
Modeling Secure Information Flow with Boolean
Functions

Samir Genaim?, Roberto Giacobazzi, and Isabella Mastroeni

Dipartimento di Informatica
Università di Verona

Strada Le Grazie, I-37134 Verona, Italy
Fax: +39-045-8027068

{genaim,giaco,mastroeni}@sci.univr.it

Abstract. In this paper we describe two uses of Boolean functions in
the context of secure information flow analysis. The first contribution
concerns with modeling information flow with Boolean functions, which
leads to an accurate information flow analysis that captures dependen-
cies between possible flows. These dependencies are useful for debugging;
refining the notion of secure information flow; and achieving efficient im-
plementation using sophisticated data structures like Binary Decision
Diagrams. The second contribution concerns with analyzing dynamic se-
curity policies. We describe how to construct a Boolean function, such
that its models describe possible non-interference sets of program vari-
ables. This can be used to enforce security classes dynamically, rather
than re-analyzing the program.

1 Introduction

A program is secure, if the information it contains can only be manipulated
in a way authorized by its security policy. There are several security policies
defined in the literature [9]. The security policy we are concerned with in this
paper is information flow policy. An information flow policy can be defined as
a complete lattice of security classes, where information is allowed to flow from
variables of a specific security class, to variables of higher security classes [5].
This is often called non-interference secrecy. Static analysis techniques have been
used to check if programs meet their security policies. These techniques range
from data/control -flow [2, 4, 10, 13, 11] to type-inference [15, 16].

The first contribution of this paper is, modeling information flow with Boolean
functions, which leads to an accurate information flow analysis, from which we
can observe dependencies between information flows. For example, one can ob-
serve that in any execution information may flow from y to x or z, but not
to both, or, when x flows to y then z flows to w. The basic idea is that for
each program variable x we create two Boolean variables xi and xo, which in-
dicate respectively if the input and output values of x may contain secrets.

? Supported by Marie Currie Fellowship number HPMF-CT-2002-01848



Using these Boolean variables, the information flow of “x:=x+y” is captured by
(xo ↔ xi ∨ yi) ∧ (yo ↔ yi), which means that the output value of x depends on
the input values of both x and y, while the output value of y depends only on
the input value of y. Checking non-interference in this context, is equivalent to
checking satisfiability of a corresponding Boolean function.

From the practical side, these dependencies between information flows are
useful for: (1) refining of security policies, e.g. allowing information to flow to
limited amount of variables; (2) debugging of programs that violate their security
policies; and (3) using sophisticated data structures in the implementation, such
as Binary Decision Diagrams [3], which are known to be very efficient. From the
theoretical side, they raise the issue of systematic refinement [8] of domains for
information flow to capture different degrees of dependencies.

The second contribution concerns the analysis of dynamic security policies.
For a given program, we describe how to construct a Boolean function (not
like those of the first contribution), such that its models describe possible non-
interference divisions of the program variables to private and public classes.
When a variable is dynamically binded to a security class, this Boolean function
can be infer the security classes of other variables, rather than re-analyzing the
program.

In the related works section, we also discuss an interesting link between
information flow analysis and dependency analyses of logic programs, such as
groundness analysis [1]. In these analyses, Boolean function where intensively
used to capture dependencies between program variables.

The structure of the paper is as follows: In Section 2 we present the idea by
simple examples; In Section 3 we give notation to be used during the paper, as
well as, the necessary background on Boolean functions; In Section 4 we describe
the analysis and its use for verifying non-interference in the context of static and
dynamic security policies. In Section 5 we overview the related works and give
directions for future research; and we conclude in Section 6.

2 The Idea by Examples

Consider the single statement C ≡ (x := y + z) and assume the set of program
variables is {x, y, z, w}. When executing C, the secret information flow behavior
is: (1) secrets may flow from y and z to x; and (2) the security properties of y,
z and w remain the same, since they are not updated. Now let xi, yi, zi and
wi (xo, yo, zo and wo) be Boolean variables, that indicate, if the corresponding
program variables may contain secret information before (after) executing C.
Using these Boolean variables, the above secret information flow behavior can
be expressed as follows:

ϕ =[xo ↔ (yi ∨ zi)]︸ ︷︷ ︸∧[(zo ↔ zi) ∧ (yo ↔ yi) ∧ (wo ↔ wi)]︸ ︷︷ ︸
(1) (2)

The models of ϕ, i.e. the assignments for which ϕ is satisfiable, describe all
possible secret information flow behaviors when executing C. Given a model m



of ϕ, if vi ∈ m (vo ∈ m) then the value of the program variable v may contain
secret information before (after) the execution of C.

