified.

In what follows, we use y:�:m̆(x̄) to refer to an MHP atom without specifying
if it corresponds to an active or finished task, i.e., the symbol m̆ can be matched
to m̃ or m̂. As in [3], the nodes of the MHP graph consist of two method nodes m̃
and m̂ for each method m, and a program point node � for each � ∈ ppoints(P ).
Edges from m̃ to each � ∈ ppoints(m) indicate that when m is active, it can be
executing at any program point, including the exit, but only one. An edge from
m̂ to �m indicates that when m is finished it can be only at its exit program
point. The out-going edges from a program point node � reflect the atoms of the
LMHP state Ψ� as follows: if (y:�′:m̆(x̄), i) ∈ Ψ�, then there is an edge from node
� to node m̆ and it is labeled with i:y:�′:x̄. These edges simply indicate which
tasks might be executing in parallel when reaching �, exactly as Ψ� does.

Example 8. The MHP graphs G
1
, G

2
, and G

3
in Fig. 2, correspond to methods m1,

m2, and m3, each analyzed together with its reachable methods. For simplicity,
the graphs include only some program points of interest. Note that the out-going
edges of program point nodes coincide with the LMHP states of Example 7.

The procedure of [3] for extracting the MHP pairs from the MHP graph of a
program P , denoted G

P
, is based on the following principle: (�1, �2) is an MHP

pair induced by G
P

iff (i) �1 � �2 ∈ G
P

or �2 � �1 ∈ G
P
; or (ii) there is a program

point node �3 and paths �3 � �1 ∈ G
P

and �3 � �2 ∈ G
P
, such that the first edges

of these paths are different and they do not correspond to mutually exclusive
MHP atoms, i.e., they use different future variables and do not correspond to
mutually exclusive calling sites (see Sect. 5.1). Edges with multiplicity i > 1
represent i different edges. The first (resp. second) case is called direct (resp.
indirect) MHP, see Sect. 3.

Example 9. Let us explain some of the MHP pairs induced by G
1

of Fig. 2. Since
11 � 35 ∈ G1 and 11 � 58 ∈ G1 , we conclude that (11,58) and (11,35) are
direct MHP pairs. Moreover, since these paths originate in the same node 11,
and the first edges use different future variables, we conclude that (58,35) is an
indirect MHP pair. Similarly, since 11 � 38 ∈ G1 and 11 � 50 ∈ G1 we conclude
that (11,38) and (11,50) are direct MHP pairs. However, in this case (38,50) is
not an (indirect) MHP pair because the first edges of these paths use the same
future variable w. Indeed, the calls to g and k appear in different branches of an
if statement. To see the improvement w.r.t. to [3] note that node 12 does not
have an edge to f̃, since our MHF analysis infers that x is finished at that L12.
The analysis of [3] would have an edge to f̃ instead of f̂, and thus it produces
spurious pairs such as (12,35). Similar improvements occur also in G

2
and G

3
.

Now consider nodes 35 and 40, and note that we have 11 � 35 ∈ G
1

and
11 � 40 ∈ G1 , and moreover these paths use different future variables. Thus,
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we conclude that (35,40) is an indirect MHP pair. However, carefully looking at
the program we can see that this is a spurious pair, because x (to which task f
is bound) is passed to method g, as parameter w, and w is guaranteed to finish
when executing awaitw? at L39. A similar behavior occurs also in G2 and G3 .
For example, the paths 30 � 58 ∈ G

3
and 30 � 40 ∈ G

3
induce the indirect

MHP pair (58,40), which is spurious since x is passed to h at L45, as parameter
a, which in turn is passed to g at L45, as parameter w, and w is guaranteed to
finish when executing awaitw? at L39.

The spurious pairs in the above example show that even if we used our
improved LMHP analysis when constructing the MHP graph, using the proce-
dure of [3] to extract MHP pairs might produce spurious pairs. Next, we address
this imprecision by modifying the process of extracting the MHP pairs to have
an extra condition to eliminate such spurious MHP pairs. This condition is based
on identifying, for a given path m̆ � � ∈ G

P
, which of the parameters of m are

guaranteed to finish before reaching �, and thus, any task that is passed to m in
those parameters cannot execute in parallel with �.

Definition 2. Let p be a path m̆ � � ∈ G
P
, z̄ be the formal parameter of m,

and I a set of parameter indices of method m. We say that I is not alive along
p if (i) p has a single edge, and for some i ∈ I the parameter zi is in mhfα(�); or

(ii) p is of the form m̆ −→ �1
k:y:�′:x̄−→ m̆1 � �, and for some i ∈ I the parameter

zi is in mhfα(�1) or I ′ = {j | i ∈ I, zi = xj} is not alive along m̆1 � �.

Intuitively, I is not alive along p if some parameter zi, with i ∈ I, is finished at
some point in p. Thus, any task bound to zi cannot execute in parallel with �.

Example 10. Consider p ≡ g̃ � 40 ∈ G
1
, and let I = {1}, then I is not alive

along p since it is a path that consists of a single edge and w ∈ mhfα(40). Now
consider h̃ � 40 ∈ G3 , and let I = {1}, then I is not alive along p since I ′ = {1}
is not alive along g̃ � 40.

The notion of “not alive along a path” can be used to eliminate spurious MHP
pairs as follows. Consider two paths

p1 ≡ �3
i1:y1:�

′
1:w̄−→ m̃1 � �1 ∈ G

P
and p2 ≡ �3

i2:y2:�
′
2:x̄−→ m̆2 � �2 ∈ G

P

such that y1 �= �, and the first node after m̃1 does not correspond to the exit
program point of m1, i.e., m1 might be executing and bound to y1. Define

– F = {y1} ∪ {y | Φ�3 |= y → y1}, i.e., the set of future variables at �3 such that
when any of them is finished, y1 is finished as well; and

– I = {i | y ∈ F, xi = y}, i.e., the indices of the parameters of m2 to which we
pass variables from F (in p2).

We claim that if I is not alive along p2, then the MHP pair (�1, �2) is spurious.
This is because before reaching �2, some task from F is guaranteed to terminate,
and hence the one bound to y1, which contradicts the assumption that m1 is not
finished. In such case p1 and p2 are called mutually exclusive paths.
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Example 11. We reconsider the spurious indirect MHP pairs of Example 9. Con-
sider first (35,40), which originates from

p1 ≡ 11
1:x:2:[]−→ f̃ � 35 ∈ G

1
and p2 ≡ 11

1:w:6:[x]−→ g̃ � 40.

We have F = {x,w}, I = {1}, and we have seen in Example 10 that I is not
alive along g̃ � 40 ∈ G

1
, thus p1 and p2 are mutually exclusive and we eliminate

this pair. Similarly, consider (58,40) which originates from

p1 ≡ 30
1:x:28:[]−→ q̃ � 58 ∈ G

3
and p2 ≡ 30

1:w:29:[x,z]−→ h̃ � 40.

Again F = {x,w}, I = {1}, and we have seen in Example 10 that I is not alive
along h̃ � 40 ∈ G

3
, thus p1 and p2 are mutually exclusive and we eliminate this

pair.

Recall that EP is the set of all concrete MHP pairs. Let ẼP be the set of
all MHP pairs obtained by applying the process of [3], modified to eliminate
indirect pairs that correspond to mutually exclusive paths.

Theorem 2. EP ⊆ ẼP .

6 Conclusions, Implementation and Related Work

The main contribution of this work has been the enhancement of an MHP analy-
sis that could only handle a restricted form of intra-procedural synchronization
to the more general inter-procedural setting, as available in today’s concurrent
languages. Our analysis has a wide application scope on the inference of the main
properties of concurrent programs, namely the new MHP relations are essential
to infer (among others) the properties of the termination, resource usage and
deadlock freedom of programs that use inter-procedural synchronization.

The analysis has been implemented in SACO [2], a S tatic Analyzer for
Concurrent Objects, which is able to infer deadlock, termination and resource
boundedness of ABS programs [10] that follow the concurrent objects paradigm.
Concurrent objects are based on the notion of concurrently running objects,
similar to the actor-based and active-objects approaches [12,13]. These mod-
els take advantage of the concurrency implicit in the notion of object to provide
programmers with high-level concurrency constructs that help in producing con-
current applications more modularly and in a less error-prone way. Concurrent
objects communicate via asynchronous method calls and use await instructions
to synchronize with the termination of the asynchronous tasks. Therefore, the
abstract model used in Sect. 2 fully captures the MHP relations arising in ABS
programs.

The implementation has been built on top of the original MHP analysis in
SACO. The MHF analysis has been implemented and its output has been used
within the local and global phases of the MHP analysis, which have been adapted
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to this new input as described in the technical sections. The remaining analyses in
SACO did not require any modification and now they work for inter-procedural
synchronization as well. Our method can be tried online at: http://costa.ls.fi.
upm.es/saco/web by enabling the option Inter-Procedural Synchronization

of the MHP analysis in the Settings section. One can then apply the MHP
analysis by selecting it from the menu for the types of analyses and then clicking
on Apply. All examples used in the paper are available in the folder SAS15

adapted to the syntax of the ABS language. In the near future, we plan to apply
our analysis to industrial case studies that are being developed in ABS but that
are not ready for experimentation yet.

There is an increasing interest in asynchronous programming and in con-
current objects, and in the development of program analyses that reason on
safety and liveness properties [6]. Existing MHP analyses for asynchronous pro-
grams [1,3,11] lose all information when future variables are used as parameters,
as they do not handle inter-procedural synchronization. As a consequence, exist-
ing analysis for more advanced properties [4,9] that rely on the MHP relations
do all lose the associated analysis information on such futures. In future work
we plan to study the complexity of our analysis, which we conjuncture to be in
the same complexity order as [3]. In addition, we plan to study the computa-
tional complexity of deciding MHP, for our abstract models, with and without
inter-procedural synchronizations in a similar way to what has been done in [5]
for the problem of state reachability.
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Proofs

In this we provide a sketch of a proof for Theorem 1. Note that a proof for Theorem 2 is
not given since it is basically as the one of [19] but (1) using the MHF information, for the
case of await y? in the local analysis, which is straightforward; and (2) using the mutually
exclusive path condition whose correctness was intuitively argued in Section 5.1.

Sketch of a proof for Theorem 1

The proof sketch follows the next general lines:

1. We �rst de�ne a concrete collecting semantics that basically collects all reachable
states when starting from some initial state;

2. We reformulate the MHF analysis (equivalently) as an abstract collecting semantics,
which is easier to relate to the concrete one; and

3. We show that the abstract collecting semantics correctly approximates the concrete
one (with respect to the MHF property).

Next we de�ne the concrete collecting semantics. Recall that a program state S is
a set of tasks (see Section 2). A concrete state in the collecting semantics, or sim-
ply concrete state or state, is a set of program states. We let C0 = {S0} where S0 =
{tsk(0, l, body(main))}, i.e., an initial state that includes a single program state S0 with a
single task corresponding to method main. Let the function T be de�ned as follows

T = λC. C0 ∪ {S′ | S ∈ C, S ; S′}.

Then, the concrete collecting semantics is de�ned by

X = lfpT .

Intuitively, X is the set of all reachable states when starting the execution from the initial
state S0.

Next we revisit our MHF analysis and reformulate it as an abstract collecting seman-
tics. An abstract state Φ is a mapping from ppoints(P ) to Boolean formulas (as those
de�ned in Section 4.2). The value to which ` is mapped in Φ is denoted by Φ`. Recall that
our analysis is based on generating and solving a set of data-�ow equations HP . Given
an abstract state Φ, we let HP (Φ) be the result of substituting the di�erent formulas of
Φ in the right-hand-side of HP , and in this way obtain new values for each Φ`. Given two
abstract states Φ and Φ′, we let Φ′′ = Φ∨Φ′ be an abstract state such that Φ′′` = Φ` ∨Φ′`
for any ` ∈ ppoints(P ). We let Φ0 be an initial abstract state such that Φ` = false for
each ` ∈ ppoints(P ). Let the function T̄ be de�ned as follows

T̄ = λΦ. Φ0 ∨HP (Φ).

Then, the abstract collecting semantics, which is the result of our analysis, is de�ned by

X̄ = lfpT̄ .



CHAPTER 7. PUBLICATIONS

Next we de�ne when an abstract state Φ correctly approximates a concrete one C. First
we recall the de�nition f(S, l) = {x | x ∈ dom(l), l(x) = ⊥ ∨ (l(x) = tk ′ ∧ tsk(tk ′, l′, ε) ∈
S)} from Section 4.1, which is used to obtain the set of �nished tasks, in a state S, for
the future variables de�ned in l.

De�nition 1. An abstract state Φ correctly approximates a concrete state C, denoted
Φ ≈ C, if for any tsk(tk , l, s) ∈ S ∈ C, where pp(s) = `, it holds that f(S, l) ∈ [[Φ`]].

The rest of this section shows that the abstract collecting semantics correctly approx-
imates the concrete one, namely X̄ ≈ X .
Lemma 1. ∀n ≥ 1. ∃k ≥ n. T̄ k(Φ0) ≈ Tn(∅).
Proof. The proof of the above Lemma is by induction on n.

For n = 1, we take k = 1, then C0 = T (∅) and Φ = T̄ (Φ0) is a state in which
Φ` = false for all ` ∈ ppoints(P ) except for the entry point of main which is mapped to
∧{x | x ∈ Lmain}. Clearly, Φ ≈ C0.

For n > 1, let C = Tn−1(∅) and C′ = Tn(∅). Note that C′ = T (C). By the induction
hypothesis, for there is k ≥ n − 1 such that Φ = T̄ k(Φ0) correctly approximates C. Let
S′ ∈ C′ but S′ 6∈ C, and note that it must have been generated using some S ∈ C in
one execution step, i.e., S ; S′. In particular, by one execution step of a task t =
tsk(tk , l, b; s) ∈ S, i.e., b was executed. Next we reason on all possible cases of b. First
let us assume that s 6= ε, i.e., this execution step does not introduce any new �nished
task, and later we come back to the case in which s = ε. Assume that b corresponds to
program point ` and that the �rst instruction in s corresponds to program point `′, i.e.,
` ∈ pre(`′).

Case 1: b ≡ skip . In this case, the execution rewrites task t into t′ = tsk(tk , l, s) as
well. Also in this case the status of each task l(y), for any y ∈ dom(l), in S′ is the same
as in S, since no �nished task was introduced, i.e., f(S′, l) = f(S, l). Let Φ′ = T̄ k+1(Φ0),
we claim that f(S′, l) ∈

[[
Φ′`′
]]
. This is obvious since f(S, l) ∈ [[Φ`]] and Φ′`′ was obtained

from an equation whose right-hand-side is a disjunction that includes µ(Φ`) = Φ`.

Case 2: b ≡ await y?. In this case, the execution rewrites task t into t′ = tsk(tk , l, s).
Note that the status of each task l(y), for any y ∈ dom(l), in S′ is the same as in S,
since no �nished task was introduced (l(y) must be �nished in S to be able to execute this
instruction), i.e., f(S′, l) = f(S, l). Let Φ′ = T̄ k+1(Φ0), we claim that f(S′, l) ∈

[[
Φ′`′
]]
.

This is obvious since y ∈ f(S′, l) = f(S, l) ∈ [[Φ`]] and Φ′`′ was obtained from an equation
whose right-hand-side is a disjunction that includes µ(Φ`) = Φ` ∧ y. Adding y to Φ` does
not eliminate models that include y, in particular f(S′, l).

Case 3: b ≡ y = m(x̄). In this case, the execution rewrites task t into t′ = tsk(tk , l′, s),
and adds a new task t′′ = tsk(tk ′, l′′, s′) such that l′(y) = tk ′. Let Φ′ = T̄ k+1(Φ0).
From the same consideration as above it is easy to see that f(S′, l′) ∈

[[
Φ′`′
]]
because the

corresponding equation eliminates the old value of y from Φ`, and adds y → Φm. This
implication has no e�ect when y is false. Let `′′ be the �rst program point of s′, clearly
f(S′, l′′) ∈

[[
Φ′`′′
]]
because of the way we generate the equation for entry program points

(all local variables points to �nished tasks, and parameters can be �nished or not �nished).



Now we go back to comment on the case that s = ε. I.e., b was the last instruction
executed in task t. The problem here is that any other task that has a reference to t′ must
now consider the possibility that this task as �nished. If we start from Φ′ = T̄ k+1(Φ0),
and apply T̄ one more time, we will reconsider the place where that method was called and
use the new method summary Φ′m, i.e., the method call will now add y → Φ′m. This can be
repeated a �nite number of times until the information is propagated to all corresponding
program points.

Corollary 1. X̄ ≈ X .

Proof. Immediate from Lemma 1 and Kleene �xed-point theorem.
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Abstract. May-Happen-in-Parallel (MHP) is a fundamental analysis to
reason about concurrent programs. It infers the pairs of program points
that may execute in parallel, or interleave their execution. This infor-
mation is essential to prove, among other things, absence of data races,
deadlock freeness, termination, and resource usage. This paper presents
an MHP analysis for asynchronous programs that use futures as syn-
chronization mechanism. Future variables are available in most concur-
rent languages (e.g., in the library concurrent of Java, in the standard
thread library of C++, and in Scala and Python). The novelty of our
analysis is that it is able to infer MHP relations that involve future
variables that are returned by asynchronous tasks. Futures are returned
when a task needs to await for another task created in an inner scope,
e.g., task t needs to await for the termination of task p that is spawned
by task q that is spawned during the execution of t (not necessarily by
t). Thus, task p is awaited by task t which is in an outer scope. The
challenge for the analysis is to (back)propagate the synchronization of
tasks through future variables from inner to outer scopes.

