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a b s t r a c t

Gas is a measurement unit of the computational effort that it will take to execute every single
replicated operation that takes part in the Ethereum blockchain platform. If a transaction exceeds
the amount of gas allotted by the user (known as gas limit), an out-of-gas exception is raised and its
execution is interrupted. One of the main open problems in the analysis of Ethereum smart contracts
is the inference of sound bounds on their gas consumption.

We present, to the best of our knowledge, the first static analysis that is able to infer sound
parametric (i.e., non-constant) gas bounds for smart contracts. The inferred bounds can be parametric
on the sizes of the input parameters for the functions, but also they can be parametric on the contract
state, or blockchain data. Our gas analysis is developed at EVM bytecode level, in which Ethereum gas
model is defined.

Our analysis is implemented in a tool named Gastap, Gas-Aware Smart contracT Analysis Platform,
which takes as input a smart contract and automatically infers sound gas upper-bounds for its public
functions. Gastap has been applied over 318,093 functions fetched from the Ethereum blockchain, and
succeeded to obtain gas bounds for 90.24% of them.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In the Ethereum consensus protocol, every operation on a
replicated blockchain state, which can be performed in a transac-
tional manner by executing a smart contract code, costs a certain
amount of gas (Wood, 2014). Gas has a monetary value in Ether,
Ethereum’s currency, and it is paid by a transaction-proposing
party. Computations (initiated by a protocol client invoking a
smart contract) that require more computational or storage re-
sources, cost more gas than those that require fewer resources. As
regards storage, the Ethereum Virtual Machine (EVM) has three
areas where it can store items: (a) the storage is where all contract
state variables reside, every contract has its own storage and it
is persistent between external function calls (transactions) and
quite expensive to use; (b) the memory is used to hold temporary
values, and it is erased between transactions and thus is cheaper
to use; (c) the stack is used to carry out operations and it is free
to use, but can only hold a limited amount of values.

The rationale behind the resource-aware smart contract se-
mantics, instrumented with gas consumption, is three-fold. First,
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paying for gas at the moment of proposing the transaction does
not allow the emitter to waste other parties’ (aka miners) com-
putational power by requiring them to perform a lot of worthless
intensive work. Second, gas fees disincentivize users to consume
too much of replicated storage, which is a valuable resource in
a blockchain-based consensus system. Finally, such a semantics
puts a cap on the number of computations that a transaction
can execute, hence prevents attacks based on non-terminating
executions (which could otherwise, e.g., make all miners loop
forever).

The gas-instrumented operational semantics of EVM has in-
troduced novel challenges wrt. sound static reasoning about re-
source consumption, correctness, and security of replicated com-
putations: (i) While the EVM specification (Wood, 2014) provides
the precise gas consumption of the low-level operations, most of
the smart contracts are written in high-level languages, such as
Solidity (Ethereum, 2018b) or Vyper (Ethereum, 2018c).

The translation of the high-level language constructs to the
low-level ones makes static estimation of runtime gas bounds
challenging (as we will see throughout this paper), and is imple-
mented in an ad-hoc way by state-of-the art compilers, which are
only able to give constant gas bounds, or return ∞ otherwise. (ii)
As noted in the recent study by Grech et al. (2018) and Foundation
(2018), in general it is dangerous for a smart contract to make its
gas consumption dependent on the size of the data it stores (i.e.,
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directions. First, we are studying a more precise abstraction for
the memory-allocated data (i.e., for the abstraction explained
in Section 3). Also, we aim at handling bit-wise operations by
including in our tool an abstraction for them.
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