DoNT RuN ON FUMES - PARAMETRIC GAS BOUNDS FOR SMART
CONTRACTS

NOTA IMPORTANTE: El articulo se encuentra aceptado pendiente de
publicacién. En el momento en el articulo esté publicado, toda la documentacién
acerca del articulo estard disponible en la URL:

http://costa.ls.fi.upm.es/groman/aneca/dontrunonfumes.pdf

Journal of Systems and Software (JSS).
https://www.journals.elsevier.com/journal-of-systems-and-software

Articulo:

» Justificacién Informacién Articulo:

e DOI: https://doi.org/10.1016/j.jss.2021.110923

e Primera y ultima pégina del articulo

Justificacién Indice Impacto:

e Copia de la informacién Indice JCR 2019

http://costa.ls.fi.upm.es/groman/aneca/dontrunonfumes.pdf
https://www.journals.elsevier.com/journal-of-systems-and-software
https://doi.org/10.1016/j.jss.2021.110923

© & https://www.editorialmanager.com/jssoftware/default.aspx 133%

vinm e ¢ NP
The Journal of and

SOFTWARE

HOME ¢ LOGOUT * HELP ¢ REGISTER * UPDATE MY INFORMATION ¢ JOURNAL OVERVIEW
MAIN MENU ¢ CONTACT US * SUBMIT A MANUSCRIPT * INSTRUCTIONS FOR AUTHORS « PRIVACY

Submissions with an Editorial Office Decision for Author Guillermo Roméan-Diez

Page: 1 of 1 (2 total completed submissions) Display | 10 ‘ ~ results per page.

Manuscript Number | Title Authorsi I | Date Submitted | Status Date | Current Stat Date Final Disposition Set | Final Disposition
Action A AV AV AV A AV AV AV AV
View Submission JSS-D-18-00296

Peak Resource Analysis of Concurrent Distributed Systems
View Decision Letter

Send E-mail

Corresponding Author Apr 04, 2018 Nov 13, 2018 Completed - Accept Nov 13, 2018 Accept

View Submission JSS-D-20-00396 Don't Run on Fumes --- Parametric Gas Bounds for Smart Contracts Other Author May 19, 2020 Feb 04, 2021 Completed - Accept Feb 04, 2021 Accept
Page: 1 of 1 (2 total completed submissions)

Display| 10 | + results per page.

<< Author Main Menu

You should use the free Adobe Reader 10 or later for best PDF Viewing results.

The Journal of Systems & Software 176 (2021) 110923

The Journal of Systems & Software

Contents lists available at ScienceDirect

i

SOFTWARE

journal homepage: www.elsevier.com/locate/jss

Don’t run on fumes—Parametric gas bounds for smart contracts™ b

Elvira Albert *, Jesiis Correas ”, Pablo Gordillo **, Guillermo Roman-Diez ¢, Albert Rubio *°

2 Instituto de Tecnologia del Conocimiento, Spain

b Complutense University of Madrid, Spain
¢ Universidad Politécnica de Madrid, Spain

Check for
updates

ARTICLE INFO

ABSTRACT

Article history:

Received 19 May 2020

Received in revised form 7 October 2020
Accepted 1 February 2021

Available online 26 February 2021

Keywords:

Smart contracts
Resource analysis
Static analysis
Decompilation

Gas is a measurement unit of the computational effort that it will take to execute every single
replicated operation that takes part in the Ethereum blockchain platform. If a transaction exceeds
the amount of gas allotted by the user (known as gas limit), an out-of-gas exception is raised and its
execution is interrupted. One of the main open problems in the analysis of Ethereum smart contracts
is the inference of sound bounds on their gas consumption.

We present, to the best of our knowledge, the first static analysis that is able to infer sound
parametric (i.e., non-constant) gas bounds for smart contracts. The inferred bounds can be parametric
on the sizes of the input parameters for the functions, but also they can be parametric on the contract
state, or blockchain data. Our gas analysis is developed at EVM bytecode level, in which Ethereum gas
model is defined.

