
SPECIFICATION AND VERIFICATION
OF GPGPU PROGRAMS USING
PERMISSION-BASED SEPARATION
LOGIC

 UNIVERSITY OF TWENTE.
Formal Methods & Tools.

Marieke Huisman and Matej Mihelčić
March 23, 2013

Bytecode 2013.

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Graphics Processing Units (GPUs):

specialized electronic circuits

rapidly manipulate and alter memory

accelerate the building of images intended for output to a
display

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 2 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Graphics Processing Units (GPUs) are increasingly used for
general-purpose applications

Used in media processing, medical imaging, eye-tracking etc.

Urgent need for verification techniques of accelerator software

Safety is critical in applications like medical imaging: incorrect
imaging results could lead indirectly to loss of life.

Software bugs in media processing domains can have
drastic financial implications.

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 3 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Two main programming frameworks:

CUDA:

Parallel computing platform by NVIDIA

CUDA-enabled NVIDIA gpu’s

OpenCl:

Framework for writing programs for heterogeneous platforms
by the Khronos group

Support for Intel, AMD cpu’s and NVIDIA, ATI gpu’s, ARM
processors

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 4 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

OpenCL model:

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 5 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Memory and computation model:

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 6 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Verification approach and challenges

Logic based verification approach

Challenges:

Reasoning about hundreds, even thousands of parallel threads
Complex memory and execution model
Reasoning about barriers (the main synchronization
mechanism)

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 7 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Permission-based Separation logic

Main mechanism used in our verification approach

Separation logic developed as an extension of Hoare logic

Convenient to reason modularly about concurrent programs

To reason about shared resources, numerical fractions
(permissions) denoting access rights to shared locations are
added to the logic

A full permission 1 denotes a write permission, whereas any
fraction in the interval < 0, 1] denotes a read permission

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 8 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Motivating example:

__kernel void example(__global int *a) {

int tid = get_global_id(0);

a[tid]=tid;

}

Simple OpenCL kernel function example

Represents one thread execution

Parametrized by global tid or local ltid

Number of threads and groups running the kernel defined in
the host program

Currently we have no information about the number of
threads or the input data

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 9 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Motivating example:

Solution:

Add the kernel specification

Kernel spec:

(resources: * i∈[0...size−1] Perm(a[i], 1),

precondition: size = n ∧ numthreads = n, postcondition: true)

__kernel void example(__global int *a) {

int tid = get_global_id(0);

a[tid]=tid;

}
Gain information about the number of threads and the size of the
input array

Gain information about kernel access permissions to this array

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 10 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Motivating example:

Figure : Kernel has access permission 1 for each field in the input array a

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 11 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Motivating example:

We need to distribute kernel permissions to individual threads

We do this with the thread specification.

Kernel spec:

(resources: * i∈[0...size−1] Perm(a[i], 1),

precondition: size = n ∧ numthreads = n, postcondition:true)

Thread spec:

(resources: Perm(a[tid], 1), precondition: true,

postcondition: true)

__kernel void example(__global int *a) {

int tid = get_global_id(0);

a[tid]=tid;

}

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 12 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Motivating example:

Figure : Thread with id tid has access permission 1 for the element a[tid]

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 13 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Motivating example:

Figure : Array after the kernel execution

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 14 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Verification of GPU kernels:

The verification is performed in several steps:

1 The kernel resources are shown to be sufficient for the thread
specification

Kres&Kpre -* * tid∈Tid (Tres |glob&Tpre)

* v∈ Local Perm(v , 1) -* * ltid∈LTid Tres |loc

2 Single thread execution is verified using standard logic rules

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 15 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

3 Each barrier with a memory fence on global memory,
redistributes only the permissions that are available in the
kernel

Kres -* * tid∈Tid Bres |glob

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 16 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

4 For each barrier with a global memory fence, its postcondition
follows from the precondition (over all threads).

Gres&tid∈TidBpre -* &tid∈TidBpost |RGPerm(tid)

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 17 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Kernel specification examples:

Kernel spec:

(resources: * i∈[0...size−1] Perm(a[i], 1),

precondition: size = n ∧ numthreads = n, postcondition: true)

Thread spec:

(resources: Perm(a[tid], 1), precondition: true,

postcondition: true)

__kernel void example(__global int *a, __global int *b) {

int tid = get_global_id(0);

a[tid]=tid;

a[(tid+1)%size]=a[(tid+1)%size]+1; }

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 18 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Barrier usage:

Kernel spec:

(resources: * i∈[0...size−1] Perm(a[i], 1),

precondition: size = n ∧ numthreads = n, postcondition: true)

Thread spec:

(resources: Perm(a[tid], 1), precondition: true,

postcondition: true)

__kernel void example(__global int *a) {

int tid = get_global_id(0);

a[tid]=tid;

barrier(CLK_GLOBAL_MEM_FENCE); //B

a[(tid+1)%size]=a[(tid+1)%size]+1;

}

Barrier spec(B) : (Perm(a[(tid + 1)%size], 1), true, true)

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 19 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Figure : Array at the moment threads entered the barrier

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 20 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Figure : Permission redistribution at the barrier

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 21 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Figure : Array after the kernel execution

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 22 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

With the following barrier specification, verification of the example
above would fail:

Barrier spec(B) : (Perm(a[tid], 1) * Perm(a[(tid + 1)%size], 1
2),

true, true)

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 23 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

We can show that the following properties are respected for our
example kernel.

Kernel spec:

(resources: * i∈[0...size−1] Perm(a[i], 1),

precondition: size = n ∧ numthreads = n,

postcondition: ∀i∈[0...size−1]a[i] = (i + 1))

Thread spec:

(resources: Perm(a[tid], 1),
precondition: true,

postcondition: a[tid] = (tid + 1))

Barrier spec(B) :
(Perm(a[(tid + 1)%size], 1), a[tid] = tid , true)

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 24 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

The VerCors tool architecture:

Z3

Java

back ends

Tool
VerCors

input languages???

Chalice Boogie ???

PVL clang

Common Object Language

Figure : The VerCors tool architecture

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 25 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Conclusion:

We present a verification technique for GPGPU kernels, based
on permission-based separation logic.

For each kernel we specify all permissions that are necessary
to execute the kernel

The permissions in the kernel are distributed over the threads

At each barrier the permissions are redistributed over the
threads.

Verification of individual threads uses standard program
verification techniques

Additional verification conditions check consistency of the
specifications

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 26 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Future work:

Create a detailed formalisation of the logic and its soundness
proof

Develop the tool support as an extension of the VerCors tool

Study automatic generation of permission specifications

Study more kernel examples

Explore the ways to verify absence of barrier divergence in our
approach

Reason about the host program to allow verification of
multi-kernel applications running in a heterogeneous setting.

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 27 / 28

... Introduction The OpenCL The logic Verification approach Examples Tool support Conclusion Future work ...

Questions?

 UNIVERSITY OF TWENTE. Specification and Verification of GPGPU Programs March 23, 2013 28 / 28

	Introduction
	The OpenCL
	The logic
	Verification approach
	Examples
	Tool support
	Conclusion
	Future work

