
Static Profiling and Optimization of Ethereum Smart
Contracts using Resource Analysis

IEEE Access
https://ieeeaccess.ieee.org/

Art́ıculo:

Justificación Información Art́ıculo:

� Copia de la primera y última página del art́ıculo

� Página web con la aceptación del art́ıculo

� Página web DOI: https://doi.org/10.1109/ACCESS.2021.3057565

Justificación Índice Impacto:

� Copia de la información Índice JCR 2019 sobre IEEE Access

https://ieeeaccess.ieee.org/
https://doi.org/10.1109/ACCESS.2021.3057565

Received December 12, 2020, accepted February 2, 2021, date of publication February 5, 2021, date of current version February 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057565

Static Profiling and Optimization of Ethereum
Smart Contracts Using Resource Analysis
JESÚS CORREAS 1, PABLO GORDILLO 1, AND GUILLERMO ROMÁN-DÍEZ 2
1Departamento de Sistemas Informáticos y Computación, Facultad de Informática, Complutense University of Madrid, 28040 Madrid, Spain
2Lenguajes, Sistemas Informáticos e Ingeniería de Software, E.T.S. de Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Madrid, Spain

Corresponding author: Pablo Gordillo (pabgordi@ucm.es)

This work was supported in part by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) through the Agencia Estatal de
Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (EU) Project under Grant RTI2018-094403-B-C31, in part by
the Comunidad de Madrid (CM) Projects co-funded by the Fondos Estructurales y de Inversión Europeos (EIE Funds) of the European
Union under Grant S2018/TCS-4314 and Grant S2018/TCS-4339, and in part by the Universidad Complutense de Madrid (UCM) under
Grant CT27/16-CT28/16.

ABSTRACT Profiling tools have been widely used for studying the behavior of the programs with the
objective of reducing the amount of resources consumed by them. Most profilers collect the information
with dynamic techniques, i.e., execute an instrumented version of the program with some specific input
arguments to profile the measures of interest. This article presents a novel static profiling technique for
Ethereum smart contracts that, using static resource analysis, is able to generate upper-bound expressions
that can be used to produce profiling information about the measure of interest. Unlike traditional profiling
tools, we get upper-bounds on the measures of interest expressed in terms of the input arguments or the state
variables of the smart contracts. The information that can be obtained by the upper-bounds allows us to detect
gas-expensive fragments of a Solidity program or to spot resource-related vulnerabilities at specific program
points of the program. Moreover, in this article we propose an automatic optimization of Solidity programs
which reduces their gas consumption replacing the accesses to state variables by gas-efficient accesses to
local variables. We have experimentally evaluated our technique and we have detected that 6.81% of the
public functions analyzed can be optimized and 1.43% are vulnerable to execute arbitrary code.

INDEX TERMS Blockchain, Ethereum, resource analysis, smart contracts, static analysis.

I. INTRODUCTION
Ethereum [37] is an open-source platform for decentralized
applications and nowadays has become the world’s leading
programmable blockchain. One of the reasons of this success
is that Ethereum smart contracts can be programmed using
a Turing complete language and it includes a powerful set
of tools for its development. An immutable version of the
compiled smart contract can be deployed in the Ethereum
platform and will be executed using the Ethereum Virtual
Machine (EVM). As other blockchains, Ethereum has its
native cryptocurrency named Ether and the execution fees
for running smart contracts on the Ethereum blockchain are
metered in units of gas. It is a measure of the amount of com-
putational effort spent on executing each single EVM bytecode
operation. The gas consumption of each EVM instruction is
detailed in [37]. Miners get paid an amount in Ether that
results of applying a gas price to the total amount of gas
that took them to execute a complete transaction. Using

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Hammad Memon .

this model, Ethereum prevents the emitters from wasting
computational power, discourages the programmers to use
gas-expensive operations (e.g. as the cost of replicating data
in a decentralized environment is high, storage bytecodes
are gas-expensive) and prevents from DoS attacks and non-
terminating executions.

Solidity [15] is a programming language to write smart
contracts and its compiler produces EVM code to be deployed
in the Ethereum platform. The Solidity compiler includes
several static analyses that produce useful information during
the contract development phase. Among this information it
can be found the amount of gas that a function will consume
for its execution. The Solidity compiler is able to produce
precise constant gas bounds, however, when the cost expres-
sion depends on input parameters (or information stored in
the contract state), the compiler simply returns ∞ as gas
bound, and we found it occurs in almost one in every ten
public functions [3]. Furthermore, minimal modifications on
the code make the compiler unable to detect unbounded loops
and it does not warn the programmer about this potential
risk.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 25495

J. Correas et al.: Static Profiling and Optimization of Ethereum Smart Contracts Using Resource Analysis

to storage. It proposed a sound transformation that replaces
the accesses to storage by accesses to memory that con-
sume less gas. We have applied them to analyze more than
40,000 real public function of smart contracts getting that a
9.02% are parametric, a 6.81% of them can be optimized, and
4.19% may be potentially vulnerable.