Our analysis is implemented in a tool named GASTAP, Gas-Aware Smart contracT Analysis Platform,
which takes as input a smart contract and automatically infers sound gas upper-bounds for its public
functions. GASTAP has been applied over 318,093 functions fetched from the Ethereum blockchain, and
succeeded to obtain gas bounds for 90.24% of them.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In the Ethereum consensus protocol, every operation on a
replicated blockchain state, which can be performed in a transac-
tional manner by executing a smart contract code, costs a certain
amount of gas (Wood, 2014). Gas has a monetary value in Ether,
Ethereum’s currency, and it is paid by a transaction-proposing
party. Computations (initiated by a protocol client invoking a
smart contract) that require more computational or storage re-
sources, cost more gas than those that require fewer resources. As
regards storage, the Ethereum Virtual Machine (EVM) has three
areas where it can store items: (a) the storage is where all contract
state variables reside, every contract has its own storage and it
is persistent between external function calls (transactions) and
quite expensive to use; (b) the memory is used to hold temporary
values, and it is erased between transactions and thus is cheaper
to use; (c) the stack is used to carry out operations and it is free
to use, but can only hold a limited amount of values.

The rationale behind the resource-aware smart contract se-
mantics, instrumented with gas consumption, is three-fold. First,

* Editor: A. Bertolino.
* Corresponding author.
E-mail addresses: elvira@sip.ucm.es (E. Albert), jcorreas@ucm.es
(J. Correas), pabgordi@ucm.es (P. Gordillo), guillermo.roman@upm.es
(G. Roman-Diez), alberu04@ucm.es (A. Rubio).

https://doi.org/10.1016/j.jss.2021.110923
0164-1212/© 2021 Elsevier Inc. All rights reserved.

paying for gas at the moment of proposing the transaction does
not allow the emitter to waste other parties’ (aka miners) com-
putational power by requiring them to perform a lot of worthless
intensive work. Second, gas fees disincentivize users to consume
too much of replicated storage, which is a valuable resource in
a blockchain-based consensus system. Finally, such a semantics
puts a cap on the number of computations that a transaction
can execute, hence prevents attacks based on non-terminating
executions (which could otherwise, e.g., make all miners loop
forever).

The gas-instrumented operational semantics of EVM has in-
troduced novel challenges wrt. sound static reasoning about re-
source consumption, correctness, and security of replicated com-
putations: (i) While the EVM specification (Wood, 2014) provides
the precise gas consumption of the low-level operations, most of
the smart contracts are written in high-level languages, such as
Solidity (Ethereum, 2018b) or Vyper (Ethereum, 2018c).

The translation of the high-level language constructs to the
low-level ones makes static estimation of runtime gas bounds
challenging (as we will see throughout this paper), and is imple-
mented in an ad-hoc way by state-of-the art compilers, which are
only able to give constant gas bounds, or return oo otherwise. (ii)
As noted in the recent study by Grech et al. (2018) and Foundation
(2018), in general it is dangerous for a smart contract to make its
gas consumption dependent on the size of the data it stores (i.e.,

E. Albert,]. Correas, P. Gordillo et al.

directions. First, we are studying a more precise abstraction for
the memory-allocated data (i.e., for the abstraction explained
in Section 3). Also, we aim at handling bit-wise operations by
including in our tool an abstraction for them.

CRediT authorship contribution statement

Elvira Albert: Conceptualization, Methodology, Software, Val-
idation, Investigation, Formal analysis, Writing - original draft,
Writing - review & editing. Jesiis Correas: Conceptualization,
Methodology, Software, Validation, Investigation, Formal analy-
sis, Writing - original draft, Writing - review & editing. Pablo
Gordillo: Conceptualization, Methodology, Software, Validation,
Investigation, Formal analysis, Writing - original draft, Writing
- review & editing. Guillermo Roman-Diez: Conceptualization,
Methodology, Software, Validation, Investigation, Formal analysis,
Writing - original draft, Writing - review & editing. Albert Rubio:
Conceptualization, Methodology, Software, Validation, Investiga-
tion, Formal analysis, Writing - original draft, Writing - review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was funded partially by the Spanish MCIU, AEI
and FEDER (EU) projects RTI2018-094403-B-C31 and RTI2018-
094403-B-C33, by the CM project S2018/TCS-4314 co-funded by
EIE Funds of the European Union and by the UCM CT27/16-
CT28/16 grant.