1 Introduction

MHP is an analysis of utmost importance to ensure both liveness and safety
properties of concurrent programs. The analysis computes MHP pairs, which
are pairs of program points whose execution might happen, in an (concurrent)
interleaved way within one processor, or in parallel across different processors.
This information is fundamental to prove absence of data races as well as more
complex properties: In [13], MHP pairs are used to discard unfeasible deadlock
cycles; namely if a deadlock cycle inferred by the deadlock analyzer includes pairs
of program points that are proven not to happen in parallel by our MHP analysis,
the cycle is spurious and the program is deadlock free. In [4], the use of MHP
pairs allows proving termination and inferring the resource consumption of loops
with concurrent interleavings. For instance, consider a loop whose termination
cannot be proven because of a potential execution in parallel of the loop with a
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task that modifies the variables that control the loop guard (and thus threatens
its termination). If our MHP analysis proves the unfeasibility of such parallelism,
then termination of the loop can be guaranteed.

For simplicity, we develop our analysis on a small asynchronous language
which uses future variables [10,12] for task synchronization. A method call m on
some parameters x̄, written as f = m(x̄), spawns an asynchronous task, and the
future variable f allows synchronizing with the termination of such task by means
of the instruction await f ?; which delays the execution until the asynchronous
task has finished. In this fragment of code f = m(..) ;...; await f ?; the execution
of the instructions of the asynchronous task m may happen in parallel with the
instructions between the asynchronous call and the await. However, due to the
future variable in the await instruction, the MHP analysis is able to ensure that
they will not run in parallel with the instructions after the await. Therefore,
future variables play an essential role within an MHP analysis and it is essential
for its precision to track them accurately. Future variables are available in most
concurrent languages: Java, Scala and Python allow creating pools of threads.
The users can submit tasks to the pool, which are executed when a thread of
the pool is idle, and may return future variables to synchronize with the tasks
termination. C++ includes the components async, future and promise in its
standard library, which allow programmers to create tasks (instead of threads)
and return future variables in the same way as we do.

In this paper, we present to the best of our knowledge the first MHP analysis
that captures MHP relations that involve tasks that are awaited in an outer
scope from the scope in which they were created. This happens when future
variables are returned by the asynchronous tasks, as it can be performed in
all programming languages that have future variables. Our analysis builds on
top of an existing MHP analysis [3] that was extended to track information of
future variables passed through method parameters in [5], but it is not able
to track information propagated through future variables that are returned by
tasks. The original MHP analysis [3] involves two phases: (1) a local analysis
which consists in analyzing the instructions of the individual tasks to detect the
tasks that it spawns and awaits, and (2) a global analysis which propagates the
local information compositionally. Accurately handling returned future variables
requires non-trivial extensions in both phases:

1. The local phase needs to be modified to backpropagate the additional inter-
procedural relations that arise from the returned futures variables. Back-
propagation is achieved by modifying the data-flow of the analysis so that it
iterates to propagate the new dependencies.

2. The global phase has to be modified by reflecting in the analysis graph the
additional information provided by the local phase. A main achievement has
been to generate the necessary information at the local phase so that the
process of inferring the MHP pairs remains as in the original analysis.

Our analysis has been implemented within the SACO static analyzer [2], which
is able to infer the safety and liveness properties mentioned above. The system
can be used online at http://costa.ls.fi.upm.es/saco/web/, where the benchmarks
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used in the paper are available. Our experiments show that our analysis improves
the accuracy over the previous analysis with basically no overhead.

2 Language

We present the syntax and semantics of the asynchronous language on which we
develop our analysis. A program P is composed by a set of classes. Each class
contains a set of fields and a set of methods. A (concurrent) object of a class
represents a processor with a queue of tasks which (concurrently) execute the
class methods, and access a shared-memory made up by the object fields. One of
the tasks will be active (executing) and the others pending to be executed. The
notation M is used to abbreviate M1, ...,Mn. Each field and method has a type
T . The set of types includes class identifiers C and future variable types fut〈T 〉.
A method receives a set of variables as arguments x, contains local variables x′,
a returned variable, and a sequence of instructions s.

CL ::= class C {T f ;M}
M ::= T m(T x) {T x′; s}
s ::= ε | b; s
b ::= o = new C(x) | if (∗) then s1 else s2 | while (∗) do s | y = o.m(x) |

| await y? | z = y.get | return y | skip

y and z represent variables of type fut〈T 〉 and x represents a variable of type
T . Arithmetic expressions are omitted for simplicity and are represented by the
instruction skip. This instruction has no effect on the analysis of the program.
The loop and conditional statements are non-deterministic and the symbol ∗
represents true or false. The instruction y = o.m(x) corresponds to an asynchro-
nous call. It spawns a new instance of the task m in the object o and binds the
task to the future variable y. Instruction await y? is used to synchronize with
the task y = o.m(x), and blocks the execution in object o until task m finishes
its execution. z = y.get retrieves the value returned by the method bound to y
and associates it with z. W.l.o.g., we make the following assumptions: each get

instruction is preceded by an await, i.e., the task associated to the get statement
has to be finished to access its returned value; the program has a method call
main without parameters from which the execution will start; future variables
can be used once and they cannot be reused after they are bound to a task;
the get instruction can be applied once over each future variable; we restrict the
values returned by a method to future variables; each method can only have a
return statement in its body, and it has to be the last instruction of the sequence.
We let ppoints(m) and ppoints(P ) be the set of program points of method m
and program P respectively, methods(P ) be the set of method names of program
P and futures(P ) be the set of all future variables defined in program P .

Let us define the operational semantics for the language. A program state S
is a tuple S = 〈O, T 〉 where O is the set of objects and T is the set of tasks. Only
one task can be active in each object. An object is a term obj(o, a, lk) where o is
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(1)
l′ = l[o → bid1], O

′ = O ∪ {obj(bid1, a, ⊥)}, a = init atts(C, x), bid1

〈O, {tsk(tid , m, l, bid , �, o = C(x); s) ‖ T}〉 � 〈O′, {tsk(tid , m, l′, bid , �, s) ‖ T}〉

(2)

l(o) = bid1 	= , l′ = l[y → tid1], l1 = buildLocals(x, m)), tid1

〈O, {tsk(tid , m, l, bid , �, y o.m1(x); s) ‖ T}〉 �
〈O, {tsk(tid , m, l′, bid , �, s), tsk(tid1, m1, l1, bid1, ⊥, body(m1)) ‖ T}〉

(3)

l1(y) = tid2

〈O, {tsk(tid1, m1, l1, bid1, �, y?; s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉 �
〈O, {tsk(tid1, m1, l1, bid1, �, s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉

(4)
l1(y) = tid2, l

′
1 = l1[z → v]

〈O, {tsk(tid1, m1, l1, bid1, �, z y. ; s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉 �
〈O, {tsk(tid1, m1, l

′
1, bid1, �, s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉

(5)
obj(bid , a, �) ∈ O, O′ = O[obj(bid , a, �)/obj(bid , a, ⊥)], v = l(y)

〈O, {tsk(tid , m, l, bid , �, y) ‖ T}〉 � 〈O′, {tsk(tid , m, l, bid , ⊥, ε(v)) ‖ T}〉

(6)

(l′, s′) = eval(instr, O, l)
instr ∈ { , b s1 s2, b s3}

〈O, {tsk(tid , m, l, bid , �, instr; s) ‖ T}〉 � 〈O, {tsk(tid , m, l′, bid , �, s′) ‖ T}〉

(7)
obj(bid , a, ⊥) ∈ O, O′ = O[obj(bid , a, ⊥)/obj(bid , a, �)], s 	= ε(v)

〈O, {tsk(tid , m, l, bid , ⊥, s) ‖ T}〉 � 〈O′, {tsk(tid , m, l, bid , �, s) ‖ T}〉

Fig. 1. Summarized semantics

the identifier of the object, a is a mapping from the object fields to their values
and lk ∈ {�,⊥} indicates whether the object contains an active task executing
(�) or not (⊥). A task is a term tsk(t,m, l, o, lk, s) where t is a unique task
identifier, m is the method name that is being executed, l is a mapping from the
variables of the task to their values, o is the identifier of the object in which the
task is executing, lk ∈ {�,⊥} indicates if the task has the object’s lock or not
and s is a sequence of instructions that the task will execute or s = ε(v) if the
task has finished and the return value v is available. The execution of a program
starts from the initial state S0 = 〈obj(0, a,�), tsk(0, main, l, 0,�, body(main)〉
where a is an empty mapping, and l maps future variables to null .

The execution starts from S0 applying non-deterministically the semantic
rules from Fig. 1. We use the notation {t ‖ T} to represent that task t is the
one selected non-deterministically for the execution. At each step, a subset of
the state S is rewritten according to the rules of Fig. 1 as follows: (1) creates a
new object with an empty queue, free lock and initializes its fields (init atts).
(2) corresponds to an asynchronous call. It gets the identifier of the object which
is going to execute the task, initializes the parameters and variables of the task
(buildLocals), and creates the new task with a new identifier that is associated
with the corresponding future variable. (3) An await y? statement waits until the
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task bound to y finishes its execution. (4) checks if the task bound to the future
variable involved in the get statement is finished. If so, it retrieves the value
associated with the future variable. (5) After executing the return statement, the
retrieved value is stored in v so that it can be obtained by the future variable
bound to this task. Then, the object’s lock is released (O[o/o′] means that the
object o is replaced by o′ in O) and the task is finished (ε(v) is added to the
sequence of instructions). (6) covers sequential instructions that do not affect
synchronization by moving the execution of the corresponding task to the next
instruction and possibly changing the state (represented by eval). Finally, (7) is
used to get the object’s lock by an unfinished task and start its execution.

In what follows, given a task tsk(t,m, l, o, lk, s), pp(s) denotes the program
point of the first instruction of s. If s is empty, pp(s) returns the exit program
point of the corresponding method, denoted exit(m). Given a state S = 〈O, T 〉,
we define its set of MHP pairs, i.e., the set of program points that can run in par-
allel as E(S) = {(pp(s1), pp(s2)) | tsk(tid1,m1, l1, o1, lk1, s1), tsk(tid2,m2, l2, o2,
lk2, s2) ∈ T, tid1 	= tid2}. The set of MHP pairs for a program P is defined as
the set of MHP pairs of all reachable states, namely EP = ∪{E(Sn) | S0 �∗ Sn}.

3 Motivation: Using MHP Pairs in Deadlock Analysis

Let us motivate our work by showing its application in the context of deadlock
analysis. Consider the example in Fig. 2 that models a typical client-server appli-
cation with two delegate entities to handle the requests. The execution starts
from the main block by creating four concurrent objects, the client c, the server
s, and their delegates dc and ds, respectively. The call start at Line 6 (L6) spawns
an asynchronous task on the client object c that sends as arguments references
to the other objects. When this task is scheduled for execution on the client,
we can observe that it will spawn an asynchronous task on the server (L10) and
another one on the delegate-client (L14). The request task on the server in turn
posts two asynchronous tasks on the delegate-server (L19) and delegate-client
objects (L20). Such delegates communicate directly with each other as we have
passed as arguments the references to them.

The most challenging aspect for the analysis of this model is due to the syn-
chronization through returned future variables. For instance at L12 the instruc-
tion x.get retrieves the future variable returned by request at L21. Thus, we would
like to infer that after L13 the task executing result at the object ds has termi-
nated. The inference needs to backpropagate this synchronization information
from the inner scope where the task has been created (L19) to the outer scope
where it is awaited (L13). This backpropagation is necessary in order to prove
that the execution of this application is deadlock free. Otherwise, an MHP-based
deadlock analyzer will spot an unfeasible deadlock. Figure 3 shows a fragment of
the graph that a deadlock analyzer [13] constructs: the concurrent objects are in
circles, the asynchronous tasks in boxes, and labelled arrows contain the program
lines at which tasks post new tasks on the destiny objects. In the bold arrows
of the graph, we can observe the cycle detected by the analyzer due to the task
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Fig. 2. Example of client-server model

Fig. 3. Partial data-flow graph of example in Fig. 2.

result and sendMessage executing respectively in objects ds and dc. These two
tasks wait for the termination of tasks myClientId and myServerId in each other
object, thus creating a potential cycle. Our MHP analysis will accurately infer
that these two tasks cannot happen simultaneously, and will allow the dead-
lock analyzer to break this unfeasible deadlock cycle. Figure 4 shows some of the
MHP pairs that the analysis in [3] infers, and we mark in bold font those pairs
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L11||L19 L11||L20 L11||L21 L11||L28 L11||L29 L11||L40 L12||L22
L12||L28 L12||L29 L12||L40 L14||L22 L14||L29
L15||L22 L15||L29 L15||L31 L21||L29 L21||L40
L22||L28 L22||L44 L28||L41 L28||L43 L28||L44 L29||L41 L29||L44
L29 L41 L29 L44 L29 L40 L21 L44

Fig. 4. Results of MHP analysis.

that our analysis spots as spurious (as will be explained along the paper). For
instance, the original analysis infers L15||L28 and L37||L28. However, we detect
that at program point L14 the task result is finished so it cannot run in parallel
with task sendMessage and hence those pairs are eliminated, this allows us later
to discard the potential deadlock described above.

4 MHP Analysis

The MHP analysis of [3] consists of two phases. The first one, the local phase,
considers each method separately and infers information (at each program point
of the method) about the status of the tasks that are created locally in that
method. The second one, the global phase, uses the information inferred by the
first phase to construct an MHP graph from which an over-approximation of the
MHP pairs set can be extracted. As mentioned already, the limitation of this
analysis is that it does not track inter-procedural synchronizations originating
from (1) passing future variables as method parameters; or (2) returning future
variables from one method to another. The work of [5] extends [3] to handle
the first issue, and in this paper we extend it to handle the second one. Both
extensions require different techniques, and are both complementary and com-
patible. To simplify the presentation, we have not started from the analysis with
future variables as parameters [5], but rather from the original formulation [3].
In Sect. 6, we provide a detailed comparison of [5] and our current extension.

4.1 Local MHP

The local phase of the MHP analysis (LMHP) of [3] considers each method n
separately, and for each program point � ∈ ppoints(n) it infers a LMHP state
that describes the status of each task invoked in n before reaching �. Formally,
a LMHP state E is a multiset of MHP atoms, where an MHP atom is:

1. y:T(m, act), which represents a task that is an instance of method m and can
be executing at any program point. We refer to it as active task; and

2. y:T(m, fin), which represents a task that is an instance of method m and has
finished its execution already (i.e., it is at its exit program point). We refer
to it as finished task.
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(1) τ(y = o.m(x̄), E) = E[y:T(m, X)/�:T(m, X)] ∪ {y:T(m, act)}
(2) τ( y?, E) = E[y:T(m, act)/y:T(m, fin)]
(3) τ(z = y. , E) = E′ ∪ E′′ ∪ E′′′

E′ = eliminate({y}, E[z:T(m, X)/�:T(m, X)])
E′′ = {z:T(n, X) | y:T(f, fin) ∈ E, T(n, X) ∈ Ret(f)}
E′′′ = {y:T(f, fin) | y:T(f, fin) ∈ E}

(4) τ(b, E) = E otherwise

Fig. 5. Local MHP transfer function τ .

In both cases, the task is associated to future variable y, i.e., in the concrete
state that E describes y is bound to the unique identifier of the corresponding
task. Intuitively, the MHP atoms of E represent the tasks that were created
locally and are executing in parallel. In what follows, we use y:T(m,X) to refer
to an MHP atom without specifying if it corresponds to an active or finished
task. MHP atoms might also use the symbol � instead of a future variable to
indicate that we do not know to which future variable, if any, the task is bound.
Note that if we have two atoms with the same future variable in a LMHP state
E, then they are mutually exclusive, i.e., only one of the corresponding tasks
might be executing since at the concrete level y can be bound only to one task
identifier. This might occur when merging branches of a conditional statement.
Note also that MHP states are multisets because we might have several tasks
created by invoking the same method. Since LMHP states are multisets, we write
(q, i) ∈ E to indicate that atom q appears i > 0 times in E.

The LMHP analysis of [3], that infers the LMHP states described above, is a
data-flow analysis based on the transfer function τ in Fig. 5, except for Case (3)
which is novel to our extension and whose auxiliary functions will be given
and explained later. Recall that the role of the transfer function in a data-flow
analysis is to abstractly execute the different instructions, i.e., transforming one
LMHP state to another. Let use explain the relevant cases of τ :

– Case (1) handles method calls, it adds a new active task (an instance of m)
that is bound to future variable y, and renames all atoms that already use y
to use � since it is overwritten;

– Case (2) handles await, it changes the state of any task bound to future
variable y to finished; and

– Case (4) corresponds to other instructions that do not create or wait for tasks
to finish. In this case the abstract state is not affected.

In addition, the LMHP analysis merges states of conditional branches using
union of multisets, and loops are iterated, with a corresponding widening oper-
ator that transforms unstable MHP atoms (q, i) to (q,∞), until a fix-point is
reached.
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Example 1. Consider a method f with a body while(∗){ y = o.m();}. The first
time we apply τ over f , we obtain {y:T(m, act)} at the exit program point of
the while. At the next iteration, we add a new atom bound to y so we lose
the association existing in the current state and add the new atom, obtaining
{�:T(m, act), y:T(m, act)}. After applying one more iteration, we lose the rela-
tion between y and the task m again obtaining {(�:T(m, act), 2), y:T(m, act)}.
When comparing the last two LMHP states, we observe that �:T(m, act) is
unstable, thus we apply widening and obtain {(�:T(m, act),∞), y:T(m, act)}.

In what follows we present how to extend the transfer function τ and the
LMHP states to handle returned futures in Case (3). We first explain it using a
simple example, and then describe it formally.