Consider for example the model m = {yi, xo, yo} of ϕ, it describes a situation
where before executing C, only y may contain secret information (since yi ∈ m),
while after the execution both x and y may contain secret information (since
xo, yo ∈ m). Similarly, the model {zi, xo, zo} describe the possibility of secret
information flow from z to x. Note also that m′ = {yi, yo} is not a model of
ϕ, because executing C may cause a flow from y to x, and this is not described
by m′ (since xo 6∈ m′).

Let us consider another kind of information flow which stems from guards of
conditional statements. For example, in the following statement:

C1 ≡ if (w = 0) then x := y else z := y.

The information flow behavior of C1 consists of: (1) explicit information flow
that stems from the “then” or the “else” branches; and (2) implicit flow from
the guard’s variables, i.e. w, to all variables that might be updated during the
executions, i.e. x and z, because by watching the values of x and z we may learn
whether w = 0 or w 6= 0. This behavior is expressed by the following Boolean
functions:

ϕ3 = (ϕ1 ∨ ϕ2)︸ ︷︷ ︸∧(x′o ↔ (xo ∨ wi)) ∧ (z′o ↔ (zo ∨ wi))︸ ︷︷ ︸
(1) (2)

where ϕ1 and ϕ2 are respectively the information flow behaviors of the “then”
and “else” branches. The idea is to define new output variables x′o and z′o, that
consider the information from xo and zo (of ϕ1 ∨ ϕ2) as well as from wi.

In general for a given program P , the analysis infers a Boolean function ϕ
such that its models describe all possible (input/output) information flows. This
function can be used to verify non-interference as follows: Given that the set
of private variables is VH and the set of public variables is VL, we can claim
non-interference if [( ∧

x∈VL

¬xi) ∧ ϕ ∧ ( ∨
x∈VL

xo)] is not satisfiable, which means that

it cannot be the case that the input values of all public variables do not contain
secrets, and, the output values of some of them contain secrets.

3 Preliminaries

3.1 The Programming Language

The analysis in this paper is developed for the following while programming
language [17]:

S ≡ C`

C ≡ x := e | while b do | if b then S1 else S2 | skip | S1;S2

Here e stands for an arithmetic expression, b for a Boolean expression and ` for
a label name. We assume all labels are different. For more information about



this language, in particular the use of labels see [6]. A program in the while
language is denoted by the letter P , vars(X) denotes the set of variables in a
syntactic object X (expression, program, etc.), VP = vars(P ), and VS denotes
the program variables where a statement S occur (not only vars(S)). When it
is clear from the context we write v ∈ X instead of v ∈ vars(X).

3.2 Secure Information Flow

For a given statement S, information flow from a variable x to a variable y in
S, denoted by x S

; y, means that by observing the final value of y we may gain
knowledge about the initial value of x. Following [5], we divide information flows
into two classes: direct and indirect. The direct flows are: (1) Explicit, which
stem from direct assignments, e.g. in the statement x := y + z there is a flow
of information from y and z to x; and (2) Implicit, which stem from guards of
conditional statements, e.g. in the statement “if (x > 0) then y := w else y := z”
there is a flow of information from x to y, in addition to the explicit flow from
w and z to y. The indirect flows are the transitive ones, i.e. x S

; y followed by
y S

; z implies x S
; z. In this paper we do not address information flow that

stems from covert channels, e.g. termination, timing, etc.

Definition 1 (Flow pairs). The pair 〈VI , VO〉, where VI , VO ⊆ VS, is called a
flow pair for S, if (∀x∈VI . ∃y∈VO. x

S
; y) ∧ (∀y∈VO. ∃x∈VI . x

S
; y). The set

of all flow pairs for S is denoted by FS. 2

Another interpretation for a flow pair 〈VI , VO〉 could be: if VI is the set of
all variables the input values of which may have secrets, then VO is the set of
all variables the output values of which may have secrets. We use these two
interpretations interchangeably.

