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Abstract. The focus of this tutorial is white-box test case generation
(TCG) based on symbolic execution. Symbolic execution consists in ex-
ecuting a program with the contents of its input arguments being sym-
bolic variables rather than concrete values. A symbolic execution tree
characterizes the set of execution paths explored during the symbolic
execution of a program. Test cases can be then obtained from the suc-
cessful branches of the tree. The tutorial is split into three parts: (1) The
first part overviews the basic techniques used in TCG to ensure termina-
tion, handling heap-manipulating programs, achieving compositionality
in the process and guiding TCG towards interesting test cases. (2) In the
second part, we focus on a particular implementation of the TCG frame-
work in constraint logic programming (CLP). In essense, the imperative
object-oriented program under test is automatically transformed into
an equivalent executable CLP-translated program. The main advantage
of CLP-based TCG is that the standard mechanism of CLP performs
symbolic execution for free. The PET system is an open-source software
that implements this approach. (3) Finally, in the last part, we study the
extension of TCG to actor-based concurrent programs.

1 Introduction

A lot of research has been devoted in the last years to the problem of gener-
ating test cases automatically. A recent survey [6] describes some of the most
prominent approaches to TCG, namely model-based TCG, combinatorial TCG,
(adaptive) random TCG, search-based TCG and structural (white-box) TCG.
This tutorial focuses on structural (white-box) TCG, an approach in which the
availability of the code of the program under test is assumed and test cases
are obtained from the concrete program (e.g., using its control flow graph) in
contrast to black-box testing, where they are deduced from a specification of
the program. Also, our focus is on static testing, since we assume no knowledge
about the input data, in contrast to dynamic approaches [17,24] which execute
the program under test using concrete input values.

Symbolic execution [11,13,15,23,31, 35,36, 46] is arguably the most widely
used enabling technique for structural white-box TCG. It has received a renewed



interest in recent years, thanks in part to the increased availability of computa-
tional power and decision procedures [9]. Structural white-box TCG is among
the most studied applications of symbolic execution, with several tools avail-
able [10]. Symbolic execution consists in executing a program with the contents
of its input arguments being symbolic variables rather than concrete values. A
symbolic execution tree characterizes the set of execution paths explored during
the symbolic execution of a program. Test cases are obtained from the successful
branches of the tree. The set of obtained test cases forms a test suite.

The first part of the tutorial is devoted to review the basic concepts of TCG
by symbolic execution. We start by explaining the challenges to efficiently han-
dle heap-manipulating programs [38] in symbolic execution. The presence of
dynamic memory operations such as object creation and read/write field ac-
cesses requires special treatment during symbolic execution. Moreover, in order
to ensure reliability, symbolic execution must consider all possible shapes these
dynamic data structures can take. We proceed next to see how one can go to
symbolic execution to the actual production of test cases. An important issue
that is discussed afterwards is the compositionality of the TCG process. Finally,
we overview a practical issue to efficiently generate more relevant test cases. In
particular, guided TCG is a methodology that aims at steering symbolic execu-
tion towards specific program paths in order to generate relevant test cases and
filter out less interesting ones.

The second part of the tutorial introduces CLP-based Test Case Genera-
tion. CLP-based TCG advocates the use of CLP technology to perform test case
generation of imperative object-oriented programs. The process has two phases.
In the first phase, the imperative object-oriented program under test is auto-
matically transformed into an equivalent executable CLP-translated program.
Instructions that manipulate heap-allocated data are represented by means of
calls to specific heap operations. In the second phase, the CLP-translated pro-
gram is symbolically executed using the standard CLP execution and constraint
solving mechanisms. The above-mentioned heap operations are also implemented
in standard CLP, in a suitable way in order to support symbolic execution. We
will see the advantages of the CLP-based framework and, in particular, why it
is very relevant to implement guided TCG and an efficient heap solver. In this
context, we present the PET system, a system that implements the CLP-based
TCG framework described in this part and which is available online.

The last part of the tutorial is focused on TCG of actor-based concurrent
programs. It is known that writing correct concurrent programs is harder than
writing sequential ones, because with concurrency come additional hazards not
present in sequential programs such as race conditions, data races, deadlocks,
and livelocks. However, due to the non-deterministic interleavings of processes,
traditional testing for concurrent programs is not as effective as for sequential
programs. Systematic and exhaustive exploration of all interleavings is typically
too time-consuming and often computationally intractable (see, e.g., [45] and
its references). Furthermore, the fact that different scheduling policies can be
implemented affects the order in which tasks are selected for execution and, thus,



the initial state when resuming a task can be different by adopting one policy
or another. As a result, computation is often non-deterministic and multiple
(possibly different) solutions can be produced depending on the interleaved tasks
and the scheduler.

The adoption of actor systems has some advantages in the regard. Very
briefly, actors [1,25] constitute a model of concurrent programming that has
been gaining popularity and that it is being used in many systems (such as
ActorFoundry, Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala).
Actor programs consist of computing entities called actors or objects, each with
its own local state and thread of control, that communicate by exchanging mes-
sages asynchronously. An object configuration consists of the local state of the
objects and a set of pending messages (or tasks). In response to receiving a mes-
sage, an object can update its local state, send messages, or create new objects.
At each step in the computation of an object system, an object from the sys-
tem is scheduled to process one of its pending messages. The advantage of using
actor-systems in testing is that, as objects do not share their states, one can
assume [41] that the evaluation of all statements of a task takes place serially
(without interleaving with any other task) until it releases the processor (gets to
a return instruction). This assumption alleviates already a lot the scalability is-
sues mentioned above. We will discuss a basic algorithm and the main challenges
in TCG of actor systems.

2 Test Case Generation by Symbolic Execution

This section provides a general overview of TCG by symbolic execution and the
main challenges that currently the method poses.

2.1 Basic Concepts in Symbolic Execution

A symbolic execution tree characterizes the set of execution paths explored dur-
ing the symbolic execution of a program. During the course of symbolic exe-
cution, the values of the program’s variables are represented as symbolic ex-
pressions over the input symbolic values and a path condition is maintained.
Such a path condition is updated whenever a branch instruction is executed.
For instance, for each conditional statement in the program, symbolic execution
explores both the “then” and the “else” branch, refining the path condition ac-
cordingly. The satisfiability of each of these branches is checked and symbolic
execution stops exploring any path whose path condition becomes unsatisfiable,
hence only feasible paths are followed. Test cases are obtained from the successful
branches of the tree. The set of obtained test cases forms a test suite.

In this context, the quality of a test suite is usually assessed by using code
coverage criteria. A coverage criterion aims at measuring how well the program
under test is exercised by a test suite. Some popular coverage criteria are: state-
ment coverage which requires that every statement of the code is executed;
branch coverage which requires all conditional statements in the program to be



evaluated both to true and false; and path coverage which requires that every
possible trace through a given part of the code is executed. These criteria are
however not finitely applicable [49]. That is, they can not always be satisfied by
a finite test suite, due to infinite paths and infeasible statements in the program
under test (i.e., dead code). An alternative to path coverage, which is finitely
applicable is the loop-k coverage criterion, which requires traversing all paths in
the program except those with more than k iterations on any loop.

Observe that by construction symbolic execution achieves the path coverage
criterion above described. However, since the symbolic execution tree is in gen-
eral infinite, a termination criterion must be imposed to ensure its finiteness.
Such a termination criterion can be expressed in different forms. For instance, a
computation time budget can be established, or an explicit bound on the depth
of the symbolic execution tree can be imposed. We adopt a more code-oriented
termination criterion. Concretely, we impose an upper bound & on the number of
times each loop is iterated. By doing so, the finitely applicable (feasible) version
of the path coverage criterion, i.e., the loop-k coverage, is achieved.

1int intExp(int a,int n) {
2 if (n < 0)

3 throw new ArithmeticException();
14 else {

5 int out = 1;

6 while (n > 0) {

7 out = out*a;

8 n--;

9 }

10 return out;

1}

12}

Fig. 1: Java source code

Example 1. Figure 1 shows the Java source code for method intExp which takes
two integer input arguments a and n and computes a® by successive multiplica-
tions. If the value of the input argument n is less than 0, an arithmetic exception
is thrown. For simplicity, we assume that the method cannot receive values 0
for both of its arguments (undefined 0°). Figure 2 shows the symbolic execution
tree of method intExp for loop-1 termination criterion (loop-k with k=1). That
is to say, we require all paths that do not exercise the loop body (zero times)
and those that exercise the loop body one time. Nodes in the tree denote sym-
bolic states, and the edges are labeled with the line number of the instruction
that is executed. Observe that symbolic execution starts with the empty path
condition (PC:true). At each branching point, PC is updated with different condi-



tions over the input arguments. For instance, when the if statement is executed,
both then (true) and else (false) alternatives are feasible, therefore symbolic
execution forks and the PC is updated accordingly in each of the resulting paths.

In the tree, solid squares denote intermediate symbolic states, solid double
squares denote successful (terminating) symbolic execution paths, and the only
dashed square denotes an unfinished path, i.e., a path that is about to enter the

loop body a second time and hence is pruned by the loop-1 criterion. O
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Fig. 2: Symbolic execution tree

2.2 Handling Heap-manipulating programs

One of the main challenges in symbolic execution is to efficiently handle heap-
manipulating programs [38]. As will be illustrated later through an intuitive



example, these kind of programs often create and use complex dynamically heap-
allocated data structures. The presence of dynamic memory operations such as
object creation and read/write field accesses requires special treatment during
symbolic execution. Moreover, in order to ensure reliability, symbolic execution
must consider all possible shapes these dynamic data structures can take. In
trying to do so, however, scalability issues arise since high (often exponential)
numbers of shapes may be built due to the aliasing of references.

In practice, symbolic execution assumes no knowledge about the heap shape
(unless explicitly provided in advance via e.g., preconditions), in contrast to
standard execution, where a program runs on concrete and fully-known initial
heap (as part of the execution context). Let us motivate the importance of special
treatment for heap operations and aliasing of references on a simple example.

Ezxample 2. Consider the following method mist. It receives as input arguments
two references r1 and r2 to objects of type C (contains a field f of integer type),
checks the value of r1.f and writes r2.f in the then branch or writes r1.f in
the else branch.

1void mist(C r1, C r2) {
2 if (r1.f > 0)
3 r2.f = 1;

4 else
5 rl.f = 0;
6}

Seemingly, the method contains only two feasible paths, each corresponding to
one branch of the if statement:

1. If r1.£>0, then write r2.£=1 (line 3).
2. If r1.£<=0, then write r1.£=0 (line 5). Nothing is learned about r2.

However, these cases fall short to cover all possible executions of method mist.
There are other unapparent execution paths that must also be explored. Namely:

3. If r1 points to null, then a null pointer exception is thrown at line 2.

4. If r1.£>0 and r2 points to null, then a null pointer exception is thrown at
line 3.

5. If r1 and r2 point to the same object o and o.£>0, then write o.f=1 (line 3).
We say that r1 and r2 are aliased.

Notice that only by exhaustive exploration of all possible heap configuration can
symbolic execution generate these “hidden” paths and hence reveal the presence
of potential runtime errors for this rather simple method. Furthermore, let this
example also serve to see the relevance of the loop-k coverage criterion. Observe
that the set of the first two cases above, while not being sufficient to exercise
the complete behavior of method mist, would still be enough to achieve 100%
branch and statement coverage, which may convey an illusory sense of confidence
on the correctness of a possibly buggy program. a



Lazy Initialization. Lazy initialization [30] is the de facto standard technique to
enable symbolic execution to systematically handle arbitrary input data struc-
tures, and to explore all possible heap shapes that can be generated during the
process, including those produced due to aliasing of references. The main idea
is that symbolic execution starts with no knowledge about the program’s input
arguments and, as the program symbolically executes and accesses object fields,
the components of the program’s inputs are initialized on an “as-needed” basis.
The intuition is as follows. To symbolically execute method m of class C, a new
object o of class C with all its fields uninitialized is created (the this object in
Java). When an unknown field of primitive type is read, a fresh unconstrained
variable is created for that field. When an unknown reference field is accessed,
all possibilities are explored non-deterministically choosing among the following
values: (a) null; (b) any existing symbolic object whose type is compatible with
the field’s type and might alias with it; and (c) a fresh symbolic object. Such
non-deterministic choices are materialized into branches in the symbolic execu-
tion tree. As a result, the heap associated with any particular execution path is
built using only the constraints induced by the visited code.

The practicality and effectiveness of lazy initialization has been proved with
its use by existing symbolic execution engines such as PET and SPF. How-
ever, the very nature of the technique, i.e., producing branching due to aliasing
choices at every heap operation point, hampers the overall efficiency of symbolic
execution and its applicability to real-world programs.