Example 2. Assume we have a method f with an instruction “return x”, and
that at the exit program point of f we have a LMHP state E0 = {x:T(h, act),
w:T(g, act)}, which means that at the exit program point of f we have two active
instances of methods h and g, bound to future variables x and w respectively.
This means that f returns a future variable that is bound to an active instance
of h. Now assume that in some other method, at some program point, we have
a state E1 = {y:T(f, fin), r:T(k, act), u:T(l, act)}, which means, among other
things, that before reaching the corresponding program point, we have invoked
f and waited for it to finish (via future variable y). Let us now execute the
instruction u = y.get in the context of E1 and generate a new LMHP state E2.
Since y is bound to a task that is an instance of f , E2 should include an atom
representing that u is bound to an active task which is an instance of h (which
is returned by f via a future variable). Having this information in E2 allows us
to mark h as finished when executing await u? later. We do this as follows:

– any MHP atom from E1 that does not involve u or y is copied to E2.
– any MHP atom from E1 that involves u is copied to E2 but with u renamed

to � because u is overwritten.
– we transfer the atom x:T(h, act) from E0 to E2, by adding u:T(h, act) to E2

since now the corresponding task is bound to u as well.
– the atom y:T(f, fin) must be copied to E2 as well, but we first rewrite it

to y:T(f, fin) (in E2) to indicate that we have incorporated the information
from the exit program point of f already. This is important because after
executing the get, we will have two instances of h in E0 and E2 that refer to
the same task, and we want to avoid considering them as two different ones
in the global phase that we will describe in the next section.

This results in E2 = {y:T(f, fin), r:T(k, act), �:T(l, act), u:T(h, act)}.

To summarize the above example, the local phase of our analysis extends that
of [3] in two ways: it introduces a new kind of LMHP atom; and it has to treat
the get instruction in a special way. In the rest of this section we formalize this
extension by providing the auxiliary functions and the data-flow inference. As
notation, we let E� be the LMHP state that corresponds to program point �;
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we let Em
exit be the LMHP state that corresponds to the exit program point of

method m; and we define

Ret(m) = {T(n,X) | return y ∈ body(m), y:T(n,X) ∈ Em
exit},

which is the set of tasks in Em
exit that are bound to a future variable that is

returned by method m. This set is needed in order to incorporate these tasks
when abstractly executing a get instruction as we have seen in the example above.
We also let eliminate(Y,E) be the LMHP set obtained from E by removing all
atoms that involve a future variable y ∈ Y . We first modify the transfer function
of [3] to treat the instruction z = y.get, similarly to what we have done in the
example above. This is done by adding Case (3) to the transfer function of Fig. 5:

– The set E′ is obtained from E by renaming future variable z to �, since
variable z is overwritten, and then eliminating all atoms associated to future
variable y (they will be incorporated in E′′′ below).

– The set E′′ consists of new MHP atoms that correspond to futures that are
returned by methods to which y is bound. Note that all are now bound to
future variable z.

– In E′′′ we add all atoms bound to y from E but rewritten to mark them as
already been incorporated.

Due to the new case added to the transfer function, we need to modify the
work-flow of the corresponding data-flow analysis in order to backpropagate
the information learned from the returned future variables. This is because the
LMHP analysis of one method depends on the LMHP states of other methods
(via Ret(m) in Case (3) of τ). This means that a method cannot be analyzed
independently from the others as in [3], but rather we have to iterate over their
analysis results, in the reverse topological order induced by the corresponding
call graph, until their corresponding results stabilize.

Example 3. The left column of the table below shows the LMHP states resulting
from applying once the τ function to selected program points, the right column
shows the result after one iteration of τ over the results in the left column:

E11: {x:T(request, act)}
E12: {x:T(request, fin)}
E13: τ(z = x.get, E12)
E14: τ(await z?, E13)
E15: E14 ∪ {�:T(sendMessage, act)}

E20: {y:T( result , act)}
E21: {y:T( result , act),

p:T(inform, act)}
E22: {y:T( result , act),

p:T(inform, act))}

E11: {x:T(request, act)}
E12: {x:T(request, fin)}
E13: {x:T(request, fin), z:T( result , act)}
E14: {x:T(request, fin), z:T( result , fin)}
E15: {x:T(request, fin), z:T( result , fin),

�:T(sendMessage, act)}
E20: {y:T( result , act)}
E21: {y:T( result , act),

p:T(inform, act)}
E22: {y:T( result , act),

p:T(inform, act))}



52 E. Albert et al.

Let us explain some of the above LMHP states. In the left column, E11 cor-
responds to the state when reaching program point L11, i.e., before executing
the statement await x?. It includes x:T(request, act) for the active task invoked
at L10. The state E12 includes the finished task corresponding to the await
instruction of the previous program point. E13 cannot be solved, as we need
the information from state E22 (it is required when calculating E′′), which has
not been computed yet. Something similar happens with the state E14, which
cannot be calculated as the state E13 has not been totally computed. Atoms
y:T( result , act) and p:T(inform, act) appear in state E22 for the active tasks
invoked at L19 and L20. The state E15 includes �:T(sendMessage, act) for the
task invoked at L14, which is not bound to any future variable.

In the right column, after one iteration, we observe that most states are
not modified except for E13, E14 and E15. As for E13, in the previous step we
could not obtain the set E′′ when analyzing E13 because the function τ had
not been applied to request (E22 had not been computed). Thus, it considered
E13: E′ = {} as there was no task bound to z; E′′ = {z:T( result , act)} and;
E′′′ = {y:T(request, fin)}. Having E13 calculated, E14 is computed modifying
the state of result to finished and E15 is updated with the new information.

4.2 Global MHP

In this section we describe how to use the LMHP information, inferred by the
local phase of Sect. 4.1, in order to construct an MHP graph from which an over-
approximation of the set of MHP pairs can be extracted. The construction of
the MHP graph is different from the one of [3] in that we need to introduce new
kind of nodes to reflect the information carried by the new kind of MHP atom
y:T(m, fin). However, the procedure for computing the MHP pairs from the
MHP graph is the same. The MHP graph of a given program P is a (weighted)
directed graph, denoted by G

P
, whose nodes are:

– method nodes: each method m ∈ methods(P ) contributes 3 nodes act(m),
fin(m) and fin(m). We use X(m) to refer to a method node without speci-
fying if it corresponds to act(m), fin(m), or fin(m).

– program point nodes: each program point � ∈ ppoints(P ) contributes a
node �.

– return nodes: each program point � ∈ ppoints(P ) that is an exit program
point, of some method m, contributes a node �̄.

– future variable nodes: each future variable y ∈ futures(P ) and program
point � ∈ ppoints(P ) contribute a node �y (which can be ignored if y does
not appear in the corresponding LMHP state of �).

Note that nodes fin(m) and �̄ are particular to our extension, they do not appear
in [3] and will be used, as we will see later, to avoid duplicating tasks that are
returned to some calling context.

The edges of G
P

are constructed in two steps. First we construct those that
do not depend on the LMHP states, and afterwards those that are induced by
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LMHP states. The first kind of edges are constructed as follows, for each method
m ∈ methods(P ):

– there are edges from act(m) to all program point nodes � ∈ ppoints(m). This
kind of edges indicate that an active task can be executing at any program
point, including its exit program point;

– there is an edge from fin(m) to the exit program point node � of m. This
kind of edges indicate that a finished task can be only at the exit program
point;

– there is an edge from fin(m) to the corresponding return node �̄, i.e., � here
is the exit program point of m. This kind of edges are similar to the previous
ones, but they will be used to avoid duplicating tasks that were returned to
some calling context.

All the above edges have weight 0. Next we construct the edges induced by the
LMHP states. For each program point � ∈ ppoints(P ), we consider E� and
construct the following edges:

– if (�:T(m,X), i) ∈ E�, we add an edge from node � to node X(m) with weight
i. If � is an exit program point we also add an edge from node �̄ to node X(m)
with weight i;

– if (y:T(m,X), i) ∈ E�, we add an edge from node � to node �y with weight 0
and an edge from node �y to node X(m) with weight i. In addition, if � is an
exit program point and y is not a returned future we add an edge from node
�̄ to node �y with weight 0.

Note that when � is an exit program point, the difference between node � and �̄
is that the later ignores tasks that were returned via future variables.

Example 4. Figure 6 shows the MHP graph for some program points of interest
for our running example. Note that the out-going edges of program point nodes in
G coincide with the LMHP states at these program points depicted in Example 3.
At program point L15, the LMHP state E15 contains the atoms x:T(request, fin),
z:T( result , fin) and �:T(sendMessage, act). Each of these atoms corresponds to
one of the edges from program point node 15. The first one is represented by
the edge that goes from program point node 15 to future variable node 15x and
from 15x to method node fin(request). The second one corresponds to the edge
that goes from 15 to 15z and from there to method node fin( result ). The edge
which goes from 15 to method node act(sendMessage) originates from the MHP
atom �:T(sendMessage, act). This last edge does not go to a future variable node
as the task is not bound to any future variable (�). Note that we have two nodes
22 and 22 to represent the exit program point L22, connected to fin(request)
and fin(request). The edges that go out from 22 correspond to the atoms in E22.
As L22 is the exit program point of method request, we have to build an edge.
This edge goes from 22 to 22p and from there to act(inform) and corresponds to
the atom in E22 whose future variable is not returned by request.

Given G
P
, using the same procedure as in [3], we say that two program points

�1, �2 may run in parallel if one of the following conditions hold:
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Fig. 6. MHP graph obtained from the analysis of program in Fig. 2.

1. there is a non-empty path from �1 to �2 or vice-versa; or
2. there is a program point �3 and non-empty paths from �3 to �1 and from �3

to �2 such that the first edge is different, or they share the first edge but it
has weight i > 1.

The first case is called direct MHP pairs and the second one indirect MHP pairs.

Example 5. Let us explain some of the MHP pairs shown in Fig. 4 and induced
by G . (22,28) and (22,44) are direct MHP pairs as we can find the paths 22 � 44
and 22 � 44 in G . In addition, as the first edge is different, we can conclude
that (22,44) is an indirect pair. In contrast to the graph that one would obtain
for the original analysis, (15,28) is not an MHP pair (marked in bold in Fig. 4).

Instead, we have the path 15 � 29 which indicates that the task result is
finished. Similarly, the analysis does not infer the pair (28,37), allowing us to
discard the deadlock cycle described in Sect. 3. We find the path 15 � 37 in G ,
but the path 15 � 28, needed to infer this spurious pair, is not in G .

Let ẼP be the set of MHP pairs obtained by applying the procedure above.

Theorem 1 (soundness). EP ⊆ ẼP .

5 Implementation and Experimental Evaluation

The analysis presented in Sect. 4 has been implemented in SACO [2], a S tatic
Analyzer for Concurrent Objects, which is able to infer deadlock, termination
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Fig. 7. Examples and statistics

and resource boundedness [14]. Our analysis has been built on top of the original
MHP analysis in SACO and can be tried online at: http://costa.ls.fi.upm.es/
saco/web/ by selecting MHP from the menu as type of analysis, then enabling the
option Global Futures Synchronization in the Settings section, and clicking
on Apply. The benchmarks are also available in the folder ATVA17. Given a
program with a main procedure, the analysis returns a list of MHP pairs and
some statistics about the runtime of the local and global phases.

Figure 7 summarizes our experiments. The first benchmark ServerClient cor-
responds to the complete implementation of our running example. The next four
are some traditional programs for distributed and concurrent programming: Chat

models a chat application, MailServer models a distributed mail server with sev-
eral users, DistHT implements and uses a distributed hash table and PeerToPeer

which represents a peer-to-peer network. The last two examples, ETICS and
TradingSys are industrial case studies, respectively, developed by Engineering R©
and Fredhopper R© that model a system for remotely hosting and managing IT
resources and a system to manage sales and other facilities on a large product
database. These case studies are very conservative on the use of futures (namely
only 3 tasks return a future), however, we have included them to assess the
efficiency of our analysis on large programs. For the TradingSys, we have two
versions, TradingSys1 which creates a constant number of tasks (namely 3),
and TradingSys2 which creates an unknown number of tasks within a loop.
Experiments have been performed on an Intel Core i7-6500U at 2.5 GHz x 4 and
7.5GB of Memory, running Ubuntu 16.04. For each program P , G

P
is built and

the relation ẼP is computed for those points that affect the concurrency of the
program (i.e., entry points of methods, awaits, gets and exit points of methods).

Let us first discuss the accuracy of our approach. Columns Examples and
Lines show the name and number of lines of the benchmark. N is the number
of program point nodes in G

P
. PPs2 is the square of the number of program

points, i.e., the total number of pairs that could potentially run in parallel.
OMHPs and MHPs show the number of MHP pairs inferred by the original
analysis [3] and by ours. PPs2-MHPs is thus the number of MHP pairs that are
detected not to happen in parallel by the original analysis. Naturally the original
analysis already eliminates many pairs that arise from local future variables (not
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returned). OMHPs-MHPs gives us the number of further spurious MHP pairs
that our analysis eliminates. We can observe that for all examples (except for
TradingSys2) we reduce the number of inferred MHP pairs (ranging from a
small reduction of 0.2% pairs for ETICS to a big reduction of 23.9% for Chat). In
TradingSys2 we do not eliminate any pair because the tasks created within the
loop use the same future variable to return their results, and the analysis needs
to over-approximate and assume that all of them may run in parallel.

As regards the efficiency of the analysis, the next three columns contain the
time (in milliseconds) taken by the local MHP (Lmhp), the graph construction
(Gmhp) and the time needed to infer the MHP pairs (Mhp). The data presented
are the average time obtained across several executions. We can observe that
both LMHP and the graph construction are very efficient and they only take
0.175 s in the largest case. The inference of the MHP pairs is more complex
and takes more time. This time depends on the number of program point nodes
that the graphs contain. For medium programs, the inference technique is also
efficient (taking 0.6 s in the largest case), but the time increases notably in bigger
examples, reaching 40.8 s in our experiments. However, in most applications we
are only interested in a subset of pairs. Besides, the pairs can be computed on
demand, spending less time to infer them. The last two columns contain the total
time (in milliseconds) taken by the analysis of [3] (OT) and our approach (T).
It can be observed that our analysis is more efficient than the original one for all
examples except for the TradingSys2 and ETICS, being the overhead negligible
in these cases (less than 2.5%). The reason for the efficiency gain is that when
returned futures are tracked, our graph contains less paths that are inspected
to infer the MHP pairs. Thus, the process of computing all the feasible paths is
faster in these cases, and the global time of the analysis is smaller than [3].

6 Conclusions and Related Work

An MHP analysis learns from the future variables used in synchronization
instructions when tasks are terminated, so that the analysis can accurately elimi-
nate unfeasible MHP pairs that would be otherwise inferred. Some existing MHP
analyses [1,3,15,16] for asynchronous programs lose all the information when
future variables are awaited in a different scope to the one that spawns the tasks
bound to the futures. We have presented a static MHP analysis which captures
inter-procedural MHP relations in which future variables are propagated back-
wards from one task to another(s). This implies that a task can be awaited in
an outer scope from the one in which it was created. Previous work [5] has con-
sidered the propagation of future variables forward, i.e., when future variables
are passed as arguments of the tasks. This implies that a task can be awaited in
an inner scope from the one in which it was created. Also, other MHP analyses
allow synchronizing the termination of the tasks in an inner scope, passing them
as arguments of methods, namely: [11] considers a fork-join semantics and uses
a Happens-Before analysis to infer the MHP information; in [6,8], programs are
abstracted to a thread model which is then analyzed to infer the MHP pairs; [9]



May-Happen-in-Parallel Analysis with Returned Futures 57

builds a time based model to infer race conditions in high performance systems;
this work is extended in [7], using a model checker to solve the MHP decision
problem. The last six analyses are imprecise though when future variables or the
tasks identifiers are returned by methods and awaited in an outer scope.

The solutions for the backwards and forward inference (namely as formalized
in [5]) are technically different, but fully compatible. Essentially, they only have
in common that both the local and global analysis phases need to be changed.
For the forward inference, the analysis includes a separated must-have-finished
(MHF) pre-analysis that allows inferring, for each program point �, which tasks
(both the tasks spawned locally and the passed as arguments) have finished their
execution when reaching �. In contrast, for the backwards inference, the local
phase itself has to be extended to propagate backwards the new relations created
when a future variable is returned, which requires changing the analysis flow. In
both analyses, the creation of the graph needs to be modified to reflect the new
information inferred by the respective local phases, but in each case is different.
For the forward inference, the way in which the MHP pairs are inferred besides
has to be modified. All in all, both extensions are fully compatible, and together
provide a full treatment of future variables in the MHP analysis.
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CHAPTER 7. PUBLICATIONS

Proofs

Our proof for Theorem 1 is an extension of the proof of the original analysis as it appears
in its journal version [21]. We use some of the auxiliary notions of [21] as included below.

Auxiliary results

Let LP be the result of the local phase presented in Section 4.1. In order to prove the
soundness of the analysis we have to extend the semantics. The new semantics is shown
in Figure 7.1. We add to each task additional information Lr, that records the calls
that the current task has performed and their status. Then, these tasks are terms of
the form tsk(t,m, l, o, lk, s,Lr). Lr can be seen as a concrete version of LP and contains
information about the future variable related to the task called, if there is one, and the
state of the task (T(tid, act),T(tid, fin),T(tid, fin)).

We use the notion of runtime MHP ErP , that appears in De�nition A.1 in [21] to
represent the MHP information in the runtime in a given program P or ErS to represent
it in a speci�c state S: given a program P , we let ErP = ∪{ErS | S0 ;∗ S} where ErS is
de�ned as

ErS =



((tk1, pp(s1)), (tk2, pp(s2)))

∣∣∣∣∣∣

tsk(tk1,_,_,_,_, s1,_) ∈ S,
tsk(tk2,_,_,_,_, s2,_) ∈ S,
tk1 6= tk2



 .

De�nition 1 (Concrete MHP graph). Given a state S, we de�ne a concrete graph
GrS using Lr as follows

GrS = 〈VS , ES〉
VS = {act(tk), fin(tk), fin(tk)‖ tsk(tk ,m, l, o, lk, s,Lr) ∈ S} ∪ cP S
cP S = {(tk , pp(s))| tsk(tk ,m, l, o, lk, s,Lr) ∈ S}
ES = eiS ∪ elS
eiS = {act(tk)→ (tk , pp(s))| tsk(tk ,m, l, o, lk, s,Lr) ∈ S}

∪{fin(tk)→ (tk , exit(m))| tsk(tk ,m, l, o, lk, ε(v),Lr) ∈ S}
∪{fin(tk)→ (tk , exit(m))| tsk(tk ,m, l, o, lk, ε(v),Lr) ∈ S}

elS = {(tk , pp(s))→ x| tsk(tk ,m, l, o, lk, s,Lr) ∈ S ∧_:x ∈ Lr}

Once the graph has been constructed, we use the notion of MHP-Graph relation EGrS
to obtain the concrete relations over this graph:

EGrS = dMHPS ∪ iMHPS

dMHPS = {(x, y)|x, y ∈ cP S ∧ x ; y}
iMHPS = {(x, y)|x, y ∈ cP S ∧ (∃z ∈ cP S : z ; x ∧ z ; y)}

The abstraction function ϕ allows us to obtain the set EP from ErP .



