
17th International Workshop on
Termination

WST 2021, July 16, 2021, affiliated with CADE-28 (Virtual event)
https://costa.fdi.ucm.es/wst2021/

Edited by

Samir Genaim

WST 2021 Proceedings

https://costa.fdi.ucm.es/wst2021/

Preface

This report contains the proceedings of the 17th International Workshop on Termination,
WST 2021, which was held virtually, July 16, 2021, affiliated with the 28th International
Conference on Automated Deduction (CADE-28).

The Workshop on Termination traditionally brings together, in an informal setting, re-
searchers interested in all aspects of termination, whether this interest be practical or the-
oretical, primary or derived. The workshop also provides a ground for cross-fertilization
of ideas from the different communities interested in termination (e.g., working on com-
putational mechanisms, programming languages, software engineering, constraint solving,
etc.). The friendly atmosphere enables fruitful exchanges leading to joint research and
subsequent publications. The 17th International Workshop on Termination continues the
successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl
(1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig
(2009), Edinburgh (2010), Obergurgl (2012), Bertinoro (2013), Vienna (2014), Obergurgl
(2016), and Oxford (2018).

The WST 2021 program included an invited talk by Amir M. Ben-Amram on Efficient
Computation of Polynomial Resource Bounds for Bounded-Loop Programs. WST 2021 re-
ceived 12 submissions. After light reviewing the program committee decided to accept all
submissions. The 12 contributions are contained in this proceedings.

I would like to thank the program committee members and the external reviewers for their
dedication and effort, and the workshop and tutorial chair of CADE-28 for the invaluable
help in the organization.

Madrid, July 2021 Samir Genaim

i

ii

Organization

Program Committee

Martin Avanzini INRIA Sophia, Antipolis
Carsten Fuhs Birkbeck, U. of London
Samir Genaim (chair) U. Complutense de Madrid
Jürgen Giesl RWTH Aachen
Matthias Heizmann U. of Freiburg
Cynthia Kop Radboud U. Nijmegen
Salvador Lucas U. Politécnica de Valéncia

Étienne Payet U. de La Réunion
Albert Rubio U. Complutense de Madrid
René Thiemann U. of Innsbruck

External Reviewers

Didier Caucal
Enrique Martin-Martin
Fred Mesnard

iii

iv

Contents

Preface . i

Organization . iii

Invited Talks

Efficient Computation of Polynomial Resource Bounds for Bounded-Loop Programs
Amir M. Ben-Amram . 1

Regular Papers

Did Turing Care of the Halting Problem?
Salvador Lucas . 3

de Vrijer’s Measure for SN of λ→ in Scheme
Nachum Dershowitz . 9

Polynomial Loops: Termination and Beyond
Florian Frohn, Jürgen Giesl and Marcel Hark . 15

Polynomial Termination over N is Undecidable
Fabian Mitterwallner and Aart Middeldorp . 21

Modular Termination Analysis of C Programs
Frank Emrich, Jera Hensel and Jürgen Giesl . 27

Analyzing Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes
Fabian Meyer, Marcel Hark and Jürgen Giesl . 33

Parallel Complexity of Term Rewriting Systems
Thäıs Baudon, Carsten Fuhs and Laure Gonnord 39

Between Derivational and Runtime Complexity
Carsten Fuhs . 45

Mixed Base Rewriting for the Collatz Conjecture
Emre Yolcu, Scott Aaronson and Marijn Heule . 51

Formalizing Higher-Order Termination in Coq
Deivid Do Vale and Niels van der Weide . 57

Observing Loopingness
Étienne Payet . 63

Loops for which Multiphase-Linear Ranking Functions are Sufficient
Amir Ben-Amram, Jesús J. Doménech and Samir Genaim 69

v

vi

Efficient Computation of Polynomial Resource
Bounds for Bounded-Loop Programs
Amir M. Ben-Amram !

School of Computer Science, The Tel-Aviv Academic College, Israel

Abstract
In Bound Analysis we are given a program and we seek functions that bound the growth of computed
values, the running time, etc., in terms of input parameters. Problems of this type are uncomputable
for ordinary, full languages, but may be solvable for weak languages, possibly representing an
abstraction of a "real" program. In 2008, Jones, Kristiansen and I [3] showed that, for a weak but
non-trivial imperative programming language, it is possible to decide whether values are polynomially
bounded. In this talk, I will focus on current work [1, 2] with Geoff Hamilton, where we show
how to compute tight polynomial bounds (up to constant factors) for the same language. We have
been able to do that as efficiently as possible, in the sense that our solution has polynomial space
complexity, and we showed the problem to be PSPACE-hard. The analysis is a kind of abstract
interpreter which computes in a domain of symbolic bounds plus just enough information about
data-flow to correctly analyse loops. A salient point is how we solved the problem for multivariate
bounds through the intermediary of univariate bounds. Another one is that the algorithm looks for
worst-case lower bounds, but a completeness result shows that the maximum of these lower-bound
functions is also an upper bound (up to a constant factor).

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Asymptotically-tight, Multivariate, Disjunctive, Worst-case, Polynomial
bounds

References
1 Amir M. Ben-Amram and Geoff W. Hamilton. Tight worst-case bounds for polynomial

loop programs. In Mikolaj Bojanczyk and Alex Simpson, editors, Proceedings of the 22nd
International Conference on Foundations of Software Science and Computation Structures,
FOSSACS 2019, volume 11425 of Lecture Notes in Computer Science, pages 80–97. Springer,
2019.

2 Amir M. Ben-Amram and Geoff W. Hamilton. Tight polynomial worst-case bounds for loop
programs. Log. Methods Comput. Sci., 16(2), 2020.

3 Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. Linear, polynomial or exponential?
complexity inference in polynomial time. In Arnold Beckmann, Costas Dimitracopoulos, and
Benedikt Löwe, editors, Proceedings of the 4th Conference on Computability in Europe, CiE
2008, Logic and Theory of Algorithms, volume 5028 of Lecture Notes in Computer Science,
pages 67–76. Springer, 2008.

WST 2021 1

mailto:amirben@mta.ac.il
https://costa.fdi.ucm.es/wst2021/

WST 2021 2

https://costa.fdi.ucm.es/wst2021/

Did Turing Care of the Halting Problem?
Salvador Lucas !Ï �

DSIC & VRAIN, Universitat Politècnica de València, Spain, Spain

Abstract
The formulation and undecidability proof of the halting problem is usually attributed to Turing’s
1936 landmark paper. In 2004, though, Copeland noticed that it was so named and, apparently, first
stated in a 1958 book by Martin Davis. Indeed, in his paper Turing paid no attention to halting
machines. Words (or prefixes) like “halt(ing)”, “stop” or ”terminat(e,ing)” do not occur in the text.
Turing partitions his machines into two classes of non-halting machines, one of them able to produce
the kind of real numbers he was interested in. His notion of computation did not require termination.
His decidability results concerned the classification of his machines (satisfactoriness problem) and
their ‘productivity’ (printing problem). No attempt to formulate or prove the halting problem is
made. Other researchers were concerned with these issues, though. We briefly discuss their role in
formulating what we currently understand as the halting problem.

2012 ACM Subject Classification Program analysis, Turing machines

Keywords and phrases Halting problem

Funding Salvador Lucas: Supported by projects RTI2018-094403-B-C32 and PROMETEO/2019/098.

1 Introduction

In 2016, I came to the idea that the 80th anniversary of Turing’s landmark paper (14) could
be a good occasion to connect such a theoretical breakthrough and the birth of computers
and Computer Science in some Spanish media for scientific dissemination. For this purpose,
I started a thorough read of Turing’s paper. As a member of the termination community,
I was familiarized with the widespread idea that Turing proved the undecidability of the
halting problem in this paper. So, I was shocked when, after finishing my reading, nothing
similar to the halting problem showed up. Indeed, I then discovered that Copeland had
already remarked the following (2, page 40):

The halting problem was so named (and, it appears, first stated) by Martin Davis
(4). Davis thinks it likely that he first used the term ‘halting problem’ in a series of
lectures that he gave in 1952. (· · ·) The proposition that the halting problem cannot
be solved by computing machine is known as the ‘halting theorem’. It is often said
that Turing stated and proved the halting theorem in ‘On Computable Numbers’, but
strictly this is not true.

I recently revisited the issue in (8). Its main arguments and conclusions are summarized
below. Some new facts are also discussed, though.

2 Turing’s notion of computability

Turing’s notion of computation pays no attention to any halting behavior. In the subsection
about computing machines, he writes (14, page 232):

if the machine is supplied with a blank tape and set in motion, starting from the
correct initial m-configuration, the subsequence of the symbols printed by it which are

WST 2021 3

mailto:slucas@dsic.upv.es
http://slucas.webs.upv.es
https://orcid.org/0000-0001-9923-2108
https://costa.fdi.ucm.es/wst2021/

of the first kind1 will be called the sequence computed by the machine.

The machine is not required to halt, nor the subsequence of symbols of the “first kind” (the
figures, i.e., 0, 1,. . .) is required to be finite. Then, the notions of circular and circle-free
machines are introduced (14, page 233):

if a computing machine never writes down more than a finite number of symbols of
the first kind, it will be called circular. Otherwise, it is called circle-free.

Hence, circle-free machines never halt. The previous sentence may suggest that circular
machines always halt. However, the clarification that immediately follows denies this:

A machine will be circular if it reaches a configuration from which there is no possible
move, or it goes on moving, and possibly printing symbols of the second kind.2

Examples of circular machines (given as programs)3 are:

PC1 : skip
PC2 : while true do print #
PC3 : print 0; while true do skip

Here, PC1 stops after doing nothing (first case of Turing’s definition); PC2 prints infinitely
many symbols of the second kind (second case); and PC3 prints 0 only once and then runs
forever without printing anything else. An example of a circle-free machine is

PCF : while true do print 0

which prints infinitely many symbols of the first kind. Thus, Turing partitions his machines
into two classes, none of which is required to halt. This suggests that, at least in (14), he was
not particularly interested in investigating halting machines. Furthermore, he makes explicit
that only infinite sequences of figures (computed by circle-free machines) are considered as
computable (14, page 233):

A sequence is said to be computable if it can be computed by a circle-free machine.

Circular machines may halt (e.g., PC1), but, by definition, circle-free machines never stop.
Turing chooses the last ones to define his notion of computable sequence. Thus, Turing’s
notion of computation did not rely on (actually rejected!) any termination requirement.

3 Martin Davis’ description of Turing machines and computations

The standard, algorithmic idea of a computation by a Turing Machine (TM) requires that
the machine halts, thus defining a ‘computed sequence’ as the one which is obtained when
the machine halts, cf. (4, Definition 1.9):

By a computation of a Turing machine M is meant a finite sequence of instantaneous
descriptions α1, . . . , αp such that αi → αi+1 for 1 ≤ i < p and such that αp is terminal
with respect to M.

1 Such symbols “of the first kind” are introduced on page 232: they are called figures and restricted to be
either 0 or 1.

2 Symbols “of the second kind” are also introduced on page 232 just as “the others”, i.e., those which are
not of the first kind. In this paper we only use #.

3 To improve readability, for the informal examples of Turing machines we use a simple imperative
language. This is a usual practice in the literature.

WST 2021 4

https://costa.fdi.ucm.es/wst2021/

Davis’ instantaneous descriptions are similar to Turing’s complete configurations, and trans-
itions ‘→’ represent Turing’s moves (14, last line of page 232). The keypoint here is that
the last instantaneous description αp must be terminal, i.e., no transition is possible from
it (4, Definition 1.9). In other words, “the machine interprets the absence of an instruction
as a stop order” when reaching αp (4, footnote 1 in page 7). This is the usual notion of
computation with TMs today.
▶ Remark 1 (Church’s λ-calculus). The idea of a computation that halts was proposed in 1936
by Church (1) for his λ-calculus. Computations in the λ-calculus (effective calculations in
Church’s terminology (1)) start with a given expression, perform some conversion (nowadays
we would rather say β-reduction, or just reduction) steps, and finish when a normal form
(i.e., an expression that cannot be further reduced) is obtained. Thus, Church’s notion of
computation assumes that only finite sequences of reductions are considered.
▶ Remark 2 (Kleene’s description of the operation of a TM). In (7) Turing’s complete config-
urations are called situations by Kleene. TMs are used as follows (7, page 358):

The change from the initial situation to the terminal situation (when there is one)
may be called the operation performed by the machine.

Here, the terminal situation or output is one “in which [the machine] stops”. Changes between
intermediate situations are performed in the usual way, using Turing’s moves. Hence, Davis’
“computation of a TM” is analogous to Kleene’s “operation performed by a TM”.

4 Decision problems about Turing machines

In his paper (14), Turing enunciates two problems about his machines and proves them
undecidable. The first problem considered by Turing is given on page 247, as follows:

Is there a machine D which, when supplied with the description of any computing
machine M will test this description and if M is circular will mark the description
with the symbol ‘u’ and if it is circle-free will mark it with ‘s’?

Here, ‘u’ and ‘s’ represent an unsatisfactory or satisfactory verdict of D about M being
circle-free. Copeland coined this as the Satisfactoriness Problem (2, page 36). In the following,
we refer to it as SATIS. The second problem posed by Turing is as follows (14, page 248):

there can be no machine E which, when supplied with the description of an arbitrary
machine M, will determine whether M ever prints a given symbol (0 say).

Davis uses printing problem (PRINT in the following) to refer to it (4, page 70). In the
following, for each machine M, we say that Print(M) is true iff M prints a given symbol
(e.g., 0) during its (finite or infinite) execution (and often say that M is a printing machine).

4.1 The halting problem
According to Davis’ formulation, the halting problem for a TM M aims (4, page 70)

to determine whether or not M, if placed in a given initial state, will eventually halt.

This is the usual understanding of the halting problem for TMs (HALT in the following).
Davis proves it undecidable in Chapter 5, Theorem 2.2. In the following, we say that Halt(M)
is true iff M halts when placed in a given initial state (and say that M is a halting machine).

WST 2021 5

https://costa.fdi.ucm.es/wst2021/

4.2 Relationship between printing and halting problems
There are printing machines M which do not halt. For instance, PC3 and PCF . Vice versa,
some halting machines print nothing (e.g., PC1). Thus, printing and halting machines do not
coincide. Moreover, there are Turing Machines for which the printing problem is decidable,
but the halting problem is not (8, Section 4.4.2). Thus, printing and halting problems address
different issues and exhibit important conceptual and technical differences.

There are, however, related according to their undecidability degree. In his PhD thesis,
see (15), Turing introduced the idea of comparing different unsolvable problems by means
of a variant of his 1936 a-machines (called o-machines) where undecidable questions could
be ‘answered’ with the help of an oracle, the main idea being that questions Q which
are undecidable by a TM could be answered by an extended version with some additional
knowledge provided by the oracle. Such questions would be strictly harder than problems P

which are known to be solvable by a TM. Post coined the term degree of unsolvability (10,
page 289), although the problem had also been investigated by Kleene (see, e.g., (7) and
the references therein). PRINT and HALT have the same undecidability degree (the least one,
denoted 0′, being 0 reserved for decidable problems). However, the undecidability degree of
SATIS is strictly bigger: 0′′. This was conjectured by Post in (11). We prove it, to the best
of our knowledge for the first time, in (8, Section 5.2). The full hierachy of the considered
problems regarding their undecidability degrees is

HALT ≡ PRINT ≡ 0′ < 0′′ ≡ UHALT ≡ SATIS

where UHALT is the uniform halting problem, i.e., the problem investigating whether a TM
halts for every input, see, e.g., (9, page 57).

5 Church and Kleene: around the halting problem

Church proved that “the property of a well-formed formula [i.e., a λ-expression], that it
has a normal form is not recursive” (1, Theorem XVIII). In an appendix to (14), Turing
proves that “every λ-definable sequence is computable” and vice versa. A sequence γ of digits
in {0, 1} is λ-definable if there is a λ-expression Mγ such that for all n ∈ N, with Mn the
usual encoding of natural numbers n as λ-expressions (1, page 347), (Mγ Mn) reduces to the
(λ-expression representing the) n-th digit of γ. Then, Turing “constructs a machine L which,
when supplied with the formula Mγ writes down the sequence γ”. Such a machine works in
two steps (14, pages 263-264): for each n ∈ N, (i) the expression (Mλ Mn) is built and then
(ii) a submachine L2 is applied to obtain successively all expressions into which (Mλ Mn) is
convertible. Each obtained expression is checked to decide whether (ii.1) a normal form has
been obtained, and then L prints 1 or 0, respectively, thus moving to the n + 1 component of
the sequence, or (ii.2) the conversion (i.e., reduction) process issued by L2 should continue
instead. By hypothesis, (Mγ Mn) is convertible to the representation of the n-digit, 0 or 1,
of γ (i.e., (Mγ Mn) is normalizing); thus, the move of L to produce the n+1-th component
of γ is guaranteed. Note that L does not halt, as sequences γ are (by definition) infinite.

Church’s result above is relevant for analyzing the behavior of a variant L′
2 of L2 which,

when fed with a (description of a) λ-expression performs a (leftmost) outermost conversion
step and then, repeatedly, (i) halts if a normal form is obtained, or else (ii) performs a new
outermost step. The halting problem for L′

2 is undecidable, as L′
2 halts when applied on

the description of a λ-expression if and only if it has a normal form, which is undecidable
(implementing outermost steps in L′

2 is essential for the if part, as outermost reduction is
normalizing (6, Section 3D)). However, although the undecidability of the halting problem

WST 2021 6

https://costa.fdi.ucm.es/wst2021/

for TMs follows from Church’s result, this is not mentioned in Turing’s appendix. Again,
this suggests that Turing’s focus was other. Also, in his review of Turing’s paper (Journal of
Symbolic Logic 2(1):42–43, 1937) Church did not draw any connection between normalization
of λ-expressions and halting TMs.
▶ Remark 3 (Kleene’s statement). In his 1952 book, Kleene makes the following statement (7,
Chapter XIII, Section 71)

there is no algorithm for deciding whether any given machine, when started from any
given situation, eventually stops.

which corresponds to what we currently know as the halting problem, although the word
stops is used instead of halts. Kleene justifies this statement by using Turing’s arguments,
but without citing any of his results. This suggests that Kleene does not identify any of
Turing’s results in (14) as equivalent to his statement.

6 Bibliographical analysis

The (necessarily incomplete) analysis of the computability and undecidability literature
between 1936 and 1958 shows that, apparently, the term “halting problem” was not used before
the publication of (4). A number of journals and repositories in the fields of mathematics,
logic, and computer science with facilities to search for (prefixes of) words in their archives
were considered and ‘halt’ tried on the corresponding search devices for the period 1936-1958.
The obtained outcomes from these journals and repositories had nothing to do with the
halting problem. Thus, apparently, the term “halting problem” was not used in the literature
before the publication of (4) (with one exception; see the discussion below).

An early reference by Davis to a preliminary (“in preparation”) version of (4) can be
found in (3). No mention of the halting problem is made, though. Remarkably, Rogers’ 1957
book (12) includes what apparently is the first printed reference to the halting problem. He
writes (12, page 19):

There is no effective procedure by which we can tell whether or not a given effective
computation will eventually come to a stop. (Turing refers to this as the unsolvability
of the halting problem for machines. This and the existence of the universal machine
are the principal results of Turing’s first paper.)

Clearly, Rogers does not claim the authorship of the notion, as he refers to Turing instead.
But Copeland already mentioned that Turing never used the word “halting” in (14). In the
preface Rogers says that the manuscript of (4) was available to him when preparing the book
(12, page 3). One year later, in (13, page 333), with (4) already published, he mentions the
halting problem again but he does not mention Turing anymore; instead he cites (4).

7 Conclusions

The subject of Turing’s paper was “ostensibly the computable numbers” (14, page 230). He
defines a number as computable if “its decimal part can be written down by a machine”; and
points to numbers like π (with infinitely many decimals without any repetition pattern), as
computable (14, page 230). Thus, if Turing’s focus was in infinitary computations, it is not
surprising that investigating halting machines was not a priority. Furthermore, Turing needed
nonterminating machines but not any nonterminating machine: only ‘productive’ ones in the
sense that infinitely many figures are printed during the computation. He defines a number

WST 2021 7

https://costa.fdi.ucm.es/wst2021/

as “computable if it differs by an integer from the number computed by a circle-free machine”.
This is the focus of his first undecidability result: SATIS tries to determine whether a given
machine is circle-free (satisfactory!), and hence able to generate a sequence corresponding to
a computable number. Halting machines were just unsatisfactory, see also (5, Section 2.4.2).

Summarizing: Church included termination as part of his notion of effective calculation
(1), but this concerns λ-calculus as computational mechanism. When introducing his machines
(14), Turing was not interested in halting machines and his notion of computation focused
on the generation of infinite sequences of figures instead. His undecidability results were
according to this. Church had already proved termination of effective calculations undecidable.
Although this could be used to prove the halting problem of TMs undecidable, no attempt
to do it was made either by Turing or Church. Kleene considered coming to a stop as an
ingredient of the notion of computation (operation in Kleene’s terminology) with TMs. In
his 1952 book, he formulated and informally proved a statement (Remark 3) which we easily
recognize as what we call halting problem now (but ‘stops’ is used instead of ‘halts’). Davis’
notion of computation also required a halting behavior of the machines. He formulated the
halting problem in its current wording (thus coining the term we currently use), and proved
it undecidable. However, except for the word halt the result was in Kleene’s 1952 book (7).

References
1 Alonzo Church. An unsolvable problem of elementary number theory. The American Journal

of Mathematic, 58:345–36, 1936.
2 Jack B. Copeland. The essential Turing: Seminal Writings in Computing, Logic, Philosophy,

Artifical Intelligence and Artificial Life: Plus The Secrets of Enigma. Oxford University Press,
2004.

3 Martin D. Davis. A note on universal Turing machines, pages 167–175. Princeton University
Press, 1956.

4 Martin D. Davis. Computability and Unsolvability. McGraw-Hill, 1958.
5 Liesbeth De Mol. Turing Machines. In Edward N. Zalta, editor, The Stanford Encyclopedia of

Philosophy. Metaphysics Research Lab, Stanford University, Winter 2019 edition, 2019.
6 J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-Calculus.

Cambridge University Press, 1986.
7 Stephen C. Kleene. Introduction to Metamathematics. Wolters-Noordof and North-Holland,

1952.
8 Salvador Lucas. The origins of the halting problem. Journal of Logical and Algebraic Methods

in Programming, 121:100687, 2021.
9 Zohar Manna. Mathematical Theory of Computation. McGraw-Hill (reprinted by Dover, 2003),

1974.
10 Emil Post. Recursively enumerable sets of positive integers and their decision problems.

Bulletin of the American Mathematical Society, 50:284–316, 1944.
11 Emil Post. Recursive Unsolvability of a Problem of Thue. Journal of Symbolic Logic, 12:1–11,

1947.
12 Hartley Rogers. Theory of recursive functions and effective computability. Vol. 1. Technology

Store, Cambridge, MA, 1957.
13 Hartley Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,

33:331–341, 1958.
14 Alan M. Turing. On computable numbers, with an application to the Entscheindungsproblem.

Proceedings of the London Mathematical Society, 42:230–265, 1936.
15 Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London Mathematical

Society, 45:161–228, 1939.

WST 2021 8

https://costa.fdi.ucm.es/wst2021/

de Vrijer’s Measure for SN of λ→ in Scheme
Nachum Dershowitz !

Tel Aviv University, Israel

Abstract
We contribute a Scheme program for de Vrijer’s proof of strong normalization of the simply-typed
lambda calculus.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Type
theory

Keywords and phrases Strong normalization, simply typed lambda calculus

Acknowledgements I thank the members of the lambda-calculus and rewriting group at Vrije
University, Amsterdam, for the enjoyable meetings we had together shortly before the pandemic
struck.

Mr Howard, it shouldn’t be too difficult to find a right ordinal
assignment showing SN.

Kurt Gödel to Bill Howard, as reported to me by Henk Barendregt

1 Gödel’s Koan

Gödel’s “koan” [4, 3, Problem 19], put forward by Jean-Jacques Lévy in 1991 and by others
before and after (see [6, Problem 26]), asks for an easy, intuitive way to assign ordinals—be
they natural numbers or transfinite ordinals—to terms of the simply-typed lambda calculus
such that each (β-) reduction step of a term yields a smaller ordinal. There are a fair
number of proofs of the strong normalization (SN), a.k.a. uniform termination, of (well-)
typed lambda terms, including [9, 11, 5, 8, 7, 10], but none yet that meet the desideratum
of intuitiveness. All the same, one compelling assignment that proves termination is that
designed by Roel de Vrijer [2]. It measures a term by an overestimate of the maximum
number of reduction steps, at the same time constructing a function for each term to provide
that value when said term is applied to another.

I found it nontrivial to program de Vrijer’s measure. Hence, this note. I follow a summary
formulation by Henk Barendregt [1], and I program in Scheme (a variant of Lisp) for its
built-in evaluation of lambda expressions. A lazy language might have been easier to program
in.

2 de Vrijer’s Measure

de Vrijer’s measure JeK of typed term e generally consists of two components, what we call
the “dot part” or “dot measure”, JeK•, and the “star part” or “star measure”, JeK∗. The
star measure is an integer, an upper bound on the maximum length of a reduction sequence
starting from e. But when calculating JeK recursively, one also needs to know what happens
when e is a subterm embedded in a more complicated expression. The dot part serves this
purpose. It is a function that knows how to compute the two-part measure JetK for any
application of the current expression e to another expression t whose measure JtK is given.
In other words, JetK = JeK•(JtK). The central consideration is that mn + n + 1 is an upper
bound on the length of a reduction of a composition (λx.M)N , where n bounds reductions

WST 2021 9

mailto:nachum@tau.ac.il
https://costa.fdi.ucm.es/wst2021/

of N and x appears at most m times in a reduct of M . So, each of the m copies of N can be
reduced n times, plus one more step for the application of M to N , which first substitutes
N for each (free) occurrence of x in the reduct. The additional term n in the (potentially
over-) estimate is to cover the case when m = 0 but N is reduced nonetheless. The multiplier
m is not computed in advance; rather, n gets plugged into M and tallied as its measure
gets expanded. All this needs to be computed within an environment that tracks variable
bindings dictated by the larger, enclosing term while building the measure recursively.

The whole measure can also be just a number, rather than a pair. In particular, the
measure JxK of an unbound variable x is 0.

As a minimalist example, Jλxo.xK (o is the base type) is essentially ⟨λn.n + 1, 0⟩. Since
λxo.x is in normal form, the star part Jλxo.xK∗ is 0. But if it’s applied to a term with
maximum reduction-sequence length n, then the full reduction will have an additional β step,
so Jλxo.xK• = λn.n + 1.

Of course, one needs to prove that the measure in fact decreases with each β-step,
regardless of the assignments (of measures) to free variables in the measure, for which see [2,
Reduction Lemma, §3.5] or [1, Prop. 3.7].

de Vrijer [2, §4] also provides a more complicated, but precise, measure, which we do not
address here.

The code is presented in the next section, followed by an example. Code and examples
are made available at http://nachum.org/SN.scm.

3 My Scheme Code

3.1 Basics
A lambda term can be
(1) a typed variable, given as a variable symbol paired with a type expression, (: x t),
(2) an application of one term to another, (f t), or
(3) an abstraction (definition), (lambda v t), comprising the atom λ, a bound typed

variable (parameter) v, and a body t, which is itself a lambda term.
Types are either basic o or triples (-> a b). Assignments are (association) lists of (dotted)
pairs (v . e), each giving a variable binding v 7→ e.

Accordingly, the basic constructors, destructors, and tests have the following simple
definitions:

(define (atom? x) (not (list? x))) ; is-atom?
(define (var? x)

(or (atom? x) (and (list? x) (equal? (car x) ’:)))) ; is-variable?
(define (abs? x) (and (list? x) (equal? (car x) ’lambda))) ; is-abstraction?
(define (comp x y) (list x y)) ; application as list of two expressions
(define (fun x) (first x)) ; function part of application
(define (arg x) (second x)) ; argument part of application
(define (var x) (second x)) ; name of typed variable
(define (param x) (second (var x))) ; variable of abstraction
(define (kind x) (third (var x))) ; type of parameter
(define (body x) (third x)) ; body of abstraction
(define (mapsto x y) (cons x y)) ; binding as pair
(define (from y) (second y)) ; variable of binding
(define (to y) (third y)) ; assignment to variable

WST 2021 10

http://nachum.org/SN.scm
https://costa.fdi.ucm.es/wst2021/

The following function extracts, or constructs, the type of a lambda expression, depending
on its form:

(define (type x)
(cond

((var? x) (third x))
((abs? x) ‘(-> ,(kind x) ,(type (body x))))
(#t (third (type (fun x))))))

where ‘ is quote and , is unquote (evaluate first, before quoting). The case statement cond
comprises a list of conditions plus values to return, and #t denotes the truth value, true.

We will use the form (@ f t), which when executed forces the evaluation of f and t
followed by application of the former to the latter:

(define (@ f t) ((eval f) (eval t))) ; apply!

where eval is a Scheme primitive.