A Heap Solver. The observation that branching due to aliasing choices can
be made “more lazily” than in lazy initialization by delaying such choices as
much as possible lead to the development of a heap solver [4] which enables
a more efficient symbolic execution of heap-manipulating programs. The key
features of the heap solver are the treatment of reference aliasing by means of
disjunctive reasoning, and the use of advanced back-propagation of heap related
constraints. In addition, the heap solver supports the use of heap assumptions
to avoid aliasing of data that, though legal, should not be provided as input.
Let us further illustrate the benefits of the heap solver over lazy initialization
by symbolically executing method m from Figure 3 using both approaches. For
simplicity, let us assume that the executions of methods a and b do not modify
the heap. The symbolic execution tree computed using lazy initialization (as in,
e.g., PET and SPF) is shown in Figure 4a. Note that before a field is accessed, the
execution branches if it can alias with previously accessed fields. For example,
the second field access z.f branches in order to consider the possible aliasing
with the previously accessed x . £. Similarly, the write access to y.f must consider
all possible aliasing choices with the two previous accessed fields x.f and z.f.
This ensures that the effect of the field access is known within each branch. For
example, in the leftmost branch the statement y.f=x.f+1 assigns -4 to x.f, y.f
and z.f, since in that branch all these objects are aliased. The advantage of
this approach is that by the time we reach the if statement we know the result
of the test, since each variable is fixed. However, such early branching creates



1void m(Ref x, Ref y, Ref z) {

2 x.f=1;

3 z.f=-5;

4 a();

5 y.f=x.f+1;
6 bO;

7 if (x==z)

8 c(y.f);

9 else

10 d(y.f);

11}

Fig. 3: Heap Solver: Motivating example

a combinatorial explosion problem since, for example, method a is symbolically
executed in two branches and method b in five.
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Fig. 4: Symbolic Execution Trees: Lazy Initialization and Heap Solver

On the other hand, the heap solver enables symbolic execution to perform as
shown in Figure 4b, where branching only occurs due to explicit branching in the
program, rather than to aliasing. For this purpose, the heap solver handles non-
determinism due to aliasing of references by means of disjunctions. In particular,
at instruction 5 the solver will carry the following conditional information for



x.f’ (the current value of field f of x): x =2z —w z.f = 2. fAx £ 2z > x.f =a.f
indicating that if x and z are aliased, then x.f’ will take its value from z.f
and, otherwise, from x.f. Once the conditional statement at line 7 is executed
and we learn that x and z are aliased (in the then branch), we need to look up
backwards in the heap and propagate this unification so that instruction 5 can be
fully executed. This allows the symbolic execution of d(y.£) with a known value
for y.£f. The heap solver works on a novel internal representation of the heap that
encodes the disjunctive information and easily allows looking up backwards in
the heap. In addition, it is possible to provide heap assumptions on non-aliasing,
non-sharing and acyclicity of heap-allocated data in the initial state. The heap
solver can take these assumptions into account to discard aliasing that is known
not to occur for some input data. Importantly, the heap solver can be used by
any symbolic execution tool for imperative languages through its interface heap
operations.

Backwards Propagation, Arrays, and Heap Assumptions. As described
in the previous section, the heap solver uses information about equality and dise-
quality of references to determine equality among the heap cells. This is done by
propagating such information forwards in the rules of attributes. A straightfor-
ward extension to the solver allows propagating information backwards as well.
In doing so, the heap solver is capable of further refining disjunctive information
and variables’ domains, which in turn can lead to promptly pruning unfeasible
symbolic execution branches.

Ezample 3. Consider the method m but with the condition of the if (in instruc-
tion 7) changed to “if (x.f == 1)". Thanks to backwards propagation, the solver
can infer that in the if branch, variables x, y and z do not alias, and therefore
the call call c is performed with a 2 value. ad

Another straightforward extension to the heap solver allows to handle arrays
in a similar fashion to how object fields are handled, with the difference being
that array indices play the role of object references that point to the heap-
allocated data.

The last important feature of the heap solver is the support for heap assump-
tions. As we have seen so far, symbolic execution assumes feasible all possible
kinds of aliasing among heap-allocated (reference) input data of the same type.
However, it may be the case that while some of these aliasings might indeed oc-
cur, others might not (consider, for instance, aliased data structures that cannot
be constructed using the public methods in the Java class). In order to avoid gen-
erating such inputs, the heap solver provides support for heap assumptions, that
is, assertions describing reachability, aliasing, separation and sharing conditions
in the heap. Concretely, the following heap assumptions are supported:

— non-aliasing(a,b): specifies that memory locations a and b are not the same.

— non-sharing(a,b): specifies disjointness, i.e., that references a and b do not
share any common region in the heap.

— acyclic(a): specifies that a is an acyclic data structure.



2.3 From Symbolic Execution to TCG

The outcome of symbolic execution is a set of path conditions, one for each
symbolic execution path. Each path condition represents the conditions over the
input variables that characterize the set of feasible concrete executions of the
program that take the same path. In a next step, off-the-shelf constraint solvers
can be used to solve such path conditions and generate concrete instantiations for
each of them. This last step provides actual test inputs for the program, amenable
to further validation by testing frameworks such as JUnit, which execute such
test inputs and check that the output is as expected.

Example 4. Let us look at the symbolic execution tree of Figure 2 again. Intu-
itively, the union of the three successful paths denoted with solid double squares
make up the symbolic test suite for method intExp that optimally satisfies the
loop-1 criterion:

# Input Owutput Path condition

1 A, N [exception] {N<O}
2 A, N 1 {N=0}
3 A, N Out {N>0,N’>=N-1,0ut=1%A,N><=0}

>

The following are concrete test cases that can be derived from the above symbolic
ones.

# Input Output

1 -10, -10 [Exception]
2 -10, O 1

3 -10, 1 10

And from these concrete test cases, the JUnit tests shown in Figure 5 can be
obtained.

It is important to note that imposing a larger ¥ would allow to continue the
exploration through the unfinished, pruned path (dashed square) thus generating
test cases corresponding to further loop unrollings. O

2.4 Compositionality

Compositional reasoning is a general purpose methodology that has been suc-
cessfully applied in the past to scale up static analysis and software verification
techniques and that has also proved effective for scaling up symbolic execution
and TCG [5,7,19,40]. The overall goal of compositionality is to alleviate the
inter-procedural path explosion problem. That is, in the context of symbolic
execution and TCG, the path explosion caused by repeatedly conjoining the
symbolic execution trees of methods when their invocations occur. The main
idea is that symbolic execution and TCG of large programs can be done more
effectively, and more efficiently, by first performing symbolic execution and TCG

10



public void test_1(){
int inputO = -10;

int inputl = -10;
try{

int output = Test.intExp(inputO,inputl);
}

catch(Exception ex){
assertEquals("exception","java.lang.ArithmeticException",
ex.getClass() .getName());
return;

}
fail("Fail");

}

public void test_2(){
int inputO = -10;
int inputl 0;
int output = Test.intExp(inputO,inputl);
int expected = 1;
assertEquals("0K",expected,output) ;

}

public void test_3(0){
int inputO = -10;
int inputl = 1;
int output = Test.intExp(inputO,inputl);
int expected = -10;
assertEquals("0K",expected,output) ;

Fig.5: JUnit tests generated for introductory example

of their individual components separately. In the context of object-oriented pro-
gramming, a method is the basic code component.

In symbolic execution for TCG, compositionality means that when a method
m invokes another method p, for which TCG has already been performed, the
execution can compose the test cases available for p (also known as method sum-
mary for p) with the current execution state and continue the process, instead
of having to symbolically execute p again. By test cases (or method summary),
we refer to the set of path conditions obtained by symbolically executing p. As
a result of this composition step, a method summary for m is created. Then,
larger portions of the system under test (components, modules, libraries, etc.)
are incrementally executed, following a bottom-up traversal of its call graph,
composing previously computed components results (summaries) until finally
whole-program results can be computed. Let us recall that since the symbolic
execution tree is in general infinite, a termination criterion is essential to ensure
finiteness of the process. Then, a method summary is a finite set of summary
cases, one for each terminating path through the symbolic execution tree of the
method. Intuitively, a summary can be regarded as a complete specification of

11



the method for a certain termination criterion, but it is still a partial specification
of the method in general.

Intuitively, compositional TCG has several advantages over traditional non-
compositional TCG. First, it avoids repeatedly performing TCG of the same
method. Second, components can be tested with higher precision when they are
chosen small enough. Third, since separate TCG is done on parts and not on the
whole program, total memory consumption may be reduced. Fourth, separate
TCG can be performed in parallel on independent computers and the global TCG
time can be reduced as well. Furthermore, having a compositional TCG approach
in turn provides a practical solution to handle native code, i.e., code which is
implemented in a different programming language and may be unavailable. This
is achieved by modeling the behavior of native code as a method summary which
can be composed with the current state during symbolic execution in the same
way as the test cases inferred automatically by the testing tool are. By treating
native code, we overcome one of the inherent limitations of symbolic execution
(see [38]).

Approaches to Compositional TCG. In order to perform compositional
TCG, two main approaches can be considered:

Context-sensitive. Starting from an entry method m (and possibly a set of pre-
conditions), TCG performs a top-down symbolic execution such that, when a
method call p is found, its code is executed from the actual state ¢. In a context-
sensitive approach, once a method is executed, we store the summary computed
for p in the context ¢. If we later reach another call to p within a (possibly
different) context ¢, we first check if the stored context is sufficiently general.
In such case, we can adapt the existing summary for p to the current context ¢’.
At the end of each execution, it can be decided which of the computed (context-
sensitive) summaries are stored for future use.

Context-insensitive. Another possibility is to perform the TCG process in a
context-insensitive way. This strategy comprises the following steps. First, the
call graph for the entry method mp of the program under test is computed, which
gives us the set of methods that must be tested. Then, the strongly connected
components (SCCs for short) for such graph are computed. SCCs are traversed
in reverse topological order starting from those which do not depend on any
other. The idea is that each SCC is symbolically executed from its entry mgc.
w.r.t. the most general context (i.e., true). If there are several entries to the
same SCC, the process is repeated for each of them. Hence, it is guaranteed that
the obtained summaries can always be adapted to more specific contexts.

In general terms, the advantages of the context-insensitive approach are that
composition can always be performed and that only one summary needs to be
stored per method. However, since no context information is assumed, summaries
can contain more test cases than necessary and can be thus more expensive to
obtain. In contrast, the context-sensitive approach ensures that only the required

12



information is computed, but it can happen that there are several invocations to
the same method that cannot reuse previous summaries (because the associated
contexts are not sufficiently general). In such case, it is more efficient to obtain
the summary without assuming any context. A context-insensitive approach is
used in what follows.

Method Summaries. A method summary for m is a finite set of summary
cases, each of which mainly consists of the path condition for a particular sym-
bolic execution path of m. Each element in a summary is said to be a summary
case of the summary. Intuitively, a method summary can be seen as a com-
plete specification of the method for the considered coverage criterion, so that
each summary case corresponds to the path constraints associated to each fin-
ished path in the corresponding (finite) execution tree. Note that, though the
specification is complete for the criterion considered, it will be, in general, a
partial specification for the method, since the finite tree may contain incomplete
branches which, if further expanded, may result in (infinitely) many execution
paths.

When the method does not include any heap-related operation, the path con-
dition alone sufficiently characterizes the symbolic execution path (as in [7,19]).
However, in the presence of heap-manipulating methods, special mechanisms
must be employed. We adopt an intuitive alternative which consists in explic-
itly encoding the input and output heaps and store them along with the path
condition. Doing so, requires the implementation of two operations, a heap com-
patibility check and a heap composition operation.

Compatibility and Composition of Summaries. Let us assume that during
the symbolic execution of a method m, there is a method invocation to another
method p within a current state ¢. The challenge is to define a composition
operation so that, instead of symbolically executing p, its previously computed
summary S, can be reused. As a result, TCG for m should produce the same
results regardless of whether we use a summary for p or we inline symbolical
execution of p within TCG for m, in a non-compositional way. Roughly speaking,
the state ¢, stored in a summary case is compatible with the current state ¢ if: 1)
the path condition stored in the summary case can be conjoined to the current
path condition, and 2) the structure of the input heap in the summary case match
with the structure of the current heap. Note that compatibility of a summary
case is checked on the fly, so that if ¢ is not compatible with ¢., the composition
will fail, the summary case will be discarded, and symbolic execution will proceed
to attempt to compose the next summary case in S,,.