De�nition 2 (MHP relation abstraction). Let ϕ be the abstraction function such that
ϕ(tk1, p1) = p1. The abstraction of the MHP-Graph relation EGrS is the abstraction of
each of its pairs.

De�nition 3. ψ abstracts Lr sets into multisets; ψ′ abstracts a single mhp atom; and ψ′′

abstracts tasks into methods.

ψ′′(T(tk , act)) = T(m, act)
ψ′′(T(tk , fin)) = T(m, fin)
ψ′′(T(tk , fin)) = T(m, fin) where m = method(tk)
ψ′(y:T(tk , X)) = y:ψ′′(T(tk , X))
ψ(Lr) = {(ψ′(a), i)|a ∈ Lr ∧ (#i : b ∈ Lr : ψ′(a) = ψ′(b))}

Lemma 1 (Soundness of LP ).

∀S : Si ;∗ S : tsk(tk ,m, l, o, lk, s,Lr) ∈ S ⇒ ψ(Lr) v LP (ϕ(tk , pp(s)))

The result of the local phase presented in Section 4.1 is a safe approximation of the
concrete property de�ned in the semantics.

Proof. The proof is a direct correspondence between the transformations on Lr applied
in the rules showed in the extended semantics in Figure 7.1 and the transition function τ
de�ned in Section 4.1.

Lemma A.8 in [21], which proves that any path in the concrete MHP graph has a
corresponding abstract path in the MHP graph, holds in our case considering also the new
state added in Section 4.1.

Proof of Theorem 1

In order to prove Theorem 1 we will need two more results. The �rst one expresses that
EGrS captures the concurrency information of a state S.

Theorem 2.

∀S : (S0 ;∗ S)⇒ (ErS ⊆ EGrS)

Proof. The proof of the theorem is similar to the one presented in [21], including the new
task state de�ned in Section 4.1 and the new get instruction.

Theorem 2 is equivalent to:

∀S : S0 ;∗ S :
∀ tsk(tk1,m1, l1, o1, lk1, s1,Lr1), tsk(tk2,m2, l2, o2, lk2, s2,Lr2) ∈ S :
tk1 6= tk2 : ((tk1, pp(s1)), (tk2, pp(s2))) ∈ EGrS

However, it is su�cient to prove that every task is reachable from the main node (0, pp(s0))
that corresponds to the main task (tsk(0,main, l0, 0,>, s0,Lr). This can be expressed:

∀S : Si ;∗ S :
∃ tsk(0,main, l0, 0,>, s0,Lr)inS :

∀ tsk(tk1,m1, l1, o1, lk1, s1,Lr1) ∈ S : tk1 6= 0, (0, pp(s0))
Gr

S
; (tk1, pp(s1))
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In such case, for every two tasks either one of them is the main one and the other is
reachable from it or both are di�erent from the main one and they belong to iMHP . We
can prove it by induction on the states of the program:

Base case: Only the main task is present.

∀tsk(tk1,m1, l1, o1, lk1, s1,Lr1) ∈ T : tk1 6= 0, (0, pp(s0))
Gr

S
; (tk1, pp(s1)) trivially

holds.

Inductive case: For any possible transition S ; S′. The induction hypothesis is:

∃ tsk(0,main, l0, 0,>, s0,Lr) ∈ S :

∀ tsk(tk1,m1, l1, o1, lk1, s1,Lr1) ∈ S : tk1 6= 0, (0, pp(s0))
Gr

S
; (tk1, pp(s1))

Although most semantic rules have several e�ects on the program state, they can be split
into steps. Each step is proved to maintain the property. Finally, each semantic rule is
expressed as a combination of simple steps.

1. Sequential step: The new state S′ can be obtained through a substitution S′ = Sτ
of the form:

τ = {tsk(tk ,m, l, o, lk, s,Lr)/tsk(tk ,m, l′, o, lk, s′,Lr′)}.
tsk(tk ,m, l′, o, lk, s′,Lr′) ∈ S and the object o where it is executing has the lock of
the task. Gr

S′ = 〈VS′ , ES′〉 and GrS = 〈VS , ES〉 are isomorphic graphs and we can
de�ne a graph bijection as a substitution:

V ′S = VS [(tk , pp(s))/(tk , pp(s′))]

It is easy to see that the given substitution is indeed a bijection. Let a → b and
edge of GrS we have one of the following:

(a) Both a and b are not (tk , pp(s)). In this case, a→ b is in Gr
S′ as they are not

a�ected by the substitution.

(b) a = (tk , pp(s)). This implies that tsk(tk ,m, l, o, lk, s,Lr) ∈ T and _:b ∈ Lr
where _ can be a future variable or ?.
We have that tsk(tk ,m, l′, o, lk, s′,Lr) ∈ S′ with the same Lr thus
(tk , pp(s′))→ b is in Gr

S′ .

(c) a→ b = act(tk)→ (tk , pp(s)). This implies that
tsk(tk ,m, l, o, lk, s,Lr) ∈ S. We have that tsk(tk ,m, l′, o, lk, s′,Lr) ∈ S′.
act(tk)→ (tk , pp(s′)) is in Gr

S′ by de�nition.

(d) There cannot be edges of the form fin(tk)→ (tk , pp(s)) or fin(tk)→ (tk , pp(s))
because they require that tsk(tk ,m, l, o, lk, s,Lr) does not have the lock and
that contradicts our condition that object o has the lock of the task.

Once concluded that the graphs are isomorphic the induction hypothesis can be ap-
plied to conclude:

∃ tsk(0,main, l0, 0,>, s0,Lr) ∈ S′ : ∀ tsk(tk1,m1, l1, o1, lk1, s1,Lr1) ∈ S′ :
tk1 6= 0, (0, pp(s0))

Gr
S′

; (tk1, pp(s1)).



2. Loss of a future variable association:
S′ = S[tsk(tk ,m, l, o, lk, s,Lr)/tsk(tk ,m, l, o, lk, s,Lr′)] where
Lr′ = Lr[y:T(tkn, X)/?:T(tkn, X)]. Such substitution does not change the graph as
atoms y:T(tkn, X) and ?:T(tkn, X) generate the same edges and the nodes remain
unchanged.

3. New task added:
S′ = S[tsk(tk ,m, l, o, lk, s,Lr)/tsk(tk ,m, l, o, lk, s,Lr′)]∪
∪{tsk(tk1,m1, l1, o1,⊥, body(m1), ∅)} where Lr′ = Lr ∪ {y:T(tk1, act)}.
Gr

S′ = 〈V ′, E′〉 where:

• V ′ = V ∪ {act(tk1), fin(tk1), fin(tk1), (tk1, entry(m1))} and;
• E′ = E ∪ {(tk , s) → act(tk1), act(tk1) → (tk1, entry(m1)) where entry(m)
refers to the entry program point of method m).

In this case, Gr
S′ ⊇ GrS so any path in GrS is still valid in Gr

S′ . Applying the
induction hypothesis we conclude that for any task

tsk(tk2,m2, l2, o2, lk2, s2,Lr2) ∈ S, (0, pp(s0))
Gr

S′
; (tk2, s2).

The only task that is added to S′ is tsk(tk1,m1, l1, o1,⊥, body(m1), ∅). But the
program point in this task is reachable from tsk(tk ,m, l, o, lk, s,Lr′) as we can create
a path p from (tk , pp(s)) to (tk1, entry(m1)):

p = (tk , pp(s))→ act(tk1), act(tk1)→ (tk1, entry(m1)).

We have already proved that (0, pp(s0))
Gr

S′
; (tk , pp(s)) and

(tk , pp(s))
Gr

S′
; (tk1, entry(m1)). Therefore, (0, pp(s0))

Gr
S′

; (tk1, entry(m1)).

4. Task ending:

S′ = S[tsk(tk ,m, l, o, lk, s,Lr)/tsk(tk ,m, l, o, lk, s,Lr′)] where
tsk(tk1,m1, l1, o1,⊥, ε(v),Lr) ∈ S and
Lr′ = Lr[y:T(tk1, act)/y:T(tk1, fin)}.
For a given future variable y there is at most one atom in Lr. If there is none,
S′ = S and the property holds. Otherwise, one atom y:T(tk1, act) gets substituted
by y:T(tk1, fin).

This change has no e�ect on the graph nodes, V ′S = VS . However, it has an e�ect
on the edges of the graph. By the graph de�nition we see that changes in a Lr set
a�ect the edges in elS :

elS′ = elS \ {(tk , pp(s))→ act(tk1)} ∪ {(tk , pp(s))→ fin(tk1)}.
Given a task tsk(tk2,m2, l2, o2, lk2, s2,Lr2) ∈ S, by the induction hypothesis we

know that (0, pp(s0))
Gr

S
; (tk2, pp(s2)). That is, there is a path p from (0, s) to

(tk2, pp(s2)).

If py → act(tk1) does not appear in p, then p is a valid path in Gr
S′ as every edge

in the path belongs to ES′ and (0, pp(s0))
Gr

S′
; (tk2, pp(s2)).
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If (tk , pp(s))→ act(tk1) appears in p, then p = x1 → x2, x2 → x3 · · ·
· · · (tk , pp(s)) → act(tk1), act(tk1) → (tk1, exit(m1)) · · ·xn−1 → xn. We can cre-
ate a new path p′ = x1 → x2, x2 → x3 · · · (tk , pp(s)) → fin(tk1), fin(tk1) →
(tk1, exit(m1)) · · ·xn−1 → xn.

This new path p ′ is valid in Gr
S′ as (tk , pp(s))→ fin(tk1) is the edge added in elS′

and fin(tk1) → (tk1, exit(m1)) belongs to Gr
S′ and GrS by de�nition. Therefore,

(0, pp(s0))
Gr

S′
; (tk2, pp(s2)).

5. Take lock:

S′ = S[tsk(tk ,m, l, o,⊥, s,Lr), obj(o, f,>)
/tsk(tk ,m, l, o,>, s,Lr), obj(o, f,⊥)]

This transformation can not a�ect any path between program points and does not
change the graph. It only allows continuing the execution.

6. Change ending state:

S′ = S[tsk(tk ,m, l, o, lk, s,Lr)/tsk(tk ,m, l, o, lk, s,Lr′)] where
Lr′ = Lr[y:T(tk1, fin)/y:T(tk1, fin)].

For a given future variable y there is at most one atom in Lr. If there is none,
S′ = S and the property holds. Otherwise, one atom y:T(tk1, fin) is substituted by
y:T(tk1, fin). This change has no e�ect on the graph nodes, V ′S = VS . However, it
has an e�ect on the edges of the graph.

elS′ = elS \ {(tk , pp(s))→ fin(tk1)} ∪ {(tk , pp(s))→ fin(tk1)}.
Given a task tsk(tk2,m2, l2, o2, lk2, s2,Lr2) ∈ S, by the induction hypothesis it is

guaranteed that (0, pp(s0))
Gr

S
; (tk2, pp(s2)). That is, there is a path p from (0, s)

to (tk2, pp(s2)).

If py → fin(tk1) does not appear in p, then p is a valid path in Gr
S′ as every edge

in the path belongs to ES′ and (0, pp(s0))
Gr

S′
; (tk2, pp(s2)).

If (tk , pp(s))→ fin(tk1) appears in p, then p = x1 → x2, x2 → x3 · · ·
· · · (tk , pp(s)) → fin(tk1), fin(tk1) → (tk1, exit(m1)) · · ·xn−1 → xn. We can cre-
ate a new path p′ = x1 → x2, x2 → x3 · · · (tk , pp(s)) → fin(tk1), fin(tk1) →
(tk1, exit(m1)) · · ·xn−1 → xn.

This new path p ′ is valid in Gr
S′ as (tk , pp(s))→ fin(tk1) is the edge added in elS′

and fin(tk1) → (tk1, exit(m1)) belongs to Gr
S′ and GrS by de�nition. Therefore,

(0, pp(s0))
Gr

S′
; (tk2, pp(s2)).

7. Get instruction:

S′ = S[tsk(tk1,m1, l1, o1,>, s1,Lr1), tsk(tk2,m2, l2, o2,⊥, ε(v),Lr2)
/tsk(tk1,m1, l1, o1,>, s1,Lr′1), tsk(tk2,m2, l2, o2,⊥, ε(v),Lr′2) where
Lr′1 = Lr1 ∪ {z:T(tk3, X)}, Lr′2 = Lr2\{x:T(tk3, X)} and y:T(tk2, X) ∈ Lr1.
These changes have no e�ect on the graph nodes, V ′S = VS . However, the edges of
the graph are modi�ed.



elS′ = elS \ {(tk2, exit(m2)) → act(tk3)} ∪ {(tk , pp(s1)) → act(tk3)}, or elS′ =
elS \ {(tk2, exit(m2))→ fin(tk3)} ∪ {(tk , pp(s1))→ fin(tk3)}.
Given a task tsk(tk ,m, l, o, lk, s,Lr) ∈ S, by the induction hypothesis there is a

path p, (0, pp(s0))
Gr

S
; (tk , pp(s)).

If py → fin(tk2) does not appear in p we are not able to reach the node act(tk3)
(or fin(tk3)). In this case p is a valid path in Gr

S′ as every edge in the path belongs

to ES′ and (0, pp(s0))
Gr

S′
; (tk , pp(s)).

If (tk1, pp(s1))→ fin(tk2) appears in p, then p = x1 → x2, x2 → x3 · · ·
(tk1, pp(s1))→ fin(tk2), fin(tk2)→ (tk2, exit(m2)), (tk2, exit(m2))→ act(tk3)
· · ·xn−1 → xn.

We can create a new path p ′ = x1 → x2, x2 → x3 · · · (tk1, pp(s1))→ act(tk3)
· · ·xn−1 → xn.

This new path p′ is valid in Gr
S′ as (tk1, pp(s1)) → act(tk3) is the edge added in

elS′ , and the path p′ does not contain the edge (tk2, exit(m2))→ act(tk3) which is

not in elS′ . Therefore, (0, pp(s0))
Gr

S′
; (tk , pp(s)).

The case in which the task tk3 has �nished its execution is analogous.

Finally, we can express the semantic rules as combination of basic steps:

• (NewObject) is an instance of sequential step (1) with the addition of a new object
a(o ′, f ′,⊥) that does not a�ect the graph.

• (Select) is an instance of Take lock step (6).

• (Async) is an instance of sequential step (1) followed by loss of future variable
association (3) and New task added (4).

• (Await) is a sequential step (1) followed by task ending (5).

• (Get) is a sequential step (1) followed by loss of future variable association (3),
change the ending state (6) and get the instruction returned (7).

• (Return) is a sequential step (1) followed by a release (2).

• (Sequential) is a sequential step (1).

The second one corresponds to the Theorem A.10 presented in [21] that does not need
to be modi�ed in our case. This theorem states that for any pair obtained in the concrete
graph of a given state (EGS) is also obtained by the analysis ẼP :

∀S : S0 ;∗ S : EGS ⊆ ẼP
These two lemmas thus prove the desired soundness of EP
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Proof of Theorem 1: soundness of EP .

EP = ϕ(ErP ) = ϕ(∪SErS)
Theorem2⊆ ϕ(∪SEGrS) = ∪Sϕ(EGrS) = ∪SEGS

TheoremA.10⊆ ẼP



(1)

l′ = l[o→ o1], O
′ = O ∪ {obj(o1, a,⊥)}, a = init_atts(C, x), o1 is a fresh id

〈O, {tsk(tk ,m, l, o,>, o = new C(x); s,Lr) ‖ T}〉 
〈O′, {tsk(tk ,m, l′, o,>, s,Lr) ‖ T}〉

(2)

l(o) = o1 6= null, l′ = l[y → tk1], l1 = buildLocals(x̄,m)), tk1is a fresh id,
Lr′ = Lr[y:T(tkn, X)/?:T(tkn, X)] ∪ {y:T(tk1, act)}
〈O, {tsk(tk ,m, l, o,>, y=o.m1(x̄); s,Lr) ‖ T}〉 

〈O, {tsk(tk ,m, l′, o,>, s,Lr′), tsk(tk1,m1, l1, o1,⊥, body(m1), ∅) ‖ T}〉

(3)

l1(y) = tk2,Lr′ = Lr[y:T(tk2, act)/y:T(tk2, fin)]

〈O, {tsk(tk1,m1, l1, o1,>, await y?; s1,Lr),
tsk(tk2,m2, l2, o2,⊥, ε(v)) ‖ T}〉 

〈O, {tsk(tk1,m1, l1, o1,>, s1,Lr′), tsk(tk2,m2, l2, o2,⊥, ε(v)) ‖ T}〉

(4)

l1(y) = tk2, l
′
1 = l1[z → v], return(tk1) = tk3,

Lr′ = Lr[z:T(tkn, X)/?:tkn] ∪ {z:T(tk3, X)},
Lr′2 = Lr2\{x:T(tk3, X)}

〈O, {tsk(tk1,m1, l1, o1,>, z=y.get; s1,Lr),
tsk(tk2,m2, l2, o2,⊥, ε(v),Lr2) ‖ T}〉 

〈O, {tsk(tk1,m1, l
′
1, o1,>, s1,Lr′), tsk(tk2,m2, l2, o2,⊥, ε(v),Lr′2) ‖ T}〉

(5)

obj(o, a,>) ∈ O,O′ = O[obj(o, a,>)/obj(o, a,⊥)], v = l(y)

〈O, {tsk(tk ,m, l, o,>, return y,Lr) ‖ T}〉 
〈O′, {tsk(tk ,m, l, o,⊥, ε(v),Lr) ‖ T}〉

(6)

(l′, s′) = eval(instr,O, l)
instr ∈ {skip, if b then s1 else s2,while b do s3}
〈O, {tsk(tk ,m, l, o,>, instr; s,Lr) ‖ T}〉 
〈O, {tsk(tk ,m, l′, o,>, s′,Lr) ‖ T}〉

(7)
obj(o, a,⊥) ∈ O,O′ = O[obj(o, a,⊥)/obj(o, a,>)], s 6= ε(v)

〈O, {tsk(tk ,m, l, o,⊥, s,Lr) ‖ T}〉 〈O′, {tsk(tk ,m, l, o,>, s,Lr) ‖ T}〉

Figure 7.1: Extended Semantics with local information
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Abstract. Analyzing Ethereum bytecode, rather than the source code
from which it was generated, is a necessity when: (1) the source code is
not available (e.g., the blockchain only stores the bytecode), (2) the infor-
mation to be gathered in the analysis is only visible at the level of byte-
code (e.g., gas consumption is specified at the level of EVM instructions),
(3) the analysis results may be affected by optimizations performed by
the compiler (thus the analysis should be done ideally after compila-
tion). This paper presents EthIR, a framework for analyzing Ethereum
bytecode, which relies on (an extension of) Oyente, a tool that gener-
ates CFGs; EthIR produces from the CFGs, a rule-based representation
(RBR) of the bytecode that enables the application of (existing) high-
level analyses to infer properties of EVM code.