Example 1. Let S ≡ x := y + z then FS = { 〈∅, ∅〉, 〈{x}, ∅〉, 〈{y}, {y, x}〉,
〈{z}, {x, z}〉, 〈{x, y, z}, {x, y, z}〉 }. 2

Information flow analysis was used to ensure secure information flow accord-
ing to a given security policy [12]. A security policy is defined by a complete
lattice 〈SC,≺〉, where SC is a set of security classes order by ≺, and each
program variable is associated with one security class, denoted type(x). Secure
information flow is guaranteed if: x ; y implies type(x) ≺ type(y). This is
known as non-interference secrecy [9, 12]. For the sake of simplicity, we consider
the case of only two security classes, high and low. We denote by VH and VL the
sets of variables of type high and low respectively, and when it is clear from the
context h stands for a high variable and l for a low variable.

3.3 Boolean Functions

Let B = {true, false}. A Boolean function on V = {x1, . . . , xn} is a function
ϕ : Bn → B. An interpretation µ : V → B is an assignment of truth values
to the variables in V . An interpretation µ is a model for ϕ, denoted µ |= ϕ, if



ϕ(µ(x1), . . . , µ(xn)) = true. We write an interpretation as the set of variables
which are assigned to the value true. The set of models of ϕ is thus viewed as a set
of sets of variables defined by [[ϕ]]V =

{
{x ∈ V | µ(x) = true}

∣∣µ |= ϕ
}
. Much

of the time we will omit the subscript V as it will be clear from the context.
We write ϕ1 |= ϕ2 for ∀m ∈ [[ϕ1]]. m |= ϕ2. Let ϕ be a Boolean function on
V , the existential quantification ∃x.ϕ is defined as ϕ[x 7→ true] ∨ ϕ[x 7→ false],
and, the existential quantification of a set of variable {x1, . . . , xn} is defined as
∃x1.(∃x2. . . . (∃xn.ϕ)). Also, we write ∃̄X.ϕ instead of ∃V \X.ϕ.

4 Information Flow Dependencies Analysis

In this section, we formalize the use of Boolean functions to model informa-
tion flow dependencies, describe a static analysis to infer these functions, and,
describe its use for verifying non-interference for static and dynamic security
policies.

4.1 Information Flow Dependencies

For a given statement S we define a Boolean function ϕS , from which all pos-
sible information flows can be observed. We call this function information flow
dependencies of S (or only dependencies when it is clear from the context). This
function is constructed from the set of flow pairs FS as follows.

Definition 2 (information flow dependencies). The information flow de-
pendencies of a statement S, denoted ϕS, is a Boolean function over the variables{
vi, vo

∣∣v ∈ VS

}
, defined by its models as: [[ϕS ]] =

{
m(VI , VO)

∣∣〈VI , VO〉 ∈ FS

}
where m(VI , VO) =

{
vi

∣∣v ∈ VI

}
∪

{
vo

∣∣v ∈ VO

}
. 2

In the above definition, the Boolean variables vi and vo indicate if v may
contain secret before and after executing S respectively.

Example 2. Consider again S ≡ x := y + z from Example 1, and let VS =
vars(S) = {x, y, z}, then using the set of flow pairs FS , the information flow
dependencies ϕS is defined by its models as follows:

[[ϕS ]] =
{
∅, {yi, xo, yo}, {zi, xo, zo}, {yi, zi, yo, zo, xo}, {xi},
{xi, yi, xo, yo}, {xi, zi, xo, zo}, {xi, yi, zi, yo, zo, xo}

}
For example, the model {yi, xo, yo} describes a scenario where only the input
value of y contains secrets at, and both output values of x and y contain secrets.
Note that ϕS ≡ (xo ↔ yi ∨ zi) ∧ (yo ↔ yi) ∧ (zo ↔ zi). 2

Since secrets introduced only at input, information flow dependencies ϕS

satisfies: (1) ∅ ∈ [[ϕS ]]; and (2) any m 6= ∅ ∈ [[ϕS ]] must include at least one vi.