Ezample 5. Table 1 shows the summary obtained by symbolically executing
method simplify using the loop-1 coverage criterion: The summary contains 5
cases, which correspond to the different execution paths induced by the calls to
methods gcd and abs. For the sake of clarity, we adopt a graphical representa-
tion for the input and output heaps. Heap locations are shown as arrows labeled
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class Arithmetics {

static int abs(int a) {
if (a >= 0) return a;
else return -a;

b = res;

}
static int gcd(int a,int b) {
int res;
while (b != 0) {
res = ab; a = b;
}

return abs(a);

}

}

class Rational {
int n; int d;
void simplify() {

int gcd = Arithmetics.gcd(n,d);

n = n/ged;

}

d = d/gcd;

Rational[] simp(Rationall] rs) {
int length = rs.length;

Rational[] oldRs =
1;

new Rational[length

arraycopy(rs,oldRs,length) ;

for (int i =
rs[i].simplify();
return oldRs;

0; i < length; i++)

}
}

Fig. 6: Example for Compositional TCG.

Table 1: Summary of method simplify
Ain Aour Heapin Heapout EF Constraints
r(A) A 9@ A ﬁ@ ok F<0, N=-F, M=F/N
r(A) A 9@ A ”@ ok F>0
r(A) A 9 A~ B exc(B)
r(A) A 9@ A ” ok G<0, F mod G=0, K—-G, M=F/K, N=G/K
r(A) A 9 A ﬁ@ ok G>0, F mod G—0, M=F/G
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Table 2: Summary of method arraycopy

Ain Aout Heapin Heapout EF Constraints

[X,Y.0] H 0

H ok

Al A» A» B exc(B)  Z>0,L>0
A él\%}ég exc(A)  Z>0

A % exc(A)  7Z<0

il
[t(A),x(B).1] as(Vi) B (2fvel) as@Vi) Bo(2]Vi) ok pis112s0

[null,Y,Z| H

XY.Z|

with their reference variable names. Split-circles represent objects of type R and
fields n and d are shown in the upper and lower part, respectively. Exceptions
are shown as starbursts, like in the special case of the fraction “0/0”, for which
an arithmetic exception (AE) is thrown due to a division by zero. In the method
summary examples of Tables 2 and 3, split-rectangles represent arrays, with the
length of the array in the upper part and its list of values in the lower one. As-
sume that method arraycopy is native. This means that its code is not available
and we cannot symbolically execute it. A method summary for arraycopy can
be provided, as shown in Table 2, where we have (manually) specified five cases:
the first one for arrays of length zero, the second and third ones for null array
references, the fourth one for a negative length, and finally a normal execution
on non-null arrays. Now, by using our compositional reasoning, we can continue
symbolic execution for simp by composing the specified summary of arraycopy
and the one computed for simplify. The result of compositional symbolic exe-
cution is presented in Table 3, that is, the entire summary of method simp for
a loop-1 coverage criterion. O

2.5 Guided TCG

A common limitation of symbolic execution in the context of TCG is that it
tends to produce an unnecessarily large number of test cases for all but tiny pro-
grams. This limitation not only hinders scalability but also complicates human
reasoning on the generated test cases. Guided TCG is a methodology that aims
at steering symbolic execution towards specific program paths in order to effi-
ciently generate more relevant test cases and filter out less interesting ones with
respect to a given structural selection criterion. The goal is thus to improve on
scalability and efficiency by achieving a high degree of control over the coverage
criterion and hence avoiding the exploration of unfeasible paths. This has po-
tential applicability for industrial software testing practices such as unit testing,
where units of code (e.g. methods) must be thoroughly tested in isolation, or
selective testing, in which only specific paths of a program must be tested.
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Table 3: Summary of method simp

Ain Aout Heapin Heapout EF Constraints
r(A) x(B) as S ODES ok 0
mll X H A exc(A) 0

1(A) 1(C) a» (k@) B » as([le) B % o> (1 ok F<0, K—F, M-F/K
) 1©) s () B~ as (i) B D) s (i) ok F>0

(A) X as([k@)B »@ as(iJum) B 4@ o () P %QXC(D)
r(A) 1(C) A» B %@ A» B 4@ o () ok G<0, F mod G0, K—G,

M=F/K, N=G/K

r(A) 1(C) A» B 9@ A» B 4@ c»|r(B)| ok G>0,F mod G—0, M=F/G
1'(A> X A-> [uull] A Cc-> B (EX('(B) 0

=

Ezample 6. Let us consider the unit-testing for method simplify (see Figure 6).
A proper set of unit-tests should include one test to exercise the exceptional
behavior arising from the division by zero, and another test to exercise the
normal behavior. Ideally, no more tests should be provided since there is anything
else to be tested in method simplify. This methodology works well under the
assumption that called methods are tested on their own, in this case method
gcd. Standard TCG by symbolic execution would consider all possible paths
including those arising from the different executions of method gcd, in this case
5 paths. The challenge in Guided TCG is to generate only the two test-cases
above, avoiding as much as possible traversing the rest of the paths (which for
this criterion can be considered redundant). As another example, let us consider
selective testing for method simplify. E.g., one could be interested in generating
a test-case (if any) that makes method simplify produce an exception due to a
division by zero. The challenge in Guided TCG is again to generate such a test
avoiding traversing as much as possible the rest of the paths. O

The intuition of Guided TCG is as follows: (1) A heuristics-based trace-
generator generates possibly partial traces, i.e., partial descriptions of paths,
according to a given selection criterion. This can be done by relying on the
control-flow graph of the program. (2) Bounded symbolic execution is guided
by the obtained traces. The process is repeated until the selection criterion is
satisfied or until no more traces are generated. Section 3.6 presents a concrete
CLP-based methodology for guided TCG and formalizes a concrete guided TCG
scheme to support the criteria for unit testing considered in the above example.
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3 CLP-based TCG

We present a particular instance of TCG based on symbolic execution, and an
implementation, in which CLP is used as enabling technology.

3.1 Constraint Logic Programming

We assume certain familiarity with Logic Programming (LP) [33] and Con-
straint Logic Programming (CLP) [27,34]. Hence we only briefly overview both
paradigms.

Logic Programming. Logic Programming is a programming paradigm based
on the use of formal logic as a programming language. A logic program is a
finite set of predicates defining relationships between logical terms. An atom
(or call) A is a syntactic construct of the form p(ty,...,t,), with n > 0, where
p/n is a predicate signature and t¢i,...,t, are terms. A clause is of the form
H: -By,...,B,. , with m > 0, where its head H is an atom and its body
Bi,...,B,, is a conjunction of m atoms (commas denote conjunctions). When
m = 0 the clause is called a fact and is written “H.”. The standard syntactic
convention is that names of predicates and atoms begin with a lowercase letter.
A goal is a conjunction of atoms. We denote by {X; — t1,...,X,, — t,} the
substitution o with o(X;) = ¢; for ¢ = 1,...,n (with X; # X; if ¢ # j),
and o(X) = X for all other variables X. Given an atom A, §(A) denotes the
application of substitution 8 to A. Given two substitutions #; and 6, , we denote
by 6165 their composition. An atom A’ is an instance of A if there is a substitution
o with A" = o(A4).

SLD (Selective Linear Definite clause)-resolution is the standard operational
semantics of logic programs. It is based on the notion of derivations. A deriva-
tion step is defined as follows. Let G be Ai,...,Ag,..., A and C = H :
—Bi,...,Bp,. be a renamed apart clause in P (i.e., it has no common variables
with G). Let Ag be the selected atom for its evaluation. As in Prolog, we assume
the simple leftmost selection rule. Then, G’ is derived from G if 8 is a most general
unifier between Ar and H, and G’ is the goal 0( Ay, ..., Agr—1,B1,..., Bm, Ar+1,
oo Ag).

As customary, given a program P and a goal G, an SLD derivation for PU{G}
consists of a possibly infinite sequence G = Gy, G1,Ga, ... of goals, a sequence
Cy,Cs, ... of properly renamed apart clauses of P (i.e. C; has no common vari-
ables with any G; nor C; with j < ¢), and a sequence of computed answer
substitutions 61, 0s, ... (or most-general unifiers, mgus for short) such that each
Gi4+1 is derived from G; and Cj41 using 6;41. Finally, we say that the SLD
derivation is composed of the subsequent goals Gg, G1,Ga, ...

A derivation step can be non-deterministic when Ag unifies with several
clauses in P, giving rise to several possible SLD derivations for a given goal.
Such SLD derivations can be organized in SLD trees. A finite derivation G =
Go,G1,Ga, ..., Gy, is called successful if G, is the empty goal, denoted €. In that
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case 0 = 0105 ...0, is called the computed answer for goal G. Such a derivation
is called failing if it is not possible to perform a derivation step with G,,.

Executing a logic program P for a goal G consists in building an SLD tree
for PU{G} and then extracting the computed answer substitutions from every
non-failing branch of the tree.

Constraint Logic Programming. Constraint Logic Programming is a pro-
gramming paradigm that extends Logic programming with Constraint solving.
It augments the LP expressive power and application domain while maintaining
its semantic properties (e.g., existence of a fixpoint semantics).

In CLP, the bodies of clauses may contain constraints in addition to ordi-
nary literals. CLP integrates the use of a constraint solver to the operational
semantics of logic programs. As a consequence of this extension, whereas in LP
a computation state consists of a goal and a substitution, in CLP a computation
state also contains a constraint store. The special constraint literals are stored
in the constraint store instead of being solved according to SLD-resolution. The
satisfiability of the constraint store is checked by a constraint solver. Then, we
say that a CLP computation is successful if there is a derivation leading from the
initial state Sp = (Go | true) (initially the constraint store is empty, i.e., true)
to the final state S,, = (e | S) such that € is the empty goal and S is satisfiable.

The CLP paradigm can be instantiated with many constraint domains. A
constraint domain defines the class of constraints that can be used in a CLP pro-
gram. Several constraint domains have been developed (e.g., for terms, strings,
booleans, reals). A particularly useful constraint domain is CLP(FD) (Constraint
Logic Programming over Finite Domains) [47]. CLP(FD) constraints are usually
intended to be arithmetic constraints over finite integer domain variables. It has
been applied to constraint satisfaction problems such as planning and schedul-
ing [14,34]. Some features of CLP(FD) that make it suitable for TCG of programs
working with integers are:

— It provides a mechanism to define the initial finite domain of variables as an
interval over the integers and operations to further refine this initial domain.

— It provides a built-in labeling mechanism, which can be applied on a list of
variables to find values for them such that the current constraint store is
satisfied.

As we will see in the next section, our CLP-based TCG framework will rely
on CLP(FD) to translate conditional statements over integer variables into CLP
constraints. Moreover, the labeling mechanism is essential to concretize the ob-
tained test cases in order to obtain concrete input data amenable to be used and
validated by testing tools.

3.2 CLP-based Test Case Generation

CLP-based Test Case Generation advocates the use of CLP technology to per-
form test case generation of imperative object-oriented programs. The pro-
cess has two phases. In the first phase, the imperative object-oriented program
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under test is automatically transformed into an equivalent executable CLP-
translated program. Instructions that manipulate heap-allocated data are rep-
resented by means of calls to specific heap operations. In the second phase, the
CLP-translated program is symbolically executed using the standard CLP exe-
cution and constraint solving mechanism. The above-mentioned heap operations
are also implemented in standard CLP, in a suitable way in order to support
symbolic execution. The next two sections overview these two phases, which are
also shown graphically in Figure 7.

|

| Coverage
| . .

i Criterion

‘ ) Y
1 Imperative ! Symbolic
| CLP-translated .
| ui(il?e%?’?st 00 to CLP —> Execution —>
: Translation | and TCG
Phase T Phase IT

Fig. 7: CLP-based Test Case Generation Framework

The Imperative Object-Oriented Language. Although our approach is not tied
to any particular imperative object-oriented language, we consider as the source
language a subset of Java. For simplicity, we leave out of such subset features
like concurrency, bitwise operations, static fields, access control (i.e., the use of
public, protected and private modifiers) and primitive types besides integers and
booleans. Nevertheless, these features can be relatively easy to handle in practice
by our framework, except for concurrency, which is well-known to pose further
challenges to symbolic execution and its scalability.

CLP-translated Programs. The translation of imperative object-oriented
programs into equivalent CLP-translated programs has been subject of previous
work (see, e.g., [2,21]). Therefore, we will recap the features of the translated
programs without going into deep details of how the translation is done. The
translation is formally defined as follows:

Definition 1 (CLP-translated program). The CLP-translated program for
a given method m from the original imperative object-oriented program consists
of a finite, non-empty set of predicates m,my,...,my. A predicate m; is de-
fined by a finite, non-empty set of mutually exclusive rules, each of the form
m¥(In, Out, Hyy,, Hout, E) : —[g,]b1, - - ., bj., where:

1. In and Out are, resp., the (possibly empty) list of input and output argu-
ments.
2. H;, and Hyy are, resp., the input and (possibly modified) output heaps.
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3. E is an exception flag that indicates whether the execution of m¥ ends nor-
mally or with an uncaught exception.