3.2 The Two-Part Measure
The measure has two parts and will be represented by the expression (L d s), where d is its
dot part and s, the star part. Its constructors and destructors are

(define (L x y) ‘(L ,x ,y))
(define (dot x) (if (atom? x) x (second x))) ; dot part of measure
(define (star x) (if (atom? x) x (third x))) ; star part of measure

When the measure is a number, not a pair, both its parts are just that.
Given an expression x in an environment with assignments v, the following computes the

measure by induction on the form of the expression:

(define (bra x v) ; compute measure
(cond

((var? x) (value v x))
((abs? x)
(let ((f (gensym)))

(L ‘(lambda (,f)
(add ,(bra (body x)

(cons (mapsto (var x) f) v))
(+ (star ,f) 1)))

‘(star ,(bra (body x)
(cons (mapsto (var x) (c (type (var x)) 0)) v))))))

(#t ‘(@ (dot ,(bra (fun x) v)) ,(bra (arg x) v)))))

This is the heart of the method.
(1) For variables, one looks up what may already have been assigned to it, or else one creates

a new initial valuation c that depends on the variable’s type, as will be seen below.
(2) For abstractions, one constructs dot and star components. For its dot part, a new

assignment is attached to the environment, the measure of the body is determined, and
1 is added for one beta-reduction step when it’s applied, plus the bound on the steps
needed to bring the function itself to normal form. The gensym command creates a
new formal parameter for the dot measure, which is assigned in the environment to

WST 2021 11

https://costa.fdi.ucm.es/wst2021/

the variable of the abstraction that will also occur in the measure. (See below for the
mechanism of addition.) Its star component is the star of the body with a promise for
the assignment to the parameter.

(3) The last case is application of a function term to an argument term. This is exactly
where the dot measure comes into play. The dot part of the pre-computed function’s
measure is applied to the argument’s measure—whose evaluation has been delayed until
now—to obtain the full measure for the combined application term.

The above bra function makes use of the following to create a new measure that increases
both parts of the given measure f by a given integral amount n:

(define (add f n) ; add natural n to measure f
(if (number? f)

(+ f n)
(let ((g (gensym)))

(L ‘(lambda (,g) (add (@ (dot ,f) ,g) ,n))
(+ (star f) n)))))

The star measure just gets added to, but the dot measure requires a new function that will
do the addition when the time comes.

Applying an assignment is easy, treating the assignment as lookup in the association list
of stored bindings:

(define (value v x) ; apply valuation v to variable x
(if (assoc x v)

(cdr (assoc x v))
(c (type x) 0))) ; initial valuation

When necessary, viz. when the variable is not listed, this creates a new (typed) valuation c,
using the following:

(define (c y n)
(if (equal? y ’o) ; base type

n
(let ((f (gensym)))

(L ‘(lambda (,f) (c (quote ,(to y)) (+ ,n (star ,f))))
n))))

For a variable x of non-base type σ → τ , this valuation considers what happens when an
instance of x is applied to some term f of type σ. The dot measure of x should return a
valuation for (possibly compound) type τ that also incorporates the length of reductions
given by the star measure JfK∗.

Finally, to measure a top-level expression x, first construct and evaluate its measure in a
pristine (empty) environment and then take its star part:

(define (o x) (star (eval (bra x ’())))) ; the measure

4 Barendregt’s Examples

I get the same values for all of Henk’s examples [1] as he obtained manually, except for
(λfo→o.λxo.fx)(λxo→o.x), for which the above program calculates 2 as its star measure
rather than 1, as therein. In our Scheme formalization this term is

WST 2021 12

https://costa.fdi.ucm.es/wst2021/

(comp ‘(lambda ,f1 (lambda ,x0 ,(comp f1 x0))) ‘(lambda ,x1 ,x1))

The full, computed measure for this, just prior to a final evaluation-cum-application step @,
looks like the following:

(@ (dot (L (lambda (g75)
(add (L (lambda (g76)

(add (@ (dot g75) g76)
(+ (star g76) 1)))

(star (@ (dot g75) 0)))
(+ (star g75) 1)))

(star (L (lambda (g78)
(add (@ (dot (L (lambda (g77)

(c ’o (+ 0 (star g77))))
0))

g78)
(+ (star g78) 1)))

(star (@ (dot (L (lambda (g77)
(c ’o (+ 0 (star g77))))

0))
0))))))

(L (lambda (g79) (add g79 (+ (star g79) 1)))
(star (L (lambda (g80) (c ’o (+ 0 (star g80))))

0))))

Simplifying, this is equivalent to

(@ (lambda (g75)
(add (L (lambda (g76)

(add (@ (dot g75) g76)
(+ (star g76) 1)))

(star (@ (dot g75) 0)))
(+ (star g75) 1)))

(L (lambda (g79) (add g79 (+ (star g79) 1)))
0))

Evaluating and simplifying further yields the measure

(L (lambda (g76) (add (add (add g76 (+ (star g76) 1)) (+ (star g76) 1)) 1))
2)

The dot part of this—when applied to a measure that is a plain number—is tantamount
to λn.3n + 3. Its star component is 2. Indeed, evaluating the expression takes two steps:
(λf.λx.fx)(λx.x) →β λx.(λx.x)x →β λx.x. As Henk says [1]: “It isn’t completely trivial to
compute these: easy to make mistakes.”

The truth is you don’t really understand something until you’ve
taught it to a computer, until you’ve been able to program it.

Don Knuth (2008)

WST 2021 13

https://costa.fdi.ucm.es/wst2021/

References
1 Henk Barendregt. Digesting the proof of Roel de Vrijer that λ→ |= SN. Unpublished note,

April 2019. URL: http://nachum.org/Henk.pdf.
2 Roel C. de Vrijer. Exactly estimating functionals and strong normalization. Indagationes

Mathematicae, 49:479–493, 1987. URL: https://core.ac.uk/reader/82154640.
3 Nachum Dershowitz. The RTA list of open problems, 2009–2021. URL: https://www.cs.tau.

ac.il/~nachum/rtaloop/.
4 Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. Open problems in

rewriting. In R. Book, editor, Proceedings of the Fourth International Conference on Rewriting
Techniques and Applications (Como, Italy), volume 488 of Lecture Notes in Computer Science,
pages 445–456, Berlin, April 1991. Springer-Verlag. URL: https://www.researchgate.net/
publication/2441091.

5 Robin O. Gandy. Proofs of strong normalization. In To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 457–477. Academic Press Limited, 1980.

6 Ryu Hasegawa, Luca Paolini, and Paweł Urzyczyn. TLCA list of open problems, July 2014.
URL: http://tlca.di.unito.it/opltlca/.

7 Assaf J. Kfoury and Joe B. Wells. New notions of reduction and non-semantic proofs of strong
β-normalization in typed λ-calculi. In Proceedings of the 10th Annual IEEE Symposium on
Logic in Computer Science, pages 311–321, 1995. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.37.9949&rep=rep1&type=pdf.

8 Jan Willem Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts.
Mathematisch Centrum, Amsterdam, 1980.

9 Luis Elpidio Sanchis. Functionals defined by recursion. Notre Dame Journal of Formal Logic,
VIII(3):161–174, July 1967. doi:10.1305/ndjfl/1093956080.

10 Morten Heine Sørensen. Strong normalization from weak normalization in typed λ-calculi.
Information and Computation, 133:35–71, 1997. doi:10.1006/inco.1996.2622.

11 William W. Tait. A realizability interpretation of the theory of species. In Rohit Parikh, editor,
Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 240–251. Springer,
Boston, 1975.

WST 2021 14

http://nachum.org/Henk.pdf
https://core.ac.uk/reader/82154640
https://www.cs.tau.ac.il/~nachum/rtaloop/
https://www.cs.tau.ac.il/~nachum/rtaloop/
https://www.researchgate.net/publication/2441091
https://www.researchgate.net/publication/2441091
http://tlca.di.unito.it/opltlca/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9949&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9949&rep=rep1&type=pdf
https://doi.org/10.1305/ndjfl/1093956080
https://doi.org/10.1006/inco.1996.2622
https://costa.fdi.ucm.es/wst2021/

Polynomial Loops: Termination and Beyond
Florian Frohn !Ï �

Max Planck Institute for Informatics, Saarland Informatics Campus, and AbsInt GmbH,
Saarbrücken, Germany

Jürgen Giesl !Ï �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Marcel Hark ! Ï �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract
We consider triangular weakly non-linear loops (twn-loops) over subrings S of RA, where RA is
the set of all real algebraic numbers. Essentially, the body of such a loop is a single assignment[x1

. . .
xd

]
←

[c1 · x1 + pol1
. . .

cd · xd + pold

]
where each xi is a variable, ci ∈ S, and each poli is a (possibly non-linear)

polynomial over S and the variables xi+1, . . . , xd. We present a reduction from the question of
termination on all inputs to the existential fragment of the first-order theory of S and RA. For
loops over RA, our reduction entails decidability of termination. For loops over Z and Q, it proves
semi-decidability of non-termination.

Furthermore, we show that the halting problem, i.e., termination on a given input, is decidable
for twn-loops over any subring of RA. This also allows us to compute witnesses for non-termination.

Moreover, we present the first computability results on the runtime complexity of such loops.
More precisely, we show that for twn-loops over Z one can always compute a polynomial f such that
the length of all terminating runs is bounded by f(∥(x1, . . . , xd)∥), where ∥ · ∥ denotes the 1-norm.
This result implies that the runtime complexity of a terminating triangular linear loop over Z is at
most linear.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Problems, reductions and completeness

Keywords and phrases Polynomial Loops, Closed Forms, Decidability of Termination, Halting
Problem, Complexity Analysis,

Funding funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
389792660 as part of TRR 248, by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 235950644 (Project GI 274/6-2), and by the DFG Research Training Group 2236
UnRAVeL

Acknowledgements We thank Alberto Fiori and Arno van den Essen for useful discussions.

1 Introduction

We consider loops of the form

while φ do x⃗← u⃗. (1)

Here, x⃗ is a vector of pairwise different variables x1, . . . , xd that range over a ring Z ≤ S ≤ RA,
where ≤ denotes the subring relation and RA is the set of real algebraic numbers. Moreover,
u⃗ ∈ (S[x⃗])d, i.e., u⃗ is a vector of polynomials over x⃗ with coefficients in S. The condition φ is
a propositional formula over the atoms {pol ▷ 0 | pol ∈ S[x⃗], ▷ ∈ {≥, >}}. The motivation for
the restriction to such “single-path” loops is that termination is undecidable for “multi-path”
loops which contain conditionals [1].

WST 2021 15

mailto:florian.frohn@mpi-inf.mpg.de
https://ffrohn.github.io/
https://orcid.org/0000-0003-0902-1994
mailto:giesl@cs.rwth-aachen.de
https://verify.rwth-aachen.de/giesl/
https://orcid.org/0000-0003-0283-8520
mailto:marcel.hark@cs.rwth-aachen.de
https://verify.rwth-aachen.de/mhark/
https://orcid.org/0000-0001-5111-3177
https://perspicuous-computing.science
https://costa.fdi.ucm.es/wst2021/

We often represent a loop (1) by the tuple (φ, u⃗) of the condition φ and the update u⃗ =
(u1, . . . , ud). In this paper, (φ, u⃗) is always a loop on Sd using the variables x⃗ = (x1, . . . , xd)
where Z ≤ S ≤ RA. For any entity s and terms t⃗, we often abbreviate s[x⃗/t⃗] by s(⃗t).

Previous works on decidability of termination were restricted to conditions only containing
conjunctions or defining compact sets (see [2] for a discussion of related work). Moreover, if
considering non-linear loops, those works only apply to loops over the reals. In this paper,
we regard linear and non-linear loops whose loop conditions can be arbitrary propositional
formulas over polynomial inequations, i.e., they may also contain disjunctions and define
non-compact sets. Furthermore, we study the decidability of termination for non-linear loops
over Z, Q, and RA. In this way, we identify new sub-classes of loops of the form (1) where
(non-)termination is (semi-)decidable (see Sect. 3).

Still, non-termination proofs should be accompanied by a witness of non-termination,
i.e., a non-terminating input that can, e.g., be used for debugging. However, most existing
(semi-)decision procedures for (non-)termination do not yield such witnesses. To close this
gap, we prove the novel result that the halting problem for twn-loops is decidable (see Sect. 4),
i.e., we show how to decide whether a loop terminates on a fixed input. Thus, we obtain a
technique to enumerate all witnesses for non-termination of a loop recursively.

For terminating inputs, the question how fast the loop terminates is of high interest.
Thus, many automated techniques to derive bounds on the runtime of programs have been
proposed but these are usually incomplete. In contrast, we present a complete technique
to derive polynomial upper bounds on the runtime of twn-loops over Z (see Sect. 5). As a
corollary we obtain that triangular linear loops have at most linear runtime. For the full
papers on our results, we refer to [2, 3].

2 Preliminaries

Let (φ, u⃗) be a loop over S and e⃗ ∈ Sd. If ∀n ∈ N. φ(u⃗n(e⃗)) holds,1 then e⃗ ∈ Sd is a
witness for non-termination. Otherwise, the loop terminates on e⃗. If (φ, u⃗) does not have
any witnesses for non-termination, then (φ, u⃗) terminates.

Given an assignment x⃗← u⃗, the relation ≻u⃗ ∈ V(u⃗)× V(u⃗) is the transitive closure of
{(xi, xj) | i, j ∈ {1, . . . , d}, i ̸= j, xj ∈ V(ui)}, i.e., xi ≻u⃗ xj means that xi depends on xj . A
loop (φ, u⃗) is triangular if ≻u⃗ is well founded. So the restriction to triangular loops prohibits
“cyclic dependencies” of variables (e.g., where the new values of x1 and x2 both depend on
the old values of x1 and x2). Furthermore, (φ, u⃗) is weakly non-linear if there is no 1 ≤ i ≤ d
such that xi occurs in a non-linear monomial of ui.

A twn-loop is triangular and weakly non-linear. So in other words, by permuting variables
every twn-loop can be transformed to the form

[x1
. . .
xd

]
←

[c1 · x1 + pol1
. . .

cd · xd + pold

]
where ci ∈ S and

poli ∈ S[xi+1, . . . , xd]. If (φ, u⃗) is weakly non-linear and each ci is non-negative, then (φ, u⃗)
is called non-negative. A tnn-loop is triangular and non-negative (and thus, also weakly
non-linear). Triangularity and non-negativity ensure that we can compute closed forms for
the n-fold iterated update, i.e., for any tnn-loop (φ, u⃗) we can compute an expression q⃗ in
the variables x⃗ and a distinguished variable n such that u⃗m(e⃗) = q⃗[n/m, x⃗/e⃗] for all m ∈ N
and all e⃗ ∈ Sd.

When analyzing the termination behavior of twn-loops, it is enough to only consider tnn-
loops. The reason is that for a twn-loop (φ, u⃗) the chained loop (φch, u⃗ch) = (φ ∧ φ(u⃗), u⃗(u⃗))

1 Here, u⃗0(e⃗) = e⃗ and u⃗n+1(e⃗) = u⃗n(u⃗(e⃗)).

WST 2021 16

https://costa.fdi.ucm.es/wst2021/

is tnn. Moreover, (φ, u⃗) terminates on e⃗ iff (φch, u⃗ch) terminates on e⃗ (see [2] for details).
When computing closed forms for the n-fold update of tnn-loops, one obtains so-called

poly-exponential expressions. These expressions are sums of terms of the form α · na · bn with
a ∈ N, b ∈ S>0, and α ∈ QS [x⃗] where QS is the quotient field of S.

▶ Example 1. Consider the loop

while x1 + x2
2 > 0 do

[
x1
x2
x3

]
←

[
x1 + x2

2 · x3
x2 − 2 · x2

3
x3

]
. (2)

This loop is tnn as ≻(2)= {(x1, x2), (x1, x3), (x2, x3)} is well founded. Moreover, every
variable xi occurs linearly with a non-negative coefficient in its corresponding update.

A closed form for the update after n ∈ N loop iterations is:

q⃗ =
[

4
3 ·x5

3 ·n3 +
(
−2·x5

3 − 2·x2 ·x3
3
)
·n2 +

(
x2

2 ·x3 + 2
3 ·x5

3 + 2·x2 ·x3
3
)
·n + x1

−2 · x2
3 · n + x2
x3

]

3 Reducing Termination of tnn-Loops to Th∃(S,RA)

In the following, let (φ, u⃗) be a tnn-loop and let q⃗ be the closed form of u⃗n. We now show
how to encode termination of (φ, u⃗) on S into a Th∃(S,RA)-formula. Here, Th∃(S,RA) is
the existential fragment of the first-order theory of S and RA, i.e., the set of all formulas
∃y⃗ ′ ∈ Rk′

A , y⃗ ∈ Sk. ψ, with a propositional formula ψ over {p▷ 0 | p ∈ Q[y⃗ ′, y⃗, z⃗], ▷ ∈ {≥, >}}
where k′, k ∈ N and the variables y⃗ ′, y⃗, and z⃗ are pairwise disjoint.

We use the concept of eventual non-termination, where the loop condition may be
violated finitely often, which is clearly equivalent to non-termination [5]. Expressed using
the closed form q⃗ containing the variables x⃗ and n, (φ, u⃗) is eventually non-terminating on S
iff ∃x⃗ ∈ Sd, n0 ∈ N. ∀n ∈ N>n0 . φ(q⃗).

▶ Example 2. Continuing Ex. 1, (2) is eventually non-terminating iff

∃x1, x2, x3 ∈ S, n0 ∈ N. ∀n ∈ N>n0 . pe > 0, (3)

where pe =
(4

3 · x5
3
)
· n3 +

(
−2 · x5

3 − 2 · x2 · x3
3 + 4 · x4

3
)
· n2 +

(
x2

2 · x3 + 2
3 · x5

3 + 2 · x2 · x3
3

− 4 · x2 · x2
3
)
· n+

(
x1 + x2

2
)
.

We now exploit that for a1, a2 ∈ N and b1, b2 ∈ S>0 the term na1 · bn
1 asymptotically

dominates na2 ·bn
2 if (b1, a1) >lex (b2, a2), i.e., in a poly-exponential expression

∑n
i=1 αi ·nai ·bn

i

we can order the coefficients αi according to the asymptotic growth of nai · bn
i .

▶ Example 3. Continuing Ex. 2, the coefficients of pe are α1, α2, α3, α4 where:

α1 = 4
3 · x5

3 α2 = −2 · x5
3 − 2 · x2 · x3

3 + 4 · x4
3

α3 = x2
2 · x3 + 2

3 · x5
3 + 2 · x2 · x3

3 − 4 · x2 · x2
3 α4 = x1 + x2

2

Here, α1 is the coefficient of the asymptotically largest term, α2 is the coefficient of the
asymptotically second largest term, etc.

This allows us to reduce eventual non-termination to Th∃(S,RA) if φ is an atom: ∃x⃗ ∈
Sd, n0 ∈ N. ∀n ∈ N>n0 . pe > 0 is valid if there is an e⃗ ∈ Sd such that the coefficient of the
asymptotically dominant term in pe(e⃗) is positive. However, this coefficient is simply the
coefficient α of the asymptotically largest term in pe with α(e⃗) ̸= 0 (similar for pe ≥ 0).

WST 2021 17

https://costa.fdi.ucm.es/wst2021/

▶ Lemma 4. Given a poly-exponential expression pe and ▷ ∈ {≥, >}, one can reduce validity
of ∃x⃗ ∈ Sd, n0 ∈ N. ∀n ∈ N>n0 . pe ▷ 0 to validity of a closed formula from Th∃(S,RA).

▶ Example 5. We finish Ex. 3 for S = Z. Here, (3) is valid iff

∃x1, x2, x3 ∈ Z.
4∨

i=1
αi > 0 ∧

i−1∧

j=1
(αj = 0)

is valid. Thus, [x1/− 4, x2/2, x3/1] satisfies α1 > 0 as
(4

3 · 15)
> 0. So (−4, 2, 1) witnesses

eventual non-termination of (2), i.e., (2) does not terminate.

This result can be generalized to arbitrary propositional formulas (see [2]). By combining
these insights with chaining, we finally get the following result.

▶ Theorem 6 ((Semi-)Decidability of (Non-)Termination). Termination of twn-loops on Sd

is reducible to Th∃(S,RA). So for twn-loops, termination is decidable over S = RA and
non-termination is semi-decidable over S ∈ {Z,Q}.

4 The Halting Problem

We now consider the halting problem for twn-loops. In contrast to termination, i.e., to the
question whether a loop terminates for all e⃗ ∈ Sd, the halting problem asks whether a loop
terminates for a given e⃗ ∈ Sd. In this section, we sketch the proof of the following theorem.
The full proof is given in [3].

▶ Theorem 7 (Decidability of the Halting Problem). The halting problem for twn-loops is
decidable.

Clearly, if the halting problem is decidable for S = RA, then it is also decidable for all
subrings of RA. Thus, throughout this section, w.l.o.g. we restrict ourselves to loops over RA.

We now show that for any e⃗ ∈ Rd
A, it is decidable whether e⃗ is a witness for non-termination.

As chaining preserves (non-)termination, w.l.o.g. we consider tnn-loops. The key idea is
stabilization. A loop (φ, u⃗) stabilizes on e⃗ after n0 iterations iff ∀n ≥ n0. φ(q⃗[x⃗/e⃗]) ⇐⇒
φ(q⃗[x⃗/e⃗, n/n0]), where again q⃗ is the closed form of u⃗n. The smallest value n0 for which
(φ, u⃗) stabilizes on e⃗ is called the stabilization threshold of (φ, u⃗) on e⃗ (denoted sth(φ,u⃗)(e⃗)).

For any poly-exponential expression pe and e⃗ ∈ Rd
A, let sthpe(e⃗) be the smallest value

n0 such that ∀n ≥ n0. sign (pe[x⃗/e⃗]) = sign (pe[x⃗/e⃗, n/n0]), where for any c ∈ R, we define
sign (c) = 1 if c > 0, sign (c) = −1 if c < 0, and sign (0) = 0. So if φ(q⃗) ≡ pe ▷ 0 with
▷ ∈ {≥, >}, then we have sth(φ,u⃗) ≤ sthpe. Since every poly-exponential expression is weakly
monotonic w.r.t. n for large enough values of n, every tnn-loop stabilizes on each e⃗ ∈ Rd

A.
Thus, it suffices to find a computable upper bound n0 on sth(φ,u⃗)(e⃗) to decide the halting
problem. Then (φ, u⃗) diverges on e⃗ iff ∀n ≤ n0. φ(u⃗n(e⃗)).

To infer a bound on sthpe(e⃗), note that pe(e⃗) only contains the variable n. Therefore,
we can easily compute an upper bound on the stabilization threshold. This is due to the
fact that for any a1, a2 ∈ N, b1, b2 ∈ (RA)>0 with (b1, a1) >lex (b2, a2), and k ∈ RA, we can
compute an n0 ∈ N such that na1 · bn

1 > k · na2 · bn
2 for all n ≥ n0 (see [3] for details).

▶ Lemma 8. For any poly-exponential expression pe and any e⃗ ∈ Rd
A, one can compute an

m ∈ N with m ≥ sthpe(e⃗).

Iterating this computation for all inequations occurring in φ(q⃗) finishes the proof of Thm. 7.

WST 2021 18

https://costa.fdi.ucm.es/wst2021/

▶ Example 9. Reconsider the setting from Ex. 2, 3, and 5. We show how to decide the
halting problem for the witness (−4, 2, 1) for eventual non-termination from Ex. 5: We have

pe[x1/− 4, x2/2, x3/1] = 4
3 · n3 − 2 · n2 + 2

3 · n.

Here, n0 = 4 is an upper bound on sthpe(−4, 2, 1) as for all n ≥ 4 we have n3 > 2 · n2.
While

∧4
n=2

(4
3 · n3 − 2 · n2 + 2

3 · n > 0
)

holds,
(4

3 · 13 − 2 · 12 + 2
3 · 1 > 0

)
is false. Thus,

(−4, 2, 1) is not a witness for non-termination of (2). Still, we have just proven that
u⃗2(−4, 2, 1) = (0,−2, 1) witnesses non-termination of (2).

5 Runtime Bounds

In the following, we restrict ourselves to twn-loops over the integers and show how to
obtain upper bounds on their runtime. For a loop (φ, u⃗) over Z, its runtime rt(φ,u⃗)(e⃗) on
a terminating input e⃗ ∈ Zd is the smallest n ∈ N such that φ(u⃗n(e⃗)) is false, i.e., (φ, u⃗)
terminates on e⃗ after n iterations. In practice, it is usually infeasible to compute the runtime
exactly, so that state-of-the-art complexity analyzers rely on approximations. In this spirit,
we prove that the runtime of a twn-loop on Zd is bounded (from above) by a polynomial in
the 1-norm ∥x⃗∥ =

∑d
j=1 |xj | of x⃗. Moreover, this polynomial is computable.

▶ Theorem 10 (Polynomial Loops Have Polynomial Runtime). Let (φ, u⃗) be a twn-loop over
Z and let q⃗ be the closed form of u⃗n. One can compute a polynomial f ∈ N[y] such that
rt(φ,u⃗)(e⃗) ≤ f(∥e⃗∥) for all e⃗ on which (φ, u⃗) terminates. If (φ, u⃗) is linear, then f is linear.

We restrict ourselves to loops over Z as measuring the “size” of non-integer inputs via the
1-norm is not suitable for analyzing runtime complexity (see [3]).

We give the idea of the proof of Thm. 10 and refer to [3] for the details. As we clearly
have rt(φ,u⃗)(e⃗) ≤ sth(φ,u⃗)(e⃗) for all e⃗ on which (φ, u⃗) terminates, to derive an upper bound
on rt(φ,u⃗), it suffices to find an upper bound on sth(φ,u⃗).

Recall that the coefficients of the poly-exponential expressions in φ(q⃗) are polynomials
from Q[x⃗], i.e., we can rescale these expressions such that all occurring coefficients are
polynomials over the integers. Exploiting this fact, similar to Lemma 8 one can compute
an upper bound on sth(φ,u⃗)(e⃗) depending on ∥e⃗∥. Thus, this then provides a bound on the
runtime of the loop on terminating inputs. This result is different from Lemma 8, where
we computed an upper bound on sth(φ,u⃗)(e⃗) for a fixed input, whereas in this section we
consider an upper bound on sth(φ,u⃗)(e⃗) for arbitrary values of e⃗.

▶ Example 11. We again regard the setting from Ex. 2, 3, and 5. Consider 3 · pe, i.e, we
rescale by the only denominator 3 and thus, the coefficients of 3 · pe are 3 · α1, . . . , 3 · α4.

Taking into account that for each 1 ≤ i ≤ 4 we have |3·αi(e⃗)| ≤ 12·∑5
i=0(|e1|+|e2|+|e3|)i

we obtain f(y) = 2 · 12 ·∑5
i=0 y

i + 3 = 24 ·∑5
i=1 y

i + 27. Here, the factor of 2 and
the constant addend 3 stem from the formal proof of this result in [3] where we split
sums and over-approximate each part separately. Thus, sthpe(e1, e2, e3) is bounded by
f(∥(e1, e2, e3)∥) = 24 ·∑5

i=1 ∥(e1, e2, e3)∥i + 27 for all (e1, e2, e3) ∈ Z3.

6 Related Work and Conclusion

We presented a reduction from termination of twn-loops to Th∃(S,RA). This implies
decidability of termination over S = RA and semi-decidability of non-termination over S = Z
and S = Q. Moreover, we proved decidability of the halting problem over S = RA. Finally,
we showed that bounds on the runtime of twn-loops over the integers can always be computed.

WST 2021 19

https://costa.fdi.ucm.es/wst2021/

To see why complete approaches for termination and complexity are useful, consider

while x1 ≥ x2 ∧ x2 ≥ 1 do
[x1

x2

]
←

[2 · x1
3 · x2

]
.

This twn-loop terminates, but proving it is beyond the capabilities of lexicographic combi-
nations of linear ranking functions [4]. Such ranking functions represent the most popular
approach to prove termination and to infer runtime bounds automatically. In contrast, our
approach does not use ranking functions, but it reasons about the expression obtained from
the loop condition when substituting the variables by the closed forms of their iterated
updates. Thus, with our approach, one can show termination of the loop and compute the
bound 2 · (|x1|+ |x2|) + 3 on its runtime.

References
1 Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination of integer

loops. ACM Transactions on Programming Languages and Systems, 34(4), 2012. doi:10.
1145/2400676.2400679.

2 Florian Frohn, Marcel Hark, and Jürgen Giesl. Termination of polynomial loops. In Proc.
SAS ’20, LNCS 12389, pages 89–112, 2020. Long version available at https://arxiv.org/
abs/1910.11588. doi:10.1007/978-3-030-65474-0_5.

3 Marcel Hark, Florian Frohn, and Jürgen Giesl. Polynomial loops: Beyond termination. In Proc.
LPAR ’20, volume 73 of EPiC Series in Computing, pages 279–297, 2020. doi:10.29007/nxv1.

4 Jan Leike and Matthias Heizmann. Ranking templates for linear loops. Logical Methods in
Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:16)2015.

5 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer linear loops.
In Proc. SODA 2015, pages 957–969, 2015. doi:10.1137/1.9781611973730.65.

WST 2021 20

https://doi.org/10.1145/2400676.2400679
https://doi.org/10.1145/2400676.2400679
https://arxiv.org/abs/1910.11588
https://arxiv.org/abs/1910.11588
https://doi.org/10.1007/978-3-030-65474-0_5
https://doi.org/10.29007/nxv1
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1137/1.9781611973730.65
https://costa.fdi.ucm.es/wst2021/

Polynomial Termination over NNN is Undecidable
Fabian Mitterwallner !

University of Innsbruck, Innsbruck, Austria

Aart Middeldorp !