References

Aho, AV, Lam, M.S,, Sethi, R, Ullman,].D., 2006. Compilers: Principles, Tech-
niques, and Tools, second ed. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Albert, E., Arenas, P., Correas, J., Genaim, S., Gémez-Zamalloa, M., Puebla, G.,
Roman-Diez, G., 2015a. Object-sensitive cost analysis for concurrent objects.
STVR 25 (3), 218-271.

Albert, E., Arenas, P., Genaim, S., Puebla, G., 2008. Automatic inference of upper
bounds for recurrence relations in cost analysis. In: Alpuente, M., Vidal, G.
(Eds.), Static Analysis, 15th International Symposium, SAS 2008, Valencia,
Spain, July 16-18, 2008. Proceedings. In: Lecture Notes in Computer Science,
vol. 5079, Springer, pp. 221-237.

Albert, E., Arenas, P., Genaim, S., Puebla, G., 2011. Closed-form upper bounds in
static cost analysis. . Automat. Reason. 46 (2), 161-203.

Albert, E., Arenas, P., Genaim, S., Puebla, G., Roman-Diez, G., 2014. Conditional
termination of loops over heap-allocated data. Sci. Comput. Program. 92,
2-24.

Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D., 2012. Cost anal-
ysis of object-oriented bytecode programs. Theor. Comput. Sci. 413 (1),
142-159 (Special Issue on Quantitative Aspects of Programming Languages).

Albert, E. Correas, J., Gordillo, P., Hernindez-Cerezo, A. Roman-Diez, G.,
Rubio, A., 2020a. Analyzing Smart Contracts: From EVM to a Sound
Control-Flow Graph. Tech. Rep.

Albert, E., Correas, J., Gordillo, P., Roman-Diez, G., Rubio, A., 2020b. GASOL:
Gas analysis and optimization for ethereum smart contracts. In: Biere, A.,
Parker, D. (Eds.), Proceedings of 26th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2020. In:
Lecture Notes in Computer Science, vol. 12079, pp. 118-125.

Albert, E., Correas, J., Roman-Diez, G., 2015b. Non-cumulative resource analysis.
In: Proceedings of 21st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2015. In: Lecture Notes in
Computer Science, vol. 9035, Springer, pp. 85-100.

Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, L., 2018. Ethir: A framework
for high-level analysis of ethereum bytecode. In: Lahiri, S., Wang, C. (Eds.),
16th International Symposium on Automated Technology for Verification and
Analysis, ATVA 2018. Proceedings. In: Lecture Notes in Computer Science, vol.
11138, Springer, pp. 513-520.

19

The Journal of Systems & Software 176 (2021) 110923

Albert, E., Gordillo, P., Rubio, A., Sergey, I, 2019. Running on fumes: Preventing
out-of-gas vulnerabilities in ethereum smart contracts using static resource
analysis. In: Ganty, P., Kadniche, M. (Eds.), 13th International Conference on
Verification and Evaluation of Computer and Communication Systems, VECoS
2019. Proceedings. In: Lecture Notes in Computer Science, vol. 11847, pp.
63-78.

Amani, S., Bégel, M., Bortin, M., Staples, M., 2018. Towards verifying ethereum
smart contract bytecode in isabelle/HOL. In: Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP
2018, Los Angeles, CA, USA, 2018. ACM, pp. 66-77.

Ambroladze, N., 2018. Fast and Scalable Analysis of Smart Contracts (Master’s
thesis). Swiss Federal Institute of Technology Zurich, Switzerland.

Andersen, L.O., 1994. Program Analysis and Specialization for the C Programming
Language (Ph.D. thesis). University of Cophenhagen.

Bernani, T., 2016. Oraclize. http://www.oraclize.it.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C. Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S., 2016. Formal verification of smart contracts: Short paper. In:
Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October 2016. ACM,
pp. 91-96.