4. If m; is defined by more than one rule, then g is the constraint that guards
the execution of m¥, i.e., it must hold for the execution of m¥ to proceed.

5. bi,...,bj is a sequence of instructions including arithmetic operations, calls
to other predicates and built-ins to operate on the heap, etc., as defined in
Figure 8. As usual, an SSA transformation is performed [12].

Clause ::= Pred(Argsin , Argsout ,Hin,Hout ,ExFlag) - [G,]B1,Bs,. .. ,B,.

G ::= Num™ ROp Num™ | Ref; \== Refs | type(H,Ref*,T)

B ::= Var #= Num* AOp Num*
| Pred(Argsin, Argsout, Hin, Hout , ExFlag)
| new object(H;,,C*,Ref*, Hyyt)
| new array(H;,, T,Num*,Ref*,Hpyy) | length(H;,,Ref*, Var)
| get field(H;y,,Ref* ,FSig, Var) | set_field(H;y,,Ref*,FSig,Data*,H,y:)
| get array(H;p,Ref*,Num*, Var)
| set array(H;y,,Ref*, Num*,Data*, Hpyt)

Pred::= Block | MSig ROp:= #> | #< | #>=| #=<| #=| #\=
Args =[] | [Data*|Args] AOp:= +|-|x*| /| mod
Data::= Num | Ref | ExFlag T :=bool | int | C| array(T)
Ref =:=null | r(Var) FSig::= C:FN
EzFlag ::= ok | exc(Var) H := Var

Fig. 8: Syntax of CLP-translated programs

Specifically, CLP-translated programs adhere to the grammar in Figure 8. As
customary, terminals start with lowercase (or special symbols) and non-terminals
start with uppercase; subscripts are provided just for clarity. Non-terminals
Block, Num, Var, FN, MSig, FSig and C denote, resp., the set of predicate
names, numbers, variables, field names, method signatures, field signatures and
class names. A clause indistinguishably defines either a method which appear in
the original source program (MSig), or an additional predicate which correspond
to an intermediate block in the control flow graph of original program (Block).
A field signature F'Sig contains the class where the field is defined and the field
name F'N. An asterisk on a non-terminal denotes that it can be either as defined
by the grammar or a (possibly constrained) variable (e.g., Num*, denotes that
the term can be a number or a variable). Heap references are written as terms
of the form r(Ref) or null. The operations that handle data in the heap are
translated into built-in heap-related predicates.
Let us observe the following:
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— There exists a one-to-one correspondence between blocks in the control flow
graph of the original program and rules in the CLP-translated one.

— Mutual exclusion between the rules of a predicate is ensured either by means
of mutually exclusive guards, or by information made explicit on the heads
of rules, as usual in CLP. This makes the CLP-translated program deter-
ministic, as the original imperative one is (point 4 in Definition 1).

— The global memory (or heap) is explicitly represented by means of logic
variables. When a rule is invoked, the input heap H;, is received and, after
executing the body of the rule, the heap might be modified, resulting in Hoys.
The operations that modify the heap will be shown later.

— Virtual method invocations are resolved at compile-time in the original im-
perative object-oriented language by looking up all possible runtime in-
stances of the method. In the CLP-translated program, such invocations
are translated into a choice of type instructions which check the actual ob-
ject type, followed by the corresponding method invocation for each runtime
instance.

— Exceptional behavior is handled explicitly in the CLP-translated program.

These observations will become more noticeable later on Example 7.

Note that the above definition proposes a translation to CLP as opposed to
a translation to pure logic (e.g. to predicate logic or even to propositional logic,
i.e., a logic that is not meant for “programming”). This is because we then want
to execute the resulting translated programs to perform TCG and this requires,
among other things, handling a constraint store and then generating actual data
from such constraints. CLP is a natural paradigm to perform this task.

Heap Operations. Figure 9 summarizes the CLP implementation of the oper-
ations to create heap-allocated data structures (new_object and new array) and
to read and modify them (getfield , set _array, etc.) [22]. These operations rely on
some auxiliary predicates (like deterministic versions of member member _det, of
replace replace det, and nth0 and replace nth0 for arrays) which are quite stan-
dard and hence their implementation is not shown. For instance, a new object
is created through a call to predicate new object(H;,,,Class,Ref,H,,:), where H;,
is the current heap, Class is the new object’s type, Ref is a unique reference in
the heap for accessing the new object and H,,; is the new heap after allocating
the object. Read-only operations do not produce any output heap. For example,
get field(H;,,Ref,FSig,Var) retrieves from H;, the value of the field identified
by FSig from the object referenced by Ref, and returns its value in Var leav-
ing the heap unchanged. Instruction set field(H;,,Ref,FSig,Data,H,,;) sets the
field identified by F'Sig from the object referenced by Ref to the value Data,
and returns the modified heap H,,;. The remaining operations are implemented
likewise.

The Heap term. Our CLP-translated programs manipulate the heap as a black-
box through its associated operations. The heaps generated and manipulated by
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new_object (H,C,Ref ,H’) :- build_object(C,0b), new_ref (Ref),
H’> = [(Ref,0b)|H].
new_array(H,T,L,Ref,H’) :- build_array(T,L,Arr), new_ref (Ref),
H’> = [(Ref,Arr) |H].

type(H,Ref,T) :- get_cell(H,Ref,Cell), Cell = object(T,_).
length(H,Ref,L) :- get_cell(H,Ref,Cell), Cell array(_,L,_).

get_field(H,Ref ,FSig,V) :- get_cell(H,Ref,0b), FSig = C:FN,
Ob = object(T,Fields), subclass(T,C),
member_det (field(FN,V) ,Fields).
get_array(H,Ref,I,V) :- get_cell(H,Ref,Arr), Arr = array(_,_,Xs),
nth0(I,Xs,V).

set_field(H,Ref,FSig,V,H’) :- get_cell(H,Ref,0b), FSig = C:FN,
0b = object(T,Fields), subclass(T,C),
replace_det (Fields,field(FN,_) ,field(FN,V),
Fields’),
set_cell(H,Ref,object(T,Fields’) ,H’).
set_array(H,Ref,I,V,H’) :- get_cell(H,Ref,Arr), Arr = array(T,L,Xs),
replace_nth0(Xs,I,V,Xs’),
set_cell(H,Ref,array(T,L,Xs’) ,H’).

get_cell([(Ref’,Cell’)|_],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get_cell([_|RH] ,Ref,Cell) :- get_cell(RH,Ref,Cell).

set_cell([(Ref’,_) |H],Ref,Cell,H’) :- Ref == Ref’, !,
H’> = [(Ref,Cell)|H].
set_cell([(Ref’,Cell’) |H’] ,Ref,Cell,H) :-H = [(Ref’,Cell’) |H’’],
set_cell(H’,Ref,Cell,H”’).

Fig.9: Heap operations for ground execution [22]

using these operations adhere to this grammar:

Heap ::= [ ] | [Loc|Heap|
Cell ::= object(C*,Fields™) | array(T",Num™,Args")
Loc ::= (Num™,Cell)

Fields =[] | [field(FN,Data™)| Fields®|

The heap is represented as a list of locations which are pairs formed by a unique
reference and a cell. Each cell can be an object or an array. An object contains
its type and its list of fields, each of which is made of its signature and data
content. An array contains its type, its length and its list of elements.

Ezample 7. Figure 10a shows the Java source code of class List, which imple-
ments a singly-linked list. The class contains one field first of type Node. As
customary, Node is a recursive class with two fields: data of type int and next
of type Node. Method remAll takes as argument an object 1 of type List, tra-
verses it (outer while loop) and for each of its elements, traverses the this object
and removes all their occurrences (inner loop). Figure 10b shows the equivalent
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1 class Node {

2 int data;

3 Node next;

4}

s class List {

6 Node first;

7 void remAll(List 1) {
8 // blockl

9 Node 1f = 1.first;
10 // loopl

11 while (1f !'= null) {

remAl1([r(Th),L], [],Hi,Ho,E) :-
block1([Th,L],Hi,Ho,E).
block1([Th,r(L)],Hi,Ho,E) :-
get_field(Hi,L,first,LfR),
loop1([Th,L,LfR],Hi,Ho,E).
block1([Th,null] ,Hi,Ho,exc(E)) :-
create_object (Hi, ’NPE’ ,E,Ho) .
loop1([Th,L,null] ,H,H,o0k).
loop1l ([Th,L,r(Lf)],Hi,Ho,E) :-
block2([Th,L,Lf],Hi,Ho,E).
block2([Th,L,Lf],Hi,Ho,E) :-

2 // block2 get_field(Hi,Th,first,FR),
' Node prev = null; loop2([Th,L,Lf,null,null,FR],Hi,Ho,E).
H Node p = null; loop2([Th,L,Lf,Prev,P,null] ,Hi,Ho,E) :-
N Node next = first; block4 ([Th,L,Lf],Hi,Ho,E).
' // loop2 loop2([Th,L,L£,Prev,P,r(F)],Hi,Ho,E) :-
v while (next !=null) { block3([Th,L,Lf,P,F],Hi,Ho,E).
' // block3 block3([Th,L,Lf,P,F],Hi,Ho,E) :-
0 PTev = ps get_field(Hi,F,next,FRN),
2 P = mext; get_field(Hi,F,data,A),
2 next = next.next; get_field(Hi,Lf,data,B),
> /it i£1([A,B,Th,L,Lf,P,F,FRN] ,Hi,Ho,E).
% if (p.data == 1f.data) .y ([) B n,L Lf,Prev,P,FRN],Hi,Ho,E) :-
24 // if2
. #\=(A,B),
2 if (prev == null) { loop2([Th,L,Lf,Prev,P,FRN],Hi,Ho,E).
2 first = next; if1([A,A,Th,L,Lf,Prev,P,FRN],Hi,Ho,E) :-
o7 p = null; i£2([Th,L,Lf,Prev,P,FRN],Hi,Ho,E).
’ } else { i£2([Th,L,Lf,r(F),P,N] ,Hi,Ho,E) :-
2 prev.next = next; set_field(Hi,F,next,N,H2),
50 P = prevs loop2([Th,L,Lf,F,F,N],H2,Ho,E).
3 ¥ if2([Th,L,Lf,null,P,N],Hi,Ho,E) :-
32 ¥ set_field(Hi,Th,first,N,H2),
83 // blockd loop2([Th,L,Lf,null,null,N],H2,Ho,E) .
s ' 1f = 1f.next; block4 ([Th,L,Lf],Hi,Ho,E) :-
o get_field(Hi,Lf,next,LfRN),
zi} ¥ loop1([Th,L,LfRN],Hi,Ho,E).

(a) Java source code (b) CLP-translation

Fig. 10: CLP-based TCG example

(simplified and pretty-printed) CLP-translated code for method remAll. Let us
observe some of the main features of the CLP-translated program. The if state-
ment in line 23 is translated into two mutually exclusive rules (predicate if1)
guarded by an arithmetic condition. Similarly, the if statement in line 25 is
translated into predicate if2, implemented by two rules whose mutual exclusion
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is guaranteed by terms null and r(_) appearing in each rule head. Observe that
iteration in the original program (while constructions) is translated into recur-
sive predicates. For instance, the head of the inner while loop is translated into
predicate loop2, its condition is guarded by the rules of predicate cond2 (null
or r(_)), and recursive calls are made from predicates if1 (first rule) and if2
(both rules). Finally, exception handling is made explicit in the CLP-translated
program; the second rule of predicate blockl encodes the runtime null pointer
exception (’NPE’) that raises if the input argument 1 is null. o

3.3 Semantics of CLP-translated Programs

The standard CLP execution mechanism suffices to execute the CLP-translated
programs. Let us focus on the concrete execution of CLP-translated programs
by assuming that all input parameters of the predicate to be executed (i.e., In
and H;,) are fully instantiated in the initial input state.

Let M be a method in the original imperative program, m be its correspond-
ing predicate in the CLP-translated program P, and P’ be the union of P and
the predicates in Figure 9. As explained in the previous section, the operational
semantics of the CLP program P’ can be defined in terms of derivations. A
derivation is a sequence of reductions between states Sy —, S1 —p ... =p Sy,
also denoted Sy — p Sy, where a state (G | 0) consists of a goal G and a constraint
store #. The concrete execution of m with input @ is the derivation Sy — Sy,
where Sy = (m(In, Out, H;y, Hout, ExFlag) | 8) and 6 initializes In and H;, to
be fully ground. If the derivation successfully terminates, then S,, = (e 1 8’) and
0’ is the output constraint store.