University of Innsbruck, Innsbruck, Austria

Abstract
In this paper we prove that the problem whether the termination of a given rewrite system can be
shown by a polynomial interpretation in the natural numbers is undecidable.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Rewrite systems; Theory of computation → Computability

Keywords and phrases term rewriting, polynomial termination, undecidability

Acknowledgements We thank the reviewers for critically reading the paper, and providing comments
and suggestions.

1 Introduction

Proving termination of a rewrite system by using a polynomial interpretation over the
natural numbers goes back to Lankford [4]. Two problems need to be addressed when using
polynomial interpretations for proving termination, whether by hand or by a tool:
1. finding suitable polynomials for the function symbols,
2. showing that the induced order constraints on polynomials are valid.
The latter problem amounts to (⋆) proving P (x1, . . . , xn) > 0 for all natural numbers
x1, . . . , xn ∈ N, for polynomials P ∈ Z[x1, . . . , xn]. This is known to be undecidable, as a
consequence of Hilbert’s 10th Problem, see e.g., Zantema [6, Proposition 6.2.11]. Heuristics
for the former problem are presented in [2, 6]. In this paper we prove the undecidability of
the existence of a termination proof by a polynomial interpretation in N by a reduction from
(⋆). This result is not surprising, but we are not aware of a proof of undecidability in the
literature, and the construction is not entirely obvious. We construct a family of rewrite
systems RP parameterized by polynomials P ∈ Z[x1, . . . , xn] such that RP is polynomially
terminating over N if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N. The construction
is based on techniques from [5], in which specific rewrite rules enforce the interpretations of
certain function symbols.

2 Undecidability of Polynomial Termination

We assume familiarity with term rewriting [1], but recall the definition of polynomial
termination over N. Given a signature F , a well-founded monotone F -algebra (A, >) consists
of a non-empty F -algebra A = (A, {fA }f ∈F) and a well-founded order > on the carrier A of
A such that every algebra operation is strictly monotone in all its coordinates, i.e., if f ∈ F
has arity n ⩾ 1 then fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A

and i ∈ {1, . . . , n} with ai > b. The induced order >A on terms is a reduction order that
ensures the termination of any compatible (i.e., ℓ >A r for all rewrite rules ℓ → r) TRS
R. We call R polynomially terminating over N if compatibility holds when the underlying
algebra A is restricted to the set of natural numbers N with standard order >N such that
every n-ary function symbol f is interpreted as a monotone polynomial fN in Z[x1, . . . , xn].

WST 2021 21

mailto:fabian.mitterwallner@uibk.ac.at
https://orcid.org/0000-0001-5992-9517
mailto:aart.middeldorp@uibk.ac.at
https://orcid.org/0000-0001-7366-8464
https://costa.fdi.ucm.es/wst2021/

Table 1 The TRS R.

g(s(x)) → s(s(g(x))) (A)
q(g(x)) → g(g(q(x))) (B)

g(x) → a(x, x) (C)
s(x) → a(0, x) (D)
s(x) → a(x, 0) (E)

a(q(x), g(x)) → q(s(x)) (F)

s(s(0)) → q(s(0)) (G)
s(0) → q(0) (H)

q(s(0)) → 0 (I)
s5(0) → q(s(s(0))) (J)

q(s(s(0))) → s3(0) (K)
s(a(x, x)) → d(x) (L)

s(d(x)) → a(x, x) (M)
s(a(q(a(x, y)), d(a(x, y)))) → a(a(q(x), q(y)), d(m(x, y))) (N)

s(a(a(q(x), q(y)), d(m(x, y)))) → a(q(a(x, y)), d(a(x, y))) (O)

Whereas well-founded monotone algebras are complete for termination, polynomial
termination gives rise to a much more restricted class of TRSs. For instance, Hofbauer and
Lautemann [3] proved that polynomially terminating TRSs induce a double-exponential
upper bound on the derivational complexity.

Our rewrite systems RP consists of three parts: a fixed component R, which is extended
to Rn for some n ∈ N depending on the exponents in P , and a single rewrite rule that
encodes the positiveness of P . For the latter we need function symbols that are interpreted
as addition and multiplication. That is the purpose of the TRS R, whose rules are presented
in Table 1. It is a simplified and modified version of the TRS R2 in [5]. Since multiplication
is not strictly monotone on N, the rules (N) and (O) restrict the interpretation of m to
xy + x + y, which suffices for the reduction.

▶ Lemma 1. The TRS R is polynomially terminating over N.

Proof. The well-founded algebra (N, >N) with interpretations

0N = 0 sN(x) = x + 1 aN(x, y) = x + y qN(x) = x2

dN(x) = 2x gN(x) = 4x + 6 mN(x, y) = xy + x + y

is monotone and compatible with R. Hence R is polynomially terminating. ◀

Note that this polynomial interpretation is found by the termination tool TTT2 with the
strategy poly -direct -nl2 -ib 4 -ob 6.

More importantly, to ensure termination in (N, >N), the rewrite rules of R mandate that
the interpretation of some of the function symbols is unique. The proof of the following
lemma closely follows the reasoning in [5, Lemmata 4.4 and 5.2].

▶ Lemma 2. Any monotone polynomial interpretation (N, >N) compatible with R must
interpret the function symbols 0, s, d, a, m and q as follows:

0N = 0 sN(x) = x + 1 aN(x, y) = x + y

dN(x) = 2x mN(x, y) = xy + x + y qN(x) = x2

Proof. Compatibility with (A) implies

deg(gN) · deg(sN) ⩾ deg(sN)2 · deg(gN)

WST 2021 22

https://costa.fdi.ucm.es/wst2021/

This is only possible if deg(sN) ⩽ 1. Together with the strict monotonicity of sN we obtain
deg(sN) = 1. Hence s must be interpreted by a linear polynomial: sN(x) = s1x + s0 with
s1 ⩾ 1 and s0 ⩾ 0. The same reasoning applied to (B) yields gN(x) = g1x + g0 for some
g1 ⩾ 1 and g0 ⩾ 0. The compatibility constraint imposed by rule (A) further gives rise to
the inequality

g1s1x + g1s0 + g0 > g1s2
1x + g0s2

1 + s1s0 + s0 (1)

for all x ∈ N. Since s1 ⩾ 1 and g1 ⩾ 1, this only holds if s1 = 1. Simplifying (1) we obtain
g1s0 > 2s0, which implies s0 > 0 and g1 > 2. If qN were linear, the same reasoning could be
applied to (B) resulting in g1 = 1, contradicting g1 > 2. Hence qN is at least quadratic.

Next we turn our attention to the rewrite rules (C) – (F). Because gN is linear, compatib-
ility with (C) and strict monotonicity of aN ensures deg(aN) = 1. Hence, aN = a2x + a1y + a0
with a2 ⩾ 1, a1 ⩾ 1 and a0 ⩾ 0. From compatibility with rules (D) and (E) we obtain a1 = 1
and a2 = 1. Using the current shapes of aN, gN and sN, compatibility with rule (F) yields
the inequality gN(x) + a0 > qN(x + s0) − qN(x) for all x ∈ N. This can only be the case if
deg(gN(x) + a0) ⩾ deg(qN(x + s0) − qN(x)), which in turn simplifies to 1 ⩾ deg(qN(x)) − 1.
Hence qN(x) = q2x2 + q1x + q0 with q2 ⩾ 1. From monotonicity we also have qN(1) > qN(0),
which leads to q2 + q1 ⩾ 1.

To further constrain sN we consider the rewrite rule (G). The compatibility constraint
gives rise to

0N + 2s0 > q2(0N + s0)2 + q1(0N + s0) + q0

= q2 02
N + q2s2

0 + 0N(2q2s0 + q1) + q1s0 + q0

⩾ q2s2
0 + 0N + (1 − q2)s0 (q2 + q1 ⩾ 1 and q0, q2, s0 ⩾ 1)

= q2s0(s0 − 1) + 0N + s0

⩾ s2
0 + 0N (s0 ⩾ 1)

Hence the inequality 2s0 > s2
0 holds, which is only true if s0 = 1. Therefore sN(x) = x + 1.

Compatibility with (D) now amounts to x + 1 > 0N + x + a0, which implies 0N = a0 = 0.
At this point we have uniquely constrained 0N, sN and aN. To fully constrain qN we turn
to (H), which implies q0 = 0, the rules (G) and (I), which together imply 2 > qN(1) > 0
and thus qN(1) = q2 + q1 = 1, and the rules (J) and (K), which imply 5 > qN(2) > 3
and thus qN(2) = 4q2 + 2q1 = 4. Consequently, q2 = 1 and q1 = 0. Hence qN(x) = x2.
Compatibility with the rules (L) and (M) yields x + x + 1 > dN(x) and dN(x) + 1 > x + x

which imply dN(x) = 2x. Finally, compatibility with the rules (N) and (O) amounts to
(x + y)2 + 2x + 2y + 1 > x2 + y2 + 2mN(x, y) ⩾ (x + 1)2 + 2x + 2y, which uniquely determines
mN(x, y) = xy + x + y. ◀

Using the previously fixed interpretations we can now add new function symbols, and
more easily mandate their interpretations. By adding the two rules

s(t) → u s(u) → t

for some terms t and u, we enforce an equality constraint on the interpretations of t and u,
assuming the system remains polynomially terminating.

To represent the exponents in the polynomial P we add symbols pi for 1 ⩽ i ⩽ n, where n

is the maximal exponent in P . To fix (pi)N(x) = xi, we add two rules per symbol, according
to the following definition.

WST 2021 23

https://costa.fdi.ucm.es/wst2021/

▶ Definition 3. We define a family of TRSs (Rn)n⩾0 as follows:

R0 = R
R1 = R0 ∪ {s(p1(x)) → x, s(x) → p1(x)}

Rn+1 = Rn ∪
{

s(a(pn+1(x), a(x, pn(x)))) → m(x, pn(x))
s(m(x, pn(x))) → a(pn+1(x), a(x, pn(x)))

}

▶ Lemma 4. For any n ⩾ 0, the TRS Rn is polynomially terminating over N if and only if
(pi)N(x) = xi for all 1 ⩽ i ⩽ n.

Proof. From Lemma 1 we know that R is polynomially terminating and the interpretations
are unique due to Lemma 2. Hence the Lemma holds for R0. For n ⩾ 1, the if direction
holds, since the interpretations (pi)N are monotone and the polynomial interpretation is
compatible with Rn:

x + 1 > x x + 1 > x

for R1 \ R0 and

xn + x + xn−1 + 1 > xxn−1 + x + xn−1 xxn−1 + x + xn−1 + 1 > xxn + x + xn−1

for Rn \ Rn−1. For the only if direction we show that compatibility with the additional
rules implies (pi)N(x) = xi for all 1 ⩽ i ⩽ n. This is done by induction on n. For n = 1 the
two rules in R1 \ R enforce (pi)N(x) + 1 > x and x + 1 > (pi)N(x). Hence (pi)N(x) = x. For
n > 1 the rules in Rn \ Rn−1 enforce (pn)N(x) = x · (pn−1)N(x) by the same reasoning. From
the induction hypothesis we obtain (pn−1)N(x) = xn−1 and hence (pn)N = xn as desired. ◀

The fixed interpretations can now be used to construct arbitrary polynomials. Since
non-monotone operations, such as subtraction (negative coefficients) and multiplication,
cannot serve as interpretations for function symbols, we model these using the difference of
two terms. In the following we write [t]N for the polynomial that is the interpretation of the
term t, according to the interpretations stated in Lemmata 2 and 4.

▶ Lemma 5. For any monomial M = cxi1
1 · · · xim

m with i1, . . . , im > 0 and c ̸= 0 there exist
terms ℓM and rM over the signature of Rmax(0,i1,...,im), such that M = [ℓM]N − [rM]N and
Var(ℓM) = Var(rM).

Proof. First we assume the coefficient c is positive. We construct ℓM and rM by induction
on m. If m = 0 then M = c and we take ℓM = sc(0) and rM = 0. We trivially have
Var(ℓM) = ∅ = Var(rM) and [ℓM]N − [rM]N = c − 0 = M . For m > 0 we have M = M ′xim

m

with M ′ = cxi1
1 · · · x

im−1
m−1 . The induction hypothesis yields terms ℓM ′ and rM ′ with M ′ =

[ℓM ′]N − [rM ′]N and Var(ℓM ′) = Var(rM ′). Hence

M = M ′xim
m = [ℓM ′]Nxim

m − [rM ′]Nxim
m

= (mN([ℓM ′]N, xim
m) − [ℓM ′]N − xim

m) − (mN([rM ′]N, xim
m) − [rM ′]N − xim

m)
= (mN([ℓM ′]N, (pj)N(xm)) + [rM ′]N) − (mN([rM ′]N, (pj)N(xm)) + [ℓM ′]N)

and thus we can take ℓM = a(m(ℓM ′ , pj(xm)), rM ′) and rM = a(m(rM ′ , pj(xm)), ℓM ′). Note
that Var(ℓM) = Var(ℓM ′) ∪ {xm } ∪ Var(rM ′) = Var(rM).

If c < 0 then we take ℓM = r−M and rM = ℓ−M . We obviously have Var(ℓM) =
Var(r−M) = Var(ℓ−M) = Var(rM). Moreover, M = −(−M) = −([ℓ−M]N − [r−M]N) =
−([rM]N − [ℓM]N) = [ℓM]N − [rM]N. ◀

WST 2021 24

https://costa.fdi.ucm.es/wst2021/

▶ Definition 6. Let P = M1 + · · · + Mk−1 + Mk ∈ Z[x1, . . . , xn] be a sum of monomials. We
denote by ℓP the term a(ℓ1, · · · a(ℓk−1, ℓk) · · ·) and by rP the term a(r1, · · · a(rk−1, rk) · · ·).
Here ℓi and ri are the terms from applying Lemma 5 to Mi for 1 ⩽ i ⩽ k. Moreover,
ℓ0 = r0 = 0. We define the TRS RP as the extension of Rn with the single rule ℓP → rP .
Here n is the maximal exponent occurring in P .

Note that the rewrite rule ℓP → rP in RP is well-defined; ℓP is not a variable and
Var(ℓP) = Var(rP) as a consequence of Lemma 5.

▶ Example 7. The polynomial P = 2x2y − xy + 3 is first split into its monomials M1 = 2x2y,
M2 = −xy and M3 = 3. Hence we obtain the TRS RP1 = R2 ∪ {a(ℓM1 , a(ℓM2 , ℓM3)) →
a(rM1 , a(rM2 , rM3))}, where

ℓM1 = a(m(a(m(s2(0), p2(x)), 0)︸ ︷︷ ︸
ℓ2x2

, p1(y)), a(m(0, p2(x)), s2(0))︸ ︷︷ ︸
r2x2

)

rM1 = a(m(a(m(0, p2(x)), s2(0))︸ ︷︷ ︸
r2x2

, p1(y)), a(m(s2(0), p2(x)), 0)︸ ︷︷ ︸
ℓ2x2

)

ℓM2 = a(m(a(m(0, p1(x)), s(0))︸ ︷︷ ︸
rx

, p1(y)), a(m(s(0), p1(x)), 0)︸ ︷︷ ︸
ℓx

)

rM2 = a(m(a(m(s(0), p1(x)), 0)︸ ︷︷ ︸
ℓx

, p1(y)), a(m(0, p1(x)), s(0))︸ ︷︷ ︸
rx

)

ℓM3 = s3(0) rM3 = 0

Note that in the terms ℓM2 and rM2 the ℓ and r of the recursive call are switched since M2
has a negative coefficient.

▶ Theorem 8. For any polynomial P ∈ Z[x1, . . . , xn], the TRS RP is polynomially termin-
ating over N if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N.

Proof. First suppose RP is polynomially terminating over N. So there exists a monotone
polynomial interpretation in (N, >) that orients the rules of RP from left to right. Let n be
the maximum exponent in P . From Lemma 2 and Lemma 4 we infer that the interpretations
of the function symbols 0, s, a, m, and pi for 1 ⩽ i ⩽ n are fixed such that, according to
Lemma 5, P = [ℓP]N − [rP]N. Since the rule ℓP → rP belongs to RP , P (x1, . . . , xn) > 0 for
all x1, . . . , xn ∈ N by compatibility.

For the if direction, we assume that P ∈ Z[x1, . . . , xn] satisfies P (x1, . . . , xn) > 0 for all
x1, . . . , xn ∈ N. By construction of ℓP → rP and Lemma 5, the interpretations in Lemma 2
and Lemma 4 orient the rule ℓP → rP from left to right. The same holds for rules Rn. Hence
RP is polynomially terminating over N. ◀

▶ Corollary 9. It is undecidable whether a finite TRS is polynomially terminating over N.

3 Conclusion

We proved the undecidability of polynomial termination over the natural numbers, by
a reduction from a variant of Hilbert’s 10th problem. This was done by constructing a
TRS RP , for any polynomial P ∈ Z[x1, . . . , xn], which can be shown to be polynomially
terminating if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N. To construct this system
we used techniques from [5] to fix the interpretation of function symbols. Using the fixed
interpretations we constructed two terms ℓP and rP , such that P = [ℓP]N − [rP]N. This

WST 2021 25

https://costa.fdi.ucm.es/wst2021/

allowed us to encode the inequality P > 0 as the compatibility constraint associated with
the rule ℓP → rP .

In our proof we allow interpretations to be polynomials with integer coefficients. However,
it equally applies if interpretations are limited to natural number coefficients, since the
construction stays the same. We conclude the paper by mentioning two open questions.

1. Is polynomial termination over N decidable for terminating TRSs?
The construction in this paper may produce non-terminating systems. Take for example
the polynomial P1 = −1. The resulting TRS RP1 = R ∪ {0 → s(0)} is obviously not
terminating.

2. Is incremental polynomial termination over N, where we take the lexicographic extension
of the order induced by the polynomial interpretations, decidable?
We expect the answer is negative, but the construction in this paper needs to be modified.
Consider for instance the polynomial P2 = x. We obtain ℓP2 = a(m(s(0), p1(x)), 0) and
rP2 = a(m(0, p1(x)), s(0)). As a result, the TRS RP2 is not polynomially terminating
since [ℓP2]N = 2x + 1 ≯ x + 1 = [rP2]N for x = 0. However, if we take a second
algebra A over N where the interpretation of m is changed to mA(x, y) = 2x + y, then
[ℓP2]A = x + 2 > x + 1 = [rP2]A for all x ∈ N. Hence the lexicographic order (>N, >A) is
a reduction order compatible with RP2 .

References
1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

1998. doi:10.1017/CBO9781139172752.
2 Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting systems by polynomial

interpretations and its implementation. Science of Computer Programming, 9(2):137–159,
1987. doi:10.1016/0167-6423(87)90030-X.

3 Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of derivations
(preliminary version). In Proceedings of the 3rd International Conference on Rewriting Tech-
niques and Applications, volume 355 of Lecture Notes in Computer Science, pages 167–177,
1989. doi:10.1007/3-540-51081-8_107.

4 Dallas Lankford. On proving term rewrite systems are noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

5 Friedrich Neurauter and Aart Middeldorp. Polynomial interpretations over the natural,
rational and real numbers revisited. Logical Methods in Computer Science, 10(3:22):1–28, 2014.
doi:10.2168/LMCS-10(3:22)2014.

6 Hans Zantema. Termination. In Term Rewriting Systems, chapter 6, pages 181–259. Cambridge
University Press, 2003.

WST 2021 26

https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/0167-6423(87)90030-X
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.2168/LMCS-10(3:22)2014
https://costa.fdi.ucm.es/wst2021/

Modular Termination Analysis of C Programs
(Extended Abstract)
Frank Emrich ! Ï

Laboratory for Foundations of Computer Science, The University of Edinburgh, UK

Jera Hensel ! Ï

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Jürgen Giesl !Ï �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract
Termination analysis of C programs is challenging. On the one hand, the analysis needs to be precise.
On the other hand, programs in practice are usually large and require substantial abstraction. In this
extended abstract, we sketch an approach for modular symbolic execution to analyze termination of
C programs with several functions. This approach is also suitable to handle recursive programs. We
implemented it in our automated termination prover AProVE and evaluated its power on recursive
and large programs.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning

Keywords and phrases Modular Termination Analysis, Pointer Arithmetic, Recursion, C, LLVM

Funding funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
235950644 (Project GI 274/6-2)

1 Introduction

AProVE [7] is a tool for termination and complexity analysis of many programming languages
including C. Its approach for termination analysis of C programs (which is illustrated in Fig. 1)
focuses in particular on the connection between memory addresses and their contents. To
avoid handling all intricacies of C, we use the Clang compiler [3] to transform programs into the
platform-independent intermediate representation of the LLVM Compilation Framework [11].
As we presented in [12], in the first step our technique constructs a symbolic execution graph
(SEG) which over-approximates all possible program runs and models memory addresses and
contents explicitly. As a prerequisite for termination, AProVE shows the absence of undefined
behavior during the construction of the SEG. In this way, our approach also proves memory
safety of the program. Afterwards, the cycles of the graph are transformed into integer
transition systems (ITSs) whose termination implies termination of the original C program.
We use standard techniques to analyze termination of the ITSs, which are implemented in a
back-end that AProVE also uses for termination analysis of other programming languages.
Here, the satisfiability checkers Z3 [4], Yices [5], and MiniSAT [6] are applied to solve the
search problems that arise during the termination proof.

Sometimes, the SEG does not contain over-approximating steps. Then, non-termination
of the ITS resulting from a cycle of the graph together with a path from the root of the
graph to the respective cycle implies non-termination of the program. In this case, our
approach can also prove non-termination of C programs [9] by using the tool T2 [2] to show
non-termination of ITSs. (AProVE’s own back-end does not support the analysis of ITSs
where runs may only begin with designated start terms.) While integers were considered to
be unbounded in [12], we extended our approach to handle bitvector arithmetic and also

WST 2021 27

mailto:frank.emrich@ed.ac.uk
https://www.inf.ed.ac.uk/people/students/Frank_Emrich.html
mailto:hensel@cs.rwth-aachen.de
https://verify.rwth-aachen.de/jhensel
mailto:giesl@cs.rwth-aachen.de
https://verify.rwth-aachen.de/giesl
https://orcid.org/0000-0003-0283-8520
https://costa.fdi.ucm.es/wst2021/

C LLVM
Symbolic
Execution

Graph

ITS Complexity

Termination

Non-Termination

Memory Safety

Clang
T2

Figure 1 AProVE’s workflow to prove termination and memory safety of C programs

discussed the use of our approach for complexity analysis of C programs in [10].
We showed how our approach supports programs with several functions in [12], but up to

now it could not analyze functions in a modular way and it could not deal with recursion.
In this extended abstract, we sketch an idea on how to extend this approach to also

support the abstraction of call stacks, which allows us to re-use previous analyses of auxiliary
functions in a modular way. Moreover, in this way we can analyze recursive programs as well.

Another variation of our approach from [12] that also abstracts from call stacks was
presented in [8]. Here, such an abstraction was necessary, because [8] defined abstract states
such that they only contain a single stack frame. Thus, their variant can be seen as a first
step towards the modularization of function graphs and the handling of recursion, but in
contrast to us, the variant of [8] is restricted to integer programs without memory access.
Moreover, the restriction to abstract states with a single stack frame prohibits the handling of
non-tail recursive programs where the result of the recursive call is needed for the remaining
computation.

Our technique for abstracting from the exact shape of the call stack in the symbolic
execution graph is based on our earlier approach for termination analysis of Java Bytecode in
[1], but the challenge is to adapt this idea to the byte-accurate representation of the memory
needed for the analysis of C programs. A paragraph with a preliminary announcement of
an extension of our approach to recursion was given in [9] and a full paper on our work has
been submitted and is currently under review.

2 Modular Re-Use of Symbolic Execution Graphs

We presented an approach for symbolic execution of LLVM programs in [12] which computes
a symbolic execution graph to capture all program runs. The states of the graph are so-called
abstract program states that represent sets of concrete program states. We distinguish three
types of edges in the graph:

(a) To execute the next instruction, we use evaluation edges. Based on formal rules that
correspond to the actual execution of the respective LLVM instruction, a successor state
is computed.

(b) Sometimes, the program flow depends on a condition whose truth value is not the same
for all concrete states represented by the abstract state A to be evaluated. Then, we use
a refinement rule to create two successors, where in the first one the condition holds and
in the second, the negated condition holds. Now, A is connected by refinement edges to
each of its successor states.

(c) Whenever we re-visit a program position that we had already reached earlier, we create a
generalization state G, which represents all concrete program states that are represented
by the previous abstract states at this program position in the graph. This step is crucial
to obtain a finite symbolic execution graph. Then, we only keep the state A where the

WST 2021 28

https://costa.fdi.ucm.es/wst2021/

program position was reached first in the graph and add a generalization edge from A to
G. Now, evaluation continues from the generalized state G.

In [12], we defined the corresponding rules for the construction of the graph and proved their
correctness. Moreover, we presented a generalization technique which guaranteed termination
of the graph construction in case of non-recursive functions.

In the approach of [12], we distinguished between global knowledge that holds for the
whole state (e.g., global variables and memory allocated by malloc), and local information
stored in stack frames. Whenever a function f called an auxiliary function g, then during
the construction of f’s symbolic execution graph, one obtained a new abstract state whose
topmost stack frame is at the start of the function g. To evaluate this state further, now
one had to execute g symbolically and only after the end of g’s execution, one could remove
the topmost stack frame and continue the further execution of f. Even if one had analyzed
termination of g before, in [12] one could not re-use its symbolic execution graph, but one
had to perform a new symbolic execution of g whenever it is called. This missing modularity
had severe drawbacks for the performance of the approach and moreover, it prevented the
analysis of functions with recursive calls.

We now sketch an idea on how to abstract from the call stack by using call abstractions
and intersections. This allows us to re-use previously computed symbolic execution graphs
of auxiliary functions. Thus, it is the key for the modularization of our approach. To ease
readability, in Fig. 2 we displayed abstract states only by a stack of program positions
representing their call stack, and omitted all other components of the abstract states such as
local and global variables and their values.

To prove termination of the function f, we start with a state A whose program position is
at f’s initial instruction. If A evaluates (via several execution steps) to a state B where the
function g is called, this yields a next state C where a new stack frame at g’s initial instruction
is added on top of the stack of B (we refer to C as a call state). For a modular analysis of g,
we perform call abstraction, which leads to a state D that results from C by removing all lower

fstartA

fcallB

gstart

fcall
C gstart D

gret

R

gret

fcall
I

fnextJ

. . .

call of g

call abstraction

intersection with R

return from g

Figure 2 Modularized symbolic ex-
ecution graph

stack frames except the top one. In this way, we can
compute a symbolic execution graph of g which is
independent of the context that we have in f, so it is re-
usable for other calls of g. Moreover, in case of recursive
functions, this abstraction step is essential to ensure
termination of the graph construction. Whenever the
function g evaluates to a return state R where the
function terminates, we have to take into account that
the call of g in state C might lead to such a return
state. Thus, for every pair of a call state C and a
return state R of g, we construct an intersection state
I which represents those states that result from C

after completely executing the call of g in its topmost
stack frame. This intersection state combines the stack
frames of f and g in one state by integrating the results
of g’s symbolic execution into the context of the call
state C. This integration has to be done in such a way that on the one hand, all concrete
states corresponding to a program execution along a path to I are really represented by
I, and on the other hand, we keep as much knowledge as possible in I to find meaningful
invariants for later termination proofs. Thus, we essentially have to compute the intersection
of the knowledge in the states C and R. However, this is quite intricate when pointers are

WST 2021 29

https://costa.fdi.ucm.es/wst2021/

involved that are reachable from different functions or that are passed by recursive function
calls. In the example graph of Fig. 2, now the execution of g in the function f is represented
by the path from B to J .

To summarize, we extend the symbolic execution graph construction by the following
rules:

(d) Whenever a function is called within another function, the call state must have an
outgoing call abstraction edge to its call abstraction state, which abstracts from all but
the topmost stack frame and the knowledge related to it.

(e) For each call state C and each return state R of the same function, we create an abstract
state I that represents the case that the execution of the topmost stack frame of C ended
in R and should now continue with the lower stack frames of C. We call I the intersection
of C and R, and each call state C has intersection edges to all its intersections. Intuitively,
here the process of abstracting from lower stack frames is reversed in order to continue
the execution with the former lower stack frames after returning to them.

Once we have a complete symbolic execution graph for the program under consideration,
we extract integer transition systems (ITSs) from its maximal cycles and apply existing
techniques to prove their termination. An ITS is a graph whose nodes are abstract states
and whose edges are transitions. A transition is labeled with conditions that are required for
its application. We use the same translation of symbolic execution graphs into ITSs that we
already presented in [12].

Our new modular approach does not only allow us to re-use the SEGs for auxiliary
functions like g when they are called by other functions like f, but we also benefit from this
modularity when extracting ITSs from the cycles of the symbolic execution graph. The reason
is that the subgraphs of f and g do not share any cycles. Therefore, one can handle the ITSs
extracted from these subgraphs completely independently when proving their termination,
and for ITSs from re-used subgraphs, one does not have to prove termination again.

As in [12, Thm. 13] where we proved the correctness of our symbolic execution w.r.t.
the formal definition of the LLVM semantics from the Vellvm project [13], our construction
ensures that termination of the resulting ITSs implies termination of the original program.