Definition 3 (The domain SDV ). Given a set of program variables V , a
Boolean function ϕ over the variables

{
vi, vo

∣∣v ∈ V }
is an element of SDV ,

if and only if (1) ∅ ∈ [[ϕ]]; and (2) ∀m ∈ [[ϕ]]. ∃v ∈ V. vi ∈ m. 2



Proposition 1. The domain 〈SDV ,→,∨,∧,>
SD
,⊥

SD
〉 where ⊥

SD
= ∧

v∈V
¬vi∧¬vo

and >
SD

= ⊥
SD
∨ ( ∨

v∈V
vi) is a complete lattice. 2

4.2 The analysis

Now we describe a static analysis that infer information flow dependencies for a
given program P . The analysis is defined by mean of Boolean equations system,
such that, its least solution is an information flow dependencies for P . The
analysis is described below step-by-step, where at each step we translate one
construct of the while programming language, into a corresponding information
flow dependencies that approximate its possible information flows.

Similar to the analysis of [4], in order to handle implicit information flow
precisely, we need the set of variables that might be updated during the exe-
cution. This information can be obtained either by a separated analysis or by
refining our analysis to include it. For the sake of simplicity, we assume this
information is already available, and we denote by U` the set of variables that
might be updated when executing S`.

Definition 4 (dependencies of “:=”). The information flow dependencies
of the statement “S ≡ x:=e”, is E(x, e) = [xo ↔ ∨

y∈e
yi] ∧ [ ∧

v∈VS
x6=v

(vo ↔ vi)] 2

The above definition states that, the output value of a variable x contains
secrets, if and only if, at least one of the input values of vars(e) contains secrets.
All other variables remain unchanged. Note that E(x, e) ≡ xo ↔ false when
vars(e) = ∅.

Definition 5 (dependencies of “skip”). The information flow dependencies
of the statement “S ≡ skip” is IdVS

= ∧
v∈VS

(vo ↔ vi). Note that we only map the

input variables to the output variables. 2

Example 3. Let S`1
1 ≡ x := 2∗y, S`2

2 ≡ z := w+x, and VS1 = VS2 = {x,w, y, z}.
The information flow dependencies of S`1

1 and S`2
2 are respectively:

ϕ1 = (xo ↔ yi) ∧ (yo ↔ yi) ∧ (zo ↔ zi) ∧ (wo ↔ wi)
ϕ2 = (zo ↔ (wi ∨ xi)) ∧ (yo ↔ yi) ∧ (xo ↔ xi) ∧ (wo ↔ wi)

Note that y
S1
; {x, y} is described by {yi, xo, yo} ∈ [[ϕ1]], and w

S2
; {z, w} is

described by {wi, zo, wo} ∈ [[ϕ2]]. 2

Computing the information flow dependencies of S`1
1 ;S`2

2 require a composi-
tion operator which is able to compose the corresponding dependencies.

Definition 6 (Composing dependencies). Given two information flow de-
pendencies ϕ1, ϕ2 ∈ SDV , their composition is ϕ1uϕ2 = ∃Vt. ϕ1[vo/vt]∧ϕ2[vi/vt]
where Vt =

{
vt

∣∣v ∈ V }
, ϕ1[vo/vt] is a renaming of ϕ1 obtained by renaming vo

to vt for every v ∈ V , and ϕ2[vi/vt] is a renaming of ϕ2 obtained by renaming
vi to vt for every v ∈ V . 2



Note that composing two dependencies is done by making the output vari-
ables of the first one (vo of ϕ1) equal to the input variables of the second one (vi

of ϕ2). In terms of Boolean functions, it is done by variables renaming, Boolean
conjunction and elimination of unnecessary variables.

Example 4. Consider again the statements S`1
1 and S`2

2 from Example 3, and
recall that their information flow dependencies are respectively ϕ1 and ϕ2. The
dependencies for S`1

1 ;S`2
2 and S`2

2 ;S`1
1 are respectively:

ϕ12 = ∃xt, yt, zt, wt. ϕ1[vo/vt] ∧ ϕ2[vi/vt]
= ∃xt, yt, zt, wt.

[(xt ↔ yi) ∧ (yt ↔ yi) ∧ (zt ↔ zi) ∧ (wt ↔ wi)]∧
[(zo ↔ wt ∨ xt) ∧ (yo ↔ yt) ∧ (xo ↔ xt) ∧ (wo ↔ wt)]

= (zo ↔ wi ∨ yi) ∧ (yo ↔ yi) ∧ (xo ↔ yi) ∧ (wo ↔ wi)

ϕ21 = ∃xt, yt, zt, wt. ϕ2[vo/vt] ∧ ϕ1[vi/vt]
= ∃xt, yt, zt, wt.