This definition of concrete execution relies on the correctness of the transla-
tion algorithm, which must guarantee that the CLP-translated program captures
the same semantics of the original imperative one [2,21].

Ezample 8. The following is a correct input state for predicate remA11/5:

(remA11([r(1) ,null],Out,
[(1,object(’List’, [field(’Node’:first,null)]))],Hout,E) | true)

Observe that the list of input arguments and the input heap (both underlined)
are fully instantiated. Argument r (1) corresponds to the implicit reference to
the this object, which appears in the input heap term with its field first being
instantiated to null. Concrete execution on this input state yields a final state
in which:

Out =[ 1A

Hout = [(1,object(’List’, [field(’Node’:first,null)])),
(2,0bject (°NPE’, [ 1))IA

E = exc(2)
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Notice that in this final state, a new object of type NPE (Null Pointer Excep-
tion) is created in the heap. The fact that the execution ends with an uncaught
exception is indicated in flag E. O

3.4 Symbolic Execution

When the source imperative language does not support dynamic memory, sym-
bolic execution of the CLP-translated programs is attained by simply using the
standard CLP execution mechanism to run the main goal (i.e., the predicate
name after the method under test) with all arguments being free variables. The
inherent constraint solving and backtracking mechanisms of CLP allow to keep
track of path conditions (or constraint stores), failing and backtracking when
unsatisfiable constraints are hit, hence discarding such execution paths; and suc-
ceeding when satisfiable constraints lead to a terminating state in the program,
which in the context of TCG implies that a new test case is generated.

However, in the case of heap-manipulating programs, the heap-related op-
erations presented in Figure 9 fall short to generate arbitrary heap-allocated
data structures and all possible heap shapes when accessing symbolic references.
This is a well-known problem in TCG by symbolic execution. A naive solution
to this problem could be to fully initialize all the reference parameters prior to
symbolic execution. However, this would require imposing bounds on the size
of input data structures, which is highly undesirable. Doing so would circum-
scribe the symbolic search space, hence jeopardizing the overall effectiveness of
the technique.

Lazy Initialization. A straightforward generalization of predicate get cell in Fig-
ure 9 provides a simple and flexible solution to the problem of handling arbitrary
input data structures during symbolic execution, and constitutes a quite natural
implementation of the lazy initialization technique in our CLP-based framework.
Figure 11 shows the new implementation of the get _cell operations; observe that
we have added just two new rules to the implementation shown in Figure 9.

get_cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)|_].
get_cell([(Ref’,Cell’)|_],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get_cell([(Ref’,Cell’)|_],Ref,Cell) :- var(Ref), var(Ref’), Ref = Ref’,
Cell = Cell’.
get_cell([_|RH] ,Ref,Cell) :- get_cell(RH,Ref,Cell).

Fig.11: Redefining get cell operations for symbolic execution [22]

The intuitive idea is that the heap during symbolic execution contains two
parts: the known part, with the cells that have been explicitly created during
symbolic execution appearing at the beginning of the list, and the unknown part,
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which is a logic variable (tail of the list) in which new data can be added. Im-
portantly, the definition of get cell/3 distinguishes two situations when search-
ing for a reference: (i) It finds it in the known part (second clause), meaning
that the reference has already been accessed earlier (note the use of syntac-
tic equality rather than unification, since references at execution time can be
variables); or (ii) It reaches the unknown part of the heap (a logic variable),
and it allocates the reference (in this case a variable) there (first clause). The
third clause of get cell/3 allows to consider all possible aliasing configurations
among references. In essence, get cell/3 is therefore a CLP implementation of
lazy initialization.

Let us illustrate the use of lazy initialization in symbolic execution with an
example.

Ezxample 9. Figure 12 shows the CLP-translated program for method mist from
Example 2. Let mist(In,Out,Hin,Hout,E) be the initial goal for symbolic
execution. Observe that the input heap Hin is a free variable (i.e., fully un-
known). Let us choose rule mist!. By doing so, the list of input arguments
In gets instantiated to [r(A),R2], which indicates that the first argument is
a reference to an existing object in the heap, as opposed to the null refer-
ence in rule mist?. The execution of the get field instruction imposes new con-
straints on the shape of the input heap. Namely, Hin is partially instantiated to
[(A,object(’°C’, [field(f,F) IM])) IN]. Observe that there is still an unknown
part in the heap (variable N). Also, observe that the list of fields for object A is
also represented by an open list, meaning that there might be other fields in this
object, but nothing has been learned about them yet.

Now, let us assume that the execution proceeds with rules if! and then'.
At this point, the second argument is also set to be a valid reference r (B). The
execution of the set field will internally reach predicate get cell (Figure 11),
leading to consider two possibilities:

— References R1=r(A) and R2=r(B) point to two different objects in the heap.
In this case, the resulting output heap is

Hout = [ (A,object(’°C’, [field(f,D1)|M])),
(B,object(’C?, [field(f,1) |P]1)) IN],

and the constraint store is § = {D1 > 0}.

— References R1=r(A) and R2=r (A) point to the same object in the heap, i.e.,
they are aliased. Here, the resulting output heap is
Hout=[(A,object(°C’, [field(£f,D1) IM])) IN], with § = {D1 > 0}. ]

To conclude this section, let us now provide a definition for symbolic execu-
tion in terms of the CLP derivation tree of the CLP-translated program extended
with built-in operations to handle dynamic memory:

Definition 2 (Symbolic Execution). Let M be a method, m be its corre-
sponding predicate from its associated CLP-translated program P, and P’ be the
union of P and the set of predicates in Figure 9. The symbolic execution of m is
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mist' ([r(4),R2], [],Hin,Hout,E) :-
get_field(Hin,A,f,D1),
if ([D1,A,R2] ,Hin,Hout,E).
mist?([null,R2], [],Hin,Hout,exc(Exc)) :-
create_object (Hin, ’NPE’ ,Exc,Hout) .
if! ([D1,A,R2] ,Hin,Hout,E) :-
#>(D1,0),
then([R2] ,Hin,Hout,E).
if?([D1,A,R2] ,Hin,Hout,ok) :-
#<=(D1,0),
set_field(Hin,A,f,0,Hout),
then! ([r(B)],Hin,Hout,ok) :-
set_field(Hin,B,f,1,Hout).
then? ([nulll ,Hin,Hout,exc(Exc)) :-
create_object (Hin, ’NPE’ ,Exc,Hout) .

Fig. 12: CLP-translated program for method mist (Example 2)

the CLP derivation tree, denoted as Tp,, with root m(In, Out, Hiy, Hoyt, E) and
initial constraint store 6 = {} obtained using P’.

3.5 Test Case Generation

When handling realistic programs, it is well-known that the symbolic execution
tree to be explored is in general infinite. This is because iterative constructs such
as loops and recursion, whose number of iterations depend on input arguments,
usually induce an infinite number of execution paths when executed with sym-
bolic input values. It is therefore essential to establish a termination criterion.
Such a termination criterion can be expressed in different forms. For instance,
a computation time budget can be established, or an explicit bound on the
depth of the symbolic execution tree can be imposed (called depth-k criterion).
In this thesis, we adopt a more code-oriented termination criterion. Specifically,
we impose an upper bound & on the number of times each loop is iterated. As
a byproduct of imposing such a bound, the loop-k structural coverage criterion
below is satisfied.

Finite symbolic execution tree, test case, and TCG. Let us now establish
definitions for key concepts of our approach:

Definition 3 (Finite symbolic execution tree, test case, and TCG). Let
m be the corresponding predicate for a method M in a CLP-translated program
P, and let C be a termination criterion.

— T s the finite and possibly incomplete symbolic execution tree of m with
root m(In, Out, H;p,, Hoyt, EF) w.r.t. C.
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Table 4: Test cases for method remAll

N Input Heap Output Heap Constraint Store EF

1 this this 0 ok
I.first = null I.first = null

2 this.first = null this.first = null 0 ok

Lfirst={A)}> null Lfirst>={A)> null
3 this.first ={A}—> null this.first ~{A}—> null {A# B} ok
Ifirst —(B)—> null  Lfirst —{B)}— null

4 this.first >={A}—> null thisfirst = null 0 ok
Ifirst —(A)—= null  Lfirst —{(A)}—> null

5 this - 1] exc
| —— null

6 this.first 9@—> null  this.first = null 0 ok
| = this | = this

7 this.first null  this.first = null 0 ok

| first |first ~(A)— null

— Let b be a successful (terminating) path in T,S. A test case for m w.r.t. C is
a 6-tuple of the form: {(o(In),c(Out),o(Hpn),0(Hoyt), o(EF),0), where o
and 0 are, resp., the substitution and the constraint store associated to b.

— TCG is the process of generating the set of test cases obtained for all suc-
cessful (terminating) paths in TC.

In the remainder of this dissertation, we comply with the above abstract
(symbolic) definition of test case, hence adopting a non-standard use of the term
“test case”. Standard test cases are concrete, i.e., actual input values on which the
program under test can be run. In contrast, in this thesis a test case represents
the class of inputs that will follow the same execution path, characterized by
a path condition (and symbolic expressions for variables). A test suite is hence
a set of test cases that characterizes all symbolic execution paths explored by
symbolic execution using a particular termination criterion. Nevertheless, it is
possible to produce actual values from the obtained symbolic test cases. This can
be done in a straightforward subsequent stage in our framework. Namely, we can
use the labeling mechanisms of standard clpfd domains to assign concrete values
to all variables which satisfy the path condition, thus solving it. As a result of
this last step, concrete and executable test cases are obtained.

Ezxample 10. The test suite generated for method remAll for a loop-1 coverage
criterion is shown in Table 4. The first 5 cases are generated without considering
aliasing of references. By doing so, the last two cases are also generated. Let us
explain in detail three of the obtained test cases:
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— Case 3. Corresponds to the path in which both the this list and the input
list 1 contain just one element. The constraint {A # B} indicates that fields
this.first.data and 1.first.data must have different values. The output
heap is the same as the input heap, which means that the heap remains
unchanged at the end of the execution path represented by this test case
(although it may have suffered changes in intermediate derivations).

— Case 4. The input heap is the almost same as in case 3, but here, the
symbolic variables corresponding to this.first.data and 1.first.data
are unified (variable A), meaning that their values are the same. In the
output heap, notice that the first node from the this list has been removed.

— Case 7. Reference fields this.first and 1.first are aliased. That is, they
point to the same Node object in the heap. Removing element A from the
this list boils down to setting reference this.first to null, leaving the
object in the heap intact.

Finally, as mentioned before, by solving the constraint system and applying
labeling on the variables involved, concrete inputs can be obtained. A con-
crete instantiation for this test case would consist of the following input heap
{this.first = 1 — null, I.first —> 2 — null} where variables A and B have been
assigned concrete values 1 and 2, respectively, such that the constraint store
A # B is satisfied. As the test case specifies, the heap in the concrete output
state remains unchanged. O

The PET System. PET (Partial Evaluation-based Test case generator) is
a system that implements the CLP-based TCG framework described in this
chapter. It is is fully implemented in SWI-Prolog [48] and uses the CLP(FD)
library [47] (Constraint Logic Programming over Finite Domains) as constraint
solver. Some of the important features of the PET system are:

— It is generic. Provided that appropriate CLP translations are available, PET
can work with other imperative object-oriented languages. That is, once the
CLP translation is done, the language features are abstracted away. That
is to say, the TCG phase of the approach implemented in PET is language
independent. In this way, we elude the difficulties of explicitly dealing with
features like recursion, procedure calls, dynamic memory allocation, excep-
tions, etc., whose treatment may differ from one language to another.

— It is flexible. Different termination (coverage) criteria can be easily incorpo-
rated to the PET system. These criteria are written in PET as predicates
which are permanently checked during TCG. Adding new criteria consists in
implementing such a predicate, which requires only basic knowledge of logic
programming.

— It is incremental. One of the artifacts that the PET system generates is a
test case generator. To the best of our knowledge, this is a unique feature
in a TCG tool nowadays. Namely, PET allows to extend test suites by ex-
ploring further in the symbolic execution tree in an on-demand fashion. In
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other words, PET allows to incrementally relax the imposed termination cri-
terion to explore symbolic execution paths that were initially pruned by the
termination criterion.

