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ABSTRACT Profiling tools have been widely used for studying the behavior of the programs with the
objective of reducing the amount of resources consumed by them. Most profilers collect the information
with dynamic techniques, i.e., execute an instrumented version of the program with some specific input
arguments to profile the measures of interest. This article presents a novel static profiling technique for
Ethereum smart contracts that, using static resource analysis, is able to generate upper-bound expressions
that can be used to produce profiling information about the measure of interest. Unlike traditional profiling
tools, we get upper-bounds on the measures of interest expressed in terms of the input arguments or the state
variables of the smart contracts. The information that can be obtained by the upper-bounds allows us to detect
gas-expensive fragments of a Solidity program or to spot resource-related vulnerabilities at specific program
points of the program. Moreover, in this article we propose an automatic optimization of Solidity programs
which reduces their gas consumption replacing the accesses to state variables by gas-efficient accesses to
local variables. We have experimentally evaluated our technique and we have detected that 6.81% of the
public functions analyzed can be optimized and 1.43% are vulnerable to execute arbitrary code.

INDEX TERMS Blockchain, Ethereum, resource analysis, smart contracts, static analysis.

I. INTRODUCTION
Ethereum [37] is an open-source platform for decentralized
applications and nowadays has become the world’s leading
programmable blockchain. One of the reasons of this success
is that Ethereum smart contracts can be programmed using
a Turing complete language and it includes a powerful set
of tools for its development. An immutable version of the
compiled smart contract can be deployed in the Ethereum
platform and will be executed using the Ethereum Virtual
Machine (EVM). As other blockchains, Ethereum has its
native cryptocurrency named Ether and the execution fees
for running smart contracts on the Ethereum blockchain are
metered in units of gas. It is a measure of the amount of com-
putational effort spent on executing each single EVM bytecode
operation. The gas consumption of each EVM instruction is
detailed in [37]. Miners get paid an amount in Ether that
results of applying a gas price to the total amount of gas
that took them to execute a complete transaction. Using
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this model, Ethereum prevents the emitters from wasting
computational power, discourages the programmers to use
gas-expensive operations (e.g. as the cost of replicating data
in a decentralized environment is high, storage bytecodes
are gas-expensive) and prevents from DoS attacks and non-
terminating executions.

Solidity [15] is a programming language to write smart
contracts and its compiler produces EVM code to be deployed
in the Ethereum platform. The Solidity compiler includes
several static analyses that produce useful information during
the contract development phase. Among this information it
can be found the amount of gas that a function will consume
for its execution. The Solidity compiler is able to produce
precise constant gas bounds, however, when the cost expres-
sion depends on input parameters (or information stored in
the contract state), the compiler simply returns ∞ as gas
bound, and we found it occurs in almost one in every ten
public functions [3]. Furthermore, minimal modifications on
the code make the compiler unable to detect unbounded loops
and it does not warn the programmer about this potential
risk.
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to storage. It proposed a sound transformation that replaces
the accesses to storage by accesses to memory that con-
sume less gas. We have applied them to analyze more than
40,000 real public function of smart contracts getting that a
9.02% are parametric, a 6.81% of them can be optimized, and
4.19% may be potentially vulnerable.

An interesting direction for future work is to improve the
precision of our tool optimizing, not only basic type variables,
but also complex type variables such as arrays, structs or
maps. In addition, we plan to relax the conditions defined
to optimize storage accesses in Section V and generalize the
optimization to functions which access to the state variables
in other functions of the contract different to the one under
analysis. Additionally, we would study the applicability of
the optimization at EVM level, which is a more complex case
as we would modify the structure of the EVM bytecode and
it may affect to the size and the addresses of the original
bytecode.
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