Unification and Resolution

Exercises

1 Substitutions

Exercise 1. Let

$$\alpha = \{ x/a, y/f(b), z/c \}$$
 $\beta = \{ v/f(f(a)), z/x, x/g(y) \}$

- compute $\alpha\beta$ and $\beta\alpha$
- for every of the following formulæ, compute (i) $F\alpha$; (ii) $F\beta$; (iii) $F\alpha\beta$; (iv) $F\beta\alpha$
 - 1. p(x, y, z);
 - 2. $p(h(v)) \vee \neg q(z,x)$
 - 3. $q(x, z, v) \vee \neg q(g(y), x, f(f(a)))$
- are α , β , $\alpha\beta$ or $\beta\alpha$ idempotent?

2 Unifiers

Exercise 2. For every C_1 , C_2 and α , decide whether (i) α is a unifier of C_1 and C_2 ; and (ii) α is the MGU of C_1 and C_2 .

$$\begin{array}{c|ccccc} C_1 & C_2 & \alpha \\ \hline p(a,f(y),z) & q(x,f(f(v)),b) & \{x/a,\ y/f(b),\ z/b\ \} \\ q(x,h(a,z),f(x)) & q(g(g(v)),y,f(w)) & \{x/g(g(v)),\ y/h(a,z),\ w/x\ \} \\ q(x,h(a,z),f(x)) & q(g(g(v)),y,f(w)) & \{x/g(g(v)),\ y/h(a,z),\ w/g(g(v))\ \} \\ r(f(x),g(y)) & r(z,g(v)) & \{x/a,\ z/f(a),\ y/v\ \} \end{array}$$

3 Unification Algorithm

Exercise 3. Find, when possible, the MGU of the following pairs of clauses.

```
 \begin{array}{l} \{q(a),\ q(b)\} \\ \{q(a,x),\ q(a,a)\} \\ \{q(a,x,f(x)),\ q(a,y,y,)\} \\ \{q(x,y,z),\ q(u,h(v,v),u)\} \\ \{p(x_1,g(x_1),x_2,h(x_1,x_2),x_3,k(x_1,x_2,x_3)),\ p(y_1,y_2,e(y_2),y_3,f(y_2,y_3),y_4)\} \end{array}
```

4 Resolution with Unification

Exercise 4. Determine whether the following clauses can be factorized, and give the factors if possible.

- 1. $p(x) \lor q(y) \lor p(f(x))$
- 2. $p(x) \lor p(a) \lor q(f(x)) \lor q(f(a))$
- 3. $p(x,y) \vee p(a, f(a))$
- 4. $p(a) \lor p(b) \lor p(x)$
- 5. $p(x) \lor p(f(y)) \lor q(x,y)$

Exercise 5. Find the possible resolvents of the following pairs of clauses.

$$\begin{array}{ccc} C & D \\ \hline \neg p(x) \lor q(x,b) & p(a) \lor q(a,b) \\ \neg p(x) \lor q(x,x) & \neg q(a,f(a)) \\ \hline \neg p(x,y,u) \lor \neg p(y,z,v) \lor \neg p(x,v,w) \lor p(u,z,w) & p(g(x,y),x,y) \\ \neg p(v,z,v) \lor p(w,z,w) & p(w,h(x,x),w) \end{array}$$

Exercise 6. The proof of the lemma appearing in slide 19 (page 19 of 07unification.pdf file) contains a flaw. Find it.

Exercise 7. Apply resolution (with refutation) to prove that the following formula

5
$$m(5, f(7, f(5, f(1, 0))))$$

is a consequence of the set

$$\begin{array}{ll} 1 & \neg m(x,0) \\ 2 & \neg i(x,y,z) \lor m(x,z) \\ 3 & \neg m(x,z) \lor \neg i(v,z,y) \lor m(x,y) \\ 4 & i(x,y,f(x,y)) \end{array}$$

Note that f(4, f(3, f(2, f(1, 0)))) can be seen as the list [4, 3, 2, 1, 0], so that m somehow represents list membership.

Hint: remember to rename variables when necessary.

Exercise 8. Try to figure out *precise* and *simple* rules for eliminating from derivations (obtained by saturation) which are not relevant to the satisfiability of the original set.