The PET system is available for download as open-source software and for
online use through its web interface at http://costa.ls.fi.upm.es/pet. Fur-
thermore, an Eclipse plugin called jPET [3] is available. JPET supports full se-
quential Java and some of its interesting features are:

— Interactive test case visualization. JPET integrates a test case viewer to allow
an intuitive, interactive visualization of the information contained in test
cases. This includes objects and arrays involved in the input and output
heap terms.

— Trace highlighting. On selection of a particular test case, JPET highlights the
sequence of instructions in the original Java source code that the test case
exercises. Alternatively, a trace debugging feature allows for a step-by-step
highlighting of the source code, as in the traditional style of code debugging.

— Parsing of method preconditions written in JML [28]. JPET enables the spec-
ification of conditions on the input arguments of methods. These conditions
are written in a subset of JML (Java Modeling Language), the standard spec-
ification language within software verification of Java. Using preconditions
allows steering symbolic execution towards interesting parts of the program
under test, ignoring others that are less interesting.

— Generation of JUnit. JUnit is a Unit Testing Framework for Java, which
provides a set of classes to support writing, executing and reusing test
cases. JPET generates self-contained JUnit test cases, as shown in Exam-
ple 4. Whereas those unit tests therein are rather simple, the generation of
JUnit code for heap-manipulating programs is much more challenging, as it
often involves the need to synthesize the input and output heaps and com-
pare the output heap stored in the test case with the resulting heap after
the execution of the test.

3.6 Guided CLP-based TCG

Whereas standard TCG by symbolic execution aims to cover all feasible paths of
the program under test w.r.t. a termination criterion, in guided TCG, the termi-
nation criterion is combined with a selection criterion. To that end, the concept
of coverage criterion is redefined to be a pair of two components (T'C, SC). TC is
a termination criterion that, as discussed earlier, ensures finiteness of symbolic
execution. This can be done either based on execution steps or on loop itera-
tions. Again, let us adhere to loop-k, which limits to a threshold & the number
of allowed loop iterations and/or recursive calls (of each concrete loop or recur-
sive method). SC' is a selection criterion that determines which test cases the
TCG must produce. In guided TCG this will steer symbolic execution towards
the paths that should be explored. In particular, we consider the following two
coverage criteria:
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— all-local-paths: It requires that all local execution paths within the method
under test are exercised up to a loop-k limit. This has a potential interest in
the context of unit testing, where each method must be tested in isolation.

— program-points(P): Given a set of program points P, it requires that all of
them are exercised by at least one test case up to a loop-k limit. This criterion
is the most appropriate choice for bug-detection and reachability verification
purposes. A particular case of it is statement coverage (up to a limit), where
all statements in a program or method must be exercised.

This section develops a concrete methodology to incorporate selection cri-
teria into the CLP-based TCG framework. To that end, we could employ a
post-processing phase where only the test cases that are sufficient to satisfy the
selection criterion are selected by looking at their traces. This is however not
an appropriate solution in general due to the exponential explosion of the paths
that have to be explored in symbolic execution. Instead, we now aim at using the
selection criterion to drive the TCG process towards satisfying paths, stressing
to avoid as much as possible the exploration of irrelevant and redundant ones.
The key idea that allows us to guide the TCG process is to pass trace terms
as input arguments to symbolic execution. These trace terms can be complete
or partial, which allows guiding completely or partially, the symbolic execution
towards specific paths.

First, let us define the notion of trace term and update Definition 1 to add
a trace term as an additional argument to each rule of the CLP-translated pro-
gram, which enables us to keep track of the sequence of rules that are sym-
bolically executed. Notice that trace terms are not cardinal components in the
translated program, but rather a supplementary argument with a central role in
this chapter.

Definition 4 (CLP-translated program with traces). Given the rule of
Definition 1, its CLP-translation with trace is: m(In, Out, Hip, Hoyt, EF,T) : —
g,by, ..., b7 where:

— In, Out, H;,, Hyy and EF remain as in Definition 1.
— T is the trace term for m of the form m(k, P,{T,,...,T.,,)), where
o P is the (possibly empty) list of trace paramelters, i.c., the subset of the
variables in rule m* on which the resource consumption depends.

® Ci,...,Cp 18 the (possibly empty) subsequence of method calls in by, ... by,.
o T¢, is a free logic variable representing the trace term associated to the
call c;.

— Calls in the body of the rule are extended with their corresponding trace
terms, i.e., for all 1 < j < n, if bj = p(Ip, Op, Hin,, Hout, ), then b; =
p(Lp, Op, Hin,s Hout,,, Te; ); otherwise b = b;.

Now, let us revisit the definition of test case and TCG (Definition 3) to
incorporate the notion of trace as an input argument for symbolic execution.

Definition 5 (Test case with trace and TCG). Given a method m, a ter-
mination criterion C and a successful (terminating) path b in the symbolic execu-
tion tree T,C with root m(In, Out, H;,, Hout, EF,T), a test case with trace for m
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w.r.t. C is a 6-tuple of the form: (c(In),o(Out),o(H;y),0(Hout), 0 (EF),o(T),0),
where o and 0 are, resp., the set of bindings and the constraint store associated
to b. TCG generates the set of test cases with traces obtained for all successful
paths in T,C.

Trace-guided TCG. Given a method m, a coverage criterion C = (T'C, SC),
and a (possibly partial) trace m, trace-guided TCG generates the set tgTCG of
test cases obtained for all successful branches of m using 7 as a guiding input
argument for symbolic execution. Observe that the TCG guided by one trace 7
generates: (a) exactly one test case if 7 is complete and corresponds to a feasible
path; (b) none if 7 is unfeasible; or (¢) possibly several test cases if 7 is partial.
In the latter case the traces of all test cases are instantiations of the partial trace.

For convenience, let us also define firstOf-tgTCG(m,TC,7) to be the unary
set containing the leftmost successful branch of the symbolic execution tree of m.
Now, by relying on the existence of a trace generator TraceGen that generates,
on demand and one by one, (possibly partial) traces according to C, we define
in Algorithm 1 a generic scheme for guided TCG.

Algorithm 1 Generic scheme for guided TCG
Input: ¥, and (T'C,SC)
TestCases = {}
while TraceGen has more traces and Test(lases does not satisfy SC
Ask TraceGen to generate a new trace in Trace
TestCases = TestCases U firstOf-tgTCG(H, IC, Trace)
Output: TestCases

The intuition is as follows: the trace generator generates a trace, possibly using
for that SC, TC and the current T'estCases. If the generated trace is feasible,
then the first solution of its trace-guided TCG is added to the set of test cases.
The process finishes either when SC' is satisfied, or when the trace generator
has already generated all traces up to T'C. If the trace generator is complete
(see below), this means that SC cannot be satisfied within the limit imposed
by T'C. Observe that for some selection criteria, e.g., all-local-paths, the calls to
firstOf-tgTCG can be computed in parallel.

Ezxample 11. Figure 13a shows a Java program made up of three methods: lcm
calculates the least common multiple of two integers, gcd calculates the greatest
common divisor of two integers, and abs returns the absolute value of an integer.
Figure 13b shows the equivalent CLP-translated program. Method lcm is trans-
lated into predicates lcm, cont, try and div. As per Section 3.2, the translation
preserves the control flow of the program and transforms iteration into recursion
(e.g. method gcd). Note that the example has been chosen deliberately small
and simple to ease comprehension. Let us consider the TCG for method lcm
with program-points for points p and x as selection criterion. Let us assume that
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lcm([A,B],[R],_,_,E,lcm(1,[T])) :-

A #>= B,
int lecm(int a,int b) { cont([A,B],[R],_,_,E,T).
if (a < b) { lcm([A,BI,[R],_,_,E,1cm(2,[T])) :-
int aux = a; A #< B,
a = b; cont([B,A]l,[R],_,_,E,T).
b = aux; cont([A,B],[R],_,_,E,cont(1,[T,V])) :-
} gcd([A,B],[G],_,_,E,T),
int d = gcd(a,b); try([A,B,G],[R],_,_,E,V).
try { try([A,B,G],[R],_,_,E,try(1,[T,V])) :-
return abs(ax*b)/d; M #= AxB,
} catch (Exception e) { abs([M],[S],_,_,E,T),
return -1; ® div([S,G],[R],_,_,E, V).
¥ try([A,B,G], [R],_,_,exc,try(2,[]1)).
} div([A,B],[R],_,_,0k,div(1,[1)) :-
B #\= 0,
int ged(int a,int b) { R #= A/B.
int res; div([A,0],[-1],_,_,catch,div(2,[1)). @
while (b !'= 0) { gcd([A,B],[D],_,_,E,gcd(1,[T])) :-
res = a’b; loop([A,B],[D],_,_,E,T).
a = b; loop([A,0],[F]1,_,_,E,loop(1,[T])) :-
b = res; abs([A], [F],_,_,E,T).
}; loop([A,B],[E],_,_,G,loop(2,[T])) :-
return abs(a); B #\= 0,
} body ([A,B], [E],_,_,G,T).
body([A,B], [R],_,_,E,body(1,[T])) :-
int abs(int a) { B #\= 0,
if (a >= 0) M #= A mod B,
return a; ® loop([B,M],[R],_,_,E,T).
else body ([A,0],[R],_,_,exc,body(2,[]1)).
return -a; abs([A]l, [A],_,_,ok,abs(1,[1)) :-
} A #>= 0. ®
abs([A],[-Al,_,_,ok,abs(2,[1)) :-
A #< 0.

(a) Java source code

(b) CLP-translation

Fig. 13: Guided TCG Example: Java (left) and CLP-translated (right) programs.

the trace generator starts generating the following two traces:

t1: lem(1, [cont (1, [G,check(1,[A,div(2,[]1)1)1)1)
ta 1 1lem(2, [cont (1, [G,check(1, [A,div(2,[1)1)1)]1)

The first iteration does not add any test case since trace t; is unfeasible. Trace
to is proved feasible and a test case is generated. The selection criterion is now
satisfied and therefore the process finishes. The following test case is obtained for
the program-points criterion for method lcm and program points @) and (). This
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particular case illustrates specially well how guided TCG can reduce the number
of produced test cases through adequate control of the selection criterion.

Constraint store Trace

{A=B=0,0ut=-1} lem(1, [cont (1, [ged (1, [1oop(1, [abs(1,[1)101),
try(1, [abs(1,[1),div(2,[1)1)11)

O

There are two properties of high importance in guided TCG, completeness
and effectiveness. Intuitively, a concrete instantiation of the guided TCG scheme
is complete if it never reports that the coverage criterion is not satisfied when it
is indeed satisfiable. Effectiveness is related to the number of iterations the algo-
rithm performs. These two properties depend completely on the trace generator.
A trace generator is complete if it produces an over-approximation of the set of
traces satisfying the coverage criterion. Its effectiveness depends on the number
of redundant and/or unfeasible traces it generates: the larger the number, the
less effective the trace generator.

Trace Generators for Structural Coverage Criteria. Let us now describe a
general approach to build complete and effective trace generators for structural
coverage criteria by means of program transformations. Then, we describe in
detail an instantiation for the all-local-paths coverage criteria.

The trace-abstraction of a program can be defined as follows. Given a CLP-
translated program with traces P, its trace-abstraction is obtained as follows:
for every rule of P, (1) remove all atoms in the body of the rule except those
corresponding to rule calls, and (2) remove all arguments from the head and
from the surviving atoms of (1) except the last one (i.e., the trace term).

Example 12. Figure 14 shows the trace-abstraction for the CLP-translated pro-
gram of Figure 13b. Observe that the trace-abstraction basically corresponds the
control-flow graph of the CLP-translated program. O

The trace-abstraction can be directly used as a trace generator as follows: (1)
Apply the termination criterion in order to ensure finiteness of the process.
(2) Select, in a post-processing, those traces that satisfy the selection criterion.
Such a trace generator produces on backtracking a superset of the set of traces
of the program satisfying the coverage criterion. Note that, this can be done as
long as the criteria are structural. The obtained trace generator is by definition
complete. However, it can be very ineffective and inefficient due to the large
number of unfeasible and /or unnecessary traces that it can generate.

In the following, we propose a concrete, and more effective, instantiation for
the all-local-paths coverage criteria. As we will see, this is done by taking advan-
tage of the notion of partial traces and the implicit information on the concrete
coverage criteria. A concrete instantiation for the program-points coverage crite-
ria is described at [39].
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lem(lem(1,[T])) :- cont(T).
lem(lem(2,[T])) :- cont(T).

cont (cont (1, [T,V])) :- gcd(T), try(V).
try(try (1, [T,V])) :- abs(T), div(V).
try(try(2,[1)).

div(div(1,[]1)).

div(div(2,[1)).

ged(ged (1, [T])) :- loop(T).
loop(loop(1,[T])) :- abs(T).
loop(loop(2,[T])) :- body(T).

body (body (1, [T])) :- loop(T).

body (body (2, [1)) .

abs(abs(1,[1)).

abs(abs(2,[1)).

