Computational Logic
Introduction to Logic Programming

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science
Technical University of Madrid
damiano@fi.upm.es

Academic Year 2008/2009
Programs

Terminology

- a Horn clause without negated literals is a fact
- a Horn clause which has a non-negated literal and the other literals negated is a rule
 - the non-negated literal is the head
 - the sequence of negated literals is the body
- a set of rules with the same head predicate p is a procedure, whose name is p
- a logic program is a set of procedures

Rule syntax

$$
\begin{array}{|c|c|c|}
\hline
A \lor \neg B_1 \lor \neg B_2 & B_1 \land B_2 \rightarrow A & A \leftarrow B_1, B_2. \\
A & A & A. \\
\hline
\end{array}
\quad
A \leftarrow B_1, B_2. \\
A. \\
\hline
$$
Queries

Execution
- A goal is a Horn clause with all literals negated.
- The deduction whose correctness has to be verified has the program as premise, and the goal as conclusion.
- The execution of a logic program on a given goal consists of verifying if the goal can be deduced from the program, and, if it can, computing the values of the goal variables which give the answer.
- SLD resolution is used, with the goal as the initial goal clause.
- Most implementations of this kind of languages use a computation rule which follows the order in which rules are written (top-down) and depth search with backtracking.
 - Infinite loops may occur.

Query syntax

$$\neg B_1 \lor \neg B_2 \quad B_1 \land B_2 \quad \leftarrow B_1, B_2. \quad ?- B_1, B_2.$$
Limitations: some rules are not allowed

- \(P_1 \land P_2 \rightarrow \neg Q \)
 - implication cannot end in something which is not true
- \(P_1 \land P_2 \rightarrow Q_1 \lor Q_2 \)
 - it is not possible to state a disjunction
- \(P_1 \land \neg P_2 \rightarrow Q \)
 - premises must be true

Negation

- complete knowledge about the universe is assumed (\textit{closed-world hypothesis})
- negation is simulated by \textit{negation as failure}: what cannot be proven is false
 - dangerous, but useful in finite domains
Execution

To prove a literal C

1. put C and the corresponding answer literal in a stack S
2. repeat until the top of S is an answer literal and no further steps can be preformed
 1. pop from S a literal L
 2. choose a rule or fact whose head unifies with L \((MGU \alpha)\)
 - push in S the literals (ordered) of the body of the rule
 - apply α to the complete S
 - rename variables in S
 3. if not possible, fail

Backtracking

When the choice of the rule whose head unifies with L comes to be impossible, the search must go back to a choice point above in the tree and take another literal L'
Example

Parents and grandparents

1 father(a,b).
2 mother(b,c).
3 grandparent(X,Z) :- parent(X,Y), parent(Y,Z).
4 parent(X,Y) :- father(X,Y).
5 parent(X,Y) :- mother(X,Y).

who is the grandparent of c? ?- grandparent(X,c).

grandparent(X,c), ans(X). \(\Rightarrow\) 3, \{X_3/X, Z_3/C\}
parent(X,Y3), parent(Y3,c), ans(X) \(\Rightarrow\) 4, \{X_4/X, Y_4/Y_3\}
father(X,Y3), parent(Y3,c), ans(X) \(\Rightarrow\) 1, \{X/a, Y_3/b\}
parent(b,c), ans(a) \(\Rightarrow\) 4, \{X'_4/b, Y'_4/c\}
father(b,c), ans(a) \(\Rightarrow\) fail, 5, \{X_5/b, Y_5/c\}
mother(b,c), ans(a) \(\Rightarrow\) 2, \{\}
ans(a)
Example

Parents and grandparents

1. father(a,b).
2. mother(b,c).
3. grandparent(X,Z) :- parent(X,Y), parent(Y,Z).
4. parent(X,Y) :- father(X,Y).
5. parent(X,Y) :- mother(X,Y).

who is the grandchild of a? ?- grandparent(a,X).

grandparent(a,X), ans(X).
parent(a,Y3), parent(Y3,X), ans(X) ⇝ 3, \{X_3/a, Z_3/X\}
father(a,Y3), parent(Y3,X), ans(X) ⇝ 4, \{X_4/a, Y_4/Y_3\}
parent(b,X), ans(X) ⇝ 1, \{Y_3/b\}
father(b,X), ans(X) ⇝ 4, \{X_4'/b, Y_4'/X\}
mother(b,X), ans(X) ⇝ fail, 5, \{X_5/b, Y_5/X\}
ans(c) ⇝ 2, \{X/c\}
Parents and grandparents

\[
\begin{align*}
1..5 & \\
gp(X, c) & \\
3 & \\
p(X, Y3), p(Y3, c) & \\
4 & \\
f(X, Y3), p(Y3, c) & \\
1, X/a & \\
p(b, c) & \\
4 & \\
f(b, c) & \\
1 & \\
\, & \\
\text{ans}(a) & \\
2 & \\
m(b, c) & \\
5 & \\
m(X, Y3), p(Y3, c) & \\
2, X/b & \\
p(c, c) & \\
4 & \\
f(c, c) & \\
1 & \\
m(c, c) & \\
2 & \\
\end{align*}
\]
Operational vs. declarative

Operational
- the program defines a series of *procedures* (the heads) using *calls* to other procedures (the literals in the body)
- the goal is a series of calls to be executed sequentially (in the order they are written), with the possibility to *go back*

Declarative
- the program declares the information about the problem to be solved
- the problem is formulated as a question
- the task is proving that the question is a correct conclusion of the premises (program)
- an execution is a proof
Operational vs. declarative

Applications

- arithmetics (reversible)
- data structures, recursion
- database systems
- search problems
- rule-based expert systems
The CLIP group

- the Computational logic, Languages, Implementation, and Parallelism Laboratory
- http://www.clip.dia.fi.upm.es/
- http://www.clip.dia.fi.upm.es/Software/Ciao/