[(zt ↔ wi ∨ xi) ∧ (yt ↔ yi) ∧ (xt ↔ xi) ∧ (wt ↔ wi)]∧
[(xo ↔ yt) ∧ (yo ↔ yt) ∧ (zo ↔ zt) ∧ (wo ↔ wt)]

= (zo ↔ wi ∨ xi) ∧ (yo ↔ yi) ∧ (xo ↔ yi) ∧ (wo ↔ wi)

In S`1
1 ;S`2

2 the final value of z depends on the initial values of w and y, which is
expressed as zo ↔ (wi ∨ yi) in ϕ12, while in S`1

2 ;S`2
1 the final value of z depends

on the initial values of w and x, which is expressed as zo ↔ (wi ∨ xi) in ϕ21. 2

Information flow dependencies for the “if” is more complex, because of the
implicit and disjunctive information flow. In order to handle these cases we need:
(1) a disjunction operation for two dependencies, because we need to consider
both branched of the “if”; and (2) an operation that adds an implicit flow from
a variable v to the variables that might be updated during the execution of the
“if” statement.

Definition 7 (disjunction of dependencies). Given two information flow
dependencies ϕ1, ϕ2 ∈ SDV , their disjunction is ϕ1 t ϕ2 = ϕ1 ∨ ϕ2 2

Definition 8 (adding implicit flow). Adding implicit flow from a variable
x ∈ V to a variables y ∈ V in a dependencies ϕ ∈ SDV is defined as follows:
ϕ[x ; y] = (∃yo. ϕ ∧ (y′o ↔ yo ∨ xi))[yo′/yo] where [y′o/yo] mean a renaming of
y′o to yo. This definition extends to adding implicit flows from a set of variables
X to a set of variables Y , by iterating over all pairs from X and Y . 2

In the above definition, adding implicit flows is done by changing the output
of y, to consider the previous output, i.e. yo from ϕ, and the information from
x at input, i.e. xi. This is done by y′o ↔ yo ∨ xi. Elimination of yo and then
renaming of y′o to yo is done to keep the formula in the domain SDV .

Definition 9 (dependencies of “if”). Let ϕi be an information flow depen-
dencies for Si, the dependencies of S` ≡“ if b then S1 else S2” is defined by adding
implicit flows from vars(b) to U` in ϕ1 tϕ2, namely (ϕ1 tϕ2)[vars(b) ; U`]. 2



Example 5. Consider the statement S` ≡ “if (w=0) then x:=y else z:=y”. The
dependencies for “x:=y” and “z:=y” are respectively

ϕ1 = (xo ↔ yi) ∧ (yo ↔ yi) ∧ (zo ↔ zi) ∧ (wo ↔ wi)
ϕ2 = (zo ↔ yi) ∧ (yo ↔ yi) ∧ (xo ↔ xi) ∧ (wo ↔ wi)

and adding an implicit flow from w to U` = {x, z} in ϕ1 ∨ ϕ2 results in

ϕ3 = (∃xo, zo. (ϕ1 ∨ ϕ2) ∧ (x′o ↔ (xo ∨ wi)) ∧ (z′o ↔ (zo ∨ wi)))[x′o/xo, z
′
o/zo]

= ((xo ↔ yi ∨ wi) ∧ (yo ↔ yi) ∧ (zo ↔ zi ∨ wi) ∧ (wo ↔ wi))∨
((zo ↔ yi ∨ wi) ∧ (yo ↔ yi) ∧ (xo ↔ xi ∨ wi) ∧ (wo ↔ wi))

Note that {yi, xo, yo} and {yi, zo, yo} are models of ϕ3, but {yi, xo, zo, yo} is not,
which means that no execution cause a flow from y to both x and z. Moreover,
for any m ∈ [[ϕ3]], if wi ∈ m then yo, xo ∈ m, which means that in all executions
w flow to both x and y. The analysis of [4] cannot provide this information. 2

The information flow dependencies of “while b do S1” also involves addition
of implicit flow and disjunction of dependencies. It can be defined as a disjunction
of all possible compositions of the statement “if b then S1 else skip”.