Fig. 14: Trace-abstraction

An Instantiation for the all-local-paths Coverage Criterion. Let us start
from the trace-abstraction program and apply a syntactic program slicing which
removes from it the rules that do not belong to the considered method.

Definition 6 (slicing for all-local-paths coverage criterion). Given a trace-
abstraction program P and an entry method M :

1. Remove from P all rules that do not belong to method M.
2. In the bodies of remaining rules, remove all calls to rules which are not in
P.

The obtained sliced trace-abstraction, together with the termination criterion,
can be used as a trace generator for the all-local-paths criterion for a method. The
generated traces will have free variables in those trace arguments that correspond
to the execution of other methods, if any.

1cm(lem(1,[T])) :- cont(T).
lem(1lem(2,[T])) :- cont(T).
cont(cont (1, [G,T])) :- try(T).
try(try(1,[4,T])) :- div(D).
try(try(2,[1)).
div(div(1,[1)).
div(div(2,[1)).

lem(1, [cont (1, [G,try (1, [A,div(1,[101)1)1)
lem(l, [cont (1, [G,try (1, [A,div(2,[1D1)1D])
lem(1, [cont (1, [G,try(2,[1)1)])
lem(2, [cont (1, [G,try(1,[A,div(1,[101)1)1)
lem(2, [cont (1, [G,try (1, [A,div(2,[1)1)1D])
lem(2, [cont (1, [G,try(2,[1)1)])

Fig. 15: Slicing of method lcm for all-local-paths criterion.
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Ezxample 13. Figure 15 shows on the left the sliced trace-abstraction for method
lcm. On the right is the finite set of traces that is obtained from such trace-
abstraction for any loop-k termination criterion. Observe that the free variables
G, resp. A, correspond to the sliced away calls to methods gcd and abs. O

Let us define the predicates: computeSlicedProgram(M), that computes the
sliced trace-abstraction for method M as in Definition 6; generateTrace (M, TC,
Trace), that returns in its third argument, on backtracking, all partial traces
computed using such sliced trace-abstraction, limited by the termination cri-
terion TC; and traceGuidedTCG(M,TC,Trace,TestCase), which computes on
backtracking the set tgTCG (definition of Trace-guided TCG above), failing if
the set is empty, and instantiating on success TestCase and Trace (in case
it was partial). The guided TCG scheme in Algorithm 1, instantiated for the
all-local-paths criterion, can be implemented in Prolog as follows:

@ guidedTCG(M,TC) :-

@ computeSlicedProgram(M),

o) generateTrace(M,TC,Trace),

@ once (traceGuidedTCG(M,Trace,TC,TestCase)),
) assert (testCase(M,TestCase,Trace)),

® fail.

o guidedTCG(_, ).

Intuitively, given a (possibly partial) trace generated in line (3), if the call in
line (4) fails, then the next trace is tried. Otherwise, the generated test case
is asserted with its corresponding trace which is now fully instantiated (in case
it was partial). The process finishes when generateTrace/3 has computed all
traces, in which case it fails, making the program exiting through line (7).

Example 14. The following test cases are obtained for the all-local-paths criterion
for method lcm:

Constraint store Trace

{A>=B} lem(1, [cont (1, [ged (1, [1oop(l, [abs(1,[1)1)]),
try(1, [abs(1,[1),div(1, 111D

{A=B=0,0ut=-1} lem(1, [cont (1, [ged (1, [loop(1, [abs(1,[1)101),
try(1, [abs(1,[1),div(2, D1

{B>A} lem(2, [cont (1, [ged (1, [1oop(l, [abs(1,[1)1)1),
try (1, [abs(1,[1),div(1, [1HDDDD

This set of 3 test cases achieves full code and path coverage on method 1cm and
is thus a perfect choice in the context of unit-testing. In contrast, the original,
non-guided, TCG scheme with loop-2 as termination criterion produces 9 test
cases. O

A thorough experimental evaluation was performed in [39] which demon-
strates the applicability and effectiveness of guided TCG.

36



4 TCG of Concurrent Programs

The focus of this section is on the development of automated techniques for
testing concurrent objects.

4.1 Concurrent Objects

The central concept of the concurrency model is that of concurrent object.
Concurrent objects live in a distributed environment with asynchronous and
unordered communication by means of asynchronous method calls, denoted
y ! m(Z). Method calls may be seen as triggers of concurrent activity, spawning
new tasks (so-called processes) in the called object. After an asynchronous call
of the form =y ! m(Z), the caller may proceed with its execution without block-
ing on the call. Here x is a future variable which allows synchronizing with the
completion of task m(z). In particular, the instruction await x? allows checking
whether m has finished. In this case, execution of the current task proceeds and
x can be used for accessing the return value of m via the instruction x.get. Oth-
erwise, the current task releases the processor to allow another available task to
take it.

A synchronous call of the form = = y.m(z), is internally transformed into
the statement sequence w = y | m(z); if (this == y) await w?; z = w.get,
where w is a fresh future variable. This is because when the synchronous call is
executed on the same object this we do not want to block this object (this would
lead to a deadlock on the object this). Instead, we use an await instruction that
will allow that the execution of the synchronous call to m can start to execute.
The statement z = w.get blocks the execution of the current object until m(z)
on y returns a value. The if statement avoids a deadlock when the object y is
equal to this. For simplicity we assume that all methods return a value.

Ezxample 15. Fig. 16 shows the implementation of class A, which contains two
integer fields and five methods. Method sumFacts computes Zfif(tnfl) k! by
asynchronously invoking fact on object ob. The await instruction before en-
tering the loop allows releasing the processor if ft is negative. Once ft takes a
non-negative value, the task can resume its execution and enter the loop. For in-
stance, the asynchronous call f = ob ! fact(3, this); in sumFacts will add the task
fact(3, this) to the queue of ob. When this task starts executing, it will add the
task fact(2,0b) on the object this, which in turn will add fact(1, this) on ob and
so on, in such a way that the factorial is computed in a distributed way between
the two objects. Note that the calls are synchronized on future variables. This
means that until the recursive call fact(1, this) is not completed the other tasks
are suspended on their corresponding await conditions. O

Let us briefly present the semantics for the concurrency instructions. An
object is a term ob(o,t, h, Q) where o is the object identifier, ¢ is the identifier of
the active task that holds the object’s lock or L if the object’s lock is free, h is
its local heap and Q is the set of tasks in the object. A task is a term tk(¢,m, 1, s)
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class A(Int n, Int ft) { Int fact(Int k, A ob){
Int sumFacts(A ob) { Fut <Int> f; Int res = 1;
Fut<Int> f; Int res=0; if (k <= 0) res = 1;
Int m = this.n; else { f = ob ! fact(k - 1,this);
await this.ft >=0; await f 7; res = f.get;
while (m > 0) { res = k * res;
f =ob ! fact(this.ft, this); I
await f 7; return res;
Int a = f.get; }
res = res + a; Int setN(Int a) { this.n=a; return 0; }
this.ft = this.ft + 1, Int setFt(Int b) { this.ft=b; return 0; }
m=m-1 Int set(Int a, Int b){
} this.setN(a); this.setFt(b);
return res; return 0;
b }

Fig.16: ABS running example.

where t is a unique task identifier, m is the method name executing in the task,
[ is a mapping from local variables to their values, and s is the sequence of
instructions to be executed or € if the task has terminated.

A state or configuration S has the form og- 01 - -~ 0, where 0; = ob(0;, t;, hi,
Q;). The execution of a program from a method m starts from an initial state
So = {ob(0,0, L, {tk(0,m,I, body(m))}. Here, | maps parameters to their initial
values (null in case of reference variables), body(m) is the sequence of instructions
in method m, and | stands for the empty heap.

Fig. 17 presents the semantics of the concurrent objects. As objects do not
share their states, the semantics can be presented as a macro-step semantics
[41] (defined by means of the transition “—”) in which the evaluation of all
statements of a task takes place serially (without interleaving with any other
task) until it gets to a release point, i.e., a point in which the object’s processor
becomes idle L (due to an await or return instruction). In this case, we apply
rule MSTEP to select an available task from an object, namely we apply the
function selectObject(S) to select non-deterministically one object in the state
with a non-empty queue Q and selectTask(Q) to select non-deterministically one
task of Q.

The transition ~» defines the evaluation within a given object. We sometimes
label transitions with o - ¢, the name of the object o and task ¢ selected (in rule
MSTEP) or evaluated in the step (in the transition ~+). The notation h[f ~ I(7)]
(resp. l[x — v]) stands for the result of storing I(¢) in the fields f (resp. v in ).

The remaining sequential instructions are standard and thus omitted. In
NEWOB, an active task ¢ in object o creates an object o’ of class D which is
introduced to the state with a free lock. Here h' stands for a default mapping on
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o-t
selectObject(S) = ob(o, L, h, Q), Q # 0, selectTask(Q) = t, S ~* S’

(MSTEP) =
s 255
(NEWOB) t=tk(t,m,l, z=new D(§);s), fresh(o’), W' =newhp(D),l'=l[x— 0'], class D(f)

ob(o,t, h, QU{t}) ~ ob(o,t, h, QU {tk(t,m,l',s)}) - ob(o’, L, A’ [f=1(y)],{})
t = th(t,m,l,y=z ! m1(Z);s),l(x)=o01, fresh(t1), l1=buildLocals(Z,m1,1)

(asyNc) ob(o,t,h, QU {t})-ob(o1, , ,Q)~
ob(o,t, h, QU{tk(t,m, l[y—t], s)}) - ob(o1, _, _, QU{tk(t1,ma, 11, body(m1))})
- it y?: = ; -
(Awarr1) t = tk(t,m,, (await y7;s)),l(y) = t1, tk(tr, _, ,s1) € Objects, s1 = €(v)
ob(o,t,h, QU {t}) ~ ob(o,t, h, {tk(t,m,1,5)} U Q)
(AWAIT2) t = tk(t,m, !, (await y7;s)),l(y) = t1, tk(tr, _, ,s1) € Objects, s1 # €(v)
ob(o,t,h, QU {t}) ~ ob(o, L, h, {tk(t,m,l, (await y?;s))} U Q)
(cET) t = th(t,m,l, (x = get.y; s)),l(y) = t1, tk(t1, , ,s1) € Objects, s1 = €(v)

ob(o,t,h, QU {t}) ~ ob(o,t, h, {tk(t,m, [z — v],s)} U Q)

t = tk(t,m,l,return x; s)

ob(o,t,h, QU {t}) ~ ob(o, L, h, {tk(t, , ,e(l(z)))}U Q)

(RETURN)

Fig. 17: Summarized Semantics for Distributed and Concurrent Execution

the fields of class D initialized with the values of (7). ASYNC spawns a new task
(the initial state is created by buildLocals) with a fresh task identifier ¢; which
is associated to the corresponding future variable y in [. We have assumed that
0 # 01, but the case 0 = o0y is analogous, the new task ¢; is simply added to Q
of 01.

The remaining rules define the concurrent execution within each distributed
object. In AWAIT1, the future variable we are awaiting for points to a finished
task and the await can be completed. The finished task ¢; is looked up in all
objects in the current state (denoted Objects). Otherwise, AWAIT2 yields the
lock so that any other task of the same object can take it. GET blocks the
object until the task is finished. When RETURN is executed, the return value is
stored in v so that it can be obtained by the future variable that points to that
task. Besides, the lock is released and will never be taken again by that task.
Consequently, that task is finished (marked by adding the instruction e(v)) but
it does not disappear from the state as its return value may be needed later on in
an await. In what follows, a derivation So — --- — S, from an initial state
So of an object system is a sequence of macro-steps (applications of rule MSTEP).
Since the execution is non-deterministic, multiple derivations are possible from
an initial state.

