Experiments

Static Analysis By Elimination

Pavle Subotic, Andrew Santosa, Bernhard Scholz pavle.subotic@it.uu.se, andrew.santosa@usyd.edu.au, bernhard.scholz@usyd.edu.au

Uppsala University, Sweden University of Sydney, Australia

Bytecode workshop 2013

Introduction

- Range Analysis
 - Finds lower and upper bounds of variables values
- Challenges
 - Conceptionally infinitely ascending chains
 - Identify Loops
- Existing techniques
 - Relies on code structure (e.g. Astrée [Cousot et al., 2006])
 - Require a pre-processing stage to discover loop headers ([Bourdoncle, 1993])

Introduction

- Our technique:
 - Extends elimination-based data flow analysis to a lattice with infinite ascending chains
 - 2. Fast termination
 - 3. Loops are detected intrinsically with in the data flow analysis.
- Implemented as an analysis pass in the LLVM compiler framework.

Motivating Example

Experiments

Background

Existing Techniques

Our Approach

Implementation

Experiments

Foundations

- Range Analysis is a complete lattice
- $x \supseteq y$, x is as or less precise than y
- ► ⊤ least element (least precise),
- \perp greatest element, so $\top \sqsupseteq \perp$
- ► ⊔ merges information
- ► □ constrains information

Some Existing Techniques

Iterative Data-Flow Analysis [Kildall, 1973] :

- A technique for iteratively gathering variable information at various points in a computer program.
- Operates on finite and short lattice structures

Abstract Interpretation [Cousot & Cousot, 1977] :

- A theory of sound approximation of the semantics of computer programs
- Approximating the execution behaviour of a computer program
- Additional theory of widening/narrowing to accelerate convergence, required with high and unbounded domains

Iterative Data-Flow Analysis

- Input in the form of a Control Flow Graph (CFG)
- Initialise to ⊥
- Every block transforms the values
- Iterate through CFG until a fixpoint is reached

Attempt 1: Iterative Data-Flow Analysis

Attempt 1: Iterative Data-Flow Analysis

With Kleene Iteration

With Kleene Iteration

 $\forall I_i \in \mathcal{L}. I_1 \sqsubseteq I_2 \sqsubseteq I_3 \sqsubseteq I_4... \sqsubseteq I_n$

where:

In the example, when the inner loop is first visited, we have that $j \mapsto [0, 0]$ and $k \mapsto [0, 0]$. In subsequent visits,

$$j \mapsto [0, 1] \text{ and } k \mapsto [0, 1],$$

$$j \mapsto [0, 2] \text{ and } k \mapsto [0, 2],$$

$$j \mapsto [0, 3] \text{ and } k \mapsto [0, 3],$$

$$\vdots$$

$$j \mapsto [0, 4] \text{ and } k \mapsto [0, \infty].$$

The Problem: Slow Termination

- Impractically slow termination
 - Conditions not incorporating increasing variables
 - Large loop bounds

Attempt 2: Abstract Interpretation

- General method to compute a sound approximation of program semantics
 - Define an abstract semantics, soundly connect to the concrete semantics
 - Soundness ensures that if a property does not hold in the abstract world, it will not hold in the concrete world
 - Define widening and narrowing operator

Abstract Interpretation

Widening and narrowing enforce termination

- Widening safely approximates the fixpoint solution
- Narrowing recovers some precision

Attempt 2: Abstract Interpretation

Abstract Interpretation

- Requires to know where to perform widening
- Previously approaches
 - Use the syntax to determine the loop
 - Perform complicated pre-processing to find loop headers

Our Approach

- Discovers loops implicitly using elimination-based data flow analysis
- Various acceleration techniques can be embedded such as widening and narrowing

Our Approach

- Elimination-based approach: Based on Gaussian elimination
- Instead of iterating, we eliminate variables from the flow equations
 - substitution

e.g.
$$x =$$
true, $y = x \lor$ false $\rightsquigarrow y =$ true \lor false

loop-breaking

e.g. $x = x \land \text{true} \rightsquigarrow x = \text{true}$

When all variables are eliminated, we compute a solution

Elimination-based Approach Example - Diverging

Figure: An Irreducible CFG of a Diverging Program

Elimination

$$EQS = \begin{cases} X_0 = f_0(\top) \\ X_1 = f_1(X_0, X_2) \\ X_2 = f_2(X_0, X_1) \end{cases}$$