An interesting direction for future work is to improve the
precision of our tool optimizing, not only basic type variables,
but also complex type variables such as arrays, structs or
maps. In addition, we plan to relax the conditions defined
to optimize storage accesses in Section V and generalize the
optimization to functions which access to the state variables
in other functions of the contract different to the one under
analysis. Additionally, we would study the applicability of
the optimization at EVM level, which is a more complex case
as we would modify the structure of the EVM bytecode and
it may affect to the size and the addresses of the original
bytecode.

REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla, ‘‘Closed-form upper

bounds in static cost analysis,’’ J. Automated Reasoning, vol. 46, no. 2,
pp. 161–203, Feb. 2011.

[2] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, andA. Rubio, ‘‘GASOL:
Gas analysis and optimization for Ethereum smart contracts,’’ in Proc.
26th Int. Conf. Tools Algorithms Construct. Anal. Syst., in Lecture
Notes in Computer Science, vol. 12079. Dublin, Ireland: Springer, 2020,
pp. 118–125.

[3] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, ‘‘Running on fumes:
Preventing out-of-gas vulnerabilities in Ethereum smart contracts using
static resource analysis,’’ in Proc. 13th Int. Conf. Verification Eval. Com-
put. Commun. Syst. (VECoS), in Lecture Notes in Computer Science,
vol. 11847. Porto, Portugal: Springer, 2019, pp. 63–78.

[4] D. E. Alonso-Blas and S. Genaim, ‘‘On the limits of the classical approach
to cost analysis,’’ in Static Analysis (Lecture Notes in Computer Science),
vol. 7460, A.Miné and D. Schmidt Eds. Deauville, France: Springer, 2012,
pp. 405–421.

[5] N. Ambroladze, ‘‘Fast and scalable analysis of smart contracts,’’ M.S. the-
sis, Swiss Federal Inst. Technol., Zürich, Switzerland, 2018.

[6] M. M. A. Aldweesh, M. Alharby, and A. V. Moorsel, ‘‘OpBench:
A CPU performance benchmark for Ethereum smart contract operation
code,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain), Jul. 2019,
pp. 274–281.

[7] R. Bagnara, M. P. Hill, and E. Zaffanella, ‘‘The parma polyhedra library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems,’’ Sci. Comput. Program.,
vol. 72, nos. 1–2, pp. 3–21, 2008.

[8] C. Boogerd and L. Moonen, ‘‘Prioritizing software inspection results using
static profiling,’’ in Proc. 6th IEEE Int. Workshop Source Code Anal.
Manipulation. Washington, DC, USA: IEEE Computer Society, Sep. 2006,
pp. 149–160.

[9] C. Boogerd and L. Moonen, ‘‘On the use of data flow analysis in static
profiling,’’ in Proc. 8th IEEE Int. Work. Conf. Source Code Anal. Manipu-
lation, Sep. 2008, pp. 79–88.

[10] G. Canfora, A. D. Sorbo, S. Laudanna, A. Vacca, and C. AaronVisaggio,
‘‘Gasmet: Profiling gas leaks in the deployment of solidity smart con-
tracts,’’ CoRR, vol. abs/2008.05449, pp. 1–13, Dec. 2020.

[11] J. Charlier, S. Lagraa, R. State, and J. François, ‘‘Profiling smart contracts
interactions tensor decomposition and graph mining,’’ in Proc. 2nd Work-
shop Mining Data Financial Appl. Eur. Conf. Mach. Learn. Princ. Pract.
Knowl. Discovery Databases, Skopje, Macedonia, vol. 1941, Sep. 2017,
pp. 31–42.

[12] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen, and
X. Zhang, ‘‘GasChecker: Scalable analysis for discovering gas-inefficient
smart contracts,’’ IEEE Trans. Emerg. Topics Comput., early access,
Mar. 6, 2020, doi: 10.1109/TETC.2020.2979019.

[13] T. Chen, X. Li, X. Luo, and X. Zhang, ‘‘Under-optimized smart con-
tracts devour your money,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal.,
Evol. Reeng. (SANER). Washington, DC, USA: IEEE Computer Society,
Feb. 2017, pp. 442–446.

[14] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang,
‘‘Towards saving money in using smart contracts,’’ in Proc. 40th Int. Conf.
Softw. Eng., New Ideas Emerg. Results, Gothenburg, Sweden, May 2018,
pp. 81–84.