▶ Theorem 1 (Termination). Let P be an LLVM program with a symbolic execution graph G
and let I1, . . . , Im be the ITSs resulting from the cycles of G. If all ITSs I1, . . . , Im terminate,
then P also terminates for all concrete states c that are represented by a state of G.

3 Evaluation, Conclusion, and Future Work

We implemented our approach in the tool AProVE [7]. Since our approach models variables
and memory contents explicitly, and it constructs intersection states in such a way that
(memory) invariants are inferred and preserved, our approach is especially suitable for
programs where termination depends on the contents of variables and addresses. However, a
downside of this high precision is that it often takes long to construct symbolic execution
graphs, since AProVE cannot give any meaningful answer before this construction is finished.
The more information we try to keep in the abstract states, the more time is needed in
every symbolic execution step when inferring knowledge for the next state. This results in a
larger runtime than that of many other tools for termination analysis. Before developing
the improvements suggested in this extended abstract, this used to result in many timeouts
when analyzing large programs with many function calls, even if termination of the functions
was not hard to prove once the graph was constructed. For every function call, an additional

WST 2021 30

https://costa.fdi.ucm.es/wst2021/

20
17

20
18

20
19

0

200

400

600

800

1,000

1,200

506

837 836

UAutomizer
CPA-Seq
AProVE

(a) Programs of Termination-Other
20

14
20

15
20

16
20

17
20

18
20

19

0

20

40

60

22

28

35

55 55 55AProVE
UAutomizer
CPA-Seq
SeaHorn
HIPTNT+
T2

(b) Recursive programs of other subcategories

Figure 3 Number of termination proofs for leading tools in SV-COMP

subgraph of the SEG was computed in the non-modular approach of [12]. This did not only
prohibit the handling of recursive functions but it also prevented an efficient treatment of
programs with several calls of the same function.

Thus, the approach to analyze functions modularly is a big step towards scalability. To
evaluate the power of the new approach, we use the results that AProVE and the other
tools achieved at SV-COMP.1 Fig. 3a shows the number of programs where termination was
proved for the three leading tools of the Termination category of SV-COMP in AProVE’s
weakest subcategory Termination-Other, which was introduced in 2017. The bars in Fig. 3a
indicate the total number of terminating programs. This subcategory mainly consists of
large programs with significantly more function calls and branching instructions than there
are in the programs of the remaining two subcategories. In 2017, AProVE already performed
well on smaller recursive programs, but this approach was not yet generalized and optimized
to use a modular analysis for non-recursive functions. In the following two years, AProVE
substantially reduced the relative gap to the other leading tools for these kinds of examples.

Fig. 3b shows the number of recursive programs in the remaining two subcategories of
SV-COMP where termination was proved. Here, we give the numbers of successful proofs
for the three leading tools of the Termination category per year. Again, the bars indicate
the total number of terminating recursive programs. Note that for most of the years, the
set of programs is a proper superset of the set of programs of the previous year and the
newly added programs tend to be harder to analyze. We see that first support to handle
recursion was already very successfully implemented in the AProVE version of 2015. In the
following years, this technique was further improved so that for most of the years, AProVE
was able to prove termination for more of these programs than the other tools. Over the
years, we repeatedly optimized and extended the techniques in AProVE to handle recursion
and modularity, until we obtained the approach presented in this extended abstract in 2019.

The three leading tools of the Termination category of SV-COMP 2020 were UAutomizer,
CPA-Seq, and 2LS. However, UAutomizer and CPA-Seq did not find more termination proofs
for the programs in Fig. 3a and Fig. 3b than in 2019. 2LS was able to prove termination for

1 International Competition on Software Verification, see https://sv-comp.sosy-lab.org/.

WST 2021 31

https://sv-comp.sosy-lab.org/
https://costa.fdi.ucm.es/wst2021/

nearly as many programs as CPA-Seq in Termination-Other, but did not find any termination
proofs for the recursive programs in other subcategories.

Apart from improving AProVE’s capabilities for non-termination proofs, in future work
we plan to extend our approach to handle recursive data structures. Here, the main challenge
is to create heap invariants that reason about the shape of data structures and that abstract
from their exact properties, but still contain sufficient knowledge about the memory contents
needed for the termination proof. Similar to the approach sketched in the current extended
abstract, this will require methods to remove and to restore knowledge about allocations
in the abstract states in order to validate memory safety. Furthermore, these tasks have to
combined with the handling of byte-precise pointer arithmetic.

References
1 M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive Java

Bytecode programs by term rewriting. In Proc. RTA ’11, LIPIcs 10, pages 155–170, 2011.
doi:10.4230/LIPIcs.RTA.2011.155.

2 M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: Temporal
property verification. In Proc. TACAS ’16, LNCS 9636, pages 387–393, 2016. doi:
10.1007/978-3-662-49674-9_22.

3 Clang. https://clang.llvm.org/.
4 L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. TACAS ’08, LNCS 4963,

pages 337–340, 2008. doi:10.1007/978-3-540-78800-3_24.
5 B. Dutertre and L. de Moura. The Yices SMT solver, 2006. Tool paper at https://yices.

csl.sri.com/papers/tool-paper.pdf.
6 N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT ’03, LNCS 2919, pages

502–518, 2003. doi:10.1007/978-3-540-24605-3_37.
7 J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,

P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing program termination
and complexity automatically with AProVE. Journal of Automated Reasoning, 58(1):3–31,
2017. doi:10.1007/s10817-016-9388-y.

8 M. Haslbeck and R. Thiemann. An Isabelle/HOL formalization of AProVE’s termination method
for LLVM IR. In Proc. CPP ’21, pages 238–249, 2021. doi:10.1145/3437992.3439935.

9 J. Hensel, F. Emrich, F. Frohn, T. Ströder, and J. Giesl. AProVE: Proving and disprov-
ing termination of memory-manipulating C programs (competition contribution). In Proc.
TACAS ’17, LNCS 10206, pages 350–354, 2017. doi:10.1007/978-3-662-54580-5_21.

10 J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Termination and complexity analysis for programs
with bitvector arithmetic by symbolic execution. Journal of Logical and Algebraic Methods in
Programming, 97:105–130, 2018. doi:10.1016/j.jlamp.2018.02.004.

11 C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis &
transformation. In Proc. CGO ’04, pages 75–88, 2004. doi:10.1109/CGO.2004.1281665.

12 T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-Kamp,
and C. Aschermann. Automatically proving termination and memory safety for programs
with pointer arithmetic. Journal of Automated Reasoning, 58(1):33–65, 2017. doi:10.1007/
s10817-016-9389-x.

13 J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM
IR for verified program transformations. In Proc. POPL ’12, pages 427–440, 2012. doi:
10.1145/2103621.2103709.

WST 2021 32

https://doi.org/10.4230/LIPIcs.RTA.2011.155
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://clang.llvm.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://yices.csl.sri.com/papers/tool-paper.pdf
https://yices.csl.sri.com/papers/tool-paper.pdf
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/3437992.3439935
https://doi.org/10.1007/978-3-662-54580-5_21
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2103621.2103709
https://costa.fdi.ucm.es/wst2021/

Analyzing Expected Runtimes of Probabilistic
Integer Programs Using Expected Sizes
Fabian Meyer !Ï �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Marcel Hark ! Ï �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Jürgen Giesl !Ï �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract
We present a novel modular approach to infer upper bounds on the expected runtimes of probabilistic
integer programs automatically. To this end, it computes bounds on the runtimes of program parts
and on the sizes of their variables in an alternating way. To evaluate its power, we implemented our
approach in a new version of our open-source tool KoAT.

2012 ACM Subject Classification Theory of computation → Program analysis; Theory of computa-
tion → Random walks and Markov chains; Mathematics of computing → Probabilistic algorithms

Keywords and phrases Probabilistic Integer Programs, Expected Runtimes, Expected Sizes, Auto-
matic Complexity Analysis, Positive Almost Sure Termination

Funding funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
235950644 (Project GI 274/6-2) and the DFG Research Training Group 2236 UnRAVeL

Acknowledgements We thank Carsten Fuhs for discussions on initial ideas.

1 Introduction

Most approaches for automatic complexity analysis combine basic techniques like ranking
functions in sophisticated ways. For example, in [3] we developed a modular approach for
complexity analysis of integer programs, based on alternating between finding runtime bounds
for program parts and using them to infer bounds on the sizes of variables in such parts. The
corresponding implementation in KoAT is one of the leading tools for complexity analysis.

There are several adaptions of basic techniques like ranking functions, but most sophistica-
ted full approaches for complexity analysis have not been adapted to probabilistic programs yet.
In this paper, we study probabilistic integer programs and define suitable notions of non-proba-
bilistic and expected runtime and size bounds (Sect. 2). Then, we adapt our modular approach
for runtime and size analysis of [3] to probabilistic programs (Sect. 3). So such an adaption is
not only possible for basic techniques like ranking functions, but also for full approaches for
complexity analysis. When computing expected runtime or size bounds for new program parts,
a main difficulty is to determine when it is sound to use expected bounds on previous program
parts and when one has to use non-probabilistic bounds instead. Sect. 4 evaluates the imple-
mentation of our new approach in KoAT [3, 4]. The full version of our paper appeared in [5].

2 Complexity Bounds

Fig. 1 shows a probabilistic integer program (PIP), with the locations L = {ℓ0, ℓ1, ℓ2} and
the variables V = {x, y}. It has four general transitions GT = {g0, g1, g2, g3} with g0 = {t0},
g1 = {t1, t2}, g2 = {t3}, and g3 = {t4}, where the transitions ti are chosen with a certain

WST 2021 33

mailto:fabian.meyer@cs.rwth-aachen.de
https://verify.rwth-aachen.de/fmeyer/
https://orcid.org/0000-0003-1038-4944
mailto:marcel.hark@cs.rwth-aachen.de
https://verify.rwth-aachen.de/mhark/
https://orcid.org/0000-0001-5111-3177
mailto:giesl@cs.rwth-aachen.de
https://verify.rwth-aachen.de/giesl/
https://orcid.org/0000-0003-0283-8520
https://costa.fdi.ucm.es/wst2021/

ℓ0 ℓ1 ℓ2t0 ∈ g0

η(x) = x

η(y) = y

t1 ∈ g1

p = 1
2 η(x) = x − 1

τ = (x > 0) η(y) = y + x

t2 ∈ g1
p = 1

2 η(x) = x

τ = (x > 0) η(y) = y + x

t3 ∈ g2

η(x) = x

η(y) = y
t4 ∈ g3

η(x) = x

η(y) = y − 1
τ = (y > 0)

Figure 1 PIP with non-deterministic branching (g1 vs. g2) and probabilistic branching (t1 vs. t2)

probability p when their general transition is executed. Transitions have a guard τ and
perform an update η on the program variables. Let p = 1 and τ = t if not stated explicitly.

Similar to [3], our approach computes bounds that represent weakly monotonically
increasing functions from V → R≥0 ∪ {∞}. Such bounds can easily be “composed”, i.e., if f

and g are both weakly monotonically increasing upper bounds, then so is f ◦ g.
For the set of all transitions T and the set of all bounds B, we call RB : T → B a

runtime bound if for all t ∈ T , RB(t) is an upper bound on the number of executions of t.
SB : T × V → B is a size bound if for all t ∈ T and x ∈ V, SB(t, x) over-approximates the
greatest absolute value that x takes after the application of t. We call a tuple (RB, SB) a
(non-probabilistic) bound pair. We use such non-probabilistic bound pairs for an initialization
of expected bounds and to compute improved expected runtime and size bounds in Sect. 3.

▶ Example 1 (Bound Pair). The technique of [3] computes the following bound pair for the
PIP of Fig. 1 (by ignoring the probabilities of the transitions).

RB(t) =

1, if t = t0 or t = t3

x, if t = t1

∞, if t = t2 or t = t4

SB(t, x) =
{

x, if t ∈ {t0, t1, t2}
3 · x, if t ∈ {t3, t4}

SB(t, y) =
{

y, if t = t0

∞, if t ∈ {t1, t2, t3, t4}
Thus, the runtimes of t2 and t4 are unbounded (i.e., the PIP is not terminating when regarding
it as a non-probabilistic program). SB(t, x) is finite for all transitions t, since x is never
increased.1 In contrast, the value of y can be arbitrarily large after all transitions but t0.

We now define the expected runtime and size complexity of a PIP P. For a general
transition g ∈ GT , its runtime is the random variable R(g), where for any run ϑ (i.e., for any
infinite sequence of configurations of the program), R(g)(ϑ) is the number of executions of a
transition from g in the run ϑ. One can define the semantics of PIPs by a standard cylinder
construction based on deterministic Markovian schedulers. Then for any scheduler S and
any initial state s0 mapping the variables to integers, one can define the expected runtime
complexity of g to be the expected value ES,s0(R(g)) of R(g) under the corresponding
probability measure. The expected runtime complexity of the whole program P results
from adding the expected runtime complexities of all its general transitions. If P ’s expected
runtime complexity is finite for every scheduler S and every initial state s0, then P is called
positively almost surely terminating (PAST) [2].

1 The reason for SB(t3, x) = 3 · x is that this size bound should be the maximum of the size bounds
SB(t, x) for all transitions t that may precede t3, and we over-approximate the maximum of bounds by
their sum. Therefore, we obtain SB(t3, x) = SB(t0, x) + SB(t1, x) + SB(t2, x).

WST 2021 34

https://costa.fdi.ucm.es/wst2021/

Similarly, for any g ∈ GT , ℓ ∈ L, and x ∈ V, their size is the random variable S(g, ℓ, x),
where for any run ϑ, S(g, ℓ, x)(ϑ) is the greatest absolute value of x in location ℓ, whenever
ℓ was entered with a transition from g. For any scheduler S and initial state s0, the expected
size complexity of (g, ℓ, x) is ES,s0(S(g, ℓ, x)). Our goal is to compute bounds RBE and SBE
for the expected runtime and size complexity which hold independent of the scheduler.

▶ Definition 2 (Expected Runtime and Size Bounds). RBE : GT → B is an expected runtime
bound if |s0| (RBE(g)) ≥ ES,s0(R(g)) holds for all g ∈ GT , schedulers S, and initial states
s0. Here, |s0| (RBE(g)) results from RBE(g) by instantiating every variable x with |s0(x)|.

SBE : GT × L × V → B is an expected size bound if |s0| (SBE(g, ℓ, x)) ≥ ES,s0(S(g, ℓ, x))
holds for all g ∈ GT , ℓ ∈ L, x ∈ V, and all schedulers S and initial states s0. A pair
(RBE, SBE) is called an expected bound pair.

▶ Example 3 (Expected Runtime and Size Bounds). Our new technique from Sect. 3 will
derive the following expected bounds for the PIP from Fig. 1.

RBE(g) =

1, if g ∈{g0, g2}
2 · x, if g = g1

6 · x2 + 2 · y, if g = g3

SBE(g, _, x) =

x, if g = g0

2 · x, if g = g1

3 · x, if g ∈{g2, g3}
SBE(g0, ℓ1, y) = y SBE(g2, ℓ2, y) = 6 · x2 + 2 · y

SBE(g1, ℓ1, y) = 6 · x2 + y SBE(g3, ℓ2, y) = 12 · x2 + 4 · y

While the runtimes of t2 and t4 were unbounded in the non-probabilistic case (Ex. 1), we
obtain finite bounds on the expected runtimes of g1 = {t1, t2} and g3 = {t4}. For example,
we can expect x to be non-positive after at most |s0| (2 · x) iterations of g1. Based on the
above expected runtime bounds, the expected runtime complexity of the PIP is at most
|s0| (RBE(g0) + . . . + RBE(g3)) = |s0| (2 + 2 · x + 2 · y + 6 · x2), i.e., it is in O(n2) where n is
the maximal absolute value of the program variables at the start of the program.

3 Computing Expected Runtime Bounds

We use a class of probabilistic ranking functions r that map every location to a linear
polynomial. Nevertheless, our approach of course also infers non-linear expected runtimes
(by combining the linear bounds obtained for different program parts). For any subsets
GT> ⊆ GTni ⊆ GT , we then say that r is a probabilistic linear ranking function (PLRF) for
GT> and GTni if all general transitions g ∈ GTni are non-increasing (i.e., s(τg) = t implies
s(r(ℓg)) ≥ expr,g,s) and all general transitions g ∈ GT> are decreasing (i.e., s(τg) = t implies
s(r(ℓg)) − 1 ≥ expr,g,s). Here, τg is the condition and ℓg is the start location of g, and
expr,g,s denotes the expected value of r after an execution of g in state s. Moreover, we need
appropriate boundedness conditions concerning the positivity of the ranking function.

So if one is restricted to the sub-program GTni, then r(ℓ) is an upper bound on the
expected number of applications of transitions from GT> when starting in ℓ. Hence, a PLRF
for GT> = GTni = GT would imply that the whole program is PAST. However, our PLRFs
differ from the standard notion of probabilistic ranking functions by considering arbitrary
subsets GTni ⊆ GT . This is needed for the modularity of our approach which allows us to
analyze program parts separately (e.g., GT \ GTni is ignored when inferring a PLRF).

▶ Example 4 (PLRFs). Consider again the PIP in Fig. 1 and the sets GT> = GTni = {g1}
and GT ′

> = GT ′
ni = {g3}, which correspond to its two loops. The function r with r(ℓ1) = 2 · x

WST 2021 35

https://costa.fdi.ucm.es/wst2021/

and r(ℓ0) = r(ℓ2) = 0 is a PLRF for GT> = GTni: For s1(x) = s(x − 1) = s(x) − 1 and
s2(x) = s(x) we have expr,g,s = 1

2 · s1(r(ℓ1)) + 1
2 · s2(r(ℓ1)) = 2 · s(x) − 1 = s(r(ℓ1)) − 1. So

r is decreasing on g1 and as GT> = GTni, also the non-increase property holds.
Similarly, r′ with r′(ℓ2) = y and r′(ℓ0) = r′(ℓ1) = 0 is a PLRF for GT ′

> = GT ′
ni.

Our approach to infer expected runtime bounds is based on an underlying (non-probabilis-
tic) bound pair (RB, SB) which is computed by existing techniques (in our implementation,
we use [3]). To do so, we abstract the PIP to a standard integer transition system. Of course,
we usually have RB(t) = ∞ for some transitions t.

We start with an expected bound pair (RBE, SBE) that is obtained from “lifting” (RB, SB)
to expected bounds by simply adding the bounds for all transitions in a general transition.

Afterwards, the expected runtime bound RBE is improved repeatedly by applying the
following Thm. 6 (and SBE is improved repeatedly in a similar way). Here, we only show
the improvement of RBE and refer to [5] for the improvement of expected size bounds. Our
approach alternates the improvement of RBE and SBE, and it uses expected size bounds on
“previous” transitions to improve expected runtime bounds, and vice versa.

To improve RBE, we generate a PLRF r for a part of the program with the general
transitions GTni. To obtain a bound for the full program from r, for any ℓ ∈ L let its entry
transitions ETGTni(ℓ) be those transitions from GT \ GTni that can enter ℓ, and let GTni’s entry
locations ELGTni be those start locations of GTni whose entry transitions are not empty.

▶ Example 5 (Entry Locations and Transitions). For the PIP from Fig. 1 and GTni = {g1}, we
have ELGTni = {ℓ1} and ETGTni(ℓ1) = {g0}. So the loop formed by g1 is entered at ℓ1, and g0
is executed before. Similarly, for GT ′

ni = {g3} we have ELGT ′
ni

= {ℓ2} and ETGT ′
ni

(ℓ2) = {g2}.

Recall that if r is a PLRF for GT> ⊆ GTni, then in a program that is restricted to GTni, r(ℓ)
is an upper bound on the expected number of executions of transitions from GT> when starting
in ℓ. Since r(ℓ) may contain negative coefficients, it is not weakly monotonically increasing in
general. To transform polynomials into bounds from B, let the over-approximation ⌈·⌉ replace
all coefficients by their absolute value. So for example, ⌈x − y⌉ = ⌈x + (−1) · y⌉ = x + y.

To turn ⌈r(ℓ)⌉ into a bound for the full program, one has to take into account how often
the sub-program GTni is reached via an entry transition h ∈ ETGTni(ℓ) for some ℓ ∈ ELGTni .
This can be over-approximated by

∑
t=(...,ℓ)∈h RB(t), which is an upper bound on the number

of times that transitions in h to the entry location ℓ of GTni are applied in a full program run.
The bound ⌈r(ℓ)⌉ is expressed in terms of the program variables at the entry location ℓ

of GTni. To obtain a bound in terms of the variables at the start of the program, one has
to take into account which value a program variable x may be expected to have when the
sub-program GTni is reached. For every entry transition h ∈ ETGTni(ℓ), this value can be
over-approximated by SBE(h, ℓ, x). Thus, we have to instantiate each variable x in ⌈r(ℓ)⌉
by SBE(h, ℓ, x). Let SBE(h, ℓ, ·) : V → B be the mapping with SBE(h, ℓ, ·)(x) = SBE(h, ℓ, x).
Hence, SBE(h, ℓ, ·)(⌈r(ℓ)⌉) over-approximates the expected number of applications of GT> if
GTni is entered in location ℓ, where this bound is expressed in terms of the input variables of
the program. Here, weak monotonic increase of ⌈r(ℓ)⌉ ensures that instantiating its variables
by an over-approximation of their size yields an over-approximation of the runtime.

▶ Theorem 6 (Expected Runtime Bounds). Let (RBE, SBE) be an expected bound pair, RB a
(non-probabilistic) runtime bound, and r a PLRF for GT> ⊆ GTni ⊆ GT . Then RB′

E : GT → B
is an expected runtime bound where

WST 2021 36

https://costa.fdi.ucm.es/wst2021/

RB′
E(g) =

∑
ℓ∈ELGTni

h∈ETGTni (ℓ)

(
∑

t=(...,ℓ)∈h

RB(t)) · (SBE(h, ℓ, ·) (⌈r(ℓ)⌉)) , if g ∈ GT>

RBE(g), if g ̸∈ GT>

▶ Example 7 (Expected Runtime Bounds). For the PIP from Fig. 1, our approach starts with
lifting the bound pair from Ex. 1 which results in RBE(g0) = RBE(g2) = 1 and RBE(g1) =
RBE(g3) = ∞. Moreover, SBE(g0, ℓ1, x) = x, SBE(g1, ℓ1, x) = 2 · x, SBE(g2, ℓ2, x) =
SBE(g3, ℓ2, x) = 3 · x, SBE(g0, ℓ1, y) = y, and SBE(g, _, y) = ∞ whenever g ̸= g0.

To improve the bound RBE(g1) = ∞, we use the PLRF r for GT> = GTni = {g1} from
Ex. 4. By Ex. 5, we have ELGTni = {ℓ1} and ETGTni(ℓ1) = {g0} with g0 = {t0}, whose runtime
bound is RB(t0) = 1, see Ex. 1. Using the expected size bound SBE(g0, ℓ1, x) = x from Ex. 3,
Thm. 6 yields RB′

E(g1) = RB(t0)·SBE(g0, ℓ1, ·) (⌈r(ℓ1)⌉) = 1·2·x = 2·x. To improve RBE(g3),
we use the PLRF r′ for GT ′

> = GT ′
ni = {g3} from Ex. 4. As ELGT ′

ni
= {ℓ2} and ETGT ′

ni
(ℓ2) = {g2}

by Ex. 5, where g2 = {t3} and RB(t3) = 1 (Ex. 1), with the bound SBE(g2, ℓ2, y) = 6·x2 +2·y
from Ex. 3, Thm. 6 yields RB′

E(g3) = RB(t3) · SBE(g2, ℓ2, ·) (⌈r′(ℓ2)⌉) = 1 · SBE(g2, ℓ2, y) =
6 · x2 + 2 · y. So based on the expected size bounds of Ex. 3, we have shown how to compute
the expected runtime bounds of Ex. 3 automatically. As mentioned, we refer to [5] for the
computation of (improved) expected size bounds.

Our approach relies on combining bounds that one has computed earlier in order to derive
new bounds. If a new bound is computed by linear combinations of earlier bounds, then it is
sound to use the “expected versions” of these earlier bounds, while this is not the case if
two bounds are multiplied. Thus, it would be unsound to use the expected runtime bounds
RBE(h) instead of the non-probabilistic bounds

∑
t=(...,ℓ)∈h RB(t) on the entry transitions

in Thm. 6. If bounds b1, . . . , bn are substituted into another bound b, then it is sound to
use “expected versions” of b1, . . . , bn if b is concave, see, e.g., [1]. Since bounds from B do
not contain negative coefficients, we obtain that a finite bound b ∈ B is concave iff it is a
linear polynomial. Thus, in Thm. 6 we may substitute expected size bounds SBE(h, ℓ, x) into
⌈r(ℓ)⌉, since we restricted ourselves to linear ranking functions r.

4 Implementation and Conclusion

We presented a new modular approach to infer upper bounds on the expected runtimes of
probabilistic integer programs. To this end, non-probabilistic and expected runtime and size
bounds on parts of the program are computed in an alternating fashion and then combined
to an overall expected runtime bound.

We implemented our analysis in a new version of our open-source tool KoAT [3], which can
also be accessed via a web interface [4]. To assess the power of our approach, we compared
KoAT with the main other related tools Absynth [6] and eco-imp [1] which are both based on
a conceptionally different backward-reasoning approach. We ran the tools on a collection of
75 examples from Absynth’s evaluation in [6] and additional benchmarks, including 10 larger
PIPs based on benchmarks from the TPDB [7], where some transitions were enriched with
probabilistic behavior. In the evaluation, KoAT succeeded on 91% of the examples, while
Absynth and eco-imp only inferred finite bounds for 68% resp. 77% of the examples. For
further details on the experiments and an overview on related work, we refer to [5].

References
1 M. Avanzini, G. Moser, and M. Schaper. A modular cost analysis for probabilistic programs.

Proc. ACM Program. Lang., 4(OOPSLA), 2020. doi:10.1145/3428240.

WST 2021 37

https://doi.org/10.1145/3428240
https://costa.fdi.ucm.es/wst2021/

2 O. Bournez and F. Garnier. Proving positive almost-sure termination. In Proc. RTA ’05,
LNCS 3467, pages 323–337, 2005. doi:10.1007/978-3-540-32033-3_24.

3 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size
complexity of integer programs. ACM TOPLAS, 38(4), 2016. doi:10.1145/2866575.

4 KoAT: https://aprove-developers.github.io/ExpectedUpperBounds/.
5 F. Meyer, M. Hark, and J. Giesl. Inferring expected runtimes of probabilistic integer programs

using expected sizes. In Proc. TACAS ’21, LNCS 12651, pages 250–269, 2021. Long version at
https://arxiv.org/abs/2010.06367. doi:10.1007/978-3-030-72016-2_14.

6 V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. Bounded expectations: Resource analysis for
probabilistic programs. In Proc. PLDI ’18, pp. 496–512, 2018. doi:10.1145/3192366.3192394.

7 TPDB: http://termination-portal.org/wiki/TPDB.

WST 2021 38

https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1145/2866575
https://aprove-developers.github.io/ExpectedUpperBounds/
https://arxiv.org/abs/2010.06367
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1145/3192366.3192394
http://termination-portal.org/wiki/TPDB
https://costa.fdi.ucm.es/wst2021/

Parallel Complexity of Term Rewriting Systems∗

Thaïs Baudon �

ENS de Rennes & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France

Carsten Fuhs �

Birkbeck, University of London, United Kingdom

Laure Gonnord �

University of Lyon & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France

Abstract
In this workshop paper, we revisit the notion of parallel-innermost term rewriting. We provide a
definition of parallel complexity and propose techniques to derive upper bounds on this complexity
via the Dependency Tuple framework by Noschinski et al.

2012 ACM Subject Classification Theory of computation → Program verification, Rewrite systems;
Software and its engineering → Automated static analysis, Formal software verification

Keywords and phrases Complexity analysis, Parallelism, Rewriting

1 Introduction

In this extended abstract, we consider the problem of evaluating the potentiality of paral-
lelisation in pattern-matching based recursive functions like the one depicted in Figure 1.

fn size(&self) -> int {
match self {

&Tree::Node { v, ref left, ref right }
=> left.size() + right.size() + 1,
&Tree::Empty => 0 , } }

Figure 1 Tree size computation in Rust

In this particular example, the recursive calls to left.size() and right.size() can be
done in parallel. Building on previous work on parallel-innermost rewriting [7, 4], and first
ideas about parallel complexity [1], we propose a new notion of Parallel Dependency Tuples
that capture such a behaviour, and a method to compute parallel complexity bounds.

2 Parallel-innermost Term Rewriting

The following definitions are mostly standard [3].

▶ Definition 1 (Term rewrite system, innermost rewriting). T (Σ, V) denotes the set of terms
over a finite signature Σ and the set of variables V. For a term t, the set Pos(t) of its
positions is defined inductively as a set of strings of positive integers: (a) if t ∈ V, then
Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then Pos(t) = {ε} ∪ ⋃

1≤i≤n{iπ | π ∈ Pos(ti)}.
The position ε is called the root position of term t. The (strict) prefix order < on positions
is the strict partial order given by: π < τ iff there exists π′ ̸= ε such that ππ′ = τ . For

∗ This work was partially funded by the French National Agency of Research in the CODAS Project
(ANR-17-CE23-0004-01).

WST 2021 39

mailto:thais.baudon@ens-lyon.fr
mailto:carsten@dcs.bbk.ac.uk
mailto:laure.gonnord@ens-lyon.fr
https://costa.fdi.ucm.es/wst2021/

π ∈ Pos(t), t|π is the subterm of t at position π, and we write t[s]π for the term that results
from t by replacing the subterm t|π at position π by the term s.