Definition 10 (dependencies of “while”). The information flow dependen-
cies of “while b do S1” is the least solution of F = D t (F uD) where D is the
dependencies of “if b then S1 else skip”. Note that F is recursive and requires
fix-point computation. 2

Example 6. In this example we demonstrate why fix-point computation is re-
quired for the while loop dependencies. Consider the following program:

S` ≡ while (w>0) (l:=l-1; w:=l; p:=p+1)

The information flows are: (1) direct explicit flows l S
; {l, w} and p S

; p; (2)
direct implicit flow w S

; {l, w, p}; and (3) indirect flow l S
; p. Let us demon-

strate how these flows are captured by Definition 10. The dependencies of the
corresponding “if” statement “if w>0 then (l:=l+1; w:=l; p:=p+1) else skip” is

D ≡ ϕ = [(wo ↔ wi) ∧ (lo ↔ li ∨ wi) ∧ (po ↔ pi ∨ wi)]∨ (#0)
[(wo ↔ wi ∨ li) ∧ (lo ↔ li ∨ wi) ∧ (po ↔ pi ∨ wi)] (#1)

Here, (#0) and (#1) correspond to the “then” and “else” branches respectively,
after the addition of the implicit information flow w ; {l, w, p}. Note that the
indirect flow l S

; p is not described by D, it will be introduced in the fix-point
computation. Using D to compute the fix-point of F = D t (F uD) results in

ϕ′ = (#0) ∨ (#1) ∨ [(wo ↔ wi ∨ li) ∧ (lo ↔ li ∨ wi) ∧ (po ↔ pi ∨ wi ∨ li)]

Here, (#0) is the description of zero iterations; (#1) is the description of one
iteration; and the rest is the description of two or more iterations, which includes
the flow l ; p. Note that, in addition to the possible information flow, one can
learn that: (a) there exists an execution where l 6; {w, p}, this is due to (#0)
and (#1); and (b) whenever l ; p then also l ; {w, l}. 2



Now we are in a position to define the analysis of a program P . Let us denote
by F ` the information flow dependencies of S`, then the analysis of a program P
is defined as the least solution of the equations system E(P ) = {D(S`)|S` ∈ P}
where D(S`) is defined as follows:

D(S`) =



F` = E(x, e) if S` ≡ (x := e)`

F` = IdVP
if S` ≡ (skip)`

F` = F `1 u F `2 if S` ≡ (S`1
1 ;S`2

2 )`

F` = (F`1 t F`2)[vars(b) ; U`] if S` ≡ (if b then C`1
1 else C`2

2 )`

F` = F ′
` t (F` u F ′

`) if S` ≡ (while b do S`1
1 )`

F ′
` = (F`1 t IdVP

)[vars(b) ; U`]

Example 7. Consider the following program P :

((while (w > 0) (((l:=l-1)`1 ; (w:=l)`2)`3 ; (p:=p+1)`4)`5)`6 ; (l:=5)`7)`8

which is obtained by adding “l:=5” and labels to the program of Example 6.
The equations system E(P ) consists of the following equations:

F`1 = (lo ↔ li)∧(wo ↔ wi)∧(po ↔ pi) F`2 = (lo ↔ li)∧(wo ↔ li)∧(po ↔ pi)
F`3 = F`1 u F`2 F`4 = (lo ↔ li)∧(wo ↔ wi)∧(po ↔ pi)
F`5 = F`3 u F`4 F ′

`6
= (F`5 t IdVP

)[w ; {l, w, p}]
F`6 = F ′

`6
t (F`6 u F ′

`6
) F`7 = (lo↔false)∧(wo ↔ wi)∧(po ↔ pi)

F`8 = F`6 u F`7

Computing the least fix-point of E(P ) results in the following solution for F`8 :

F`8 = ϕ = [(wo ↔ wi) ∧ (lo ↔ false) ∧ (po ↔ pi ∨ wi)]∨
[(wo ↔ wi ∨ li) ∧ (lo ↔ false) ∧ (po ↔ pi ∨ wi)]∨
[(wo ↔ wi ∨ li) ∧ (lo ↔ false) ∧ (po ↔ pi ∨ wi ∨ li)]

Note that there is no model m ∈ [[ϕ]] such that lo ∈ m, because the statement
l := 5 destruct all secrets that already leaked to l. 2

Theorem 1 (Correctness). For a given statement S` ∈ P , let ϕS ∈ SDVP
be

the least solution for F ` in the equations system E(P ). If 〈VI , VO〉 ∈ FS, then{
vi

∣∣v ∈ VI

}
∪

{
vo

∣∣V ∈ VO

}
∈ [[ϕS ]]. 2

Information flow analysis is used to ensure non-interference. Recall that two
sets of variables VH and VL are non-interference, if information cannot flow from
h ∈ VH to l ∈ VL. Using the information flow dependencies, non-interference can
be verified by checking that whenever the input values of all low variables do
not contain secrets, then their output values will not contain secrets.