Biere, A., Cimatti, A., Clarke, EMM., Zhu, Y., 1999. Symbolic model checking
without BDDs. In: Proceedings of 5th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 1999. In:
Lecture Notes in Computer Science, vol. 1579, Springer, pp. 193-207.

Bloxy, 2018a. Bloxy. https://bloxy.info/.

Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz, R,
Scholz, B., 2018. Vandal: A scalable security analysis framework for smart
contracts. arXiv:1809.03981.

Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J., 2016. Analyzing runtime
and size complexity of integer programs. ACM Trans. Program. Lang. Syst.
38 (4), 13:1-13:50.

Chen, T., Feng, Y., Li, Z., Zhou, H., Luo, X, Li, X, Xiao, X., Chen,]J., Zhang, X., 2020.
Gaschecker: Scalable analysis for discovering gas-inefficient smart contracts.
[EEE Trans. Emerg. Top. Comput. PP(99), 1-14.

Chen, T, Li, X, Luo, X., Zhang, X., 2017. Under-optimized smart contracts devour
your money. In: IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER. IEEE Computer Society, pp. 442-446.

Chen, T., Li, Z., Zhou, H., Chen,]., Luo, X,, Li, X., Zhang, X., 2018. Towards saving
money in using smart contracts. In: Zisman, A., Apel, S. (Eds.), Proceedings
of the 40th International Conference on Software Engineering: New Ideas
and Emerging Results, ICSE (NIER) 2018, Gothenburg, Sweden, 2018. ACM,
pp. 81-84.

Ethereum, 2018a. Etherscan. https://etherscan.io.

Ethereum, 2018b. Solidity. https://solidity.readthedocs.io.

Ethereum, 2018c. Vyper. https://vyper.readthedocs.io.

EthereumPot, 2017. The EthereumPot contract. https://etherscan.io/address/
0x5a13caa82851342e14cd2ad0257707cddb8a31b7.

Foundation, E., 2018. Safety - Ethereum Wiki. https://github.com/ethereum/wiki/
wiki/Safety, (Last Accessed on 14 November 2018).

Grech, N, Brent, L., Scholz, B., Smaragdakis, Y., 2019. Gigahorse: thorough,
declarative decompilation of smart contracts. In: Atlee,].M., Bultan, T., Whit-
tle, J. (Eds.), Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE | ACM,
pp. 1176-1186.

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y., 2018.
MadMax: surviving out-of-gas conditions in Ethereum smart contracts.
PACMPL 2 (OOPSLA), 116:1-116:27.

Grishchenko, 1., Maffei, M., Schneidewind, C., 2018. A semantic framework for
the security analysis of ethereum smart contracts. In: Principles of Security
and Trust - 7th International Conference, POST 2018, Thessaloniki, Greece.
Proceedings. In: Lecture Notes in Computer Science, vol. 10804, Springer, pp.
243-269.

Grossman, S., Abraham, I, Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sa-
giv, M., Zohar, Y., 2018. Online detection of effectively callback free objects
with applications to smart contracts. PACMPL 2 (POPL), 48:1-48:28.

Hajdu, A., Jovanovic, D., 2020. SMT-friendly formalization of the solidity memory
model. In: Miiller, P. (Ed.), Programming Languages and Systems - 29th Euro-
pean Symposium on Programming, ESOP 2020, Dublin, Ireland, Proceedings.
In: Lecture Notes in Computer Science, vol. 12075, Springer, pp. 224-250.

He, J., Balunovic, M., Ambroladze, N., Tsankov, P., Vechev, M.T., 2019. Learn-
ing to fuzz from symbolic execution with application to smart contracts.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, 2019. ACM, pp. 531-548.
http://dx.doi.org/10.1145/3319535.3363230.

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Park, D.,
Zhang, Y., Moore, B., Rosu, G., 2018. KEVM: A complete semantics of the
ethereum virtual machine. In: 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, 2018. IEEE Computer
Society, pp. 204-217.