1 Introduction

Means of creating distributed consensus have given rise to a family of dis-
tributed protocols for building a replicated transaction log (a blockchain). These
technological advances enabled the creation of decentralised cryptocurrencies,
such as Bitcoin [9]. Ethereum [12], one of Bitcoin’s most prominent successors,
adds Turing-complete stateful computation associated with funds-exchanging
transactions—so-called smart contracts—to replicated distributed storage.

Smart contracts are small programs stored in a blockchain that can be
invoked by transactions initiated by parties involved in the protocol, execut-
ing some business logic as automatic and trustworthy mediators. Typical appli-
cations of smart contracts involve implementations of multi-party accounting,
voting and arbitration mechanisms, auctions, as well as puzzle-solving games

This work was funded partially by the Spanish MECD Salvador de Madariaga
Mobility Grants PRX17/00297 and PRX17/00303, the Spanish MINECO projects
TIN2015-69175-C4-2-R and TIN2015-69175-C4-3-R, the CM project S2013/ICE-
3006 and by the UCM CT27/16-CT28/16 grant. Sergey’s research was supported by
a generous gift from Google.

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 513–520, 2018.
https://doi.org/10.1007/978-3-030-01090-4_30



514 E. Albert et al.

with reward distribution. To preserve the global consistency of the blockchain,
every transaction involving an interaction with a smart contract is replicated
across the system. In Ethereum, replicated execution is implemented by means
of a uniform execution back-end—Ethereum Virtual Machine (EVM) [12]—a
stack-based operational formalism, enriched with a number of primitives, allow-
ing contracts to call each other, refer to the global blockchain state, initiate
sub-transactions, and even create new contract instances dynamically. That is,
EVM provides a convenient compilation target for multiple high-level program-
ming languages for implementing Ethereum-based smart contracts. In contrast
with prior low-level languages for smart contract scripting, EVM features muta-
ble persistent state that can be modified, during a contract’s lifetime, by parties
interacting with it. Finally, in order to tackle the issue of possible denial-of-
service attacks, EVM comes with a notion of gas—a cost semantics of virtual
machine instructions.

All these features make EVM a very powerful execution formalism, simul-
taneously making it quite difficult to formally analyse its bytecode for possible
inefficiencies and vulnerabilities—a challenge exacerbated by the mission-critical
nature of smart contracts, which, after having been deployed, cannot be amended
or taken off the blockchain.

Contributions In this work, we take a step further towards sound and auto-
mated reasoning about high-level properties of Ethereum smart contracts.

– We do so by providing EthIR, an open-source tool for precise decompilation
of EVM bytecode into a high-level representation in a rule-based form; EthIR
is available via GitHub: https://github.com/costa-group/ethIR.

– Our representation reconstructs high-level control and data-flow for EVM
bytecode from the low-level encoding provided in the CFGs generated by
Oyente. It enables application of state-of-the-art analysis tools developed
for high-level languages to infer properties of bytecode.

– We showcase this application by conducting an automated resource analysis
of existing contracts from the blockchain inferring their loop bounds.

2 From EVM to a Rule-based Representation

The purpose of decompilation –as for other bytecode languages (see, e.g., the
Soot analysis and optimization framework[11])– is to make explicit in a higher-
level representation the control flow of the program (by means of rules which
indicate the continuation of the execution) and the data flow (by means of
explicit variables, which represent the data stored in the stack, in contract fields,
in local variables, and in the blockchain), so that an analysis or transformation
tool can have this control flow information directly available.

2.1 Extension of Oyente to Generate the CFG

Given some EVM code, the Oyente tool generates a set of blocks that store the
information needed to represent the CFG of such EVM code. However, when the
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jump address of a block is not unique (depends on the flow of the program), the
blocks generated by Oyente sometimes only store the last value of the jump
address. We have modified the structure of Oyente blocks in order to include
all possible jump addresses, so that the whole CFG is reconstructed. As an
example, Fig. 1 shows the Solidity source code for a fragment of a contract (left),
and the CFG generated from it (right). Observe that in the CFGs generated by
our extension of Oyente, the instructions SSTORE or SLOAD are annotated
with an identifier of the contract field they operate on (for instance, a SSTORE
operation that stores a value on the contract field 0 is replaced by SSTORE
0). Similarly, the EVM instructions MSTORE and MLOAD instructions are
annotated with the memory address they operate on (such addresses will be
transformed into variables in the RBR whenever possible). These annotations
cannot be generated when the memory address is not statically known, though,
(for instance, when we have an array access inside a loop with a variable index).
In such cases, we annotate the corresponding instructions with “?”.

contract BlockKing {
· · ·
uint public warriorBlock;
uint public kingBlock;
· · ·
function kingBlock(){

uint var = kingBlock;
· · ·

}

function process payment() {
uint singleDigit = warriorBlock;
· · ·
while (singleDigit > 10) {

singleDigit −= 10;
}
· · ·

}
}

Fig. 1. Solidity code (left), and EVM code for process_payment within CFG (right).

Finally, when we have Solidity code available, we are able to retrieve the
name of the functions invoked from the hash codes (see e.g. Block 152 in which
we have annotated in the second bytecode kingBlock, the name of the function
to be invoked). This allows us to statically know the continuation block.

2.2 From the CFG to Guarded Rules

The translation from EVM into our rule-based representation is done by applying
the translation in Definition 1 to each block in a CFG. The identifiers given to
the rules –block x or jump x– use x, the PC of the first bytecode in the block
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being translated. We distinguish among three cases: (1) if the last bytecode in
the block is an unconditional jump (JUMP), we generate a single rule, with an
invocation to the continuation block, (2) if it is a conditional jump (JUMPI) we
produce two additional guarded rules which represent the continuation when the
condition holds, and when it does not, (3) otherwise, we continue the execution
in block x+s (where s is the size of the EVM bytecodes in the block being
translated). As regards the variables, we distinguish the following types:

1. Stack variables: a key ingredient of the translation is that the stack is flattened
into variables, i.e., the part of the stack that the block is using is represented,
when it is translated into a rule, by the explicit variables s0, s1, . . ., where s1

is above s0, and so on. The initial stack variables are obtained as parameters
s0, s1, . . . , sn and denoted as s̄n.

2. Local variables: the content of the local memory in numeric addresses appear-
ing in the code, which are accessed through MSTORE and MLOAD with the
given address, are modelled with variables l0, l1, . . . , lr, denoted as l̄r, and are
passed as parameters. For the translation, we assume we are given a map lmap

which associates a different local variable to every numeric address memory
used in the code. When the address is not numeric, we represent it using a
fresh variable local to the rule to indicate that we do not have information
on this memory location.

3. Contract fields: we model fields with variables g0, . . . , gk, denoted as ḡk, which
are passed as parameters. Since these fields are accessed using SSTORE and
SLOAD using the number of the field, we associate gi to the ith field. As
for the local memory, if the number of the field is not numeric because it is
unknown (annotated as “?”), we use a fresh local variable to represent it.

4. Blockchain data: we model this data with variables bc, which are either
indexed with md0, . . . ,mdq when they represent the message data, or with
corresponding names, if they are precise information of the call, like the gas,
which is accessed with the opcode GAS, or about the blockchain, like the
current block number, which is accessed with the opcode NUMBER. All this
data is accessed through dedicated opcodes, which may consume some offsets
of the stack and normally place the result on top of the stack (although some
of them, like CALLDATACOPY, can store information in the local memory).

The translation uses an auxiliary function τ to translate each bytecode into cor-
responding high-level instructions (and updates the size of the stack m) and
τG to translate the guard of a conditional jump. The grammar of the resulting
RBR language into which the EVM is translated is given in Fig. 2. We optionally
can keep in the RBR the original bytecode instructions from which the higher-
level ones are obtained by simply wrapping them within a nop functor (e.g.,
nop(DUPN)). This is relevant for a gas analyzer to assign the precise gas con-
sumption to the higher-level instruction in which the bytecode was transformed.
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Definition 1. Given a block B with instructions b1, . . . , bi in a CFG starting at
PC x, and local variables map lmap, the generated rules are:

if bi ≡ JUMP p
block x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τ(b1, . . . , bi−1), call(block p(s̄m−1, ḡk, l̄r, ¯bcq))

if bi ≡ JUMPI p
block x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τ(b1, . . . , bc−1), call(jump x(s̄m, ḡk, l̄r, ¯bcq))
jump x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τG(bc, . . . , bi−2)|call(block p(s̄m, ḡk, l̄r, ¯bcq))
jump x(s̄n, ḡk, l̄r, ¯bcq) ⇒ ¬τG(bc, . . . , bi−2)|call(block (x + s)(s̄m, ḡk, l̄r, ¯bcq))

if bi �≡ JUMP and bi �≡ JUMPI
block x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τ(b1, . . . , bi), call(block (x + i)(s̄m, ḡk, l̄r, ¯bcq))

where functions τ and τG for some representative bytecodes are:

τ(JUMPDEST) = {}; m := m

τ(PUSHN v) = {sm+1 = v}; m := m + 1

τ(DUPN) = {sm+1 = sm+1−N}; m := m + 1

τ(SWAPN) = {sm+1 = sm, sm = sm−N , sm−N = sm+1}; m := m
τ(ADD|SUB|MUL|DIV) = {sm−1 = sm + | − | ∗ |/sm−1}; m := m − 1

τ(SLOAD|MLOAD v) = {sm = gv |llmap(v)}; m := m if v is numeric

= {gl|ll = sm, sm = fresh()}; m := m otherwise

τ(SSTORE|MSTORE v) = {gv |llmap(v) = sm−1}; m := m − 2 if v is numeric

= {gs1|ls1 = sm−1, gs2|ls2 = sm}; m := m − 2 otherwise

. . .

τG(GT,ISZERO)|τG(GT) = leq(sm, sm−1)|gt(sm, sm−1); m := m − 2

τG(EQ,ISZERO)|τG(EQ) = neq(sm, sm−1)|eq(sm, sm−1); m := m − 2

. . .

RBR → (B | J) RBR | ε

B → block id (in, gk, lr, bc) ⇒ Instr (Call | ε)
J → jump id (in, gk, lr, bc) ⇒ InstrJ

Instr → S Instr | ε

S → s = Exp

Exp → num | x | x + y | x − y | x ∗ y | x/y | x%y | xy

| and(x, y) | or(x, y) | xor(x, y) | not(x)
Call → call(block id(in, gk, lr, bc)) | call(jump id(in, gk, lr, bc))
InstrJ → Guard ”|” call(block id(in, gk, lr, bc))
Guard → eq(x, y) | neq(x, y) | lt(x, y) | leq(x, y) | gt(x, y) | geq(x, y)

Fig. 2. Grammar of the RBR into which the EVM is translated

– c is the index of the instruction, where the guard of the conditional jump
starts. Note that the condition ends at the index i − 2 and there is always a
PUSH at i − 1. Since the pushed address (that we already have in p) and the
result of the condition are consumed by the JUMPI, we do not store them in
stack variables.
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– m represents the size of the stack for the block. Initially we have m := n.
– variables gs1, gs2 and gl, and ls1, ls2 and ll, are local to each rule and are

used to represent the use of SLOAD and SSTORE, and MLOAD and MSTORE,
when the given address is not a concrete number. For SLOAD and MLOAD
we also use fresh(), to denote a generator of fresh variables to safely represent
the unknown value of the loaded address.

Example 1. As an example, an excerpt of the RBR obtained by translating the
three blocks on the right-hand side of Fig. 1 is as follows (selected instructions
keep using nop annotations the bytecode from which they have been obtained):

block152(s0, g11, l8, bc) ⇒
s1 = s0 nop(DUP1)

s2 = 6584849474 nop(PUSH4)

call(jump152(s2, g11, l8, bc)

nop(EQ) nop(PUSH2) nop(JUMPI)

jump152(s2, g11, l8, bc) ⇒
eq(s2, s1)
call(block694(s0, g11, l8, bc)

jump152(s2, g11, l8, bc) ⇒
neq(s2, s1)
call(block163(s0, g11, l8, bc)

block694(s0, g11, l8, bc) ⇒
s1 = 754 nop(PUSH2)

s2 = 7 nop(PUSH1)

s2 = g7 nop(SLOAD)

s3 = s1 nop(DUP2)

call(block754(s2, g11, l8, bc)

nop(JUMP)

block754(s2, g11, l8, bc) ⇒
s3 = 64 nop(PUSH1)

s4 = s3 nop(DUP1)

s4 = l0 nop(MLOAD)

s5 = s4

s4 = s2

s2 = s5 nop(SWAP2)

s5 = s2 nop(DUP3)

l1 = s4 nop(MSTORE)

s3 = l0 nop(MLOAD)

· · ·
s3 = s4 − s3 nop(SUB)

s4 = 32 nop(PUSH1)

s3 = s4 + s3 nop(ADD)

· · ·

3 Case Study: Bounding Loops in EVM using SACO

To illustrate the applicability of our framework, we have analyzed quantitative
properties of EVM code by translating it into our intermediate representation
and analyzing it with the high-level static analyzer SACO [3]. SACO is able
to infer, among other properties, upper bounds on the number of iterations of
loops. Note that this is the first crucial step to infer the gas consumption of
smart contracts, a property of much interest [4]. The internal representation of
SACO (described in [2]) matches the grammar in Fig. 2 after minor syntactic
translations (that we have solved implementing a simple translator that is avail-
able in github, named saco.py). As SACO does not have bit-operations (namely
and, or, xor, and not), our translator replaces such operations by fresh variables
so that the analyzer forgets the information on bit variables. After this, for our
running example, we prove termination of the 6 loops that it contains and pro-
duce a linear bound for those loops. We have included in our github other smart
contracts together with the loop bounds inferred by SACO for them. Other high-
level analyzers that work on intermediate forms like Integer transition systems
or Horn clauses (e.g., AproVe, T2, VeryMax, CoFloCo) could be easily
adapted as well to work on our RBR translated programs.
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4 Related Approaches and Tools

In the past two years, several approaches tackled the challenge of fully formal
reasoning about Ethereum contracts implemented directly in EVM bytecode by
modeling its rigorous semantics in state-of-the-art proof assistants [5,6]. While
those mechanisations enabled formal machine-assisted proofs of various safety
and security properties of EVM contracts [5], none of them provided means for
fully automated sound analysis of EVM bytecode.

Concurrently, several other approaches for ensuring correctness and secu-
rity of Ethereum contracts took a more aggressive approach, implementing
automated toolchains for detecting bugs by symbolically executing EVM byte-
code [8,10]. However, low-level EVM representation poses difficulties in applying
those tools immediately for analysis of more high-level properties. For instance,
representation of EVM in Oyente, a popular tool for analysis of Ethereum
smart contracts [1] is too low-level to implement analyses of high-level properties,
e.g., loop complexity or commutativity conditions. Zeus, a tool for analysing
Ethereum smart contracts via symbolic execution wrt. client-provided policies,
operates directly on Solidity sources [7]. Soundness of Zeus as an analysis
approach, thus, depends on the semantics of Solidity, which is not formally
defined.
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ABSTRACT
Ethereum smart contracts are public, immutable and distributed
and, as such, they are prone to vulnerabilities sourcing from pro-
gramming mistakes of developers. This paper presents SAFEVM,
a verification tool for Ethereum smart contracts that makes use
of state-of-the-art verification engines for C programs. SAFEVM
takes as input an Ethereum smart contract (provided either in So-
lidity source code, or in compiled EVM bytecode), optionally with
assert and require verification annotations, and produces in the
output a report with the verification results. Besides general safety
annotations, SAFEVM handles the verification of array accesses: it
automatically generates SV-COMP verification assertions such that
C verification engines can prove safety of array accesses. Our ex-
perimental evaluation has been undertaken on all contracts pulled
from etherscan.io (more than 24,000) by using as back-end verifiers
CPAchecker, SeaHorn and VeryMax.
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1 OVERVIEW OF SAFEVM
Each blockchain provides its own programming language to imple-
ment smart contracts. Solidity, a Turing complete language, is the
most popular language to write smart contracts for the Ethereum
platform that are then compiled to EVM (Ethereum Virtual Ma-
chine [22]) bytecode. Each instruction executed by the EVM has
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Figure 1: SAFEVM’s architecture

if they are not met. As usual, the assert function can be used for
verification purposes (e.g., to check invariants), while the require

function is used to specify preconditions (e.g., to ensure valid condi-
tions on the inputs or contract state variables, or to validate return
values from calls to external contracts). When the Solidity code is
compiled into EVM bytecode, the require condition is transformed
into a test that checks the condition and invokes a REVERT bytecode
if it does not hold. REVERT aborts the whole execution of the smart
contract, reverts the state and all remaining gas is refunded to the
caller. The assert checks the condition and invokes an INVALID

bytecode if it does not hold. When executing INVALID, the state
is reverted but no gas is refunded, and hence it has more serious
consequences than REVERT: besides the economic consequences of
losing the gas, the only information given to the transaction is an
out-of-gas error message. The treatment of array accesses is done
similarly as for the assert, when an array position is accessed, the
generated EVM bytecode checks if the position accessed is within
the array bounds and otherwise the INVALID bytecode is executed.
Division and related bytecodes like MOD, SMOD, ADDMOD, MULMOD, also
lead to executing INVALID when the denominator is zero.