[15] Ethereum. (2018). Solidity. [Online]. Available: https://solidity.
readthedocs.io

[16] A. Flores-Montoya and R. Hähnle, ‘‘Resource analysis of complex pro-
gramswith cost equations,’’ inProgramming Languages and Systems (Lec-
ture Notes in Computer Science), vol. 8858. Singapore: Springer, 2014,
pp. 275–295.

[17] R. W. Floyd, ‘‘Assigning meanings to programs,’’ in Program Verification.
Dordrecht, The Netherlands: Springer, 1993, pp. 65–81.

[18] A. Garcia, C. Laneve, and M. Lienhardt, ‘‘Static analysis of cloud elastic-
ity,’’ in Proc. 17th Int. Symp. Princ. Pract. Declarative Program., Siena,
Italy, Jul. 2015, pp. 125–136.

[19] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and A. Smaragdakis,
‘‘Madmax: Surviving out-of-gas conditions in Ethereum smart contracts,’’
in Proc. PACMPL, 2018, pp. 116:1–116:27.

[20] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘A semantic framework
for the security analysis of Ethereum smart contracts,’’ in Principles of
Security and Trust (Lecture Notes in Computer Science), vol. 10804.
Thessaloniki, Greece: Springer, 2018, pp. 243–269.

[21] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, ‘‘Online detection of effectively callback free
objects with applications to smart contracts,’’ in Proc. ACM Program.
Lang., vol. 2, Jan. 2018, pp. 1–28.

[22] R. Haemmerlé, P. López-García, U. Liqat, M. Klemen, J. P. Gallagher,
and M. V. Hermenegildo, ‘‘A transformational approach to parametric
accumulated-cost static profiling,’’ in Functional and Logic Programming
(Lecture Notes in Computer Science), vol. 9613. Kochi, Japan: Springer,
2016, pp. 163–180.

[23] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, ‘‘Learn-
ing to fuzz from symbolic execution with application to smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., London, U.K.,
Nov. 2019, pp. 531–548.

[24] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘‘ZEUS: Analyzing safety
of smart contracts,’’ in Proc. Netw. Distrib. Syst. Secur. Symp. Reston, VA,
USA: Internet Society, 2018, pp. 1–12.

[25] J. Krupp and C. Rossow, ‘‘Teether: Gnawing at Ethereum to automatically
exploit smart contracts,’’ in Proc. USENIX Secur. Symp. Berkeley, CA,
USA: USENIX Association, 2018, pp. 1317–1333.

[26] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart
contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,
Oct. 2016, pp. 254–269.

[27] M. Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, and
A. N. Sharygina, ‘‘Computing exact worst-case gas consumption for smart
contracts,’’ in Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice (Lecture Notes in Computer Science),
vol. 11247. Limassol, Cyprus: Springer, 2018, pp. 450–465.

[28] R. G. Morgan and S. A. Jarvis, ‘‘Profiling large-scale lazy functional
programs,’’ J. Funct. Program., vol. 8, no. 3, pp. 201–237, May 1998.

[29] J. Nagele and M. A. Schett, ‘‘Blockchain superoptimizer,’’ in Proc. 29th
Int. Symp. Logic-Based Program Synth. Transformation (LOPSTR), 2019,
pp. 1–15. [Online]. Available: https://arxiv.org/abs/2005.05912

[30] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, ‘‘Finding the
greedy, prodigal, and suicidal contracts at scale,’’ in Proc. 34th Annu.
Comput. Secur. Appl. Conf., Dec. 2018, pp. 653–663.

[31] A. Podelski and A. Rybalchenko, ‘‘A complete method for the synthe-
sis of linear ranking functions,’’ in Verification, Model Checking, and
Abstract Interpretation (Lecture Notes in Computer Science). Venice,
Italy: Springer, 2004, pp. 239–251.

[32] C. Signer, ‘‘Gas cost analysis for Ethereum smart contracts,’’ M.S. thesis,
Swiss Federal Inst. Technol., Zürich, Switzerland, 2018.

[33] K. Toyoda, K. Machi, Y. Ohtake, and A. N. Zhang, ‘‘Function-level bottle-
neck analysis of private proof-of-authority Ethereum blockchain,’’ IEEE
Access, vol. 8, pp. 141611–141621, 2020.

[34] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’ in
Proc. ACM SIGSACConf. Comput. Commun. Secur., Oct. 2018, pp. 67–82.