For a term t, V(t) is the set of variables in t. If t has the form f(t1, . . . , tn), root(t) = f

is the root of t. A term rewrite system (TRS) R is a set of rules {ℓ1 → r1, . . . , ℓn → rn}
with ℓi, ri ∈ T (Σ, V), ℓi ̸∈ V, and V(ri) ⊆ V(ℓi) for all 1 ≤ i ≤ n. The rewrite relation of R
is s →R t iff there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ such
that s = s[ℓσ]π and t = s[rσ]π. Here, σ is called the matcher and the term ℓσ is called the
redex of the rewrite step. If ℓσ has no proper subterm that is also a possible redex, ℓσ is an
innermost redex, and the rewrite step is an innermost rewrite step denoted by s i→R t.

ΣR
d = {f | f(ℓ1, . . . , ℓn) → r ∈ R} and ΣR

c = Σ \ ΣR
d are the defined and constructor

symbols of R. We may omit the superscript and just write Σd and Σc if R is not of importance
or clear from the context. Finally, let Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd}.

The notion of parallel-innermost rewriting dates back at least to [7]. Informally, in a
parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This cor-
responds to executing all function calls in parallel on a machine with unbounded parallelism.

▶ Definition 2 (Parallel-innermost rewriting [4]). A term s rewrites innermost in parallel to t

with a TRS R, written s i−→∥ R t, iff s i−→+R t, and either (a) s i→R t with s an innermost
redex, or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and for all 1 ≤ k ≤ n either sk

i−→∥ R tk or
sk = tk is a normal form.

▶ Example 3 (size). Consider the TRS R with the following rules modelling the code
of Figure 1.

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

Here ΣR
d = {plus, size} and ΣR

c = {Zero, S, Nil, Tree}. We have the following parallel
innermost rewrite sequence, where innermost redexes are underlined:

size(Tree(Zero, Nil, Tree(Zero, Nil, Nil)))
i−→∥ R S(plus(size(Nil), size(Tree(Zero, Nil, Nil))))
i−→∥ R S(plus(Zero, S(plus(size(Nil), size(Nil)))))
i−→∥ R S(plus(Zero, S(plus(Zero, Zero))))
i−→∥ R S(plus(Zero, S(Zero)))
i−→∥ R S(S(Zero))

Note that in the second and in the third step, two innermost steps each are happening in
parallel. A corresponding regular innermost rewrite sequence without parallel evaluation of
redexes would have needed two more steps.

3 Finding Upper Bounds for Parallel Complexity

3.1 Notion of Parallel Complexity
We extend the notion of innermost runtime complexity to parallel-innermost rewriting.

▶ Definition 4 ((Parallel) Innermost Runtime Complexity). The size |t| of a term t is |x| = 1 if
x ∈ V and |f(t1, . . . , tn)| = 1 +

∑n
i=1|ti|, otherwise. The derivation height of a term t w.r.t.

a relation → is the length of the longest sequence of →-steps from t: dh(t, →) = sup{e |
∃ t′ ∈ T (Σ, V). t →e t′} where →e is the eth iterate of →. If t starts an infinite →-sequence,
we write dh(t, →) = ω.

WST 2021 40

https://costa.fdi.ucm.es/wst2021/

A term f(t1, . . . , tk) is basic (for a TRS R) iff f ∈ ΣR
d and t1, . . . , tk ∈ T (ΣR

c , V). T R
basic is

the set of basic terms for a TRS R. For n ∈ N, we define the innermost runtime complexity
function ircR(n) = sup{dh(t, i→R) | t ∈ Tbasic, |t| ≤ n} and we introduce the parallel
innermost runtime complexity function irc∥

R(n) = sup{dh(t, i−→∥ R) | t ∈ Tbasic, |t| ≤ n}.

In the following, given a TRS R, our goal shall be to infer (asymptotic) upper bounds
for irc∥

R fully automatically. As usual for runtime complexity, we are considering only basic
terms as start terms, corresponding to a defined function called on data objects as arguments.
An upper bound for (sequential) ircR is also an upper bound for irc∥

R. We will introduce
techniques to find upper bounds for irc∥

R that are strictly tighter than these trivial bounds.

3.2 Complexity: the sequential case
We build on the Dependency Tuple framework [6], originally introduced to determine upper
bounds for (sequential) innermost runtime complexity. A central idea is to group all function
calls by a rewrite rule together rather than to regard them separately (as for termination [2]).

▶ Definition 5 (Sharp Terms T ♯). For every f ∈ Σd, we introduce a fresh symbol f ♯ of the
same arity. For a term t = f(t1, . . . , tn) with f ∈ Σd, we define t♯ = f ♯(t1, . . . , tn) and let
T ♯ = {t♯ | t ∈ T (Σ, V), root(t) ∈ Σd}.

To compute an upper bound for sequential complexity, we “count” how often each rewrite
rule is used. The idea is that the cost of the function call to the lhs of a rule is 1 + the sum
of the costs of all the function calls in the rhs, counted separately. To group k function
calls together, we use “compound symbols” Comk, which intuitively represent the sum of
the runtimes of their arguments. Then, we can use polynomial interpretations Pol with
Pol(Comk(x1, . . . , xk)) = x1 + · · · + xk for all k to compute a complexity bound [6, Thm. 27].

▶ Definition 6 (Dependency Tuple, DT [6]). A dependency tuple (DT) is a rule of the
form s♯ → Comn(t♯

1, . . . , t♯
n) where s♯, t♯

1, . . . , t♯
n ∈ T ♯. Let ℓ → r be a rule with Posd(r) =

{π1, . . . , πn} and π1 ◁ . . . ◁ πn for a total order ◁ on positions. Then DT(ℓ → r) = ℓ♯ →
Comn(r|♯π1 , . . . , r|♯πn

). For a TRS R, let DT (R) = {DT (ℓ → r) | ℓ → r ∈ R}.

▶ Example 7. For our running example, we get the following DTs:

plus♯(Zero, y) → Com0
plus♯(S(x), y) → Com1(plus♯(x, y))

size♯(Nil) → Com0
size♯(Tree(v, l, r)) → Com3(size♯(l), size♯(r), plus♯(size(l), size(r)))

The following polynomial interpretation, which orients all DTs with ≻ and all rules from R
with ≿, proves ircR(n) ∈ O(n2): Pol(plus♯(x1, x2)) = Pol(size(x1)) = x1, Pol(size♯(x1)) =
2x1 + x2

1, Pol(plus(x1, x2)) = x1 + x2, Pol(Tree(x1, x2, x3)) = 1 + x2 + x3, Pol(S(x1)) =
1 + x1, Pol(Zero) = Pol(Nil) = 1. Since for all constructor symbols f , Pol(f(x1, . . . , xn)) ≤
x1 + . . .+xn +c for some c ∈ N and since the maximal degree of the polynomial interpretation
is 2, the upper bound of O(n2) follows by [6, Thm. 27].

3.3 Computing Upper Bounds for Parallel Rewriting
To find upper bounds for runtime complexity of parallel-innermost rewriting, we can reuse the
notion of DTs from Def. 6 for sequential innermost rewriting along with existing techniques [6]
and implementations. We illustrate this in the following example.

WST 2021 41

https://costa.fdi.ucm.es/wst2021/

▶ Example 8. In the recursive size-rule, the two calls to size(l) and size(r) happen in parallel
(this will be captured by the notion of structural independency). Thus, the cost for these two
calls is not the sum, but the maximum of the calls. Regardless of which of these two calls
has the higher cost, we still need to add the cost for the call to plus on the results of the two
calls, which starts evaluating only after both calls to size have finished. With σ as the used
matcher for the rule and with t ↓ as the (here unique) normal form resulting from repeatedly
rewriting a term t with i−→∥ R (the “result” of evaluating t), we have:

dh(size(Tree(v, l, r))σ, i−→∥ R)
= 1 + max(dh(size(l)σ, i−→∥ R), dh(size(r)σ, i−→∥ R)) + dh(plus(size(l)σ ↓, size(r)σ ↓), i−→∥ R)

We could now introduce a new symbol ComPark that explicitly expresses that its arguments
are evaluated in parallel. This symbol would then be interpreted as the maximum of its
arguments in an extension of [6, Thm. 27]:

size♯(Tree(v, l, r)) → Com2(ComPar2(size♯(l), size♯(r)), plus♯(size(l), size(r)))

Although automation of the search for polynomial implementations extended by the maximum
function is readily available [5], we would still have to extend the notion of Dependency
Tuples and also adapt all existing techniques in the Dependency Tuple Framework to work
with ComPark.

This is why we have chosen the following alternative approach. Equivalently to the above,
we can “factor in” the cost of calling plus into the maximum function:

dh(size(Tree(v, l, r))σ, i−→∥ R)
= max(1 + dh(size(l)σ, i−→∥ R) + dh(plus(size(l)σ ↓, size(r)σ ↓), i−→∥ R),

1 + dh(size(r)σ, i−→∥ R) + dh(plus(size(l)σ ↓, size(r)σ ↓), i−→∥ R))

Intuitively, this would correspond to evaluating plus(size(l), size(r)) twice, in two parallel
threads of execution, which costs the same amount of time as evaluating plus(size(l), size(r))
once. We can represent this maximum of the execution times of two threads by introducing
two DTs for our recursive size-rule:

size♯(Tree(v, l, r)) → Com2(size♯(l), plus♯(size(l), size(r)))
size♯(Tree(v, l, r)) → Com2(size♯(r), plus♯(size(l), size(r)))

To express the cost of a concrete rewrite sequence, we would non-deterministically choose
the DT that corresponds to the “slower thread”.

In other words, the cost of the function call to the lhs of a rule is 1 + the sum of the
costs of all the function calls in the rhs that are in structural dependency with each other.
The actual cost of the function call to the lhs in a concrete rewrite sequence is the maximum
of all the possible costs caused by such chains of structural dependency (based on the prefix
order > on positions of defined function symbols in the rhs). Thus, structurally independent
function calls are considered in separate DTs, whose non-determinism models the parallelism
of these function calls.

The notion of structural dependency of function calls is captured by Def. 9. Basically,
it comes from the fact that a term cannot be evaluated before all its subterms have been
reduced to normal forms (innermost rewriting/call by value). This induces a “happens-before”
relation for the computation.

▶ Definition 9 (Structural dependency). Let t be a term and τ1, τ2 be the positions of two
defined symbols in t. Let t1 = t|τ1 and t2 = t|τ2 . Then t1 structurally depends on t2 iff
τ1 < τ2 in the prefix order < (i.e., t2 is a subterm of t1).

WST 2021 42

https://costa.fdi.ucm.es/wst2021/

▶ Example 10. Let t = S(plus(size(Nil), plus(size(x), Zero))). For our running example, we
find the following structural dependencies in t:

The term t|1 = plus(size(Nil), plus(size(x), Zero)) structurally depends on t|11 = size(Nil),
on t|12 = plus(size(x), Zero), and on t|121 = size(x).
The term t|12 = plus(size(x), Zero) structurally depends on t|121 = size(x).

It is worth noting that when s structurally depends on t, neither s nor t need to be a
redex – what matters for our purposes is that t could be instantiated to a (potential) redex
and that an instance of s could become a redex after its subterms, including the instance of
t, have been fully evaluated. It is also worth noting that the structural dependency relation
is transitive.

We thus revisit the notion of DTs, which now embed structural dependencies.

▶ Definition 11 (Parallel Dependency Tuples DT∥, PDTs). For a rewrite rule ℓ → r, we
define the set of its Parallel Dependency Tuples (PDTs) DT∥(ℓ → r): if Posd(r) = ∅, then
DT∥(ℓ → r) = {ℓ♯ → Com0}; otherwise, DT∥(ℓ → r) = {ℓ♯ → Comk(r|♯π1 , . . . , r|♯πk

) | k >

0, π1 > · · · > πk is a maximal structural dependency chain in Posd(r)}, where π1 > · · · >

πk is a maximal structural dependency chain in Posd(r) iff ∀π ∈ Posd(r), π ≯ π1 ∧ πk ≯ π.
For a TRS R, let DT∥(R) =

⋃
ℓ→r∈R DT∥(ℓ → r).

▶ Example 12. For our recursive size-rule lhs → rhs, we have Posd(rhs) = {1, 11, 12}.
The two maximal >-chains are 11 > 1 and 12 > 1. With rhs|1 = plus(size(l), size(r)),
rhs|11 = size(l), and rhs|12 = size(r), we get the PDTs from Ex. 8.

To connect PDTs with our parallel-innermost rewrite relation i−→∥ R, we need the notion
of chain tree, which is an extension of dependency chains [2], and its complexity.

▶ Definition 13 (Chain Tree, Cplx [6]). Let D be a set of DTs and R be a TRS. Let T be a
(possibly infinite) tree whose nodes are labelled with a DT from D and a substitution. Let the
root node be labelled with (s♯ → Comn(. . .) | σ). Then T is a (D, R)-chain tree for s♯σ iff the
following conditions hold for any node of T , where (u♯ → Comm(v♯

1, . . . , v♯
m) | µ) is the label

of the node:

u♯µ is in normal form w.r.t. R;
if this node has the children (p♯

1 → Comm1(. . .) | δ1), . . . , (p♯
k → Commk

(. . .) | δk),
then there are pairwise different i1, . . . , ik ∈ {1, . . . , m} with v♯

ij
µ i−→∗R p♯

jδj for all
j ∈ {1, . . . , k}.

Let S ⊆ D and s♯ ∈ T ♯. For a chain tree T , |T |S ∈ N∪{ω} is the number of nodes in T la-
belled with a DT from S. We define Cplx⟨D,S,R⟩(s♯) = sup{|T |S | T is a (D, R)-chain tree for
s♯}. For terms s♯ without a (D, R)-chain tree, we define Cplx⟨D,S,R⟩(s♯) = 0.

We can now make our main correctness claim:

▶ Proposition 14 (Cplx bounds Derivation Height for i−→∥ R). Let R be a TRS, let t =
f(t1, . . . , tn) ∈ T (Σ, V) such that all ti are in normal form (in particular, this includes all
t ∈ Tbasic). Then we have dh(t, i−→∥ R) ≤ Cplx⟨DT∥(R),DT∥(R),R⟩(t♯).

Thus, via [6, Thm. 27], in particular we can use polynomial interpretations in the DT
framework for our PDTs to get upper bounds for irc∥

R.

WST 2021 43

https://costa.fdi.ucm.es/wst2021/

▶ Example 15 (Ex. 8 continued). For our TRS R computing the size function on trees, we
get the set DT∥(R) with the following PDTs:

plus♯(Zero, y) → Com0 size♯(Nil) → Com0
plus♯(S(x), y) → Com1(plus♯(x, y)) size♯(Tree(v, l, r)) → Com2(size♯(l), plus♯(size(l), size(r)))

size♯(Tree(v, l, r)) → Com2(size♯(r), plus♯(size(l), size(r)))

The interpretation Pol from Ex. 7 implies irc∥
R(n) ∈ O(n2). This bound is tight: consider

size(t) for a comb-shaped tree t where the first argument of Tree is always Zero and the
third is always Nil. The function plus, which needs time linear in its first argument, is called
linearly often on data linear in the size of the start term. Due to the structural dependencies,
these calls do not happen in parallel (so call k + 1 to plus must wait for call k).
▶ Example 16. Note that irc∥(n) can be asymptotically lower than irc(n), for instance for
the TRS R with the following rules:

doubles(Zero) → Nil d(Zero) → Zero
doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))

The upper bound ircR(n) ∈ O(n2) is tight: from a term doubles(S(S(. . . S(Zero) . . .))),
we get linearly many calls of the linear-time function d on arguments of size linear in the
start term. However, the Parallel Dependency Tuples in this example are:

doubles♯(Zero) → Com0 d♯(Zero) → Com0
doubles♯(S(x)) → Com1(d♯(S(x))) d♯(S(x)) → Com1(d♯(x))
doubles♯(S(x)) → Com1(doubles♯(x))

Then the following polynomial interpretation, which orients all DTs with ≻ and all rules
from R with ≿, proves irc∥

R ∈ O(n): Pol(doubles♯(x1)) = Pol(d(x1)) = 2x1, Pol(d♯(x1)) =
x1, Pol(doubles(x1)) = Pol(Cons(x1, x2)) = Pol(Zero) = Pol(Nil) = 1, Pol(S(x1)) = 1 + x1.

4 Conclusion

We have come up with a notion of parallel runtime complexity and a concrete algorithm to
compute upper bounds on this complexity on TRSs. Future work includes practical design of
parallel rewriting engines that infer their rewriting schedules from parallel dependency tuples
(while taking into account the limitations of the underlying hardware platform). Another
goal is the formalisation of complexity w.r.t. term height (considering terms as trees), which
seems to be more practical for our parallelisation needs.

References
1 Christophe Alias, Carsten Fuhs, and Laure Gonnord. Estimation of Parallel Complexity with

Rewriting Techniques. In Proc. WST ’16, pages 2:1–2:5, 2016.
2 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.

Theoretical Computer Science, 236:133–178, 2000.
3 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Univ. Press, 1998.
4 Mirtha-Lina Fernández, Guillem Godoy, and Albert Rubio. Orderings for innermost termination.

In Proc. RTA ’05, pages 17–31, 2005.
5 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and

Harald Zankl. Maximal termination. In Proc. RTA ’08, pages 110–125, 2008.
6 Lars Noschinski, Fabian Emmes, and Jürgen Giesl. Analyzing innermost runtime complexity

of term rewriting by dependency pairs. J. Autom. Reason., 51(1):27–56, 2013.
7 Jean Vuillemin. Correct and optimal implementations of recursion in a simple programming

language. J. Comput. Syst. Sci., 9(3):332–354, 1974.

WST 2021 44

https://costa.fdi.ucm.es/wst2021/

Between Derivational and Runtime Complexity
Carsten Fuhs �

Birkbeck, University of London, United Kingdom

Abstract
Derivational complexity of term rewriting considers the length of the longest rewrite sequence for
arbitrary start terms, whereas runtime complexity restricts start terms to basic terms. Recently,
there has been notable progress in automatic inference of upper and lower bounds for runtime
complexity. I propose a novel transformation that lets an off-the-shelf tool for inference of upper or
lower bounds for runtime complexity determine upper or lower bounds for derivational complexity
as well. The approach is applicable to derivational complexity problems for innermost rewriting and
for full rewriting. I have implemented the transformation in the tool AProVE and conducted an
extensive experimental evaluation. My results indicate that bounds for derivational complexity can
now be inferred for rewrite systems that have been out of reach for automated analysis thus far.

2012 ACM Subject Classification Theory of computation → Program verification, Rewrite systems;
Software and its engineering → Automated static analysis, Formal software verification

Keywords and phrases term rewriting, derivational complexity, runtime complexity, static analysis

1 Introduction and Preliminaries

Term rewrite systems (TRSs) are a classic computational model both for equational reasoning
and for evaluation of programs with user-defined data structures and recursion. A widely
studied question for TRSs is that of their complexity, i.e., the length of their longest derivation
(i.e., rewrite sequence) as a function of the size of the start term of the derivation. From a
program analysis perspective, this corresponds to the worst-case time complexity of the TRS.

Commonly two “flavors” of complexity are used, which differ by the set of start terms.
(1) The derivational complexity [9] of a TRS considers arbitrary terms as start terms,
including terms with several (possibly nested) function calls. It is inspired by the notion
of termination, which considers whether all rewrite sequences from arbitrary start terms
terminate. Derivational complexity is a suitable measure for the number of rewrite steps
needed for deciding the word problem in first-order equational reasoning via a terminating
and confluent TRS to rewrite both sides of the conjectured equality to normal form.

(2) The runtime complexity [8] of a TRS considers only basic terms as start terms:
intuitively, these are terms where a single function call is performed on constructor terms
(i.e., data objects) as arguments. The motivation for this restriction comes from program
analysis with an interest in the running time of a function on data objects.

As far as I am aware, the two strands of research on derivational and on runtime complexity
have essentially stayed separate thus far. This paper proposes a transformation between TRSs
such that the runtime complexity of the transformed TRS is the same as the derivational
complexity of the original TRS, both for innermost rewriting and for full rewriting. An
extended conference version of this paper with formal definitions, proofs of the theorems,
and a discussion of related work in complexity analysis and transformation-based techniques
was published in 2019 [6].

Preliminaries. Basic knowledge of term rewriting is assumed. We recapitulate (relative)
term rewriting as well as the notions of derivational complexity and runtime complexity.

▶ Definition 1 (Signature, term, term rewriting, defined symbol, constructor symbol, basic
term). T (Σ, V) is the set of terms over signature Σ and variables V. For a term t, V(t) is
the set of variables occurring in t. A TRS R is a set of rules {ℓ1 → r1, . . . , ℓn → rn} with

WST 2021 45

mailto:carsten@dcs.bbk.ac.uk
https://costa.fdi.ucm.es/wst2021/

ℓi, ri ∈ T (Σ, V), ℓi ̸∈ V, and V(ri) ⊆ V(ℓi) for all 1 ≤ i ≤ n. Its rewrite relation is given
by s →R t iff there is a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ with
s = s[ℓσ]π and t = s[rσ]π. Here ℓσ is the redex of the rewrite step.

For two TRSs R and S, R/S is a relative TRS, and its rewrite relation →R/S is →∗
S

◦ →R ◦ →∗
S . We define the innermost rewrite relation by s i→R/S t iff s →∗

S s′ →R s′′ →∗
S t

for some terms s′, s′′ such that the proper subterms of the redexes of each step with →S or
→R are in normal form w.r.t. R ∪ S. We may write →R for →R/∅ and i→R for i→R/∅.

ΣR∪S
d = {f | f(ℓ1, . . . , ℓn) → r ∈ R ∪ S} and ΣR∪S

c = {f | f ∈ Σ occurs in some
rule ℓ → r ∈ R ∪ S} \ ΣR∪S

d are the defined and constructor symbols of R/S. We write
ΣR∪S = ΣR∪S

d ⊎ ΣR∪S
c and T R/S = T (ΣR∪S , V). A term f(t1, . . . , tk) is basic (for a given

relative TRS R/S) iff f ∈ ΣR∪S
d and t1, . . . , tk ∈ T (ΣR∪S

c , V). T R/S
basic denotes the set of basic

terms for R/S.

▶ Definition 2 (Size, derivation height, derivational complexity dc, runtime complexity rc
[8, 9, 14]). The size |t| of a term t is |x| = 1 if x ∈ V and |f(t1, . . . , tk)| = 1 +

∑k
i=1|ti|,

otherwise. The derivation height of a term t w.r.t. a relation → is the length of the longest
sequence of →-steps starting with t, i.e., dh(t, →) = sup{e | ∃ t′ ∈ T (Σ, V). t →e t′} where
→e denotes the eth iterate of →. If t starts an infinite →-sequence, we write dh(t, →) = ω.

We first introduce a generic complexity function compl parameterized by a natural number
n, a relation →, and a set of start terms T0: compl(n, →, T0) = sup{dh(t, →) | t ∈ T0, |t| ≤
n}. The derivational complexity function dcR/S maps any n ∈ N to the length of the longest
sequence of →R/S-steps starting with a term whose size is at most n, i.e., dcR/S(n) =
compl(n, →R/S , T R/S). The runtime complexity function rcR/S is defined analogously for
sequences starting with basic terms, i.e., rcR/S(n) = compl(n, →R/S , T R/S

basic). The innermost
derivational complexity function idcR/S and the innermost runtime complexity function
ircR/S are defined analogously, using i→R/S instead of →R/S in the definitions.

The new transformation preserves and reflects derivation height precisely. However, many
complexity analysis techniques for rewriting consider asymptotic behavior.

▶ Definition 3 (Asymptotic notation, O, Ω, Θ). Let f, g : N → N∪{ω}. Then f(n) ∈ O(g(n))
iff there are constants M, N ∈ N such that f(n) ≤ M · g(n) for all n ≥ N . Moreover, f(n) ∈
Ω(g(n)) iff g(n) ∈ O(f(n)), and f(n) ∈ Θ(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

▶ Example 4 (plus). Consider the relative TRS R/S with R = {plus(0, x) → x, plus(s(x), y) →
s(plus(x, y))} and S = ∅. Here 0 and s are constructor symbols, and plus is a defined symbol.
We have rcR/S(n) ∈ Θ(n), ircR/S(n) ∈ Θ(n), dcR/S(n) ∈ Θ(n2), and idcR/S(n) ∈ Θ(n2).

2 Transforming Derivational Complexity to Runtime Complexity

This section describes the main contribution, an instrumentation of a relative TRS R/S to a
relative TRS R/(S ⊎ G) with dcR/S(n) = rcR/(S⊎G)(n) and idcR/S(n) = ircR/(S⊎G)(n). The
idea is to encode the set of all start terms (over a given signature) that must be considered
for derivational complexity into a set of basic terms (over an extended signature) of the same
term size that can be analyzed for runtime complexity. We add constructor symbols cf

that represent the defined symbols f from R/S in a basic term; Thatte [12] uses a similar
representation to transform arbitrary TRSs to constructor systems. We also add relative
rewrite rules G to generate the original start term for R/S from its encoding as a basic term
for R/(S ⊎ G). The root symbol for these basic terms is called encf for a symbol f . Thus, in
contrast to Thatte, we transform the start term rather than the original rules of the TRS.

WST 2021 46

https://costa.fdi.ucm.es/wst2021/

▶ Example 5 (Ex. 4 continued). A start term plus(plus(s(0), 0), 0) for dc will be represented
by a basic term encplus(cplus(s(0), 0), 0). Here encplus will be a defined symbol and cplus a
constructor symbol. Rewriting using i→G can then restore the original start term.

▶ Definition 6 (Generator rules G, runtime instrumentation). Let R/S be a relative TRS. We
define the generator rules G of R/S as the set of rules

G = {encf (x1, . . . , xn) → f(eArg(x1), . . . , eArg(xn)) | f ∈ ΣR∪S}
∪ {eArg(cf (x1, . . . , xn)) → f(eArg(x1), . . . , eArg(xn)) | f ∈ ΣR∪S

d }
∪ {eArg(f(x1, . . . , xn)) → f(eArg(x1), . . . , eArg(xn)) | f ∈ ΣR∪S

c }

where x1, . . . , xn are variables and all function symbols eArg, cf , and encf are fresh (i.e., do
not occur in R ∪ S). The relative TRS R/(S ⊎ G) is the runtime instrumentation of R/S,
with extended signature ΣR∪S∪G = ΣR∪S ∪ {eArg} ∪ {cf | f ∈ ΣR∪S

d } ∪ {encf | f ∈ ΣR∪S}.

▶ Example 7 (Ex. 4 and Ex. 5 cont’d). For Ex. 4, we get the following generator rules G:

encplus(x1, x2) → plus(eArg(x1), eArg(x2)) eArg(cplus(x1, x2)) → plus(eArg(x1), eArg(x2))
enc0 → 0 eArg(0) → 0

encs(x1) → s(eArg(x1)) eArg(s(x1)) → s(eArg(x1))

▶ Theorem 8 ((Innermost) derivational complexity via (innermost) runtime complexity). Let
R/S be a relative TRS and let R/(S ⊎ G) be its runtime instrumentation. For all n ∈ N, we
then have (1) dcR/S(n) = rcR/(S⊎G)(n), and (2) idcR/S(n) = ircR/(S⊎G)(n).

▶ Example 9 (Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB [13]). As
an example that was (to my knowledge) beyond automated analysis tools for derivational
complexity before, but can now be handled automatically, consider the rewrite rules R:

app(nil, y) → y app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil shuffle(add(n, x)) → add(n, shuffle(reverse(x)))

The implementation of the new transformation in the tool AProVE [7] adds the following
generator rules G:

encnil → nil eArg(nil) → nil
encadd(x1, x2) → add(eArg(x1), eArg(x2)) eArg(add(x1, x2)) → add(eArg(x1), eArg(x2))
encapp(x1, x2) → app(eArg(x1), eArg(x2)) eArg(capp(x1, x2)) → app(eArg(x1), eArg(x2))
encreverse(x1) → reverse(eArg(x1)) eArg(creverse(x1)) → reverse(eArg(x1))
encshuffle(x1) → shuffle(eArg(x1)) eArg(cshuffle(x1)) → shuffle(eArg(x1))

Then AProVE determines dcR/∅(n) ∈ O(n4) and dcR/∅(n) ∈ Ω(n3). (A manual analysis
shows dcR/∅(n) ∈ Θ(n4).) The upper bound is found as follows: First a sufficient criterion [4]
shows that for the TRS R/G, rc and irc coincide. To analyze irc, the approach by Naaf et
al. [10] is applied. It encodes the search for upper bounds for irc to the search for upper
time complexity bounds for integer transition systems. The proof is completed using the
tools CoFloCo [3] and KoAT [2] as backends for complexity analysis of integer transition
systems. The lower bound is found using rewrite lemmas [5].