Theorem 2 (non-interference). Let ϕS ∈ SDVS
be an information flow de-

pendencies for S`. If ϕS |= [( ∧
v∈VL

¬vi) → ( ∧
v∈VL

¬vo)] then, VH and VL are

non-interference in S`. 2

Example 8. Consider again the program of Example 6 and let VL = {w, l} and
VH = {p}. You can verify that ϕ′ |= [(¬li ∧ ¬wi) → (¬lo ∧ ¬wo)]. And indeed
there is no flow from p to l or w, hence, VH and VL are non-interference. 2



4.3 Analyzing Dynamic Security Policies

The assumption that variables are binded to their security classes statically is
not always realistic [12]. In this case the security policy is enforced dynami-
cally. In this section, we describe how information flow analysis can be used, to
infer possible divisions of the program variables to VH and VL, such that non-
interference is guaranteed. This can be applied to any information flow analysis
that provides a set of possible flows, such as our analysis or the analysis of [4].

Given a statement S, we construct a Boolean function ϕ
HL

, over the variables
VS , such that if m ∈ [[ϕ

HL
]], then VH = m and VL = VS\VH are non-interference

in S. The idea is that if x S
; y, then ϕ

HL
|= (x → y). Here, x → y means that

if x is high then y must be high.

Proposition 2 (Dynamic HL-policies). For a given statement S`, let ϕ
HL

=
∃̄VS . [ ∧

x,y∈VS

(Ψx;y → (x → y))] where Ψx;y is true if x S
; y, otherwise false.

Then, for any m ∈ [[ϕ
HL

]], VH=m and VL=VS\m are non-interference in S`. 2

Example 9. Consider again the program of Example 5, then ϕ
HL

is defined by
the models: [[ϕ

HL
]] = {{w, x, z}, {y, x, z}, {w, x, y, z}, {x}, {z}, {x, z}, ∅}. Note

that ϕ
HL

= (w → z ∧ x) ∧ (y → z ∧ x) which mean that whenever y or w are
high then x and z must be high. 2

Using ϕ
HL

, when a variable is dynamically binded to a security class, we can
infer the security classes of other variables, without re-analyzing the program.
Also note that ϕ

HL
provides an alternative way for verifying non-interference of

VH and VL by verifying that VH ∈ [[ϕ
HL

]]. Now we demonstrate how Ψx;y can
be constructed from information flow dependencies.

Proposition 3 (observing information flow). Let ϕS be an information flow
dependencies of S, x, y ∈ VS, and Ψx;y = (xi ∧ yo) → ∃̄xi, yo. ψ where ψ =
ϕS ∧ xi ∧ ( ∧

z 6=x∈V
¬zi). If x S

; y then true |= Ψx;y, otherwise false |= Ψx;y. 2

The idea is: (1) we restrict ϕS to models where only x contain secret at
input, i.e. to ψ; (2) we concentrate only on xi and yo, i.e. ∃̄xi, yo.ψ; and (3) if
m = {xi, yo} is a model of ∃̄xi, yo. ψ, the x S

; y, otherwise x 6 S; y.

5 Related and Future Work

In the literature, there are several techniques for checking secure information
flow in software, ranging from standard data/control -flow analysis techniques to
type inference. Our work belongs to the former.

Type-based approaches are designed such that well-typed programs do not
leak secrets. A type is inductively associated at compile-time with program state-
ments, such that, any statement showing a potential flow disclosing secrets is
rejected [15, 16]. In these approaches, statements like “(if (h=0) then l:=1 else
l:=2); l:=0” are rejected, even though there is no information flow from h to l



when the program terminates. In type-based approaches it is difficult to treat
this kind of statements.