25506 VOLUME 9, 2021

4/2/2021 ScholarOne Manuscripts

https://mc.manuscriptcentral.com/ieee-access 1/2

2

Author Dashboard

 Manuscripts with Decisions

 Start New Submission Start New Submission

 Legacy Instructions Legacy Instructions

 5 Most Recent E-mails 5 Most Recent E-mails

Manuscripts with Decisions

ScholarOne Manuscripts™ScholarOne Manuscripts™ Instructions & FormsInstructions & Forms HelpHelp Log OutLog OutPablo Gordillo Pablo Gordillo

 Home Home  Author Author  Review Review

Author Dashboard







ACTION STATUS ID TITLE SUBMITTED DECISIONED

Copyright
transferred on 03-
Feb-2021

EIC: Abbott, Derek
ADM: Yadav, Devendra

Accept (02-Feb-
2021)

view decision letter

Access-
2020-
59835

Static Profiling and Optimization of
Ethereum Smart Contracts using
Resource Analysis
 View Final Submission

12-Dec-2020 02-Feb-2021

 EIC: Abbott, Derek
ADM: Sinha, Namrata

Reject (01-Dec-
2020)

view decision letter

Access-
2020-
55087

Static Profiling and Optimization of
Ethereum Smart Contracts using
Resource Analysis
 View Submission

12-Nov-2020 01-Dec-2020

4/2/2021 InCites Journal Citation Reports

https://journalprofile.clarivate.com/jif/home/?journal=IEEE ACCESS&year=2019&editions=SCIE&pssid=H2-ynVj4kx2BEyAMkzKS5Q… 2/19

InCites Journal Citation Reports Page 2 of 19

The data in the two graphs below and in the Journal Impact Factor calculation panels represent citation activity in 2019
to items published in the journal in the prior two years. They detail the components of the Journal Impact Factor. Use the
"All Years" tab to access key metrics and additional data for the current year and all prior years for this journal.

3.745
2019 Journal Impact Factor

* JIF ● COMPUTER SCIENCE, INFORMATION SYSTEMS ● TELECOMMUNICATIONS

● ENGINEERING, ELECTRICAL & ELECTRONIC

1,303
Unlinked citations

0
Times Cited

● 1,851 articles
● 11 reviews
● 45 other

* articles * reviews * other
*

article citation median
*

review citation median

2019 Journal Impact Factor & percentile rank in category for: IEEE Access

2019 JIF Citation Distribution for: IEEE Access

Downloaded on 4/2/2021 22:34:51 from Journal Citation Reports (©2021 Clarivate Analytics)

Pe
rc

en
til

e
ra

nk
 in

 c
at

eg
or

y

Jo
ur

na
l I

m
pa

ct
 F

ac
to

r

X

X

X

X

X

0%

25%

50%

75%

100%

X

X

X

X

X

0.000

1.250

2.500

3.750

5.000

2019

XX*
X*X*

2018

XX*X*
X*

2017

X
X*
X*
X*

2016

X
X*
X*
X*

2015

X

X*
X*
X*

JCR year

N
um

be
r o

f i
te

m
s

X
X
X
X
X
X
X
X
X
X
X

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

>50
XXXXXXXXXXXXXXX

50
XXXXXXXXXXXXXXXXXXXXXXXXX

45
XXXXXXXXXXXXXXXXXXXXXXXXX

40
XXXXXXXXXXXXXXXXXXXXXXXXX

35
XXXXXXXXXXXXXXXXXXXXXXXXX

30
XXXXXXXXXXXXXXXXXXXXXXXXX

25
XXXXXXXXXXXXXXXXXXXXXXXXX

20
XXXXXXXXXXXXXXXXXXXXXXXXX

15
XXXXXXXXXXXXXXXXXXXXXXXXX

10

XXXXXXXXXXXXXXX
XXXXXXXXXX

5

XXXX

X
5

XXXXX

XXXXX

XXX

X
2

X

1

XXXXX

Times cited in JCR year

4/2/2021 InCites Journal Citation Reports

https://journalprofile.clarivate.com/jif/home/?journal=IEEE ACCESS&year=2019&editions=SCIE&pssid=H2-ynVj4kx2BEyAMkzKS5Q… 8/19

InCites Journal Citation Reports Page 8 of 19

Rank

Rank

JCR Impact Factor

JCR Year
COMPUTER SCIENCE, INFORMATION SYSTEMS ENGINEERING, ELECTRICAL & ELECTRONIC TELE

Rank Quartile JIF Percentile Rank Quartile JIF Percentile Rank

2019 35/156 Q1 77.885 61/266 Q1 77.256 26/90
2018 23/155 Q1 85.484 52/266 Q1 80.639 19/88
2017 24/148 Q1 84.122 48/260 Q1 81.731 19/87
2016 27/146 Q1 81.849 54/262 Q1 79.580 23/89
2015 68/144 Q2 53.125 131/257 Q3 49.222 37/82

Downloaded on 4/2/2021 22:34:51 from Journal Citation Reports (©2021 Clarivate Analytics)