WST 2021 47

Derivational_Complexity_Full_Rewriting/AG01/#3.12
https://costa.fdi.ucm.es/wst2021/

Tool O(1) ≤ O(n) ≤ O(n2) ≤ O(n3) ≤ O(n≥4)
TcT direct idc 1 368 468 481 501

TcT instrumentation irc 3 465 555 626 691
AProVE instrumentation irc 13 598 769 827 833

Table 1 Upper bounds for derivational complexity of innermost rewriting

Tool O(1) ≤ O(n) ≤ O(n2) ≤ O(n3) ≤ O(n≥4)
TcT direct dc 1 366 466 479 499

TcT instrumentation rc 1 203 224 304 304
AProVE instrumentation rc 1 328 386 398 399

Table 2 Upper bounds for derivational complexity of full rewriting

3 Implementation and Experimental Evaluation

I implemented my transformation in the termination and complexity analysis tool AProVE [7].
First the runtime instrumentation of the derivational complexity problems is computed,
and then this generated problem is analyzed by existing techniques to infer bounds for
the runtime complexity. The configurations for innermost and full rewriting are labeled
“AProVE instrumentation irc” and “AProVE instrumentation rc” in Tables 1 and 2.

I compared with the state-of-the-art complexity analysis tool TcT [1] from the Ter-
mination and Complexity Competition in 201812 to analyze derivational complexity for
innermost and full rewriting, “TcT direct idc” and “TcT direct dc” in Tables 1 and 2.
To assess if the new technique could be useful for existing state-of-the-art tools like TcT
for derivational complexity, I extracted the runtime instrumentations for the derivational
complexity benchmarks and ran experiments with TcT on the resulting runtime complexity
inputs (“TcT instrumentation ...”).

The experiments were run on the StarExec compute cluster [11] in the all.q queue
with 300 seconds timeout per example. The benchmark set was based on the derivational
complexity families of version 10.6 of the TPDB: 2664 benchmarks for innermost rewriting
from family Derivational_Complexity_Innermost_Rewriting and 1754 benchmarks for
full rewriting from family Derivational_Complexity_Full_Rewriting). I used only those
benchmarks whose rewrite rules ℓ → r satisfy the conditions from Def. 1 that ℓ ̸∈ V and
V(r) ⊆ V(ℓ). Version 10.6 of the TPDB has 60 further derivational complexity examples for
innermost rewriting and 55 further examples for full rewriting that are not compatible with
these requirements.

Tables 1 and 2 give an overview over my experimental results for upper bounds.3 For
each configuration, I state the number of examples for which the corresponding asymptotic
upper complexity bound was inferred. An entry in a row “≤ O(nk)” means that the tool
proved a bound ≤ O(nk) (e.g., in Table 1, “TcT direct idc” proved constant or linear upper
bounds in 368 cases).

1 Available at: https://www.starexec.org/starexec/secure/details/solver.jsp?id=20651
2 In 2019, no tools had been submitted for derivational complexity.
3 I ran experiments for lower bounds as well [6], omitted here for space reasons.

WST 2021 48

https://www.starexec.org/starexec/secure/details/solver.jsp?id=20651
https://costa.fdi.ucm.es/wst2021/

For innermost rewriting, Table 1 shows that both TcT and AProVE benefit significantly
from the new instrumentation. For example, for constant or linear upper bounds, the 2018
version of TcT inferred such bounds for 368 TRSs, but with the instrumentation, TcT
found such bounds for 465 TRSs, and AProVE found such bounds for 598 TRSs.

For full rewriting, Table 2 shows that the 2018 version of TcT scores noticeably better
than the instrumentation-based approach. Still, Ex. 9 shows that also here bounds on
derivational complexity can now be found that were out of reach before.

The stronger impact of the transformation on innermost rewriting over full rewriting is
likely due to the following reasons: (1) Not many dedicated techniques for finding upper
bounds of derivational complexity of innermost rewriting seem to be available beyond
techniques that are restricted to upper bounds of derivational complexity of full rewriting.
(2) For the runtime complexity backends, stronger techniques are available for innermost
rewriting than for full rewriting.

Independently of the above evaluation, also the results of TermComp 20204 indicate
very good results for AProVE with the transformation for the derivational complexity
categories. Thus, the new instrumentation-based approach is a useful addition to state-of-
the-art techniques for analysis of (innermost) derivational complexity. My experimental data
are available here: http://www.dcs.bbk.ac.uk/~carsten/eval/rcdc/

4 Extensions over the Conference Version [6]

We have encoded the set of all terms as start terms to corresponding basic terms whose
derivation height corresponds to that of the original terms. This encoding lets analysis tools
for runtime complexity obtain results for derivational complexity. However, the approach of
introducing generator rules to create “intended start terms” is not restricted to the set of all
terms from the original term universe. Given a relative TRS R/S, one can encode any set of
start terms T0 for which there is a set G of rewrite rules over an extended signature such that

1. T R/(S⊎G)
basic ⊆ T0 (all basic terms w.r.t. R/(S ⊎ G) are included), and

2. T R/(S⊎G)
basic →∗

G T0 (in the sense of ∃t ∈ T R/(S⊎G)
basic . ∃t′ ∈ T0. t →∗

G t′) for a set of suitable
relative rewrite rules G (all terms reachable from basic terms w.r.t. R/(S⊎G) are included).

5 Conclusion

This extended abstract sketches a new transformation to analyze derivational complexity
problems in term rewriting via an off-the-shelf analysis tool for the analysis of runtime
complexity. Extensive experiments validate the practical usefulness of this approach.

I recommend that a complexity analysis tool should use this approach and existing
techniques for derivational complexity in parallel. For complexity analysis tools specialized to
(innermost) runtime complexity, the new transformation can provide an avenue to broadened
applicability. In general, the approach of using instrumentations by rewrite rules to generate
the set of “intended” start terms from their representation via “allowed” start terms appears
to be underexplored in the analysis of properties of rewrite systems. I believe that this
approach is worth investigating further, also for other properties of rewriting.

Acknowledgments. I thank Florian Frohn and Jürgen Giesl for valuable discussions and
Aart Middeldorp for the pointer to [12].

4 https://termcomp.github.io/Y2020/

WST 2021 49

http://www.dcs.bbk.ac.uk/~carsten/eval/rcdc/
https://termcomp.github.io/Y2020/
https://costa.fdi.ucm.es/wst2021/

References
1 Martin Avanzini, Georg Moser, and Michael Schaper. TcT: Tyrolean complexity tool. In Proc.

TACAS ’16, volume 9636 of LNCS, pages 407–423, 2016.
2 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Analyzing

runtime and size complexity of integer programs. ACM TOPLAS, 38(4):13:1–13:50, 2016.
3 Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex programs with cost

equations. In Proc. APLAS ’14, volume 8858 of LNCS, pages 275–295, 2014.
4 Florian Frohn and Jürgen Giesl. Analyzing runtime complexity via innermost runtime

complexity. In Proc. LPAR ’17, volume 46 of EPiC, pages 249–268, 2017.
5 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and Thomas Ströder. Lower

bounds for runtime complexity of term rewriting. Journal of Automated Reasoning, 59(1):121–
163, 2017.

6 Carsten Fuhs. Transforming derivational complexity of term rewriting to runtime complexity.
In Proc. FroCoS ’19, volume 11715 of LNAI, pages 348–364, 2019.

7 Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Analyzing program termination and
complexity automatically with AProVE. Journal of Automated Reasoning, 58:3–31, 2017.

8 Nao Hirokawa and Georg Moser. Automated complexity analysis based on the dependency
pair method. In Proc. IJCAR ’08, volume 5195 of LNAI, pages 364–379, 2008.

9 Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of derivations.
In Proc. RTA ’89, volume 355 of LNCS, pages 167–177, 1989.

10 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and Jürgen Giesl. Complexity
analysis for term rewriting by integer transition systems. In Proc. FroCoS ’17, volume 10483
of LNAI, pages 132–150, 2017.

11 Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-community infrastructure
for logic solving. In Proc. IJCAR ’14, volume 8562 of LNAI, pages 367–373, 2014.

12 Satish Thatte. Implementing first-order rewriting with constructor systems. Theoretical
Computer Science, 61(1):83–92, 1988.

13 Wiki. Termination Problems DataBase. http://termination-portal.org/wiki/TPDB.
14 Harald Zankl and Martin Korp. Modular complexity analysis for term rewriting. Logical

Methods in Computer Science, 10(1), 2014.

WST 2021 50

http://termination-portal.org/wiki/TPDB
https://costa.fdi.ucm.es/wst2021/

Mixed Base Rewriting for the Collatz Conjecture
Emre Yolcu !

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Scott Aaronson !

University of Texas at Austin, Austin, TX 78712, USA

Marijn J. H. Heule !

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract
We explore the Collatz conjecture and its variants through the lens of termination of string rewriting.
We construct a rewriting system that simulates the iterated application of the Collatz function on
strings corresponding to mixed binary–ternary representations of positive integers. We prove that
the termination of this rewriting system is equivalent to the Collatz conjecture. We also prove that a
previously studied rewriting system that simulates the Collatz function using unary representations
does not admit termination proofs via matrix interpretations. To show the feasibility of our approach
in proving mathematically interesting statements, we implement a minimal termination prover that
uses matrix/arctic interpretations and we find automated proofs of nontrivial weakenings of the
Collatz conjecture. Although we do not succeed in proving the Collatz conjecture, we believe that
the ideas here represent an interesting new approach.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Rewrite systems

Keywords and phrases string rewriting, termination, matrix interpretations, SAT solving, Collatz
conjecture, computer-assisted mathematics

Related Version This work is a short version of a paper appearing at CADE-28.
Extended preprint: https://arxiv.org/abs/2105.14697

Supplementary Material Code: https://github.com/emreyolcu/rewriting-collatz

1 Introduction

Let N and N+ denote the natural numbers and the positive integers, respectively. We define
the Collatz function T : N+ → N+ as T (n) = n/2 if n ≡ 0 (mod 2) and T (n) = (3n + 1)/2 if
n ≡ 1 (mod 2). With T k denoting the kth iterate of T , the well-known Collatz conjecture [4]
states that for all n ∈ N+, there exists some k ∈ N such that T k(n) = 1. More generally,
letting X be either N or N+, we consider a function f : X → X. We call the sequence
x, f(x), f2(x), . . . the f-trajectory of x. If this trajectory contains 1, it is called convergent.
If all f -trajectories are convergent, we say that f is convergent.

In this paper, we describe an approach based on termination of string rewriting to
automatically search for a proof of the Collatz conjecture. Although trying to prove the
Collatz conjecture via automated deduction is clearly a moonshot goal, there are two
technological advances that provide reasons for optimism that at least some interesting
variants of the problem might be solvable. First, the invention of the method of matrix
interpretations [1] and its variants such as arctic interpretations [3] turns the quest of finding
a ranking function to witness termination into a problem that is suitable for systematic
search. Second, the progress in satisfiability (SAT) solving makes it possible to solve many
seemingly difficult combinatorial problems efficiently in practice. Their combination, i.e.,
using SAT solvers to find interpretations, has so far been effective in solving challenging
termination problems. We make the following contributions:

WST 2021 51

mailto:eyolcu@cs.cmu.edu
mailto:scott@scottaaronson.com
mailto:marijn@cmu.edu
https://arxiv.org/abs/2105.14697
https://github.com/emreyolcu/rewriting-collatz
https://costa.fdi.ucm.es/wst2021/

We show how a Collatz-like function can be expressed as a rewriting system that is
terminating if and only if the function is convergent.
We prove that no termination proof via matrix interpretations exists for a certain system
that simulates the Collatz function using unary representations of numbers.
We show that translations into rewriting systems that use non-unary representations of
numbers are more amenable to automated methods, compared with the previously and
commonly studied unary representations.
We automatically prove various weakenings of the Collatz conjecture. We observe that, for
some of these weakenings, the only matrix/arctic interpretations that our termination tool
was able to find involved relatively large matrices (of dimension 5). Existing termination
tools often limit their default strategies to search for small interpretations as they are
tailored for the setting where the task is to quickly solve a large quantity of relatively easy
problems. We make the point that, given more resources, the method of matrix/arctic
interpretations has the potential to scale.

2 Rewriting the Collatz Function

We start with systems that use unary representations and then demonstrate via examples
that mixed base representations can be more suitable for use with automated methods.

Rewriting in Unary. The following system of Zantema [5] simulates the iterated application
of the Collatz function to a number represented in unary, and it terminates upon reaching 1.

▶ Example 1. Z denotes the following SRS, consisting of 5 symbols and 7 rules.

h11 → 1h 11h⋄ → 11s⋄
1s → s1
⋄s → ⋄h

h1⋄ → t11⋄
1t → t111
⋄t → ⋄h

▶ Theorem 2 ([5, Theorem 16]). Z is terminating if and only if the Collatz conjecture holds.

While the forward direction of the above theorem is easy to see (since ⋄h12n⋄ →∗
Z ⋄h1n⋄ for

n > 1 and ⋄h12n+1⋄ →∗
Z ⋄h13n+2⋄ for n ≥ 0), the backward direction is far from obvious

because not every string corresponds to a valid configuration of the underlying machine.
As another example, consider the system W = {h11 → 1h, 1h⋄ → 1t⋄, 1t → t111, ⋄t →

⋄h} (originally due to Zantema, available at: https://www.lri.fr/~marche/tpdb/tpdb-2.
0/SRS/Zantema/z079.srs). Termination of this system has yet to be proved via automated
methods. Nevertheless, there is a simple reason for its termination: It simulates the iterated
application of a Collatz-like function W : N+ → N+ defined as W (n) = 3n/2 if n ≡ 0 (mod 2)
and W (n) = 1 if n ≡ 1 (mod 2), which is easily seen to be convergent.

Matrix interpretations cannot be used to remove any of the rules from the above kind of
unary rewriting systems that simulate certain maps, in particular the Collatz function. We
prove the below theorem in the full version of this work. We adopt the notation of [1].

▶ Theorem 3. Let Σ = {1, ⋄, h, s, t}. There exists no collection [·]Σ of matrix interpretations
of any dimension d such that

for at least a rule ℓ → r ∈ Z we have [ℓ](x) > [r](x) for all x ∈ Nd, and
for the remaining ℓ′ → r′ ∈ Z we have [ℓ′](x) ≳ [r′](x) for all x ∈ Nd.

WST 2021 52

https://www.lri.fr/~marche/tpdb/tpdb-2.0/SRS/Zantema/z079.srs
https://www.lri.fr/~marche/tpdb/tpdb-2.0/SRS/Zantema/z079.srs
https://costa.fdi.ucm.es/wst2021/

By an argument analogous to above, we can also prove that no such collection of
interpretations exists for W. If a proof of the Collatz conjecture is to be produced by some
automated method that relies on rewriting, then that method better be able to prove a
statement as simple as the convergence of W . With this in mind, we describe an alternative
rewriting system that simulates the Collatz function and terminates upon reaching 1. We
then provide examples where the alternative system is more suitable for use with termination
tools (for instance allowing a matrix interpretations proof of the convergence of W).

Rewriting in Mixed Base. In the mixed base scheme, the overall idea is as follows. Given
a number n ∈ N+, we write a mixed binary–ternary representation for it (noting that this
representation is not unique). With this representation, as long as the least significant digit
is binary, the parity of the number can be recognized by checking only this digit, as opposed
to scanning the entire string when working in unary. This allows us to easily determine
the correct case when applying the Collatz function. If the least significant digit is ternary,
then the representation is rewritten (while preserving its value) to make this digit binary.
Afterwards, since computing 2n 7→ n corresponds to erasing a trailing binary 0 and computing
2n + 1 7→ 3n + 2 corresponds to replacing a trailing binary 1 with a ternary 2, applying the
Collatz function takes a single rewrite step.

We will describe an SRS T over the symbols {f, t, 0, 1, 2, ◁, ▷} that simulates the iterated
application of the Collatz function and terminates upon reaching 1. The symbols f, t
correspond to binary digits 02, 12; and 0, 1, 2 to ternary digits 03, 13, 23. The symbol ◁ marks
the beginning of a string while also standing for the most significant digit (without loss of
generality assumed to be 10) and ▷ marks the end of a string while also standing for the
redundant trailing digit 01. Consider the functional view of these symbols:

f(x) = 2x

t(x) = 2x + 1

0(x) = 3x

1(x) = 3x + 1
2(x) = 3x + 2

◁(x) = 1
▷(x) = x

(1)

A mixed base representation N = (n1)b1
(n2)b2

. . . (nk)bk
represents the number Val(N) :=∑k

i=1 ni

∏k
j=i+1 bj . We can see by rearranging this expression that Val(N) is also given by

some composition of the above functions if we view the expression ◁(x) as the constant 1.

▶ Example 4. We can write 19 = Val(◁0f1▷) = ▷(1(f(0(◁(x))))). The string representation
ends with a ternary symbol, so we will rewrite it. With the function view, we have 1(f(x)) =
3(2x)+1 = 6x+1 = 2(3x)+1 = t(0(x)). This shows that we could also write 19 = Val(◁00t▷),
which now ends with the binary digit 12. This gives us the rewrite rule f1 → 0t. We can
now apply the Collatz function to this representation by rewriting only the rightmost two
symbols of the string since T (▷(t(x))) = 3(2x+1)+1

2 = 6x+4
2 = 3x + 2 = (▷(2(x))). This gives

us the rewrite rule t▷ → 2▷. After applying this rule to the string ◁00t▷, we indeed obtain
T (19) = 29 = Val(◁002▷).

In the manner of the above example, we compute all the necessary transformations and
obtain the following 11-rule SRS T .

DT =
{

f▷ → ▷

t▷ → 2▷

}
A =

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

 B =

◁0 → ◁t
◁1 → ◁ff
◁2 → ◁ft

This SRS is split into subsystems DT (dynamic rules for T) and X = A ∪ B (auxiliary rules).
The two rules in DT encode the application of the Collatz function T , while the rules in X

WST 2021 53

https://costa.fdi.ucm.es/wst2021/

serve to push binary symbols towards the rightmost end of the string by swapping the bases
of adjacent positions without changing the represented value.

▶ Example 5 (Rewrite sequence of T). Consider the string s = ◁ff0▷ that represents the
number 12. Below is a possible rewrite sequence of T that starts from s, with the corre-
sponding values (under the interpretations from (1)) displayed above the strings. Underlines
indicate the parts of the strings where the rules are applied.

12 12 6 6 3 3 5 5
◁ff0▷ →A ◁f0f▷ →DT

◁f0▷ →A ◁0f▷ →DT
◁0▷ →B ◁t▷ →DT

◁2▷ →B ◁ft▷

8 8 8 4 2 1
→DT

◁f2▷ →A ◁1f▷ →B ◁fff▷ →DT
◁ff▷ →DT

◁f▷ →DT
◁▷

The trajectory of T would continue upon reaching 1; however, in order to be able to formulate
the Collatz conjecture as a termination problem, T is made in such a way that its rewrite
sequences stop upon reaching the string representation ◁▷ of 1 since no rule is applicable.

Termination of the subsystems of T with B or DT removed is easily seen. There is also a
direct proof via linear polynomial interpretations after reversing the rules.

▶ Lemma 6. SN(T \ B) and SN(T \ DT).

When considering the termination of T , it suffices to limit the discussion to initial strings
of a specific form that we have been working with so far, e.g., in Examples 4 and 5.

▶ Lemma 7. If T is terminating on all initial strings of the canonical form ◁(f|t|0|1|2)∗▷,
then T is terminating (on all initial strings).

As a whole, the rewriting system T simulates the iterated application of T (except at 1).
Making use of Lemmas 6 and 7, we prove the following in the full version of this work.

▶ Theorem 8. T is terminating if and only if T is convergent.

3 Automated Proofs

We adapt the rewriting system T for different Collatz-like functions to explore the effectiveness
of the mixed base scheme on weakened variants of the Collatz conjecture.

Convergence of W . Earlier we mentioned a Collatz-like function W as a simple example
that could serve as a sanity check for an automated method aiming to solve Collatz-like
problems. With the mixed binary–ternary scheme, this function can be seen to be simulated
by the system W ′ = {f▷ → 0▷} ∪ X . A small matrix interpretations proof is found for this
system in less than a second, in contrast to its variant W that uses unary representations for
which no automated proof is known.

Farkas’ Variant. Farkas [2] studied a slight modification of the Collatz function for which it
becomes possible to prove convergence via induction. We consider automatically proving the
convergence of this function as another test case for the mixed base scheme that is easier than
the Collatz conjecture without being entirely trivial. Below, we define a function F : N → N
that is equivalent to Farkas’ definition in terms of convergence while resembling the Collatz
function even more closely (with respect to the definitions of the cases). This variant is

WST 2021 54

https://costa.fdi.ucm.es/wst2021/

obtained by introducing an additional case in the Collatz function for n ≡ 1 (mod 3) and
applying T otherwise. Its definition and a set DF of dynamic rules are shown below.

F (n) =

n−1
3 if n ≡ 1 (mod 3)

n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)
DF =

1▷ → ▷

0f▷ → 0▷

1f▷ → 1▷

1t▷ → 12▷

2t▷ → 22▷

Termination of the rewriting system F = DF ∪ X is equivalent to the convergence of F .
The proof of the equivalence is similar to that of Theorem 8, with the difference that when
constructing a nonterminating rewrite sequence from a nonconvergent trajectory we write
the first number in the trajectory in ternary (except for the most significant digit when it is
a ternary 2, in which case we replace it with ◁f) and always perform the rightmost possible
rewrite so that a dynamic rule is applied as soon as it becomes available.

Farkas gave an inductive proof of convergence for (a variant of) F via case analysis. We
found an automated proof that F is terminating via arctic interpretations (where the proof
appears to require matrices of dimension 5 for certain steps). It is worth mentioning that
the default configurations of the existing termination tools (e.g., AProVE, Matchbox) are too
conservative to prove the termination of this system, but after their authors tweaked the
strategies they were also able to find automated proofs via arctic interpretations.

Subsets of T . It is also interesting to consider whether we can automatically prove the
terminations of proper subsets of T . Specifically, we considered the 11 subsystems obtained by
leaving out a single rewriting rule from T , and we found termination proofs via matrix/arctic
interpretations for all of the 11 subproblems. Our interest in these problems is threefold:

1. Termination of T implies the terminations of all of its subsystems, so proving its termi-
nation is at least as difficult a task as proving the terminations of the 11 subsystems.
Therefore, the subproblems serve as additional sanity checks that an automated approach
aspiring to succeed for the Collatz conjecture ought to be able to pass.

2. Having proved the terminations of all 11 subsystems is a partial solution to the full
problem, since it implies that for any single rule ℓ → r ∈ T , proving that ℓ → r is
terminating relative to T settles the Collatz conjecture.

3. After the removal of a rule, the termination of the remaining system still encodes a valid
mathematical question about the Collatz trajectories, i.e., the system does not become
terminating for a trivial reason.

Table 1 shows the parameters of the matrix/arctic interpretations proofs that we found
for the termination of each subsystem. For each rule ℓ → r that is left out, we searched
for a stepwise proof to show that T \ {ℓ → r} is terminating. On the table, we report the
smallest parameters (in terms of matrix dimension) that work for all of the proof steps. In the
experiments we searched (with a timeout of 30 seconds) for matrices of up to 7 dimensions,
with the coefficients taking at most 8 different values.

Collatz Trajectories Modulo 8. Let m be a power of 2. Given k ∈ {0, 1, . . . , m − 1}, is
it the case that all nonconvergent Collatz trajectories contain some n ≡ k (mod m)? For
several values of k this can be proved to hold by inspecting the transitions of the iterates
in the Collatz trajectories across residue classes modulo m. These questions can also be
formulated as the terminations of some rewriting systems. With this approach we found
automated proofs for several cases, which are also not difficult to prove by hand.

WST 2021 55

https://costa.fdi.ucm.es/wst2021/

Table 1 Smallest proofs found for the terminations of subsystems of T . The columns show the
matrix dimension D and the maximum number V of distinct coefficients that appear in the matrices,
along with the median time to find an entire proof across 25 repetitions for the fixed D and V .

Matrix Arctic
Rule removed D V Time D V Time
f▷ → ▷ 3 4 1.42s 3 5 15.95s
t▷ → 2▷ 1 2 0.27s 1 3 0.28s
f0 → 0f 4 2 0.92s 3 4 2.46s
f1 → 0t 1 3 0.50s 1 4 0.51s
f2 → 1f 1 2 0.38s 1 3 0.39s
t0 → 1t 4 3 1.20s 3 4 0.87s
t1 → 2f 5 2 0.89s 4 3 0.84s
t2 → 2t 4 4 10.00s 2 5 0.62s
◁0 → ◁t 2 2 0.40s 2 3 0.42s
◁1 → ◁ff 3 3 0.53s 3 4 0.57s
◁2 → ◁ft 4 4 7.51s 4 3 4.04s

▶ Theorem 9. If there exists a nonconvergent Collatz trajectory, it cannot avoid the residue
classes of 2, 3, 4, 6 modulo 8.

It remains open whether the above holds for the residue classes of 0, 1, 5, 7 modulo 8.

4 Future Work

Several extensions to this work can further our understanding of the potential of rewriting
techniques for answering mathematical questions. For instance, it is of interest to study the
efficacy of different termination proving techniques on the problems that we considered. We
found matrix/arctic interpretations to be the most successful for our purposes despite experi-
menting with existing tools that implement newer techniques developed for automatically
proving the terminations of a few select challenging instances. It might also be possible to
prove that there exist no matrix/arctic interpretations to establish the termination of the
Collatz system T . This would be an interesting result in itself. Another issue is the matter of
representation; specifically, it is worth exploring whether there exists a suitable translation of
the Collatz conjecture into the termination of a term, instead of string, rewriting system since
many automated termination proving techniques are generalized to term rewriting. Finally,
injecting problem-specific knowledge into the rewriting systems or the termination techniques
would be helpful as there exists a wealth of information about the Collatz conjecture that
could simplify the search for a termination proof.

References
1 Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving

termination of term rewriting. Journal of Automated Reasoning, 40(2):195–220, 2008.
2 Hershel M. Farkas. Variants of the 3N + 1 conjecture and multiplicative semigroups. In

Geometry, Spectral Theory, Groups, and Dynamics, pages 121–127. 2005.
3 Adam Koprowski and Johannes Waldmann. Max/plus tree automata for termination of term

rewriting. Acta Cybernetica, 19(2):357–392, 2009.
4 Jeffrey C. Lagarias. The Ultimate Challenge: The 3x + 1 Problem. American Mathematical

Society, 2010.
5 Hans Zantema. Termination of string rewriting proved automatically. Journal of Automated

Reasoning, 34(2):105–139, 2005.

WST 2021 56

https://costa.fdi.ucm.es/wst2021/

Formalizing Higher-Order Termination in Coq
Deivid Vale !Ï

Institute for Computation and Information Sciences, Radboud University, The Netherlands

Niels van der Weide ! Ï

Institute for Computation and Information Sciences, Radboud University, The Netherlands

Abstract
We describe a formalization of higher-order rewriting theory and formally prove that an AFS is
strongly normalizing if it can be interpreted in a well-founded domain. To do so, we use Coq, which
is a proof assistant based on dependent type theory. Using this formalization, one can implement
several termination techniques, like the interpretation method or dependency pairs, and prove their
correctness. Those implementations can then be extracted to OCaml, which results in a verified
termination checker.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Equational logic and rewriting

Keywords and phrases higher-order rewriting, Coq, termination, formalization

Funding Deivid Vale: Author supported by NWO project “ICHOR”, NWO 612.001.803/7571.

1 Introduction

Termination, while crucial for software correctness, is difficult to check in practice. For this
reason, various tools have been developed that can automatically check termination of a
given program. Furthermore, such tools are often based on first-order rewriting, for example,
AProVE and NaTT. However, whereas termination techniques evolved and became more
sophisticated over the years, termination checkers have become more complicated as a result.
Since the proofs outputted by these tools tend to be large, it is difficult for humans to check
for correctness.

For termination tools based on higher-order rewriting [8], this is even more the case.
Higher-order rewriting is an extension of first-order rewriting in which function symbols might
also have arbitrary functions as argument. Such an extension gives extra expressiveness,
because higher-order rewriting allows one to deal with higher-order functional programs. It
also lies at the backend of various theorem provers, it can be used for code transformation in
compilers, and more. However, with greater expressiveness comes a more difficult theory
and more elaborated tools that check for termination are needed. This leads to the following
problem: how can we formally guarantee the correctness of the answers given by such tools?

This problem already got quite some attention. One approach is not to prove that the
termination checker is correct, but instead, to check the correctness of the certificates it
outputs. Such an approach was taken by Contejean et al. [4] and in CoLoR, developed by
Blanqui, Koprowski, and others [2]. Those tools take as input a certificate produced by a
termination checker, and then the proof assistant Coq checks whether it can reconstruct a
termination proof. If Coq says yes, then the result was actually correct. Note that Contejean
et al. deal with the first order case, while CoLoR also includes some methods applicable to
higher-order rewriting.

In Isabelle [14], the library IsaFoR contains numerous results about first order rewriting.
Such results can be used to automatically verify the termination of functions defined in
Isabelle using a tool that produces certificates of termination [9]. In addition, algorithmic
methods were implemented using this library, and from that, they extracted the verified
termination checker called CeTA [13]. More recent efforts have also been put in formalizing

WST 2021 57

mailto:deividvale@cs.ru.nl
https://www.cs.ru.nl/~deividvale/
https://orcid.org/0000-0003-1350-3478
mailto:nweide@cs.ru.nl
https://nmvdw.github.io
https://orcid.org/0000-0003-1146-4161
https://costa.fdi.ucm.es/wst2021/

other tools, for instance, Thiemann and Sternagel developed a verified tool for certifying
AProVE’s termination proofs of LLVM IR programs [13, 6].