Therefore, the INVALID bytecodes are key for the verification of
the Ethereum smart contracts, as they capture both assertion vio-
lations and several sources of fatal operations (e.g., out-of-bounds
access, division by zero). In essence, our approach to the verification
of smart contracts consists in decompiling the EVM bytecode for the
smart contract into a C program with ERROR annotations (following
the SV-COMP format, https://sv-comp.sosy-lab.org/2019/rules.php)
to enable their verification using existing tools for the verification
of C programs. Developing the verifier from the low-level EVM has
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important advantages: (i) sometimes the source code is not avail-
able (e.g., the blockchain only stores the bytecode), (ii) the INVALID

bytecodes are visible at the level of bytecode and we can give a
uniform treatment to the various safety concerns described above,
(iii) our analysis works for any other language that compiles to
EVM (e.g., Vyper), and it is not affected by changes in the source
language, or by compiler optimizations. Luckily, there are a number
of open-source tools that help us in the decompilation process and
that we have integrated within our tool-chain.

Fig. 1 depicts the main components of SAFEVM that are as
follows (shaded boxes are off-the-shelf used systems not developed
by us): (1) Input. SAFEVM takes a smart contract, optionally with
assert and require verification annotations. The smart contract
can be given in Solidity source code or in EVM compiled code. In the
latter case, the annotations have been compiled into bytecode as
described above. (2) CFG. In either form, the code is given toOyente
[2], a symbolic execution engine that has been extended to compute
the complete CFG from the given smart contract. As Oyente does
not handle recursive functions, they are already discarded at this
step. The CFG generation phase is not described in the paper, we
refer to [2, 3]. (3) EthIR. The decompilation of the EVM bytecode into
a higher-level rule-based representation (RBR) is carried out from the
generated CFG by EthIR [3]. Technical details of this phase are not
described in the paper, we refer to [3]. (4) C+SV-COMP translator.We
have implemented a translator for the recursive RBR representation
into an abstract Integer C program (i.e., all data is of type Integer)
with verification annotations using the SV-COMP format. Features
of the EVM that we cannot handle yet (e.g., bit-wise operations) are
abstracted away in the translation (see Sec. 2). INVALID instructions
are transformed into ERROR annotations in the C program following
the SV-COMP format. (5) Verification. Any verification tool for Integer
C programs that uses SV-COMP annotations can be used to verify
the safety of our C-translated contracts. We have evaluated our
approach using three state-of-the-art C verifiers, CPAchecker [6],
VeryMax [9], and SeaHorn [14], and the verification report they
produce is processed by us to report the results in terms of functions
of the smart contract.

Our tool SAFEVM has a very large (potential) user base, as
Ethereum is currently the most advanced platform for coding and
processing smart contracts. As we will describe in Sec. 3, using
SAFEVM we have automatically verified safety of around 20% of all
functions (depending on the verifier) that might execute INVALID

bytecodes from the whole set of contracts pulled from etherscan.io
(more than 24,000 contracts), and we have found potential vulnera-
bilities in functions that could not be verified.

2 TRANSLATION TO C WITH SV-COMP
ANNOTATIONS

As motivating example, we use a Solidity contract that imple-
ments a lottery system called SmartBillions (available at https:
//smartbillions.com/). We illustrate the safety verification of its
internal function commitDividend (an excerpt of its code appears
to the left of Fig. 2) that commits remaining dividends to the user
wh. We have shortened the variable names by removing the vowels
from the names. Lines marked with !⃝ might lead to executing dif-
ferent sources of INVALID: Line 16 (L16 for short) to a division by
zero when ttlSpply is 0; at L19 when lst ≥ dvdnds.length and thus

1 contract SmartBillions {
2 struct Wallet {
3 ..., uint16 lstDvdndPrd;}
4 uint public dvdndPrd;
5 uint[] public dvdnds;
6 mapping(address => uint) blncs ;
7 uint public ttlSpply ;
8 mapping (address => Wallet) wllts ;
9
10 function commitDividend(address wh) {
11 +⃝ //require ( ttlSpply > 0) ;
12 +⃝ //require (dvdndPrd < dvdnds.length);
13 uint lst =wllts [wh].lstDvdndPrd;
14 +⃝ //require (dvdndPrd >= lst ) ;
15 ...
16 !⃝ uint shr=blncs[wh]∗0xffffffff/ttlSpply;
17 uint blnc = 0;
18 for (; lst <dvdndPrd;lst++) {
19 !⃝ blnc += shr ∗ dvdnds[lst ];
20 }
21 !⃝ +⃝ assert( lst == dvdndPrd);
22 blnc = (blnc/0xffffffff);
23 ...
24 }
25 }

block734(s5 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
... // block734 instructions
call (jump734(s7 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2))

jump734(s7 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
geq(s7 ,s6), // lst ≥dvdndPrd
call (block789(s5 ,..., s0 ,g4 ,g0 ,l3 ,l2))

jump734(s7 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
lt ( s7 ,s6), // lst <dvdndPrd
call (block745(s5 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2))

block745(s5 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
... // block745 instructions
call (jump745(s9 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2))

jump745(s9 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
lt ( s9 ,s8), // lst <dvdnds.length
call (block759(s7 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2))

jump745(s9 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
geq(s9 ,s8), // lst ≥dvdnds.length
call (block758(s7 ,..., s0))

block758(s7 ,..., s0)←
INVALID

block759(s7 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2)←
// block759 instructions
...
s6 = s7+s6 , // ADD
s6 = fresh0 , // SLOAD
s7 = s4 , // DUP3
...
call (block734(s5 ,..., s0 ,g4 ,g1 ,g0 ,l3 ,l2))

Figure 2: Solidity code (left) and excerpt of RBR rules of for
loop (lines 18-20)

it is accessing a position out of the bounds of the array; and at L21
when the condition within the assert does not hold. In order to be
able to verify its safety (i.e., absence of INVALID executions), we add
the lines marked with +⃝ that introduce error-handling functions
require and assert in the verification process.

The starting point of our translator is the RBR produced by EthIR
[3]. The RBR is composed of a set of rules containing decompiled
versions of bytecode instructions (e.g., LOAD and STORE are decom-
piled into assignments) and whose structure of rule invocations
is obtained from the CFG produced by Oyente. The RBR might
contain two kinds of rules: sequences of instructions referred to
as blockX , and conditional jump rules, named jumpX , whose first
instruction is the Boolean condition used to select between the rules
of the function definition. Rule parameters include: the operand
stack flattened in variables named si , the state of the contract (this
is the global data), named дi , and the local memory (represented by
local variables), named li . To the right of Fig. 2 we show the frag-
ment of the RBR produced by EthIR for the loop of L18-L20. At rule
block759 we show the transformation of some EVM bytecodes (the
original bytecodes appear in comments //) into higher-level RBR
instructions. The RBR is already abstract in the sense that when
variables refer to state or memory locations that are not known they
become fresh variables (see variable fresh0 in block759) so that a
posterior analysis will not assume any value for them (details are
in [3]). Observe that the fragment of the RBR contains an INVALID

instruction within block758 and such block can be executed when
дeq(s9, s8) (see rule jump745). By tracking variable assignments,
we can infer that s9 contains the value of lst and s8 the size of
dvdnds, hence the comparison is checking out-of-bounds array ac-
cess. The remaining of the section explains the main four phases of
the translation from the RBR to an abstract Integer C program.

(1) C functions: Our translation produces, for each non-recursive
rule definition in the RBR, a C function without parameters that
returns void. Recursive rules produced by loops are translated into
iterative code. For this part of the translation, we compute the SCC
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26 int g0 = __VERIFIER_nondet_int();
27 ...
28 int g4 = __VERIFIER_nondet_int();
29 int l0 = __VERIFIER_nondet_int();
30 ...
31 int l3 = __VERIFIER_nondet_int();
32 int who = __VERIFIER_nondet_int();
33 int s0 ;
34 . . .
35 int s9 ;
36
37 void block758 () {
38 ERROR: __VERIFIER_error();
39 }

40 void block734 () {
41 init_loop_0 :
42 // block734 instructions
43 if (s7 >= s6) { // jump734
44 block789 () ;
45 goto end_loop_0; }
46 // block745 instructions
47 if (s9 >= s8) { // jump745
48 block758 () ;
49 goto end_loop_0; }
50 // block759 instructions
51 s6 = s7 + s6
52 s6 = __VERIFIER_nondet_int

();
53 s7 = s4 ;
54 ...
55 goto init_loop_0 ;
56 end_loop_0: ;}

Figure 3: C translated code with SV-COMP annotations

from the CFG (see Fig. 1) and model the detected loops by means of
goto instructions. Fig. 3 shows the obtained C functions from the
RBR program of Fig. 2. Note that jump rules are translated into an
if-then-else structure.

(2) Types of variables: Solidity basic, signed and unsigned data
types are stored into untyped 256-bit words in the EVM bytecode, and
the bytecode does not include information about the actual types
of the variables. Moreover, most EVM operations do not distinguish
among them except for few specific signed operations (SLT, SGT,
SIGNEXTEND, SDIV and SMOD). As verifiers behave differently w.r.t.
overflow (see details in [6, 9, 14]), our translation allows the user to
choose (by means of a flag) if all variables are declared with type
int in the C program, or of type unsigned int with casting to int

for sign-specific operations. The code in Fig. 3 uses the default int
transformation. Thus, although in EVM integers have overflow, the
interpretation of them as unbounded integers or with overflow will
be determined by the available options in the C verification tool (e.g.,
VeryMax only handles unbounded integers). Besides, instructions
that contain fresh variables or that are not handled (like SLOAD) are
translated into a call to function __VERIFIER_nondet_int in order to
model the lack of information for them during verification. Observe
that function block734 includes some operations over the different
integer variables. Arrays or maps are not visible in the EVM (nor
in the RBR). The only information that is trackable about arrays
corresponds to their sizes as it is stored in a stack variable that in
the C program is stored in an integer variable.

(3) Variable definitions: In order to enable reasoning on them
(within their scopes) during verification, SAFEVM translates them
in the C program as follows: (i) as we flattened the execution stack,
we declare the stack variables as global C variables to make them
accessible to all C functions. These variables do not need to be
initialized as they take values in the program code; (ii) local vari-
ables are defined as global C variables (L29-L31) because a function
of the contract might be translated into several C-functions, and
all of them need to access the local data. They are initialized at
the beginning of the function corresponding to the block in which
they are firstly used; (iii) state variables are also translated into
global variables accessible by all functions and, as their values
when functions are verified are unknown, they are initialized using
__VERIFIER_nondet_int (L26-L28); and (iv) function input parame-
ters are also defined as global variables (for the same reason as (ii)),
whose initial values are not determined (L32).

(4) SV-COMP annotations: The verification of Ethereum smart
contracts is done in SAFEVM by guaranteeing the unreachabil-
ity of the INVALID operations in the C-translated code. Following
the SV-COMP rules, we translate INVALID operations into calls to the
__VERIFIER_error function so that its unreachability can be proven
by any verification tool compatible with the SV-COMP annotations.
An example of an INVALID operation can be seen in L38. Verification
tools return that the program in Fig. 2 cannot be verified as the
INVALID instruction could be executed. This is due to the fact that
contract state values are unknown, that is: ttlSpply is not guaran-
teed to be different from 0 at L16 and the size of the array dvdnds is
not guaranteed to be greater than the value of lst at L19. Lines L11
and L12 contain the Solidity instructions needed to guarantee that
L16 and L19, respectively, will never execute an INVALID instruction.
The assert at L21 can be verified by using the require at L14. The
inclusion of the require annotation also improves the contract as,
if it is violated, a REVERT rather than an INVALID bytecode will be
executed, not causing a loss of gas of the transaction (while the gas
needed to check it is negligible).

3 EXPERIMENTAL EVALUATION
All components of SAFEVM, except for the C verifiers, are imple-
mented in Python and are open-source. SAFEVM accepts smart
contracts written in versions of Solidity up to 0.4.25 and bytecode
for the Ethereum Virtual Machine v1.8.18. This section reports
the results of our experimental evaluation using SAFEVM with
CPAchecker, SeaHorn and VeryMax as verification back-ends. An
artifact to try our tool can be downloaded from http://costa.fdi.ucm.
es/papers/costa/safevm.ova.

In order to experimentally evaluate SAFEVM, we pulled from
etherscan.io all Ethereum contracts whose source code was avail-
able on January 2018. This ended up in 10,796 files. From those, we
have searched for those files that contain EVM code with INVALID in-
structions, in total 7,323. The first phase of SAFEVM that performs
the decompilation into the RBR fails for 1,000 files (this 13.65% is
larger but quite aligned with the failing rates of other tools e.g.
[1, 8]) and reaches a timeout of 60s for 22 files. Thus, our results
are on the remaining 6,301 files, that contain 24,294 contracts with
44,046 public functions that can reach an INVALID instruction and
177,549 INVALID-free functions. We have tested both the translation
to type int and unsigned int for defining C variables, as mentioned
in Sec. 2 for those 44,046 functions. We get the following results by
using 60s of timeout (Error denotes an error output by the verifier):
It is a fake line
Results CPAchecker VeryMax SeaHorn

int uint int uint int uint

Verified 19.48% 19.13% 20.32% 20.36% 21.71% 19.57%
Non-Verified 77.04% 79.82% 73.32% 73.44% 77.72% 80.15%
Timeout 3.21% 0.82% 6.29% 6.13% 0.57% 0.28%
Error 0.27% 0.23% 0.07% 0.07% 0% 0%

The results for all verifiers are quite aligned, although VeryMax
verifies a slightly lower number of functions, and SeaHorn veri-
fies more functions and less reach a timeout. The interpretation
made by the tools regarding the Integer semantics (bounded or
unbounded) leads to the only relevant difference in the number of
functions verified between both translations.
We have manually inspected, out of the 7,323 files, those files
whose addresses start with 0x00 and 0x01 in order to understand
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the cases that could not be verified. This is a sample of 29 files
(243 public functions) that are available at https://github.com/costa-
group/EthIR/tree/master/examples/safevm. The manual inspection on
the subset gives 54 false alarms (22.2%), namely: 49 functions were
verified by CPAchecker; 140 are correct alarms, most of them pro-
duced by asserts introduced by the programmers for safety to abort
the execution (e.g. 83 come from Safemath); 54 are false alarms
(many related to enum accesses and other imprecisions in the de-
compilation phase). More in detail, we have identified four types of
situations: (1) false alarms due to inaccuracy of our tool: some assert
statements contain non-integer types (e.g., strings, enum, etc.) which
cannot be verified as we need a more accurate decompilation (see
Sec. 4); (2) correct alarms that require conditional verification: some
assert statements can only be verified for concrete contexts, e.g.,
we found asserts to prevent from under/overflow integer arith-
metic operations in a widely used library SafeMath that can only
be verified for given inputs. In the future we plan to integrate con-
ditional verification [9] to infer the preconditions for the asserts
to hold; (3) Correct alarms detecting potential vulnerabilities: we
have detected several INVALID operations that could represent a
vulnerability in the code (e.g., functions that access an array ele-
ment without checking the boundary) and we have protected them
adding require statements that enable subsequent verification; and
(4) four functions whose verification results depend on the different
semantics used for Integers.

As final observations, we notice that assert is overused (contra-
dicting the best practices recommendations of Solidity) and that
some contracts can be improved by using require to avoid the loss
of gas when the assert statement does not hold. Finally, we argue
that although there is much room for improving the accuracy, the
results of our experimental evaluation are very encouraging: we
have verified safety w.r.t. INVALID bytecodes for around 20% of the
functions that might reach INVALID fully automatically by using
state-of-the-art verifiers.

4 CONCLUSIONS
Verification of Ethereum smart contracts for potential safety and
security vulnerabilities is becoming a popular research topic with
numerous tools being developed, among them, we have tools based
on symbolic execution [13, 15, 17, 18, 20, 21], tools based on SMT
solving [16, 19], and tools based on certified programming [5, 7, 12].
There are some tools also that aim at detecting, analyzing and
verifying non-functional properties of smart contracts, e.g., those
focused on reasoning about the gas consumption [4, 10, 11, 19].

To the best of our knowledge, SAFEVM is the first tool that
uses existing verification engines developed for C programs to
verify low-level EVM code. This opens the door to the applicability of
advanced techniques developed for the verification of C programs
to the new languages used to code smart contracts. Although our
tool is still in a prototypical stage, it provides a proof-of-concept of
the transformational approach, and we argue that it constitutes a
promising basis to build verification tools for EVM smart contracts.
Some of the aspects that we aim at improving in future work is
the handling of the data stored in the memory, as it is abstracted
away by the EthIR component that SAFEVM is using as soon as
there are storage operations on memory. Developing a memory
analysis for EVM smart contracts can be crucial for the accuracy of

verification. We also aim at handling bit-wise operations in the
future that are extensively used in the EVM bytecode. Advanced
reasoning for arrays and maps (the only data structures available
in Ethereum smart contracts) can be also added to the framework
to gain further accuracy. This requires also further work on the
decompilation side. Along the same line, learning information on
the types of variables during decompilation will have an impact in
the accuracy of the verification process.
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Abstract. Gas is a measurement unit of the computational effort that
it will take to execute every single operation that takes part in the
Ethereum blockchain platform. Each instruction executed by the Ethe-
reum Virtual Machine (EVM) has an associated gas consumption speci-
fied by Ethereum. If a transaction exceeds the amount of gas allotted by
the user (known as gas limit), an out-of-gas exception is raised. There
is a wide family of contract vulnerabilities due to out-of-gas behaviors.
We report on the design and implementation of Gastap, a Gas-Aware
Smart contracT Analysis Platform, which takes as input a smart con-
tract (either in EVM, disassembled EVM, or in Solidity source code) and
automatically infers gas upper bounds for all its public functions. Our
bounds ensure that if the gas limit paid by the user is higher than our
inferred gas bounds, the contract is free of out-of-gas vulnerabilities.