2/2/2021 InCites Journal Citation Reports

InCites Journal Citation Reports Page 20120

The data in the two graphs below and in the Journal Impact Factor calculation panels represent citation activity in 2019
to items published in the journal in the prior two years. They detail the components of the Journal Impact Factor. Use the
"All Years" tab to access key metrics and additional data for the current year and all prior years for this journal.

2019 Journal Impact Factor & percentile rank in category for: JOURNAL OF
SYSTEMS AND SOFTWARE

2.450

2019 Journal Impact Factor

3.000 100%
§ 2.250 P = X 5%
$ s
P >
§ 1500 /M 50% § 2
g)
= T2
T
g 0750 2% § §
3 3
S a
"~ 0.000 Y A ™ A ™ ~ o%
L AP D>DH DS P> © P O O > I 2 > o Q@ O
P N FPITFNFSFSFSLSLSS S P Y Y DS DN
ISR RS N R S S S S S S S S S S S S S S S
JCR year
I JF COMPUTER SCIENCE, THEORY & METHODS ~ —@= COMPUTER SCIENCE, SOFTWARE ENGINEERING
—@— COMPUTER SCIENCE, SOFTWARE, GRAPHICS, PROGRAMMING
2019 JIF Citation Distribution for: JOURNAL OF SYSTEMS AND SOFTWARE
100 3
75 Unlinked citations
. -
£
g
5 50
3 0
g . .
5§ Times Cited
2 25
« 17articles
0 B=== o 2reviews
1 5 10 15 20 25 0 35 40 45 50 >50| . .0other
Times cited in JCR year
B articles reviews [l other article citation median review citation median

Downloaded on 2/2/2021 10:08:45 from Journal Citation Reports (©2021 Clarivate Analytics)

https://apps.clarivate.com/jiffnome/?journal=) SYST SOFTWARE&year=2019&editions=SCIE&pssid=H1-FZ4ynSCbLzcRofR7RIm... 2/20

2/2/2021 InCites Journal Citation Reports

InCites Journal Citation Reports Page 8 of 20

Rank

Rank

JCR Impact Factor

COMPUTER SCIENCE, SOFTWARE ENGINEERING COMPUTER SCIENCE, THEORY & METHODS CO!

JCR Year - B N N
Rank Quartile JIF Percentile Rank Quartile JIF Percentile
2019 33/108 Q2 69.907 32/108 Q2 70.833
2018 26/107 Q1 76.168 25/105 Q1 76.667
2017 19/104 Q1 82.212 21/103 Q1 80.097
2016 22/106 Q1 79.717 23/104 Q1 78.365
2015 24/106 Q1 77.830 31/105 Q2 70.952
2014 33/104 Q2 68.750 31/102 Q2 70.098
2013 33/105 Q2 69.048 29/102 Q2 72.059
2012 41/105 Q2 61.429 30/100 Q2 70.500
2011 57/104 Q3 45.673 42/99 Q2 58.081
2010 34/99 Q2 66.162 35/97 Q2 64.433
2009 38/93 Q2 59.677 29/92 Q2 69.022
2008 36/86 Q2 58.721 34/84 Q2 60.119
2007 43/84 Q3 49.405 40/79 Q3 50.000
2006 56/82 Q3 32.317 54/75 Q3 28.667
2005 39/79 Q2 51.266 43/71 Q3 40.141
2004 36/76 Q2 53.289 37170 Q3 47.857
2003 51/78 Q3 35.256 46/70 Q3 35.000
2002 49177 Q3 37.013 51/69 Q3 26.812
2001 44175 Q3 42,000 44/71 Q3 38.732
2000 n/a n/a n/a 40/67 Q3 41.045
1999 nla n/a nla 52/61 Q4 15.574
1998 nla n/a n/a 50/64 Q4 22.656
1997 nla nla nla 32/59 Q3 46.610

Downloaded on 2/2/2021 10:08:45 from Journal Citation Reports (©2021 Clarivate Analytics)

https://apps.clarivate.com/jiffhome/?journal=) SYST SOFTWARE&year=2019&editions=SCIE&pssid=H1-FZ4ynSCbLzcRofR7RIm... 8/20