Ezxample 16. For instance, let us consider the following code corresponding to
some method m of some class B.
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a) A x = new A(5,10);
Fut<Int> f;
f=x!fact(2,x);

d) await f7;

e) z = f.get;

where class A is that in Ex. 15. We start from the initial state Sy = {ob(0,0, L,
{tk(0,m,lo, (a)---(e)))}. By applying consecutively rules NEWOB, ASYNC and
AWAIT2 to (a), (¢) and (d) respectively we get:

$1 = {0b(0,0, L, {tk(0,m, o, (d) - (€))}), 0b(1, L, hy, {th(2, fact, Lz, body(fact))})}

where Io(f) = 2, la(k) = 2,l3(ob) = 1 and hqy(n) = 5, ha(ft) = 10. We apply now
a macro step on object 1, by reducing task 2. In this case the macro step stops
when executing await f? of method fact, and the state is modified as follows:

Sy = { ob(0,0, L, {tk(0,m,lo, (d) - (€))}),
ob(1,2, hy, {tk(2,fact,ls, await f?;...), tk(3, fact, I3, body(fact))})}

where I5(f) = 3, I3(k) = 1,I3(ob) = 1. Similarly as done before, task with
identifier 3 is now reduced, stopping the derivation when we reach await f7:

Sz ={0b(0,0, L, {tk(0,m,lo,(d)- (e))}),
ob(1,2, hy, {tk(2,fact,ls, await f7;...),
tk(3,fact,l3, await f?;...), tk(4, fact, l4, body(fact))})}

where I3(f) = 4, l4(k) = 0,l4(ob) = 1. Now only task 4 can be reduced and
applying rule RETURN we get:

Sy = { Ob(0,0,J_, {tk(ovmalm (d) ’ (6))}),
ob(1,2, hy, {tk(2,fact,ly, await f7;...),
th(3, fact, I3, await f?;...), tk(4, L, 14, e(1))})}

Now, task 3 can be reduced by applying first AWAIT1 and after RETURN:

S5 = { Ob(O7O7J-ﬂ {tk(07m7l0a (d) ! (6))}),
ob(1,2, hy, {tk(2,fact,l,await f7;...),
th(3, L,13,e(1)), th(4, L, lq,e(1)) )}

Similarly we reduce task 2 and after task 0 from object 0 and we finally get:

Se = { ob(0,0, L, {tk(0,m,lg,€)}),
ob(1,2, hy, {th(2, L,12,€(2)),
th(3,L,13,€(1)), th(4, L, ls,e(1))})}

where lp(z) = 2. O

Given an initial state, a naive exploration of the search space to reach all
possible system configurations does not scale. The challenge is then in avoiding
the exploration of redundant states which lead to the same configuration. Partial-
order reduction (POR) [16,20] is a general theory that helps mitigate the state-
space explosion problem by exploring the subset of all possible interleavings
which lead to a different configuration. A concrete algorithm (called DPOR) was

40



proposed by Flanagan and Godefroid [18] which maintains for each configuration
a backtrack set, which is updated during the execution of the program when it
realizes that a non-deterministic choice must be tried. Recently, TransDPOR [45]
extends DPOR to take advantage of the transitive dependency relations in actor
systems to explore fewer configurations than DPOR. As noticed in [32,45], their
effectiveness highly depend on the actor selection order.

In our semantics in Fig. 16, functions selectObject and selectTask can be
implemented with novel strategies and heuristics to further prune redundant
state exploration, and they can be easily integrated within the aforementioned
algorithms. For instance, selectObject could try to find a stable object, i.e., an
object to which no other actor will post messages. Basically, this means that
the object is autonomous since its execution does not depend on any other
actor and thus no backtracking is required from that point. Furthermore, when
temporal stability of any object cannot be proved, it is possible to look for
heuristics that assign a weight to the messages according to the error that the
object-selection strategy may make when proving stability w.r.t. them. Finally,
function selectTask can be defined to select independent tasks according to the
independence notion defined in [8], which basically establishes that two tasks are
independent if they access disjoint parts of the shared memory. Note that this
would avoid non determinism reordering among tasks.

4.2 Coverage and Termination Criteria for Concurrent Objects

As commented in Sec. 2.1, an important problem in symbolic execution is that,
since the input data is unknown, the execution tree to be traversed is in general
infinite. Hence it is required to integrate a termination criterion which guar-
antees that the length of the paths traversed remains finite while at the same
time an interesting set of test cases is generated, i.e., certain code coverage is
achieved.

Task-Level coverage and Termination Criteria. Given a task executing on
an object, we aim at ensuring its local termination by leveraging existing Cov-
erage Criteria (CC for short) developed in the sequential setting to the context
of concurrent objects. We focus on the loop-k coverage criteria [26] described in
Sec. 2.1, which limits the number of times we iterate on loops to a threshold
K (other existing criteria would pose similar problems and solutions). However
applying the task-level CC to all tasks does not guarantee termination. This is
because we can switch from one task to another an infinite number of times. For
example, consider the symbolic execution of ob; ! fact(n, ob,), where method fact
is defined in Ex. 15. We circularly switch from object ob; to object oby an infi-
nite number of times because each asynchronous call in one object adds another
call on the other object (see Ex. 16). This is not detected by the task-level CC
because each method invocation is a new task. Intuitively, we get the following
situation, where we show in each state the value of the queues in both objects.
In each step the corresponding call to fibo is always selected.
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{ob1,0bs}, Qob,={fact(n,0b2)}, Qob, = {} —

{oby,0ba}, Qop, ={await f2;...}, Qob, = {fact(ny,ob;)} =Rl
{ob1,0b2}, Qob, ={fact(ny, oby), await f?;...}, Qop, = {await f?;...} mazml

The same problem can happen even with a single object, e.g., in method
sumFacts when executing await (ft >= 0), there is an infinite branch in the
evaluation tree, corresponding to the case ft < 0 which can be re-tried forever.
Le., we can apply infinitely the rule AWAIT2 in Fig. 17 on the task await (ft >= 0),
whose effect is to extract the task from the queue, to prove that the task does
not hold, and to put again the task in the queue.

Task-Switching Coverage and Termination Criteria. In both examples
above we can observe that the problem, in presence of concurrency relies, not
only on loops, but also on the number of task switches allowed per object. Thus,
the number of task switches can be limited by simply allowing a fixed and global
number of task switching. However, it might happen that, due to excessive task
switching in certain objects, others are not properly tested (i.e., their tasks
exercised) because the global number of allowed task switches has been exceeded.
For example, suppose that we add the instructions B oby = new B(); oba ! q();
before the return in method sumFacts, where B is a class that implements method
q but whose code is not relevant. Then, as the evaluation for the while loop
generates an infinite number of task switches (because of the await instruction
in the loop), the evaluation of the call oby ! p(); is not reached. Thus, in order to
have fairness in the process and guarantee proper coverage from the concurrency
point of view, we propose to limit the number of task switches per object (i.e.,
per concurrency unit).

4.3 Task Interleavings in TCG

An important problem in TCG of concurrent languages is that, when a task ¢
suspends, there could be other tasks on the same object whose execution at this
point could interleave with ¢t and modify the information stored in the heap. It
is essential to consider such task interleavings in order not to lose any important
path. For example, let us consider a class C with two fields int n, f, and a method p
in C defined as: int p(){n = 0; await (f > 0);if(n>=0) return 1;else return 2; }.
Suppose a call of the form x = o ! p();await x7;y = x.get. The symbolic exe-
cution of p, will in principle consider just one path (the one that goes through
the if branch), giving as result always y = 1. There can be however another
task (suspended in the queue of the object o) which executes when p suspends
in await (f > 0) and writes a negative value on n. This would exercise the else
branch when p resumes, giving as result y = 2. For example, suppose that the
method void set(){n = —1;} belongs to class C and that set() is in the queue
when executing await (f > 0), and that is executed before f > 0 holds. Then
the execution of p() will try the else branch.
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The questions that we solve in this section are: (a) is it possible to consider all
interleavings that affect the method’s coverage? (b) do we have means to discard
useless interleavings? (i.e., those which do not add new paths). As regards (a),
it is not enough to assume that there is one instance of each method call in the
queue as further coverage is possible by introducing multiple instances of the
same method. Even though termination is guaranteed by the limit imposed on
the number of task switches in Sec. 4.2 (i.e., the length of the queue is finite), it is
more appropriate to define an additional coverage criteria in this new dimension
by fixing the maximum length of a queue in order to achieve a more meaningful
coverage.

In order to answer question (b), we start by characterizing the notion of
useless interleaving. Starting from the set of all methods in the class of the
method under test, we propose a sequence of prunings which ensure that only
useless interleavings are eliminated. The objective is to over-approximate, for
each method m, the set related(m), which contains all methods whose interleaved
execution with m can lead to a solution not considered before. The remaining
ones are useless interleavings. Starting from the set of all methods in the class
of the method under test, we propose a sequence of prunings which ensure that
only useless interleavings are eliminated.

(Pruning 1) The first refinement is to discard methods which do not modify the
heap, i.e., pure methods. Purity can be syntactically proved by checking that
the method does not contain any instruction of the form this.f = z and that
methods (transitively) invoked from it are pure. Using this pruning on Ex. 15,
we get related(sumFacts) = {sumFacts, set, setN, setFt}.

(Pruning 2) The second pruning amounts to considering only directly impure
methods (ignoring transitive calls), i.e., those which write directly on fields. Let
p be the method under test, m be a directly impure method and g a method that
invokes m. The intuition is that by considering m alone, we execute it from a
more general context, while its execution from ¢ will be just more specific (since
q will have added additional constraints). Hence, it will not add additional local
traces for p. With this pruning, related(sumFacts) = {sumFacts, setN, setFt}.

(Pruning 3) The third pruning consists in considering only the interleavings with
those methods that write (directly) on fields which are used (read or written)
before an await , and read after an await. These sets are easily computed by
just looking for instructions this.f = x and z = this.f in the corresponding
program fragments. Given a field f, the intuition for this condition is that, if f
has not been accessed before the await then there is no information about the
field. Thus, related(sumFacts) = {sumFacts, setFt}.

4.4 Related Work on TCG of Thread-based Concurrency

As it happens with actor-based systems, the main difficulties in TCG of thread-
based systems are related to the scalability when considering thread interleav-
ings. In thread-based systems, this problem is exacerbated. In [37], a symbolic
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execution framework which combines symbolic execution with model checking is
presented to detect safety violations. Safety properties are represented by using
logical formalisms understood by the model checker or that can be inserted in
the code as annotations. The model checker, when doing symbolic execution,
is able to report counterexamples which violate the correctness safety criterion.
Furthermore, when generating test cases, the model checker generates the paths
that fulfill the safety property. To reduce the number of thread interleavings,
the model checker uses partial order reduction techniques [20] as we do. An
advantage on this technique is the possibility of handling native calls through
mixed concrete-symbolic solving. The main drawback of this framework is that
satisfiability of constraints is checked at the end of each branch of the symbolic
tree, what it might be unfeasible. Thus, they use preconditions on the symbolic
input values in order to avoid the exploration of branches which violate the pre-
condition. In contrast to [37], our CLP-approach is able to discard a branch in
the symbolic tree once the associated constraint are unsatisfiable.

Other approaches that use techniques different from ours are [29,43,44|. The
work [29] combines dynamic symbolic execution (concolic testing) with unfold-
ings. The unfolding approach allows constructing a compact representation of
the interleavings and thus the new testing algorithm may use this information
to guide the symbolic execution, avoiding irrelevant interleavings. This new ap-
proach achieves in some cases an exponential gain when compared with existing
dynamic partial-order reduction based approaches [18,45]. Basically, the point is
that in the previous approaches, the number of explored interleavings depends
on the order in which processes are executed, but in this new approach it does
not, since interleavings are computed a priory.

In [43,44], a runtime algorithm to monitor executions for multithreaded Java
and possibly detect safety violations is presented. From a concrete execution,
they automatically extract a partial order causality from a sequence of read-
/write events on shared variables. Basically they extract, for a shared variable,
the sequence of write/reads/write to that variable in the execution. Thus any
permutation of these events can be considered an execution of the program if
and only if it does not contradict the partial order. The main drawbacks is the
state explosion since a large number of unreachable branches may be explored.

As an improvement of the previous work, in [42], a novel approach uses
concolic execution (a combination of symbolic and concrete execution) to test
shared-memory in multithreaded programs by using an algorithm based on race-
detection and flipping. From a concrete execution, they determine the partial or-
der relation or the exact race conditions between the processes in the execution
path. Afterwards, such processes involved in races are flipped by generating new
thread schedules and generating new test inputs. Hence, differently to the previ-
ous conservative approaches, in this work they explore one path from each partial
order, avoiding possible warnings that could never occur in a real execution.
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5 Conclusions

This tutorial summarizes the basic principles used in TCG by symbolic exe-
cution. It first discusses the main challenges that TCG currently poses: the
efficient handling of heap-manipulating programs, compositionallity, and guid-
ing the process. It then overviews a particular instantiation of the generic TCG
framework that uses CLP as enabling technology. We will review the main fea-
tures, advantages and implementation of this CLP-approach. Finally, we discuss
the extension of the basic framework to handle concurrent actor systems.
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