1 Introduction

In the Ethereum consensus protocol, every operation on a replicated blockchain
state, which can be performed in a transactional manner by executing a smart
contract code, costs a certain amount of gas [29], a monetary value in Ether,
Ethereum’s currency, paid by a transaction-proposing party. Computations (per-
formed by invoking smart contracts) that require more computational or storage
resources, cost more gas than those that require fewer resources. As regards
storage, the EVM has three areas where it can store items: the storage is where
all contract state variables reside, every contract has its own storage and it is
persistent between external function calls (transactions) and quite expensive to
use; the memory is used to hold temporary values, and it is erased between
transactions and is cheaper to use; the stack is used to carry out operations and
it is free to use, but can only hold a limited amount of values.
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The rationale behind the resource-aware smart contract semantics, instru-
mented with gas consumption, is three-fold. First, paying for gas at the moment
of proposing the transaction does not allow the emitter to waste other parties’
(aka miners) computational power by requiring them to perform a lot of worth-
less intensive work. Second, gas fees disincentivize users to consume too much
of replicated storage, which is a valuable resource in a blockchain-based consen-
sus system. Finally, such a semantics puts a cap on the number of computations
that a transaction can execute, hence prevents attacks based on non-terminating
executions (which could otherwise, e.g., make all miners loop forever).

In general, the gas-aware operational semantics of EVM has introduced novel
challenges wrt. sound static reasoning about resource consumption, correctness,
and security of replicated computations: (1) While the EVM specification [29]
provides the precise gas consumption of the low-level operations, most of the
smart contracts are written in high-level languages, such as Solidity [13] or
Vyper [14]. The translation of the high-level language constructs to the low-
level ones makes static estimation of runtime gas bounds challenging (as we will
see throughout this paper), and is implemented in an ad-hoc way by state-of-the
art compilers, which are only able to give constant gas bounds, or return ∞
otherwise. (2) As noted in [17], it is discouraged in the Ethereum safety recom-
mendations [16] that the gas consumption of smart contracts depends on the
size of the data it stores (i.e., the contract state), as well as on the size of its
functions inputs, or of the current state of the blockchain. However, according to
our experiments, almost 10% of the functions we have analyzed do. The inability
to estimate those dependencies, and the lack of analysis tools, leads to design
mistakes, which make a contract unsafe to run or prone to exploits. For instance,
a contract whose state size exceeds a certain limit, can be made forever stuck,
not being able to perform any operation within a reasonable gas bound. Those
vulnerabilities have been recognized before, but only discovered by means of
unsound, pattern-based analysis [17].

In this paper, we address these challenges in a principled way by developing
Gastap, a Gas-Aware Smart contracT Analysis Platform, which is, to the best
of our knowledge, the first automatic gas analyzer for smart contracts. Gastap
takes as input a smart contract provided in Solidity source code [13], or in low-
level (possibly decompiled [26]) EVM code, and automatically infers an upper
bound on the gas consumption for each of its public functions. The upper bounds
that Gastap infers are given in terms of the sizes of the input parameters of
the functions, the contract state, and/or on the blockchain data that the gas
consumption depends upon (e.g., on the Ether value).

The inference of gas requires complex transformation and analysis processes
on the code that include: (1) construction of the control-flow graphs (CFGs), (2)
decompilation from low-level code to a higher-level representation, (3) inference
of size relations, (4) generation of gas equations, and (5) solving the equations
into closed-form gas bounds. Therefore, building an automatic gas analyzer from
EVM code requires a daunting implementation effort that has been possible
thanks to the availability of a number of existing open-source tools that we have
succeeded to extend and put together in the Gastap system. In particular, an
extension of the tool Oyente [3] is used for (1), an improved representation of
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EthIR [6] is used for (2), an adaptation of the size analyzer of Saco [4] is used
to infer the size relations, and the Pubs [5] solver for (5).

The most challenging aspect in the design of Gastap has been the approxi-
mation of the EVM gas model (which is formally specified in [29]) that is required
to produce the gas equations in step (4). This is because the EVM gas model
is highly complex and unconventional. The gas consumption of each instruction
has two parts: (i) the memory gas cost, if the instruction accesses a location
in memory which is beyond the previously accessed locations (known as active
memory [29]), it pays a gas proportional to the distance of the accessed location.
(ii) The second part, the opcode gas cost, is related to the bytecode instruction
itself. This component is also complex to infer because it is not always a constant
amount, it might depend in some cases on the current global and local state.

Gastap has a wide range of applications for contract developers, attackers
and owners, including the detection of vulnerabilities, debugging and verifica-
tion/certification of gas usage. As contract developers and owners, having a
precise resource analyzer allows answering the following query about a specific
smart contract: “what is the amount of gas necessary to safely (i.e., without an
out-of-gas exception) reach a certain execution point in the contract code, or
to execute a function”? This can be used for debugging, verifying/certifying a
safe amount of gas for running, as well as ensuring progress conditions. Besides,
Gastap allows us to calculate the safe amount of gas that one should provide
to an external data source (e.g., contracts using Oraclize [8]) in order to enable
a successful callback. As an attacker, one might estimate, how much Ether (in
gas), an adversary has to pour into a contract in order to execute the DoS attack.
We note that such an attack may, however, be economically impractical.

Finally, we argue that our experimental evaluation shows that Gastap is an
effective and efficient tool: we have analyzed more than 29,000 real smart con-
tracts pulled from etherscan.io [2], that in total contain 258,541 public functions,
and inferred gas bounds for 91.85% of them in 342.54 h. Gastap can be used
from a web interface at https://costa.fdi.ucm.es/gastap.

2 Description of Gastap Components

Figure 1 depicts the architecture of Gastap. In order to describe all components
of our tool, we use as running example a simplified version (without calls to the
external service Oraclize and the authenticity proof verifier) of the EthereumPot

contract [1] that implements a simple lottery. During a game, players call a
method joinPot to buy lottery tickets; each player’s address is appended to an
array addresses of current players, and the number of tickets is appended to an
array slots, both having variable length. After some time has elapsed, anyone
can call rewardWinner which calls the Oraclize service to obtain a random number
for the winning ticket. If all goes according to plan, the Oraclize service then
responds by calling the __callback method with this random number and the
authenticity proof as arguments. A new instance of the game is then started,
and the winner is allowed to withdraw her balance using a withdraw method. In
Fig. 2, an excerpt of the Solidity code (including the public function findWinner)
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Fig. 1. Architecture of Gastap (CFG: control flow graph; RBR: rule-based represen-
tation; SR: size-relations; GE: gas equations)

and a fragment of the EVM code produced by the compiler, are displayed. The
Solidity source code is showed for readability, as Gastap analyzes directly the
EVM code (if it receives the source, it first compiles it to obtain the EVM code).

2.1 Oyente*: From EVM to a Complete CFG

The first component of our tool, Oyente*, is an extension of the open-source
tool Oyente [3], a symbolic execution tool developed to analyze Ethereum smart
contracts and find potential security bugs. As Oyente’s aim is on symbolic exe-
cution rather than on generating a complete CFG, some extensions are needed to
this end. The EthIR framework [6] had already extended Oyente for two pur-
poses: (1) to recover the list of addresses for unconditional blocks with more than
one possible jump address (as Oyente originally only kept the last processed
one), and (2) to add more explicit information to the CFG: jump operations are
decorated with the jumping address, discovered by Oyente, and, other oper-
ations like store or load are also decorated with the address they operate: the
number of state variable for operations on storage; and the memory location for
operations on memory if Oyente is able to discover it (or with “?” otherwise).

However EthIR’s extension still produced incomplete CFGs. Oyente* fur-
ther extends it to handle a more subtle source of incompleteness in the generated
CFG that comes directly from the fact that Oyente is a symbolic execution
engine. For symbolic execution, a bound on the number of times a loop is iter-
ated is given. Hence it may easily happen that some (feasible) paths are not
reached in the exploration within this bound and they are lost. To solve this
problem, we have modified Oyente to remove the execution bound (as well
as other checks that were only used for their particular applications), and have
added information to the path under analysis. Namely, every time a new jump is
found, we check if the jumping point is already present in the path. In such case,
an edge to that point is added and the exploration of the trace is stopped. As
a side effect, we not only produce a complete CFG, but also avoid much useless
exploration for our purposes which results in important efficiency gain.
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contract EthereumPot {
address [] public addresses;
address public winnerAddress;
uint[] public slots ;
· · ·
function callback(bytes32 queryId, string result , bytes proof)

oraclize randomDS proofVerify( queryId, result, proof) {
if (msg.sender != oraclize cbAddress()) throw;
random number = uint(sha3( result))
winnerAddress = findWinner(random number);
amountWon = this.balance ∗ 98 / 100 ;
winnerAnnounced(winnerAddress, amountWon);
if (winnerAddress.send(amountWon)) {
if (owner.send(this.balance)) {
openPot();

}}
}

function findWinner(uint random) constant returns(address winner){
for(uint i = 0; i < slots .length; i++) {
if (random <= slots[i]) {
return addresses[i ];

}}
}
· · ·

}

· · ·
DUP1
PUSH1 => 0x00
SWAP1
POP
PUSH1 => 0x03
DUP1
SLOAD
SWAP1
· · ·
PUSH1 => 0x40
MLOAD
DUP1
SWAP2
SUB
SWAP1
SHA3
PUSH1 => 0x01
· · ·
JUMPDEST
MOD
ADD
PUSH1 => 0x0a
DUP2
SWAP1
SSTORE
POP
PUSH2 => 0x0954
PUSH1 => 0x0a
SLOAD
PUSH2 => 0x064b
JUMP
· · ·

Fig. 2. Excerpt of Solidity code for EthereumPot contract (left), and fragment of EVM
code for function __callback (right)

When applying Oyente*, our extended/modified version of Oyente, we
obtain a complete CFG, with the additional annotations already provided by [6].

2.2 EthIR*: From CFG to an Annotated Rule-Based Representation

EthIR*, an extension of EthIR [6], is the next component of our analyzer.
EthIR provides a rule-based representation (RBR) for the CFG obtained from
Oyente*. Intuitively, for each block in the CFG it generates a correspond-
ing rule that contains a high-level representation of all bytecode instructions
in the block (e.g., load and store operations are represented as assignments)
and that has as parameters an explicit representation of the stack, local, state,
and blockchain variables (details of the transformation are in [6]). Conditional
branching in the CFG is represented by means of guards in the rules. EthIR*
provides three extensions to the original version of EthIR [6]: (1) The first
extension is related to the way function calls are handled in the EVM, where
instead of an explicit CALL opcode, as we have seen before, a call to an internal
function is transformed into a PUSH of the return address in the stack followed by
a JUMP to the address where the code of the function starts. If the same function
is called from different points of the program, the resulting CFG shares for all
these calls the same subgraph (the one representing the code of the function)
which ends with different jumping addresses at the end. As described in [17],
there is a need to clone parts of the CFG to explicitly link the PUSH of the
return address with the final JUMP to this address. This cloning in our imple-
mentation is done at the level of the RBR as follows: Since the jumping addresses
are known thanks to the symbolic execution applied by Oyente, we can find the
connection between the PUSH and the JUMP and clone the involved part of the
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RBR (between the rule of the PUSH and of the JUMP) using different rule names
for each cloning. (2) The second extension is a flow analysis intended to reduce
the number of parameters of the rules of the RBR. This is crucial for efficiency
as the number of involved parameters is a bottleneck for the successive analysis
steps that we are applying. Basically, before starting the translation phase, we
compute the inverse connected component for each block of the CFG, i.e, the
set of its predecessor blocks. During the generation of each rule, we identify the
local, state or blockchain variables that are used in the body of the rule. Then,
these variables have to be passed as arguments only to those rules built from
the blocks of its inverse connected component. (3) When we find a store on an
unknown memory location “?”, we have to “forget” all the memory from that
point on, since the writing may affect any memory location, and it is not sound
anymore to assume the previous information. In the RBR, we achieve this dele-
tion by assigning fresh variables (thus unknown values) to the memory locations
at this point.

Optionally, EthIR provides in the RBR the original bytecode instructions
(from which the higher-level ones are obtained) by simply wrapping them within
a nop functor (see Fig. 3). Although nop annotations will be ignored by the size
analysis, they are needed later to assign a precise gas consumption to every rule.

block1647(s10, sv, lv, bc) ⇒
nop(JUMPDEST ), s11 = s9, s9 = s10, s10 = s11, nop(SWAP ), s11 = 0, nop(PUSH),
l2 = s10, nop(MSTORE), s10 = 32, nop(PUSH), s11 = 0, nop(PUSH), s10 = sha3(s11, s10),

nop(SHA3), s9 = s10 + s9, nop(ADD), gl = s9, s9 = fresh0, nop(SLOAD), s10 = s6,

nop(DUP4), call(jump1647(s10, sv, lv, bc)), nop(GT ), nop(ISZERO), nop(ISZERO),
nop(PUSH), nop(JUMPI)

Fig. 3. Selected rule including nop functions needed for gas analysis

Example 1. Figure 3 shows the RBR for block1647. Bytecode instructions that
load or store information are transformed into assignments on the involved vari-
ables. For arithmetic operations, operations on bits, sha, etc., the variables they
operate on are made explicit. Since stack variables are always consecutive we
denote by sn the decreasing sequence of all si form n down to 0. lv includes l2
and l0, which is the subset of the local variables that are needed in this rule or
in further calls (second extension of EthIR*). The unknown location “?” has
become a fresh variable fresh0 in block1647. For state variables, sv includes the
needed ones g11, g8, g7, g6, g5, g3, g2, g1, g0 (gi is the i-th state variable). Finally,
bc includes the needed blockchain state variables address, balance and timestamp.

2.3 SACO: Size Relations for EVM Smart Contracts

In the next step, we generate size relations (SR) from the RBR using the Saco
tool [4]. SR are equations and inequations that state how the sizes of data change
in the rule [12]. This information is obtained by analyzing how each instruction of
the rules modifies the sizes of the data it uses, and propagating this information
as usual in dataflow analysis. SR are needed to build the gas equations and then
generate gas bounds in the last step of the process. The size analysis of Saco
has been slightly modified to ignore the nop instructions. Besides, before sending
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the rules to Saco, we replace the instructions that cannot be handled (e.g., bit-
wise operations, hashes) by assignments with fresh variables (to represent an
unknown value). Apart from this, we are able to adjust our representation to
make use of the approach followed by Saco, which is based on abstracting data
(structures) to their sizes. For integer variables, the size abstraction corresponds
to their value and thus it works directly. However, a language specific aspect of
this step is the handling of data structures like array, string or bytes (an array
of byte). In the case of array variables, Saco’s size analysis works directly as in
EVM the slot assigned to the variable contains indeed its length (and the address
where the array content starts is obtained with the hash of the slot address).

Example 2. Consider the following SR (those in brackets) generated for rule
jump1649 and block1731 :
jump1619 (s10, sv, lv, bc) = block1633 (s8, sv, lv, bc){s10 < s9}
block1731 (s8, sv, lv, bc) = 41 + block1619 (s′

8, s7, sv, lv, bc){s′
8 = 1 + s8}

The size relations for the jump1619 function involve the slots array length
(g3 stored in s9) and the local variable i (in s8 and copied to s10). It corre-
sponds to the guard of the for loop in function findWinner that compares i and
slots.length and either exits the loop or iterates (and hence consume different
amount of gas). The size relation on s8 for block1731 corresponds to the size
increase in the loop counter.

However, for bytes and string it is more challenging, as the way they are
stored depends on their actual sizes. Roughly, if they are short (at most 31 bytes
long) their data is stored in the same slot together with its length. Otherwise, the
slot contains the length (and the address where the string or bytes content starts
is obtained like for arrays). Our approach to handle this issue is as follows. In
the presence of bytes or string, we can find in the rules of the RBR a particular
sequence of instructions (which are always the same) that start pushing the
contents of the string or bytes variable in the top of the stack, obtain its length,
and leave it stored in the top of the stack (at the same position). Therefore, to
avoid losing information, since Saco is abstracting the data structures to their
sizes, every time we find this pattern of instructions applied to a string or bytes
variable, we just remove them from the RBR (keeping the nops to account for
their gas). Importantly, since the top of the stack has indeed the size, under
Saco’s abstraction it is equal to the string or bytes variable. Being precise,
assuming that we have placed the contents of the string or bytes variable in the
top of the stack, which is si, the transformation applied is the following:

si+1 = 1, nop(PUSH1), si+2 = si, nop(DUP2), si+3 = 1, nop(PUSH1),

si+2 = and(si+3, si+2), nop(AND), si+2 = eq(si+2, 0), nop(ISZERO),

si+3 = 256, nop(PUSH2), si+2 = si+3 ∗ si+2, nop(MUL), si+1 = si+2 − si+1,

nop(SUB)si = and(si+1, si), nop(AND), si+1 = 2, nop(PUSH1),

si+2 = si, si = si+1, si+1 = si+2, nop(SWAP1), si = si+1/si, nop(DIV )

⇓
nop(PUSH1), nop(DUP2), nop(PUSH1), nop(AND), nop(ISZERO), nop(PUSH2),

nop(MUL), nop(SUB), nop(AND), nop(PUSH1), nop(SWAP1), nop(DIV )
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Since the involved instructions include bit-wise operations among others and, as
said, the value of the stack variable becomes unknown, without this transforma-
tion the relation between the stack variable and the length of the string or bytes
would be lost and, as a result, the tool may fail to provide a bound on the gas
consumption. This transformation is applied when possible and, e.g., is needed
to infer bounds for the functions getPlayers and getSlots (see Table 2).