Our goal is to develop a verified termination checker for higher-order rewrite systems.
To do so, we start by formalizing basic theory on rewriting in the proof assistant Coq
[1]. After that, we can implement several algorithms, such as the interpretation method,
dependency pairs, path orders, and use the theory to prove their correctness. With all of that
in place, we can use extraction to obtain an OCaml implementation that satisfies the given
specifications [10]. Note that the extraction mechanism of Coq was proven to be correct
using MetaCoq [12].

In this paper, we discuss a formalization of the basic theory of higher-order rewriting. To
do so, we start by discussing signatures for algebraic functional systems in Section 2. The
definitions introduced there are the basic data types of the tool. In Section 3, we discuss the
main theorem that guarantees the correctness of semantical methods. We conclude with an
overview of what we plan to do in Section 4.

Formalization. All definitions and theorems in this paper have been formalized with the
Coq proof assistant [1]. The formalization is available at https://github.com/nmvdw/Nijn.
Links to relevant definitions in the code are highlighted as dashed boxes .

2 Higher-Order Rewriting

In this work, we consider Algebraic Functional Systems (AFSs), a slightly simplified form of a
higher-order functional language introduced by Jouannaud and Okada [7]. This choice gives
an easy presentation as it combines algebraic definitions in a first-order style with a functional
mechanism using λ-abstractions and term applications. It is also the higher-order format
used in the Termination Competition . This gives us access to a variety of higher-order
systems defined in the termination problems database [3], which we plan to use as benchmark
for our tool in the future.

In this section, we define the notion of AFS, and we describe how we formalized this notion
in Coq. The definitions given here correspond to those usually given in the literature [5] while
the definitions in Coq deviate slightly. Note that since we want to extract our formalization
to an OCaml program, we use a deep embedding, which is similar to the approach taken in
CeTA and CoLoR [2, 13]. This means that for all relevant notions, such as terms and algebraic
functional systems, we define types that represent them. On the contrast, one could also use
a shallow embedding where the relevant operations are represented as functions [4].

Before we can say what an AFS consists of, we need to define types, well-typed terms,
and rewrite rules. We start by looking at types.

▶ Definition 2.1 (Types). Given a set B of base types. The set ST B of simple types is
inductively built from B using the right-associative type constructor ⇒. Formally,

Inductive ty (B : Type) : Type :=
| Base : B → ty B
| Fun : ty B → ty B → ty B.

In the formalization, we use A1 −→ A2 to denote function types. The next step is the
notion of well-typed term, which are terms together with a typing derivation. This is where
the pen-and-paper presentation deviates from the formalization. While we present named
terms, the formalization, however, makes use of De Bruijn indices, so variables are nameless.

WST 2021 58

https://github.com/nmvdw/Nijn
http://termination-portal.org/wiki/Termination_Competition
https://nmvdw.github.io/nijn/nijn.Syntax.Signature.Types.html#ty
https://costa.fdi.ucm.es/wst2021/

This choice affects how to formalize variable environments and terms. Notwithstanding, the
two presentations are equivalent. The former gives a more pleasant informal presentation
and the latter makes the formalization easier. Note that in the formalization, we use the
terminology “context” instead of variable environment: that is because in type theory,
variable environments usually are called contexts.

▶ Definition 2.2 (Var Env.). A variable environment Γ is a finite list of variable type
declarations of the form x : A where the variables x are pairwise distinct. Formally,
Inductive con (B : Type) : Type :=
| Empty : con B
| Extend : ty B → con B → con B.

In what follows we sugar Extend A C as A ,, C to denote the extension of variable environ-
ments. Now we can define the type of variables as the positions in an environment.
Inductive var {B : Type} : con B → ty B → Type :=
| Vz : forall (C : con B) (A : ty B),

var (A ,, C) A
| Vs : forall (C : con B) (A1 A2 : ty B),

var C A2 → var (A1 ,, C) A2.

The set of terms is generated by a set of function symbols and the usual constructors
from the simply typed lambda calculus (abstraction, application, and variables). Since terms
come together with a typing derivation, we must also know the type of each function symbol.
Hence, when we define the notion of well-typed term, we must assume that we have a function
ar that assigns to each function symbol a type.

▶ Definition 2.3 (Terms). Suppose, we have a map ar : F → ST B. For each type A, we
define the set Tm(Γ, A) of well-typed terms of type A in the variable environment Γ by
the following clauses:

given a function symbol f ∈ F , we have a term f ∈ Tm(Γ, ar(f));
for each variable x : A ∈ Γ we have a term x ∈ Tm(Γ, A);
given a term s ∈ Tm(Γ ∪ {x : B}, C), we get a term λx.s ∈ Tm(Γ, B⇒C);
given a term s ∈ Tm(Γ, B⇒C) and t ∈ Tm(Γ, B), we have s t ∈ Tm(Γ, C).

Given a variable environment Γ and a type A, we write Γ ⊢ s : A to denote that s is a term
of type A in Γ.

To formalize the notion of terms, we make use of dependent types, which belong to the
core features of proof assistants based on Martin-Löf Type Theory. This is because Tm(Γ, A)
does not only depend on sets, but also on their inhabitants. It is formally expressed as below:
Inductive tm {B : Type} {F : Type} (ar : F → ty B) (C : con B) : ty B → Type :=
| BaseTm : forall (f : F),

tm ar C (ar f)
| TmVar : forall (A : ty B),

var C A → tm ar C A
| Lam : forall (A1 A2 : ty B),

tm ar (A1 ,, C) A2 → tm ar C (A1 −→ A2)
| App : forall (A1 A2 : ty B),

tm ar C (A1 −→ A2) → tm ar C A1 → tm ar C A2.

Substitutions play an important role in the formalism, we use them to instantiate rewrite
rules and the rewriting relation.

WST 2021 59

https://nmvdw.github.io/nijn/nijn.Syntax.Signature.Contexts.html#con
https://nmvdw.github.io/nijn/nijn.Syntax.Signature.Terms.html#tm
https://costa.fdi.ucm.es/wst2021/

▶ Definition 2.4 (Substitution). A substitution γ is a finite type-preserving map from
variables to terms. The application of γ to s is denoted by sγ.

▶ Definition 2.5 (Rewrite rule). A rewriting rule is a pair of terms ℓ → r of the same
type. Given a set of rewriting rules R, the rewrite relation induced by R on the set of
terms is the smallest monotonic relation that is stable under substitution and contains both
all elements of R and β-reduction. That is, it is inductively generated by:

ℓγ →R rγ if ℓ → r ∈ R u s →R u t if s →R t

s u →R t u if s →R t λx.s →R λx.t if s →R t

(λx.s) t →R s[x := t]

Putting all this data together, gives us the formalized notion of signature for an AFS.

▶ Definition 2.6. [Signature] A signature for an AFS consists of the following ingredients:
a set B of base types and a set F of function symbols;
a map ar : F → ST B and a set R of rewriting rules.

▶ Remark (Nomenclature). It is worth mentioning that Definition 2.6 deviates from the
standard notion of signature as is commonly defined in the rewriting community. There, a
signature (it may be typed or not) is usually defined as a set of symbols used to generate
terms. Our choice to do so differently is mainly motivated by formalization purposes. Since
our formalization only uses objects that come from a signature as in Definition 2.6, this
notion plays the same generating role as that of the standard notion in the literature.

In the formalization, one needs to provide the ingredients from Definition 2.6 to construct
an AFS. On pen-and-paper, we denote such an object by (B, F , ar, R), and if the set of
base types is clear from the context, we denote an AFS just as (ar, R). This is a kind of
compatibility between the formalization and the pen-and-paper presentation.

Now let us look at a simple example. The base types are lists and natural numbers. The
function we look at applies a function F to every element of a list q. Note that this example
relies on the fact that we have higher-order types.

▶ Example 2.7. We build lists using the constructors ⊢ nil : nat and ⊢ cons : nat⇒list⇒list.
The rules for map can be typed using the variable environment F : nat⇒nat, x : nat.

map(F, nil) → nil map(F, cons(x, q)) → cons(Fx, map(F, q))

3 Higher-Order Interpretation Method

The goal of our tool is to check for termination, and thus theorems that give conditions for
strong normalization form the core of the formalization.

Within the higher-order framework, several methods have been developed, and our focus
is on the so-called semantical methods: to prove an AFS is terminating we need to find a
well-founded interpretation domain such that JsK > JtK, whenever s →R t. This is achieved
by orienting each rule in R, that is, JℓK > JrK for all rules ℓ → r in R. The idea was first
introduced by van de Pol [11] (in the context of HRS) as an extension of the first-order
semantic interpretation method. Later, these semantic methods got extended to AFSs
by Fuhs and Kop [5] with a special focus on implementation, and it is part of Wanda, a
termination tool developed by Kop [8].

In this section, we discuss the main definitions and theorems for such methods. Our
notion of well-founded interpretation domain is that of an extended well-founded set. These

WST 2021 60

https://nmvdw.github.io/nijn/nijn.Syntax.Signature.TermSubstitutions.html#sub
https://nmvdw.github.io/nijn/nijn.Syntax.Signature.RewritingSystem.html#rew
https://nmvdw.github.io/nijn/nijn.Syntax.Signature.html#afs
https://costa.fdi.ucm.es/wst2021/

are sets together with two ordering relations: a well-founded strict > and a quasi-order ≥
compatible with it. More precisely, compatible orders are defined as follows.

▶ Definition 3.1 (Compatible Order). An extended well-founded set is a tuple (X, >, ≥)
consisting of a set X, a well-founded relation > on X, and a transitive and reflexive relation
≥ on X, such that, for all x, y, z ∈ X, the following conditions hold:

x > y implies x ≥ y;
if x > y and y ≥ z, then we have x > z;
if x ≥ y and y > z, then we have x > z.

To interpret base types, we just need to give an extended well-founded set for each base
type. However, we also need to be able to interpret function types. We use weakly monotonic
functions for that. These are functions that preserve the quasi-ordering ≥.

▶ Definition 3.2. Given extended well-founded sets X and Y , a weakly monotonic
function f is a function f : X → Y such that for all x, y ∈ X, if x ≥ y, then we have
f(x) ≥ f(y). If we also have f(x) > f(y) whenever we have x, y ∈ X such that x > y, then
we say f a strongly monotonic function.

Given two extended well-founded sets X and Y , we can construct another well-founded set
whose elements are weakly monotonic functions. Using those, we can define the interpretation
WMA of a simple type A the same way as Fuhs and Kop [5]. For a full interpretation, we
also should interpret terms. The necessary data for that is more complicated, and for the
details we refer the reader to [5].

Briefly said, a weakly monotonic algebra is needed to interpret types and symbols in F .
However, to be able to use it as a reduction ordering additional information is required.
Namely, we need a symbol @A, for each type A, satisfying a strictness condition to represent
term-application; and symbols in F has to be interpreted as strongly monotonic functionals.
From such an extended algebra, we get maps J·K that send terms of type A to elements of
WMA. Using these notions, we can formally prove the main theorem.

▶ Theorem 3.3 (Compatibility Theorem). Let an AFS (ar, R) and an extended weakly
monotonic algebra for it be given. If for each rewriting rule we have JℓK > JrK, then the AFS
is strongly normalizing.

4 Future Work

We briefly discussed the basics of our formalization of higher-order rewriting in Coq. Up to
now, we formalized the basic data structures, namely types, terms, and signatures, and give
a formal proof for the compatibility theorem. This theorem is necessary to guarantee the
correctness of algorithms that use semantic methods to check for strong normalization.

The next step is to formalize rule removal and actual instances algorithms. We plan to
start with higher-order polynomial interpretation. After a full formalization of the tool-chain,
we can extract an OCaml program from the Coq implementation, which is guaranteed to
satisfy the proven specifications. As a result, we will get a fully verified tool that checks for
termination of higher-order programs.

WST 2021 61

https://nmvdw.github.io/nijn/nijn.Prelude.CompatibleRelation.html#CompatRel
https://nmvdw.github.io/nijn/nijn.Interpretation.WeaklyMonotonicAlgebra.html
https://nmvdw.github.io/nijn/nijn.Interpretation.WeaklyMonotonicAlgebra.html#afs_is_SN_from_Alg
https://costa.fdi.ucm.es/wst2021/

References
1 Bruno Barras et al. The Coq proof assistant reference manual: Version 6.1. Technical report,

Inria, 1997. URL: https://hal.inria.fr/inria-00069968.
2 Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded rewrite relations

and its application to the automated verification of termination certificates. Math. Struct.
Comput. Sci., 21:827–859, 2011. doi:10.1017/S0960129511000120.

3 Community. Termination problem database, version 11.0. Directory
Higher_Order_Rewriting_Union_Beta/Mixed_HO_10/, 2019. URL: http:
//termination-portal.org/wiki/TPDB.

4 Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Cer-
tification of Automated Termination Proofs. In Proc. FroCoS, pages 148–162, 2007.
doi:10.1007/978-3-540-74621-8_10.

5 Carsten Fuhs and Cynthia Kop. Polynomial Interpretations for Higher-Order Rewriting. In
Proc. RTA, 2012. doi:10.4230/LIPIcs.RTA.2012.176.

6 Max W. Haslbeck and René Thiemann. An isabelle/hol formalization of aprove’s termination
method for llvm ir. In Proc. CPP, CPP 2021, page 238–249, 2021. doi:10.1145/3437992.
3439935.

7 J. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In Proc. LICS, pages 350–361, 1991. doi:10.1109/LICS.1991.151659.

8 Cynthia Kop. WANDA - a Higher Order Termination Tool (System Description). In FSCD
2020, 2020. doi:10.4230/LIPIcs.FSCD.2020.36.

9 Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and Jürgen Giesl.
Termination of Isabelle Functions via Termination of Rewriting. In Proc. ITP, pages 152–167,
2011. doi:10.1007/978-3-642-22863-6_13.

10 Pierre Letouzey. Extraction in Coq: An Overview. In Proc. CiE, pages 359–369, 2008.
doi:10.1007/978-3-540-69407-6_39.

11 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of
Utrecht, 1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.

12 Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project. J
Automated Reasoning, 64:947–999, 2020. doi:10.1007/s10817-019-09540-0.

13 René Thiemann and Christian Sternagel. Certification of Termination Proofs Using CeTA. In
Proc. TPHOLs, pages 452–468, 2009. doi:10.1007/978-3-642-03359-9_31.

14 Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. The Isabelle Framework. In Proc.
TPHOLs, pages 33–38, 2008. doi:10.1007/978-3-540-71067-7_7.

WST 2021 62

https://hal.inria.fr/inria-00069968
https://doi.org/10.1017/S0960129511000120
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1007/978-3-540-74621-8_10
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1145/3437992.3439935
https://doi.org/10.1145/3437992.3439935
https://doi.org/10.1109/LICS.1991.151659
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://doi.org/10.1007/978-3-642-22863-6_13
https://doi.org/10.1007/978-3-540-69407-6_39
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-540-71067-7_7
https://costa.fdi.ucm.es/wst2021/

Observing Loopingness
Étienne Payet ! Ï

LIM - Université de la Réunion, France

Abstract
In this paper, we consider non-termination in logic programming and in term rewriting and we
recall some well-known results for observing it. Then, we instantiate these results to loopingness, a
simple form of non-termination. We provide a bunch of examples that seem to indicate that the
instantiations are correct as well as partial proofs.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Rewrite systems; Theory of computation → Program analysis

Keywords and phrases Logic Programming, Term Rewriting Systems, Non-Termination, Loop

1 Introduction

Proving non-termination is an important topic in logic programming and term rewriting. It
is also important to determine classes of non-termination and compare them, e.g., in terms
of complexity and decidability, for a better understanding of the underlying mechanisms.
Loopingness is the simplest form of non-termination and the vast majority of automated
techniques for proving non-termination are designed for finding loops. In [10], the more
general concept of inner-loopingness in term rewriting is introduced and proved undecidable.

Our aim in this paper is to contribute to the understanding of loopingness. We consider
some well-known results for observing non-termination in the unfoldings and the chains and
we instantiate them to loopingness. We provide several examples that seem to indicate that
the instantiations are correct as well as partial proofs. Observing loopingness (instead of just
non-termination) provides clarifications on the non-termination hardness of the program.
On the other hand, an observed non-looping non-termination cannot be detected by an
automated technique designed for finding loops, hence it is useless to run such a technique
for proving this non-termination.

2 Preliminaries

We assume the reader is familiar with the standard definitions of logic programming [1] and
term rewriting [3]. We let N denote the set of non-negative integers. For any set E, we let
℘(E) denote its power set. We let +→ (resp. ∗→) denote the transitive (resp. reflexive and
transitive) closure of a binary relation →. We fix a finite signature F (the function symbols)
together with an infinite countable set V of variables with F ∩ V = ∅. Constant symbols are
denoted by 0, 1, . . . , function symbols of positive arity by f, g, s, . . . , variables by x, y, z, . . .

and terms by l, r, s, t, . . . For any term t, we let Var(t) denote the set of variables occurring
in t and root(t) denote the root symbol of t. The set of positions of t is denoted by Pos(t).
For any p ∈ Pos(t), we write t|p to denote the subterm of t at position p and t[p← s] to
denote the term obtained from t by replacing t|p with a term s. A substitution is a finite
mapping from variables to terms written as {x1/t1, . . . , xn/tn}. A (variable) renaming is a
substitution that is a bijection on V . The application of a substitution θ to a syntactic object
o (i.e., a construct consisting of terms) is denoted by oθ, and oθ is called an instance of o.
When θ is a renaming, oθ is also called a variant of o. The substitution θ is a unifier of the
syntactic objects o and o′ if oθ = o′θ. We let mgu(o, o′) denote the (up to variable renaming)

WST 2021 63

mailto:etienne.payet@univ-reunion.fr
http://lim.univ-reunion.fr/staff/epayet/
https://costa.fdi.ucm.es/wst2021/

most general unifier of o and o′. If O is a set of syntactic objects, we write o≪ O to denote
that o is a new occurrence of an element of O whose variables are new (not previously met).

2.1 Logic programming
We also fix a finite set of predicate symbols disjoint from F and V that is used for constructing
atoms. Predicate symbols are denoted by p, q, . . . , atoms by H, A, B, . . . and queries (i.e.,
sequences of atoms) by bold uppercase letters. Consider a non-empty query ⟨A, A⟩ and
a clause c. Let H ← B be a variant of c variable disjoint with ⟨A, A⟩ and assume that
θ = mgu(A, H). Then ⟨A, A⟩ θ⇒

c
⟨B, A⟩θ is a derivation step with H ← B as its input clause.

If the substitution θ or the clause c is irrelevant, we drop a reference to it. For any logic
program (LP) P and queries Q, Q′, we write Q⇒

P
Q′ if Q θ⇒

c
Q′ holds for some clause c ∈ P

and some substitution θ. A maximal sequence Q0⇒
P

Q1⇒
P
· · · of derivation steps is called a

derivation of P ∪ {Q0} if the standardization apart condition holds, i.e., each input clause
used is variable disjoint from the initial query Q0 and from the mgu’s and input clauses used
at earlier steps. We say that a query Q is non-terminating w.r.t. P if there exists an infinite
derivation of P ∪ {Q}. We say that P is non-terminating if there exists a query which is
non-terminating w.r.t. it.

2.2 Term rewriting
For any terms s and t and any rewrite rule R = l→ r, we write s⇒

R
t if there is a substitution

θ and a position p ∈ Pos(s) such that s|p = lθ and t = s[p← rθ]. Then s⇒
R

t is called a
rewrite step. For any term rewriting system (TRS) R, we write s⇒

R
t if s⇒

R
t holds for some

R ∈ R (then, we also call s⇒
R

t a rewrite step). A maximal sequence s0⇒R s1⇒R · · · of rewrite
steps is called a rewrite of R ∪ {s0}. We say that a term s is non-terminating w.r.t. R if
there exists an infinite rewrite of R ∪ {s} and we say that R is non-terminating if there
exists a term which is non-terminating w.r.t. it.

3 Observing non-termination in logic programming

The binary unfoldings [4, 5] transform a LP P into a possibly infinite set of binary clauses.
Intuitively, each generated binary clause H←B (where B is an atom or the empty query
true) specifies that, w.r.t. P , a call to H (or any of its instances) necessarily leads to a call
to B (or its corresponding instance). A generated clause of the form H← true indicates a
success pattern. In the definition below, ℑ denotes the domain of binary clauses (viewed
modulo renaming) and id denotes the set of all binary clauses of the form true← true or
p(x1, . . . , xn)← p(x1, . . . , xn), where p is a predicate symbol of arity n and x1, . . . , xn are
distinct variables. Given any set X of binary clauses, T β

P (X) is constructed by unfolding
prefixes of clause bodies of P , using elements of X ∪ id, to obtain new binary clauses.

▶ Definition 1 (Binary unfoldings).

T β
P : ℘(ℑ)→ ℘(ℑ)

X 7→

(H←B)θ

∣∣∣∣∣∣∣∣

c = H←B1, . . . , Bm ∈ P, i ∈ {1, . . . , m}
⟨Hj← true⟩i−1

j=1 ≪ X

Hi←B ≪ X ∪ id, i < m⇒ B ̸= true
θ = mgu(⟨B1, . . . , Bi⟩, ⟨H1, . . . , Hi⟩)

WST 2021 64

https://costa.fdi.ucm.es/wst2021/

and unf (P) =
⋃

n∈N(T β
P)n(∅), where (T β

P)0(∅) = ∅.

▶ Example 2. Consider the logic program P that consists of the clauses

c1 = p(x, y)← q(x), p(y, x) c2 = q(0)← true

Unfolding c2 using true← true ∈ id, one gets c′
2 = q(0)← true ∈ T β

P (∅). Then, unfolding
c1 using c′

2, p(x′, y′)← p(x′, y′) ∈ id and i = 2, one gets c3 = p(0, y)← p(y, 0) ∈ (T β
P)2(∅).

Finally, unfolding c1 using c′
2, c3 and i = 2, one gets c4 = p(0, 0)← p(0, 0) ∈ (T β

P)3(∅).

It is proved in [4] that the binary unfoldings of a LP exhibit its termination properties:

▶ Theorem 3 (Observing non-termination in the unfoldings). Let P be a LP and Q be a query.
Then, Q is non-terminating w.r.t. P iff Q is non-terminating w.r.t. unf (P).

For instance, in Ex. 2, we have c4 = p(0, 0)← p(0, 0) ∈ unf (P), so the query p(0, 0) is
non-terminating w.r.t. unf (P). Hence, by Thm. 3, p(0, 0) is non-terminating w.r.t. P .

The proof of Thm. 3 relies on the following definition and theorem.

▶ Definition 4 (Calls-to relation ⇝). Let P be a LP. For any atoms A and B, we say that B

is a call in a derivation of P ∪ {A}, denoted A⇝
P

B, if A
+⇒
P
⟨B, . . . ⟩; we also write A⇝

L
B to

emphasize that L is the sequence of clauses of P used in a derivation from A to ⟨B, . . . ⟩. A
P -chain is a (possibly infinite) sequence of the form A0⇝

P
A1⇝

P
A2⇝

P
· · ·

▶ Theorem 5 (Observing non-termination in the chains). A LP P is non-terminating iff there
exists an infinite P -chain.

For instance, in Ex. 2, we have the infinite P -chain p(0, 0)⇝
P

p(0, 0)⇝
P
· · ·

4 Observing non-termination in term rewriting

We consider the unfolding technique used in [8]. It is defined as a function over the domain ℜ
of rewrite rules (viewed modulo renaming). It is based on forward and backward narrowing
and also performs unfolding on variable positions (contrary to what is usually done in the
literature). Note that in general, the unfoldings of a TRS are not finitely computable.

▶ Definition 6 (Unfoldings).

UR : ℘(ℜ)→ ℘(ℜ)

X 7→

(l→ r[p← r′])θ

∣∣∣∣∣∣∣∣

l→ r ∈ X

p ∈ Pos(r)
l′→ r′ ≪ R
θ = mgu(r|p, l′)

︸ ︷︷ ︸
forward unfoldings

∪

(l[p← l′]→ r)θ

∣∣∣∣∣∣∣∣

l→ r ∈ X

p ∈ Pos(l)
l′→ r′ ≪ R
θ = mgu(l|p, r′)

︸ ︷︷ ︸
backward unfoldings

and unf (R) =
⋃

n∈N(UR)n(R), where (UR)0(R) = R.

▶ Example 7. Consider the TRS R introduced by Toyama [9] that consists of the rules

R1 = f(0, 1, x)→ f(x, x, x) R2 = g(x, y)→x R3 = g(x, y)→ y

We have R1 ∈ (UR)0(R). Unfolding R1 backwards using R2 and p = 1, one gets R4 =
f(g(0, y′), 1, x)→ f(x, x, x) ∈ UR(R). Then, unfolding R4 backwards using R3 and p = 2, one
gets R5 = f(g(0, y′), g(x′′, 1), x)→ f(x, x, x) ∈ (UR)2(R).

WST 2021 65

https://costa.fdi.ucm.es/wst2021/

By [6], for all s→ t ∈ unf (R) we have s
+⇒
R

t. So, as R ⊆ unf (R) also holds, the unfoldings
of a TRS exhibit its termination properties:

▶ Theorem 8 (Observing non-termination in the unfoldings). Let R be a TRS and s be a term.
Then, s is non-terminating w.r.t. R iff s is non-terminating w.r.t. unf (R).

In Ex. 7 above, we have R5 = f(g(0, y′), g(x′′, 1), x)→ f(x, x, x) ∈ unf (R), hence the term
s = f(g(0, 1), g(0, 1), g(0, 1)) is non-terminating w.r.t. unf (R) (we have s⇒

R5
s⇒

R5
· · ·). Con-

sequently, by Thm. 8, s is non-terminating w.r.t. R.
We refer to [2] for details on dependency pairs. The defined symbols of a TRS R are DR =

{root(l) | l→ r ∈ R}. For every f ∈ F we let f# be a fresh tuple symbol with the same arity
as f. If t = f(t1, . . . , tm) is a term, we let t# denote the construct f#(t1, . . . , tm). The set of
dependency pairs of R is DP(R) = {l#→ t# | l→ r ∈ R, t is a subterm of r, root(t) ∈ DR}
(viewed modulo renaming). A (possibly infinite) sequence C = ⟨s#

1 → t#
1 , s#

2 → t#
2 , . . . ⟩ of

dependency pairs of R is an R-chain if there exist substitutions σi such that t#
i σi

∗⇒
R

s#
i+1σi+1

holds for every two consecutive pairs s#
i → t#

i and s#
i+1→ t#

i+1 in the sequence. We may also
write C as ⟨(s#

1 → t#
1 , σ1), (s#

2 → t#
2 , σ2), . . . ⟩ to emphasize that σ1, σ2, . . . are substitutions

associated with every two consecutive pairs. It is proved in [2] that the presence of an infinite
R-chain is a sufficient and necessary criterion for non-termination:

▶ Theorem 9 (Observing non-termination in the chains). A TRS R is non-terminating iff
there exists an infinite R-chain.

For instance, in Ex. 7, ⟨f#(0, 1, x)→ f#(x, x, x), f#(0, 1, x)→ f#(x, x, x), . . . ⟩ is an infinite
R-chain because, for σ = {x/ g(0, 1)}, we have f#(x, x, x)σ ∗⇒

R
f#(0, 1, x)σ.

5 Observing loopingness

The definitions presented below hold both in logic programming and in term rewriting, so
we introduce a generic terminology. By a program (denoted by Π, Π′. . .) we mean a LP or a
TRS, by a rule (denoted by π, π′. . .) we mean a clause or a rewrite rule, by a goal (denoted
by α, α′. . .) we mean a query or a term, by a computation we mean a derivation or a rewrite.

Let L = ⟨π1, . . . , πn⟩ be a finite non-empty sequence of rules. For any goals α, α′ we write
α ↪→

L
α′ when α⇒

π1
· · ·⇒

πn

α′.

▶ Definition 10 (Looping). Let Π be a program, L be a finite non-empty sequence of rules of
Π and α be a goal. We say that a computation of Π ∪ {α} is L-looping if it is infinite and
has the form α ↪→

L
α1 ↪→

L
α2 ↪→

L
· · · . We may drop the reference to L if it is not relevant, and

simply say that the computation is looping. We say that α is looping w.r.t. Π if there exists
a looping computation of Π ∪ {α}. We say that Π is looping if there exists a goal which is
looping w.r.t. it.

▶ Example 11. Consider the LP P which consists of the clauses c1 = p1← p2, c2 = p2← p3,
c3 = p3← p1 and c4 = p3← p4. Then, p1 is looping w.r.t. P as we have the infinite derivation
p1⇒

c1
p2⇒

c2
p3⇒

c3
p1⇒

c1
p2⇒

c2
p3⇒

c3
p1⇒

c1
· · · i.e., for L = ⟨c1, c2, c3⟩, p1 ↪→

L
p1 ↪→

L
p1 ↪→

L
· · ·

We extend the concept of loopingness to chains.

▶ Definition 12 (Looping chain). Let P be a LP and R be a TRS.

WST 2021 66

https://costa.fdi.ucm.es/wst2021/

We say that a P -chain is looping if it is infinite and has the form A0⇝
L

A1⇝
L
· · · where

L is a finite, non-empty, sequence of clauses of P .
We say that an R-chain is looping if it is infinite and has the form ⟨L, L, . . . ⟩, where L

is a finite, non-empty, sequence of elements of DP(R)× Substitutions.

▶ Example 13 (Ex. 7 continued). Let p =
(

f#(0, 1, x)→ f#(x, x, x), {x/ g(0, 1)}
)
. Then,

⟨p, p, . . . ⟩ is a looping R-chain.