From the data/control-flow analysis techniques [2, 4, 10, 13, 11], the most re-
lated one to our work is of Clark et al. [4]. The authors described termination-
sensitive information flow analysis (using flow logic) for a simple while language,
as well as for Idealized Algol. The pair (y, x) is used to describe a possible flow
from x to y, and sets of pairs are used to describe all possible information flows.
For example, an analysis of the statement “if (w>0) then x:=y else z:=y” would
infer {(w,w), (x,x), (y,y), (z,z), (x,w), (y,w), (z,y), (x,y)}. From this set it is
not possible to extract dependencies between information flows, as we did in
Examples 5 and 6. Note that, if we are interested only in the set of possible
information flows, our analysis is equivalent to [4] (for the case of while language
and termination-insensitive). For future work, we are interested to investigate
the relation to [4] from domain point of view, we want to use domain refinement
techniques [8] in order to systematically derive the domain of information flow
dependencies from the domain of sets of possible flows [4]. Also, to compare it
to the lifting of sets of possible flows to sets of sets of possible flows.

Boolean functions were used intensively in groundness analyses of logic pro-
grams [1]. A term is ground if it does not contain logic variables, i.e. cannot be
changed under further instantiation. Several domains based on Boolean func-
tions were suggested for groundness analysis [1], they are different in the degree
of groundness dependencies they can express. In [14], the domain refinement
techniques of [8] were used to systematically construct these domains. From in-
formation flow point of view, we can consider ground terms as objects to which
information cannot flow. For future work, we are interested in translating while-
language programs into logic programs, such that, groundness analysis of the
latter provides information about secure information flow in the former.

Recently, the notion of non-interference was generalized making it parametric
relatively to what an attacker can analyze about the input/output information
flow [7]. For future work, we want to check if we can generalize the techniques
of this paper, to model abstract information flow dependencies.

6 Conclusion

For static security policies, we described a technique for modeling information
flow with Boolean functions, and demonstrated how it captures information
flow dependencies. From the practical side, these dependencies might be useful
for: (1) refining the notion of non-interference; (2) debugging; and (3) efficient
implementation. From the theoretical side, they raise the issue of systematic
refinement of domains for information flow analysis.

For dynamic security policies, we described a method to infer a Boolean
function, such that its models define non-interference high and low sets. This
can be used to infer the security classes dynamically, rather than re-analyzing
the program.



For future work, we identified several possible directions: (1) systematic con-
struction of domains for information flow; (2) study the link between information
flow analysis and groundness analysis of logic programs; and (3) generalization
of the techniques of this paper to the notion of abstract non-interference.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
Boolean functions for dependency analysis. Sci. Comput. Program, 31(1):3–45,
1998.

2. C. Bodei, P. Degano, F. Nielson, and H.R. Nielson. Static analysis for secrecy and
non-interference in networks of processes. In Proc. of PaCT’01, volume 2127 of
Lecture Notes in Computer Science, pages 27–41. Springer-Verlag, 2001.

3. R. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318, 1992.

4. C. Hankin D. Clark and S. Hunt. Information flow for algol-like languages. Com-
puter Languages, 28(1):3–28, April 2002.

5. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–242, 1976.

6. H. R. Nielson F. Nielson and C. L. Hankin. Principles of Programming Analysis.
Springer, 1999.

7. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In The 31st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’04)., Jan-
uary 2004. to appear.

8. R. Giacobazzi and F. Scozzari. A logical model for relational abstract domains.
ACM Trans. Program. Lang. Syst., 20(5):1067–1109, 1998.

9. J. A. Gougen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20, 1982.

10. P. Laud. Semantics and program analysis of computationally secure information
flow. In In Programming Languages and Systems, 10th European Symposium On
Programming, ESOP, volume 2028 of Lecture Notes in Computer Science, pages
77–91. Springer-Verlag, 2001.

11. M. Mizuno. A least fixed point approach to inter-procedural information flow
control. In Proc. 12th NIST-NCSC National Computer Security Conference, pages
558–570, 1989.

12. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J.
on selected ares in communications, 21(1):5–19, 2003.

13. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

14. F. Scozzari. Logical optimality of groundness analysis. Theoretical Computer
Science, 277(1-2):149–184, 2002.

15. C. Skalka and S. Smith. Static enforcement of security with types. In ICFP’00,
pages 254–267. ACM press, 2000.

16. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2,3):167–187, 1996.

17. G. Winskel. The formal semantics of programming languages: an introduction.
MIT press, 1993.