Substitution \rightsquigarrow
$$EQS_0 = \begin{cases} X_0 = f_0(\top) \\ X_1 = f_1(f_0(\top), X_2) \\ X_2 = f_2(f_0(\top), X_1) \end{cases}$$

Substitution \rightsquigarrow
$$EQS_1 = \begin{cases} X_0 = f_0(\top) \\ X_1 = f_1(f_0(\top), X_2) \\ X_2 = f_2(f_0(\top), f_1(f_0(\top), X_2)) \end{cases}$$

Break Loop, Substitute Back \rightsquigarrow
$$EQS_2 = \begin{cases} X_0 = f_0(\top) \\ X_1 = f_1(f_0(\top), F^*(f_2(f_0(\top), f_1(f_0(\top), X_2), X'_2))) \\ X_1 = f_1(f_0(\top), F^*(f_2(f_0(\top), f_1(f_0(\top), X_2), X'_2))) \\ X_2 = F^*(f_2(f_0(\top), f_1(f_0(\top), X_2), X'_2)) \end{cases}$$

Outline of Presentation		Our Approach	

- $X_1 = f_1(f_0(\top), F^*(f_2(f_0(\top), f_1(f_0(\top), X_2), X_2')))$
- F* performs widening and narrowing

LLVM Prototype

- Implemented in LLVM for core instructions
- Implementation supports both Intervals and Symbolic Intervals

Block	lock i		k
B0	[0, 0]	\perp	[0,0]
B1	[0, 5]	[0, 5]	[0, ∞]
B2	[0, 4]	[0, 0]	[0, ∞]
B3	[0, 4]	[0, 5]	[0, ∞]
B4	[0, 4]	[1, 4]	[1, ∞]
B5	[1, 5]	[5, 5]	[1, ∞]
B6	[5, 5]	[5, 5]	[0, ∞]

Table: Motivating Example

Test	Exact	Bounded	Part Widen	Full Widen
T1	1	5	0	0
T2	2	1	0	0
Т3	2	1	0	0
T4	1	3	2	0
T5	0	10	0	0
T6	3	1	0	0
Τ7	1	2	0	0
T8	4	4	5	0
Т9	1	0	0	5
T10	1	0	4	0
T11	2	2	0	0
T12	2	3	3	1
T13	1	2	2	0
T14	3	6	6	0
T15	3	5	4	0
All	27	45	26	6
(%)	26	43	25	6

Table: Variable Bounds Per Test Case

Summary

- Implemented in the LLVM Compiler Framework
- Feasibility shown using several test programs

Some Future Work

- Conduct comparison with existing techniques
- Add non-numerical domains
- Improve precision through additional abstract domains (Template Polyhedra [Sankaranarayanan et al., 2005])
- Integrate with acceleration methods such as policy iteration [Gawlitza & Seidl, 2007]

References I

Bourdoncle, F. (1993).

Efficient chaotic iteration strategies with widenings.

In In Proceedings of the International Conference on Formal Methods in Programming and their Applications (pp. 128–141).: Springer-Verlag.

Cousot, P. & Cousot, R. (1977).

Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints.

In 4th POPL (pp. 238–252).

References II

- Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., & Rival, X. (2006).
 Combination of abstractions in the ASTREÉ static analyzer. In *11th ASIAN* (pp. 272–300).
- Gawlitza, T. & Seidl, H. (2007).
 Precise fixpoint computation through strategy iteration.
 In Proceedings of the 16th European conference on Programming, ESOP'07 (pp. 300–315). Berlin, Heidelberg: Springer-Verlag.

📔 Kildall, G. A. (1973).

A unified approach to global program optimization. 1st POPL (pp. 194–206).

References III

Sankaranarayanan, S., Sipma, H. B., & Manna, Z. (2005).
 Scalable analysis of linear systems using mathematical programming.
 In *In Proc. VMCAI*, *LNCS 3385* (pp. 25–41).: Springer.