Note that there exist infinite computations which are not looping, i.e., do not correspond
to the infinite repetition of the same sequence of rules.

▶ Example 14. Let P be the LP which consists of the clauses c1 = p(0, y)← p(s(y), s(y))
and c2 = p(s(x), y)← p(x, y). We have the following infinite derivation of P ∪ {p(0, 0)}:

p(0, 0)⇒
c1

p(s(0), s(0))⇒
c2

p(0, s(0))⇒
c1

p(s2(0), s2(0)) 2⇒
c2

p(0, s2(0))⇒
c1
· · ·

It is not looping as it follows the path ⟨c1, c2, c1, c2, c2, c1, . . . ⟩. We also have the infinite,
non-looping, P -chain:

p(0, 0)⇝
c1

p(s(0), s(0))⇝
c2

p(0, s(0))⇝
c1

p(s2(0), s2(0)) ⇝
⟨c2,c2⟩

p(0, s2(0))⇝
c1
· · ·

▶ Example 15. Let R be the TRS which consists of the rules R1 = f(0, y)→ f(s(y), s(y))
and R2 = f(s(x), y)→ f(x, y). We have the following infinite rewrite of R∪ {f(0, 0)}:

f(0, 0)⇒
R1

f(s(0), s(0))⇒
R2

f(0, s(0))⇒
R1

f(s2(0), s2(0)) 2⇒
R2

f(0, s2(0))⇒
R1
· · ·

It is not looping as it follows the path ⟨R1, R2, R1, R2, R2, R1, . . . ⟩. We also have the infinite,
non-looping, R-chain ⟨(R#

1 , σ1), (R#
2 , θ1), (R#

1 , σ2), (R#
2 , θ2), . . . ⟩ where R#

1 = s#
1 → t#

1 =
f#(0, y)→ f#(s(y), s(y)), R#

2 = s#
2 → t#

2 = f#(s(x), y)→ f#(x, y) and, for all i > 0, σi =
{y/ si−1(0)} and θi = {x/0, y/ si(0)}. Indeed, we have t#

1 σ1
∗⇒
R

s#
2 θ1, t#

2 θ1
∗⇒
R

s#
1 σ2, . . .

All the examples given above seem to indicate that the Observing non-termination results
of Sect. 3 and Sect. 4 can be instantiated to loopingness.

▶ Lemma 16 (Observing loopingness in the chains). If, for a program Π, there exists a looping
Π-chain then Π is looping.

Proof. For LPs, the result immediately follows from Def. 4 and Def. 12. For TRSs, it is
proved in [2] that any infinite Π-chain C = ⟨(s#

1 → t#
1 , σ1), (s#

2 → t#
2 , σ2), . . . ⟩ corresponds

to an infinite rewrite C′ = (s1σ1⇒
R1

C1[t1]σ1
∗⇒
Π

C1[s2]σ2⇒
R2

C1[C2[t2]]σ2
∗⇒
Π
· · ·) where R1 =

s1→C1[t1], R2 = s2→C2[t2], . . . are rewrite rules of Π and the rewrites in ∗⇒
Π

do not occur

in the Ci’s (i.e., they are those of t#
i σi

∗⇒
Π

s#
i+1σi+1). Hence, if C is looping, so is C′. ◀

▶ Conjecture 17 (Observing loopingness in the chains). If a program Π is looping then there
exists a looping Π-chain.

Proof sketch for a LP P . Let Q0 ↪→
L

Q1 ↪→
L
· · · be a looping derivation of P ∪ {Q0}. Then,

in each step Qi ↪→
L

Qi+1 there is a query ⟨A, . . . ⟩ that has an infinite derivation. For all
i ∈ N, let ⟨Ai, . . . ⟩ be the leftmost such query in Qi ↪→

L
Qi+1. Then, for all i ∈ N we have

Ai⇝
P

Ai+1. Let L′ be the sequence of clauses used in A0
+⇒
P
⟨A1, . . . ⟩. We prove by induction

on i that, for all i ∈ N, L′ is used in Ai
+⇒
P
⟨Ai+1, . . . ⟩ and hence that Ai⇝

L′
Ai+1. ◀

WST 2021 67

https://costa.fdi.ucm.es/wst2021/

▶ Lemma 18 (Observing loopingness in the unfoldings). A term is looping w.r.t. a TRS R iff
it is looping w.r.t. unf (R).
Proof. (⇒) As R ⊆ unf (R), any rewrite with R is also a rewrite with unf (R). (⇐) For all
s→ t ∈ unf (R) we have s

+⇒
R

t [6], so replacing, in a looping rewrite with unf (R), each step
by the corresponding finite sequence of steps in R, one gets a looping rewrite with R. ◀

▶ Conjecture 19 (Observing loopingness in the binary unfoldings). A query is looping w.r.t. a
LP P iff it is looping w.r.t. unf (P).
Proof sketch. Use Lem. 16 + Conj. 17 and the fact that ⇝

P
= ⇝

unf (P)
[4]. ◀

▶ Example 20. In Ex. 2, we have the ⟨c4⟩-looping derivation p(0, 0)⇒
c4

p(0, 0)⇒
c4
· · · of

unf (P) ∪ {p(0, 0)} and the ⟨c1, c2⟩-looping derivation p(0, 0)⇒
c1
⟨q(0), p(0, 0)⟩⇒

c2
p(0, 0)⇒

c1
· · ·

of P ∪{p(0, 0)}. Note that c1 ̸∈ unf (P) (c1 is not binary) hence this derivation of P ∪{p(0, 0)}
is not a derivation of unf (P) ∪ {p(0, 0)}. In Ex. 7, for s = f(g(0, 1), g(0, 1), g(0, 1)), we have
the ⟨R5⟩-looping rewrite s⇒

R5
s⇒

R5
· · · of unf (R) ∪ {s} and the ⟨R2, R3, R1⟩-looping rewrite

s⇒
R2

f(0, g(0, 1), g(0, 1))⇒
R3

f(0, 1, g(0, 1))⇒
R1

s⇒
R2
· · · of R∪ {s}. As R ⊆ unf (R), this rewrite

of R∪ {s} is also a rewrite of unf (R) ∪ {s}.

6 Acknowledgement and future work

We thank the anonymous referees for their valuable comments and constructive criticisms.
Besides finishing the proofs (Conj. 19 and Conj. 17), we plan to extend the results to

dependency pairs in logic programming [7] and to inner-loopingness [10]. We also plan to
unify more concepts from termination analysis of LPs and TRSs.

References
1 K. R. Apt. From logic programming to Prolog. Prentice Hall International series in computer

science. Prentice Hall, 1997.
2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.
3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4 M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs.

Journal of Logic Programming, 41(1):103–123, 1999. doi:10.1016/S0743-1066(99)00006-0.
5 M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the analysis of logic

programs. In H. Berghel, T. Hlengl, and J. E. Urban, editors, Proc. of SAC’94, pages 394–399.
ACM Press, 1994. doi:10.1145/326619.326789.

6 J. V. Guttag, D. Kapur, and D. R. Musser. On proving uniform termination and restricted
termination of rewriting systems. SIAM Journal of Computing, 12(1):189–214, 1983. doi:
10.1137/0212012.

7 M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. Termination analysis of logic
programs based on dependency graphs. In A. King, editor, Proc. of LOPSTR’07, volume 4915
of LNCS, pages 8–22. Springer, 2007. doi:10.1007/978-3-540-78769-3_2.

8 É. Payet. Loop detection in term rewriting using the eliminating unfoldings. Theoretical
Computer Science, 403(2-3):307–327, 2008. doi:10.1016/j.tcs.2008.05.013.

9 Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting systems.
Information Processing Letters, 25(3):141–143, 1987. doi:10.1016/0020-0190(87)90122-0.

10 Y. Wang and M. Sakai. On non-looping term rewriting. In A. Geser and H. Søndergaard,
editors, Proc. of WST’06, pages 17–21, 2006.

WST 2021 68

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0743-1066(99)00006-0
https://doi.org/10.1145/326619.326789
https://doi.org/10.1137/0212012
https://doi.org/10.1137/0212012
https://doi.org/10.1007/978-3-540-78769-3_2
https://doi.org/10.1016/j.tcs.2008.05.013
https://doi.org/10.1016/0020-0190(87)90122-0
https://costa.fdi.ucm.es/wst2021/

Loops for which Multiphase-Linear Ranking
Functions are Sufficient
Amir M. Ben-Amram !

School of Computer Science, The Tel-Aviv Academic College, Israel

Jesús J. Domenech !

DSIC, Complutense University of Madrid (UCM), Spain

Samir Genaim !

DSIC, Complutense University of Madrid (UCM), Spain

Abstract
In this paper we identify sub-classes of single-path linear-constraint loops loops for which multiphase
ranking functions are sufficient, i.e., they terminate if and only if they have such ranking functions.
This has some important consequences: (1) complete algorithms for such ranking functions can
decide termination of these classes as well; and (2) terminating loops in these classes have linear
run-time complexity.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Ranking functions, Single-path linear constraint loops

Funding This work was funded partially by the Spanish MCIU, AEI and FEDER (EU) project
RTI2018-094403-B-C31, by the CM project S2018/TCS-4314 co-funded by EIE Funds of the European
Union, and by the UCM CT42/18-CT43/18 grant.

1 Introduction

In this paper, we are interested in termination analysis of single-path linear-constraint
loops (SLC loops) using multiphase ranking functions (MΦRFs for short), in particular, in
identifying sub-classes of SLC loops for which MΦRFs are sufficient, i.e., they terminate
if and only if they have MΦRFs. This is important because, for such classes, a decision
procedure for MΦRFs becomes a decision procedure for termination.

An SLC loop over n rational variables x1, . . . , xn has the form

while (Bx ≤ b) do Ax + A′x′ ≤ c (1)

where x = (x1, . . . , xn)T and x′ = (x′
1, . . . , x′

n)T are column vectors, and for some p, q > 0,
B ∈ Qp×n, A, A′ ∈ Qq×n, b ∈ Qp, c ∈ Qq. The constraint Bx ≤ b is called the loop guard
and the other constraint is called the update. The update is affine linear if it can be rewritten
as x′ = Ux + c. We say that there is a transition from a state x ∈ Qn to a state x′ ∈ Qn, if
x satisfies the loop condition and x and x′ satisfy the update constraint. A transition can
be seen as a point

(x
x′

)
∈ Q2n, where its first n components correspond to x and its last n

components to x′. We denote a transition
(x

x′
)

by x′′, and the set of all transitions by Q
which is a polyhedron. The projection of Q onto the x-space, i.e., the set of enabled states, is
defined as projx(Q) = {x ∈ Qn | ∃x′.

(x
x′

)
∈ Q}. An integer loop is an SLC loop restricted

to integer transitions (i.e., variables take only integer values). The following is an example of
an SLC loop.

while (x1 ≥ −x3) do x′
1 = x1 + x2, x′

2 = x2 + x3, x′
3 = x3 − 1 (2)

The description of a loop may involve linear inequalities rather than equations, and con-
sequently be non-deterministic.

WST 2021 69

mailto:amirben@mta.ac.il
mailto:jdomenec@ucm.es
mailto:sgenaim@ucm.es
https://costa.fdi.ucm.es/wst2021/

Algorithm 1 A semi-decision procedure for existence of MΦRFs [1].

MLRF(Q)
begin

1 if (Q is empty) then return ∅
2 else
3 Compute the generators (⃗a1, b1), . . . , (⃗al, bl) of projx(Q)#

4 Let Q′ = Q ∧ a⃗1 · x − a⃗1 · x′ ≤ 0 ∧ · · · ∧ a⃗l · x − a⃗l · x′ ≤ 0
5 if (Q′ == Q) then return Q
6 else return MLRF(Q′)

Several kinds of ranking functions have been suggested for proving termination of SLC
loops. In this paper, we are interested in Multiphase ranking functions. Intuitively, an
MΦRF is a tuple ⟨f1, . . . , fd⟩ of linear functions that define phases of the loop that are
linearly ranked, as follows: f1 decreases on all transitions, and when it becomes negative
f2 decreases, and when f2 becomes negative, f3 will decrease, and so on. Loop (2) has the
MΦRF ⟨x3 + 1, x2 + 1, x1⟩. The parameter d is called the depth of the MΦRF.

The decision problem Existence of an MΦRF asks to determine whether an SLC loop has
an MΦRF. The bounded decision problem restricts the search to MΦRFs of depth d, where d

is part of the input. Ben-Amram and Genaim [3] showed that the bounded version of the
MΦRF problem is PTIME for SLC loops with rational-valued variables, and coNP-complete
for SLC loops with integer-valued variables. They also showed that, for SLC loops, MΦRFs
have the same power as lexicographic-linear ranking functions and that they imply linear
run-time complexity bounds. The problem of deciding if a given SLC admits an MΦRF,
without a given bound on the depth, is still open, however, in a recent work [1] we suggested
a semi-decision procedure that sheds some light on this class of ranking functions.

The procedure (see Algorithm 1) is based on using the set of non-negative functions1

over the enabled states (Line 3) to continuously reduce Q (Line 4) until reaching an empty
set of transitions (Line 1). If a loop Q has an MΦRF of optimal depth d, it is guaranteed
that MLRF(Q) will reach an empty set in d recursive calls, and if the loop does not have an
MΦRF it might find a recurrent set that witnesses non-termination (Line 5) or diverge.

In the rest of this paper, we demonstrate the usefulness of Algorithm 1 for studying
properties of SLC loops, in particular, we use it to characterize kinds of SLC loops for
which there is always an MΦRF, if the loop is terminating, and thus have linear run-time
complexity. We shall prove this result for two kinds of loops, both considered in previous
work, namely octagonal relations and affine relations with the finite-monoid property – for
both classes, termination has been proven decidable [4]. We only consider the rational case.

2 Loops for which MΦRFs are sufficient

We let Qn = {
(x

z
)

| ∃y .
(x

y
)

∈ Q ∧
(y

z
)

∈ Qn−1} where Q0 is the identity relation, i.e., Qn

is the n-th composition of Q, which is a polyhedron. We let pren(Q) = projx(Qn), which is
the states from which we can make traces of length at least n (for non-deterministic loops

1 The set of non-negative functions over S ⊆ Qn is S# = {(⃗a, b) ∈ Qn+1 | ∀x ∈ S. a⃗ · x + b ≥ 0}. When
S is a polyhedron, S# is polyhedral cone, i.e., finitely generated by (⃗a1, b1), . . . , (⃗al, bl).

WST 2021 70

https://costa.fdi.ucm.es/wst2021/

some might be less than n as well). Our results rely on the following property of Algorithm 1.

▶ Lemma 1 ([1]). If Q′ (on Line 4) has an MΦRF of optimal depth d, then Q has one of
optimal depth d + 1.

2.1 Finite loops
First, we consider loops which always terminate and, moreover, their number of iterations is
bounded by a constant, i.e., there is N > 0 s.t. QN = ∅. Note that such a loop terminates
in at most N − 1 iterations (N − 1 is an upper-bound on the length of its traces).

▶ Lemma 2. If QN = ∅, then it has an MΦRF of depth less than N .

Proof. The proof is by induction on N . For N = 1, Q = ∅, and it has an MΦRF of depth
zero. Let N > 1, and assume that QN−1 ̸= ∅, otherwise it trivially follows for N . Consider
a transition x′′ =

(x
x′

)
that is the last in a terminating trace. We have x ∈ projx(Q) and

x′ ̸∈ projx(Q). Since projx(Q) is a closed polyhedral set, this means that there is a function
ρ, defined by some (⃗a, b) ∈ projx(Q)#, that is non-negative over projx(Q) but negative
on x′, and thus ρ(x) − ρ(x′) > 0. It follows that x′′ is eliminated by Algorithm 1 when
computing Q′ on Line 4. This means that any transition of Q′ cannot be the last transition of
any terminating run of Q, and thus (Q′)N−1 = ∅. Therefore, by induction, it has an MΦRF
of depth at most N − 2, and by Lemma 1, Q has an MΦRF of depth at most N − 1. ◀

2.2 The class RF(b)
This class contains terminating loops which can be described as having the following behavior:
Transitions are linearly ranked, as long as we are in states from which we can make runs of
length at least b. In other words, once we reach a state from which we cannot make more
than b − 1 transitions we do not require the rest of the trace to be linearly ranked.

▶ Definition 3. We say that an SLC loop Q belongs to the class RF(b) if the loop Q∩{
(x

x′
)

∈
Q2n | x ∈ preb(Q)} has a linear ranking function (LRF for short).

We note that RF(1) is the class of loops which have a linear ranking function.

▶ Lemma 4. Loops in RF(b) have MΦRFs of depth at most b.

Proof. This lemma generalizes Lemma 2, since the loops concerned there are RF(N −1). The
proof is done similarly by induction on b. For b = 1, Q has a LRF by definition. Let b > 1,
and suppose that x′′ =

(x
x′

)
∈ Q is a last transition of a terminating run, then x ∈ projx(Q)

and x′ ̸∈ projx(Q). Since projx(Q) is a closed polyhedral set, this means that there is a
function ρ, defined by some (⃗a, b) ∈ projx(Q)#, that is non-negative over projx(Q) but
negative over x′, and thus ρ(x) − ρ(x′) > 0. It follows that x′′ is eliminated by Algorithm 1
when computing Q′ on Line 4. This means that any transition of Q′ cannot be the last
transition of any terminating run of Q, and thus Q′ is RF(b − 1). Therefore, by induction, it
has an MΦRF of depth at most b − 1, and by Lemma 1 Q has an MΦRF of depth at most
b. ◀

▶ Example 5. Consider the loop [4] defined by

Q = {x2 − x′
1 ≤ −1, x3 − x′

2 ≤ 0, x1 − x′
3 ≤ 0, x′

4 − x4 ≤ 0, x′
3 − x4 ≤ 0}. (3)

This loop is RF(3), since adding pre3(Q) = {x2 + x4 ≥ 1, x3 + x4 ≥ 1, x1 + x4 ≥ 0} to
the loop we find a LRF , e.g., ρ(x) = −x1 − x2 − x3 + 3x4 + 1. Indeed, Q has an MΦRF of

WST 2021 71

https://costa.fdi.ucm.es/wst2021/

optimal depth 3, e.g., ⟨−x1 − x2 − x3 + 3x4 + 1, − 2
3 x1 − 1

3 x2 + x4 + 1, − 1
4 x1 + 1

4 x4 + 1⟩. Note
that the first component is the LRF that we have found for Q ∩ {x′′ | x ∈ pre3(Q)}. □

Note that if we know that a given class of loops belongs to RF(b), then bounding the
recursion depth of Algorithm 1 by b gives us a decision procedure for the existence of an
MΦRF for this class. Bozga, Iosif and Konecný [4] proved that octagonal relations2 are
RF(52n), where n is the number of variables. Thus for octagonal relations, we can decide
termination and for terminating loops obtain MΦRFs. For the depth of the MΦRF, namely
the parameter b above, Bozga, Iosif and Konecný [4] gives a tighter (polynomial) result for
those octagonal relations which allow arbitrarily long executions (called ∗-consistent).

2.3 Loops with affine-linear updates
In certain cases, we can handle loops with affine-linear updates – which are, in general, not
octagonal. Recall that a loop with affine-linear update has a transition relation of the form:

Q ≡ [Bx ≤ b ∧ x′ = Ux + c] . (4)

We keep the meaning of the symbols U, B, b, c fixed for the sequel. Moreover, we express the
loop using the transformation U(x) = Ux + c and the guard G ≡ [Bx ≤ b]. We use Uij to
denote the entry of matrix U in row i and column j, and for a vector v we let v[i..j] be the
vector obtained from components i to j of the vector v.

Our goal is to show that if Up, for some p > 0, is diagonalizable and all its eigenvalues
are in {0, 1}, then Q is RF(3p), and thus, by Lemma 4, if terminating, it has an MΦRF.
Affine loops with the finite monoid property that has been addressed by Bozga, Iosif and
Konecný [4], satisfy this condition. Moreover, the existence of p, given the matrix U , is
decidable [4, Section 5.3] so in principle we can decide if it exists and if it does,search for it
by brute force.

We state some auxiliary lemmas first.

▶ Lemma 6. Let Q be an affine-linear loop as in (4) such that for some N > 0, QN is RF(b).
Then Q is RF(N(b + 1)).

Proof. If QN is RF(b), then QN ∩ {x′′ | x ∈ preb(QN)} has a LRF ρ, and thus

x ∈ preb(QN) = preNb(Q) ⇒ ρ(x) ≥ 0 ∧ ρ(x) − ρ(UN (x)) > 0 . (5)

Note that ρ(x) − ρ(UN (x)) can be written as

N−1∑

j=0
ρ(U j(x)) −

N−1∑

j=0
ρ(U j+1(x)) (6)

This is because every term ρ(U i(x)), except for i = 0 and i = N , appear in (6) with positive
and negative signs. Hence, if we let ρ1(x) =

∑N−1
j=0 ρ(U j(x)) then:

x ∈ preNb(Q) ⇒ ρ1(x) − ρ1(U(x)) > 0 . (7)

Moreover, ρ1 is the sum of terms ρ(U i(x)) which are bounded from below on preN(b+1)(Q).
Hence, we have a LRF for Q ∩ {x′′ | x ∈ preN(b+1)(Q)} and thus Q is RF(N(b + 1)). ◀

2 Conjunction of inequalities of the form ax + by ≤ c where a, b ∈ {−1, 0, 1}andc ∈ Q.

WST 2021 72

https://costa.fdi.ucm.es/wst2021/

▶ Lemma 7. Let Q be a loop as in (4), and assume U is diagonal with entries in {0, 1}.
Then, if Q is terminating, it is RF(2).

Proof. W.l.o.g. we may assume that U11 = · · · = Ukk = 1 and Ujj = 0 for j > k, otherwise
we could reorder the variables to put it into this form. Clearly, the update adds c1 = c[1..k]
to the first k elements of x, and sets the rest to c2 = c[k + 1..n]. Consequently, such a loop
is non-terminating iff the space V = {x ∈ Qn | x[k + 1..n] = c2} intersects the loop guard
G ≡ [Bx ≤ b], and u = (c1, . . . ck, 0, . . . , 0)T ∈ Qn is a recession direction of the guard, i.e.,
Bu ≤ 0. To see this: suppose these conditions hold, then starting from any state x0 ∈ V ∩ G,
the state after i iterations will be xi = x0 + iu, which is in G since x0 ∈ G and u is a recession
direction of G, and thus the execution does not terminate; for the other direction, suppose it
does not terminate, then there must be a non-terminating execution that starts in x0 ∈ V ,
this execution generates the states x0 + iu ∈ G and thus u is a recession direction of G.

Now suppose the loop is terminating, we show that it is RF(2). Let us analyze a run of
the loop starting with some valid transition

(x0x1

)
. We have two cases:

1. If x1 ̸∈ G, then the run terminates in 1 iteration;
2. If x1 ∈ G, then V intersects with G, since x1[k + 1..n] = c2, and thus Bu ≤ 0 should not

hold, otherwise the loop is non-terminating. This means that there is a constraint b⃗ ·x ≤ b

of the guard such that b⃗ · u > 0. Define ρ(x) = −b⃗ · x + b, and note that it is non-negative
on all states in the run except the last (which is not in the guard). Write the initial state
x0 as

(x0[1..k]
x0[k+1..n]

)
, and note that the i-th state, for i ≥ 1, is xi =

(x0[1..k]+ic1
c2

)
. Then,

for i ≥ 1, we have ρ(xi) − ρ(xi+1) = b⃗ ·
(c1

0
)

= b⃗ · u > 0 which means that ρ is a LRF
from the second transition on (it is not guaranteed that ρ(x0) − ρ(x1) > 0). Now take
ρ′(x) = ρ(U(x)) = a⃗ · Ux + a⃗ · c + b, and note that it is a LRF until the transition before
the last – because ρ′ looks one state ahead, by considering U(x) instead of x, so unlike ρ

it is decreasing on the first transition as well but might be negative on the last one.
This analysis implies that any terminating trace is either of length 1, or has a LRF until one
transition before the last, that is RF(2). ◀

Now we are in a position for proving our main result of this section.

▶ Lemma 8. If Up, for some p > 0, is diagonalizable and all its eigenvalues are in {0, 1},
then loop (4) is either non-terminating or RF(3p).

Proof. Recall that the update is U(x) = Ux + c, then Up(x) = Upx + v, for a vector
v = (I + U + · · · + Up−1)c. Taking into account the guard,

Qp ≡ (Bx ≤ b ∧ · · · ∧ BUp−1(x) ≤ b) ∧ x′ = Up(x) . (8)

We write this guard concisely with the notation B⟨p⟩x ≤ b⟨p⟩. Since, by assumption,
Up is diagonalizable, there is a non-singular matrix P and a diagonal matrix D such
that P −1UpP = D and D has only 1’s and 0’s on the diagonal (P is a change-of-basis
transformation). We consider a loop Q̂p similar to Qp but transformed by P , that is:

Q̂p ≡ B⟨p⟩Px ≤ b⟨p⟩ ∧ x′ = Dx + P −1v . (9)

Properties like termination and linear ranking are not affected by such a change of basis.
This is because if

(x0x1

)
is a transition of Qp then

(
P −1x0
P −1x1

)
is a transition of Q̂p, and

if
(x0x1

)
is a transition of Q̂p then

(
P x0
P x1

)
is a transition of Qp. This means that there is

a one-to-one correspondence between the traces. Moreover, if function a⃗ · x + b ranks a

WST 2021 73

https://costa.fdi.ucm.es/wst2021/

transition of Qp then (⃗aP −1) · x + b ranks the corresponding transition of Q̂p, and if it ranks
a transition Q̂p then (⃗aP) · x + b ranks the corresponding transition of Qp. We conclude
that, if terminating, Qp is RF(b) iff Q̂p is RF(b).

Now, Q̂p has the diagonal form discussed in Lemma 7, and thus, in the case that it
terminates, it is RF(2) and so is Qp. Then using Lemma 6 we conclude that Q is RF(3p). ◀

3 Conclusions

We have shown that loops defined by octagonal relations and affine relations with the finite-
monoid property, terminate iff they have MΦRFs. This means that complete algorithms for
MΦRFs can decide termination of these classes as well, and that terminating loops in these
classes have linear run-time complexity. Another question, which we did not address and leave
for future work, is whether we can ensure that Algorithm 1 recognizes the non-terminating
members of these classes, i.e., whether Algorithm 1 (without a bound on the depth) would
always stop for all programs from these classes.

In previous sections, we have restricted ourself to loops over the rationals, however, all
results hold for loop over the reals as well. Besides, since a loop over the integers has an
MΦRF if and only if its integer-hull has an MΦRF over the rational [3], our results are valid
for the integer case if integer-hull of the loop falls in one of the classes that we discussed in
this paper. Moreover, it is know that for affine loops as (4) in which all numbers in U and
c are integer, computing the integer-hull can be done by computing the integer-hull of the
loop condition [2]. This means that, for such loops, the result of Section 2.3 are still valid for
the integer case as well.

References
1 Amir M. Ben-Amram, Jesús J. Doménech, and Samir Genaim. Multiphase-linear ranking

functions and their relation to recurrent sets. In Bor-Yuh Evan Chang, editor, Proceedings of
the 26th International Symposium on Static Analysis (SAS’19), volume 11822 of Lecture Notes
in Computer Science, pages 459–480. Springer, 2019.

2 Amir M. Ben-Amram and Samir Genaim. Ranking functions for linear-constraint loops.
Journal of the ACM, 61(4):26:1–26:55, July 2014.

3 Amir M. Ben-Amram and Samir Genaim. On multiphase-linear ranking functions. In Rupak
Majumdar and Viktor Kuncak, editors, Computer Aided Verification, CAV’17, volume 10427
of Lecture Notes in Computer Science, pages 601–620. Springer, 2017.

4 Marius Bozga, Radu Iosif, and Filip Konecný. Deciding conditional termination. Logical
Methods of Computer Science, 10(3), 2014.

WST 2021 74

https://costa.fdi.ucm.es/wst2021/

	Preface
	Organization
	Efficient Computation of Polynomial Resource Bounds for Bounded-Loop ProgramsAmir M. Ben-Amram
	Did Turing Care of the Halting Problem?Salvador Lucas
	de Vrijer's Measure for SN of in SchemeNachum Dershowitz
	Polynomial Loops: Termination and BeyondFlorian Frohn, Jürgen Giesl and Marcel Hark
	Polynomial Termination over N is UndecidableFabian Mitterwallner and Aart Middeldorp
	Modular Termination Analysis of C ProgramsFrank Emrich, Jera Hensel and Jürgen Giesl
	Analyzing Expected Runtimes of Probabilistic Integer Programs Using Expected SizesFabian Meyer, Marcel Hark and Jürgen Giesl
	Parallel Complexity of Term Rewriting SystemsThaïs Baudon, Carsten Fuhs and Laure Gonnord
	Between Derivational and Runtime ComplexityCarsten Fuhs
	Mixed Base Rewriting for the Collatz ConjectureEmre Yolcu, Scott Aaronson and Marijn Heule
	Formalizing Higher-Order Termination in CoqDeivid Do Vale and Niels van der Weide
	Observing LoopingnessÉtienne Payet
	Loops for which Multiphase-Linear Ranking Functions are SufficientAmir Ben-Amram, Jesús J. Doménech and Samir Genaim