2.4 Generation of Equations

In order to generate gas equations (GE), we need to define the EVM gas model,
which is obtained by encoding the specification of the gas consumption for each
EVM instruction as provided in [29]. The EVM gas model is complex and uncon-
ventional, it has two components, one which is related to the memory consump-
tion, and another one that depends on the bytecode executed. The first compo-
nent is computed separately as will be explained below. In this section we focus
on computing the gas attributed to the opcodes. For this purpose, we provide a
function Copcode : s �→ g which, for an EVM opcode, takes a stack s and returns a
gas g associated to it. We distinguish three types of instructions: (1) Most byte-
code instructions have a fixed constant gas consumption that we encode precisely
in the cost model Copcode, i.e., g is a constant. (2) Bytecode instructions that
have different constant gas consumption g1 or g2 depending on some given con-
dition. This is the case of SSTORE that costs g1 = 20000 if the storage value is
set from zero to non-zero (first assignment), and g2 = 5000 otherwise. But it is
also the case for CALL and SELFDESTRUCT. In these cases we use g = max(g1, g2)
in Copcode. (3) Bytecode instructions with a non-constant (parametric) gas con-
sumption that depends on the value of some stack location. For instance, the
gas consumption of EXP is defined as 10 + 10 · (1 + �log256(µs[1])�) if µs[1] �= 0
where µs[0] is the top of the stack. Therefore, we have to define g in Copcode as
a parametric function that uses the involved location. Other bytecode instruc-
tions with parametric cost are CALLDATACOPY, CODECOPY, RETURNDATACOPY, CALL,
SHA3, LOG*, and EXTCODECOPY.

Given the RBR annotated with the nop information, the size relations, and
the cost model Copcode, we can generate GE that define the gas consumption
of the corresponding code applying the classical approach to cost analysis [28]
which consists of the following basic steps: (i) Each rule is transformed into a
corresponding cost equation that defines its cost. Example 2 also displays the
GE obtained for the rules jump1619 and block1731. (ii) The nop instructions
determine the gas that the rule consumes according to the gas cost model Copcode

explained above. (iii) Calls to other rules are replaced by calls to the correspond-
ing cost equations. See for instance the call to block1619 from rule block1731 that
is transformed into a call to the cost function block1619 in Example 2. (iv) Size
relations are attached to rules to define their applicability conditions and how
the sizes of data change when the equation is applied. See for instance the size
relations attached to jump1619 that have been explained in Example 2.

As said before, the gas model includes a cost that comes from the mem-
ory consumption which is as follows. Let Cmem(a) be the memory cost
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function for a given memory slot a and defined as Gmemory · a +
⌊

a2

512

⌋
where

Gmemory = 3. Given an EVM instruction, µ′
i and µi denote resp. the highest

memory slot accessed in the local memory, resp., after and before the execution
of such instruction. The memory gas cost of every instruction is the difference
Cmem(µ′

i) − Cmem(µi). Besides MLOAD or MSTORE, instructions like SHA3 or CALL,
among others, make use of the local memory, and hence can increase the memory
gas cost.

In order to estimate this cost associated to all EVM instructions in the code of
the function, we first make the following observations: (1) Computing the sum of
all the memory gas cost amounts to computing the memory cost function for the
highest memory slot accessed by the instructions of the function under analysis.
This is because, as seen, µi and µ′

i refer to this position in each operation and
hence we pay for all the memory up to this point. (2) This is not a standard
memory consumption analysis in which one obtains the total amount of memory
allocated by the function. Instead, in this case, we infer the actual value of the
highest slot accessed by any operation executed in the function.

Example 3. Let us show how we obtain the memory gas cost for block1647. In
this case, the two instructions in this block that cost memory are underlined
in Fig. 3 and correspond to a MSTORE and SHA3 bytecodes. In this block, both
bytecodes operate on slot 0 of the memory, and they cost 3 units of gas because
they only activate up to slot 1 of the memory.

2.5 PUBS Solver: From Equations to Closed-Form Bounds

The last step of the gas bounds inference is the generation of a closed-form gas
upper bound, i.e., a solution for the GE as a non-recursive expression. As the
GE we have generated have the standard form of cost relations systems, they
can be solved using off-the-shelf solvers, such as Pubs [5] or Cofloco [15],
without requiring any modification. These systems are able to find polynomial,
logarithmic and exponential solutions for cost relations in a fully automatic way.
The gas bounds computed for all public functions of EthereumPot using Pubs can
be found in Table 1, note that they are parametric on different state variables,
input and blockchain data.

3 Experimental Evaluation

This section presents the results of our evaluation of Gastap. In Sect. 3.1, we
evaluate the accuracy of the gas bounds inferred by Gastap on the EthereumPot
by comparing them with the bounds computed by the Solidity compiler.

In Sect. 3.2, we evaluate the efficiency and effectiveness of our tool by analyz-
ing more than 29,000 Ethereum smart contracts. To obtain these contracts, we
pulled from etherscan.io [2] all Ethereum contracts whose source code was avail-
able on January 2018. Gastap is available at https://costa.fdi.ucm.es/gastap.
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3.1 Gas Bounds for EthereumPot Case Study

Table 1 shows in column solc the gas bound provided by the Solidity compiler
solc [13], and in the next two columns the bounds produced by Gastap for
opcode gas and memory gas, respectively, for all public functions in the contract.
If we add the gas and memory bounds, it can be observed that, for those functions
with constant gas consumption, we are as accurate as solc. Hence, we do not
lose precision due to the use of static analysis.

For those 6 functions that solc fails to infer constant gas consumption, it
returns ∞. For opcode gas, we are able to infer precise parametric bounds for
five of them, rewardWinner is linear on the size of the first and third state variables
(g1 and g3 represent resp. the sizes of the arrays addresses and slots in Fig. 2),
getSlots and findWinner on the third, getPlayers on the first, and __callback

besides depends on the value of result (second function parameter) and proof

(last parameter). It is important to note that, although the Solidity source code
of some functions (e.g., of getSlots and getPlayers) does not contain loops,
they are generated by the compiler and are only visible at the EVM level. This
also happens, for example, when a function takes a string or bytes variable as
argument. This shows the need of developing the gas analyzer at the EVM level.

For joinPot we cannot ensure that the gas consumption is finite with-
out embedding information about the blockchain in the analyzer. This is
because joinPot has a loop: for (uint i = msg.value; i >= minBetSize; i-=

minBetSize) {tickets++;}, where minBetSize is a state variable that is initialized
in the definition line as uint minBetSize = 0.01ether, and ether is the value
of the Ether at the time of executing the instruction. This code has indeed
several problems. The first one is that the initialization of the state variable
minBetSize to the value 0.01ether does not appear in the EVM code available in
the blockchain. This is because this instruction is executed only once when the
contract is created. So our analyzer cannot find this instruction and the value
of minBetSize is unknown (and hence no bound can be found). Besides, the loop
indeed does not terminate if minBetSize in not strictly greater than zero (which
could indeed happen if ether would take zero or a negative value). If we add the
initialization instruction, and embed in the analyzer the invariant that ether> 0
(hence minBetSize becomes > 0), then we are able to infer a bound for joinPot.

For __callback we guarantee that the memory gas is finite but we cannot
obtain an upper bound for it, Gastap yields a maximization error which is a
consequence of the information loss due to the soundness requirement described
in extension 3 of Sect. 2.2. Intuitively, maximization errors may occur when the
analyzer needs to compose the cost of the different fragments of the code. For
the composition, it needs to maximize (i.e., find the maximal value) the cost of
inner components in their calling contexts (see [5] for details). If the maximiza-
tion process involves memory locations that have been “forgotten” by EthIR*
(variables “?”), the upper bound cannot be inferred. Still, if there is no ranking
function error, we know that all loops terminate, thus the memory gas consump-
tion is finite.
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Table 1. Gas bounds for EthereumPot. Function nat defined as nat(l)=max(0,l).

function solc opcode bound Gastap memory bound Gastap

totalBet 790 775 15

locked 706 691 15

getEndTime 534 519 15

slots 837 822 15

rewardWinner ∞ 80391+5057·nat(g3)+5057·nat(g1) 18

Kill 30883 30874 9

amountWon 438 423 15

getPlayers ∞ 1373+292·nat(g1-1/32)

+75·nat(g1+31/32) 6·nat(g1)+24+

⌊
(6·nat(g1)+24)2

512

⌋

getSlots ∞ 1507+250·nat(g3-1/32)

+75·nat(g3+31/32) 6·nat(g3)+24+

⌊
(6·nat(g3)+24)2

512

⌋

winnerAddress 750 735 15

__callback ∞ 229380+3·(nat(proof)/32)

+103·nat(result/32)

+50·nat((32-nat(result))) max error

+5836·nat(g3)+5057·nat(g1)

owner 662 647 15

endTime 460 445 15

potTime 746 731 15

potSize 570 555 15

joinPot ∞ no rf 9

addresses 1116 1101 15

findWinner ∞ 1555+779·nat(g3) 15

random_number 548 533 15

Finally, this transaction is called always with a constant gas limit of 400,000.
This contrasts with the non-constant gas bound obtained using Gastap. Note
that if the gas spent (without including the refunds) goes beyond the gas limit
the transaction ends with an out-of-gas exception. Since the size of g3 and g1
is the same as the number of players, from our bound, we can conclude that
from 16 players on the contract is in risk of running out-of-gas and get stuck as
the 400,000 gas limit cannot be changed. So using Gastap we can prevent an
out-of-gas vulnerability: the contract should not allow more than 15 players, or
the gas limit must be increased from that number on.

3.2 Statistics for Analyzed Contracts

Our experimental setup consists on 29,061 contracts taken from the blockchain
as follows. We pulled all Ethereum contracts from the blockchain as of January
2018, and removed duplicates. This ended up in 10,796 files (each file often
contains several contracts). We have excluded the files where the decompilation
phase fails in any of the contracts it includes, since in that case we do not get any
information on the whole file. This failure is due to Oyente in 1,230 files, which
represents a 11.39% of the total and to EthIR in 829 files, which represents
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a 7.67% of the total. The failures of EthIR are mainly due to the cloning
mechanism in involved CFGs for which we fail to find the relation between the
jump instruction and the return address.

After removing these files, our experimental evaluation has been carried out
on the remaining 8,737 files, containing 29,061 contracts. In total we have ana-
lyzed 258,541 public functions (and all auxiliary functions that are used from
them). Experiments have been performed on an Intel Core i7-7700T at 2.9 GHz x
8 and 7.7 GB of Memory, running Ubuntu 16.04. Gastap accepts smart contracts
written in versions of Solidity up to 0.4.25 or bytecode for the Ethereum Virtual
Machine v1.8.18. The statistics that we have obtained in number of functions
are summarized in Table 2, and the time taken by the analyzer in Table 3. The
results for the opcode and memory gas consumption are presented separately.

Table 2. Statistics of gas usage on the analyzed 29,061 smart contracts from Ethereum
blockchain

Type of result #opc %opc #mem %mem

Constant gas bound 223,294 86.37% 225,860 87.36%

Parametric gas bound 14,167 5.48% 13,312 5.15%

Time out 13,140 5.08% 13,539 5.24%

Finite gas bound (maximization error) 7,095 2.74% 5,830 2.25%

Termination unknown (ranking function error) 716 0.28% 0 0%

Complex control flow (cover point error) 129 0.05% 0 0%

Total number of functions 258,541 100% 258,541 100%

Let us first discuss the results in Table 2 which aim at showing the effec-
tiveness of Gastap. Columns #opc and #mem contain number of analyzed
functions for opcode and memory gas, resp., and columns preceded by % the
percentage they represent. For the analyzed contracts, we can see that a large
number of functions, 86.37% (resp. 87.36%), have a constant opcode (resp. mem-
ory) gas consumption. This is as expected because of the nature of smart con-
tracts, as well as because of the Ethereum safety recommendations mentioned
in Sect. 1. Still, there is a relevant number of functions 5.48% (resp. 5.15%) for
which we obtain an opcode (resp. memory) gas bound that is not constant (and
hence are potentially vulnerable). Additionally, 5.08% of the analyzed functions
for opcodes and 5.24% for memory reach the timeout (set to 1 min) due to the
further complexity of solving the equations.

As the number of analyzed contracts is very large, a manual inspection of
all of them is not possible. Having inspected many of them and, thanks to the
information provided by the Pubs solver used by Gastap, we are able to classify
the types of errors that have led to a “don’t-know” answer and which in turn
explain the sources of incompleteness by our analysis: (i) Maximization error :
In many cases, a maximization error is a consequence of loss of information by
the size analysis or by the decompilation when the values of memory locations
are lost. As mentioned, even if we do not produce the gas formula, we know
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that the gas consumption is finite (otherwise the system flags a ranking function
error described below). (ii) Ranking function error: The solver needs to find
ranking functions to bound the maximum number of iterations of all loops the
analyzed code might perform. If Gastap fails at this step, it outputs a ranking
function error. Sect. 3 has described a scenario where we have stumbled across
this kind of error. We note that number of these failures for mem is lower than
for opcode because when the cost accumulated in a loop is 0, Pubs does not look
for a ranking function. (iii) Cover point error: The equations are transformed
into direct recursive form to be solved [5]. If the transformation is not feasible, a
cover point error is thrown. This might happen when we have mutually recursive
functions, but it also happens for nested loops as in non-structured languages.
This is because they contain jump instructions from the inner loop to the outer,
and vice versa, and become mutually recursive. A loop extraction transformation
would solve this problem, and we leave its implementation for the future work.

Table 3. Timing breakdown for Gastap on the analyzed 29,061 smart contracts

Phase Topcode (s) Tmem (s) Ttotal (s) %opc %mem %total

CFG generation
(Oyente*)

— — 17,075.55 — — 1.384%

RBR generation
(EthIR*)

— — 81.37 — — 0.006%

Size analysis (Saco) — — 105,732 — — 8.57%

Generation of gas
equations

141,576 125,760 267,336 11.48% 10.2% 21.68%

Solving gas equation
(Pubs)

395,429 447,502 842,931 32.06% 36.3% 68.36%

Total time Gastap 1,233,155.92 100%

As regards the efficiency of Gastap, the total analysis time for all functions is
1,233,155.92 s (342.54 h). Columns T and % show, resp., the time in seconds for
each phase and the percentage of the total for each type of gas bound. The first
three rows are common for the inference of the opcode and memory bounds, while
equation generation and solving is separated for opcode and memory. Most of
the time is spent in solving the GE (68.36%), which includes some timeouts. The
time taken by EthIR is negligible, as it is a syntactic transformation process,
while all other parts require semantic reasoning. All in all, we argue that the
statistics from our experimental evaluation show the accuracy, effectiveness and
efficiency of our tool. Also, the sources of incompleteness point out directions
for further improvements of the tool.

4 Related Work and Conclusions

Analysis of Ethereum smart contracts for possible safety violations and secu-
rity and vulnerabilities is a popular topic that has received a lot of attention
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recently, with numerous tools developed, leveraging techniques based on sym-
bolic execution [19,20,22,23,25,27], SMT solving [21,24], and certified program-
ming [7,9,18], with only a small fraction of them focusing on analyzing gas
consumption.

The GASPER tool identifies gas-costly programming patterns [11], which
can be optimized to consume less. For doing so, it relies on matching specific
control-flow patterns, SMT solvers and symbolic computation, which makes their
analysis neither sound, nor complete. In a similar vein, the recent work by
Grech et al. [17] identifies a number of classes of gas-focused vulnerabilities, and
provides MadMax, a static analysis, also working on a decompiled EVM byte-
code, data-combining techniques from flow analysis together with CFA context-
sensitive analysis and modeling of memory layout. In its techniques, MadMax
differs from Gastap, as it focuses on identifying control- and data-flow patterns
inherent for the gas-related vulnerabilities, thus, working as a bug-finder, rather
than complexity analyzer. Since deriving accurate worst-case complexity bound-
aries is not a goal of any of both GASPER and MadMax, they are unsuitable
for tackling the challenge 1, which we have posed in the introduction.

In a concurrent work, Marescotti et al. identified three cases in which com-
puting gas consumption can help in making Ethereum more efficient: (a) pre-
vent errors causing contracts get stuck with out-of-gas exception, (b) place the
right price on the gas unit, and (c) recognize semantically-equivalent smart con-
tracts [24]. They propose a methodology, based on the notion of the so-called
gas consumption paths (GCPs) to estimate the worst-case gas consumption using
techniques from symbolic bounded model checking [10]. Their approach is based
on symbolically enumerating all execution paths and unwinding loops to a limit.
Instead, using resource analysis, Gastap infers the maximal number of itera-
tions for loops and generates accurate gas bounds which are valid for any possible
execution of the function and not only for the unwound paths. Besides, the app-
roach by Marescotti et al. has not been implemented in the context of EVM and
has not been evaluated on real-world smart contracts as ours.

Conclusions. Automated static reasoning about resource consumption is critical
for developing safe and secure blockchain-based replicated computations, man-
aging billions of dollars worth of virtual currency. In this work, we employed
state-of-the art techniques in resource analysis, showing that such reasoning is
feasible for Ethereum, where it can be used at scale not only for detecting vul-
nerabilities, but also for verification/certification of existing smart contracts.
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7. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in Isabelle/HOL. In: CPP 2018, pp. 66–77. ACM (2018)

8. Bernani, T.: Oraclize (2016). http://www.oraclize.it
9. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: PLAS

2016, pp. 91–96. ACM (2016)
10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

11. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour your
money. In: SANER 2017, pp. 442–446. IEEE Computer Society (2017)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of aprogram. In: POPL 1978, pp. 84–96 (1978)

13. Ethereum. Solidity (2018). https://solidity.readthedocs.io
14. Ethereum. Vyper (2018). https://vyper.readthedocs.io
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