package series;
/*
This Program is taken from the following site (without permission) solely for the experimentation of cost analysis of practial java programs
http://www.physics.unlv.edu/~pang/cp2_j.html
*/
///////////////////////////////////////////////////////////////////////////
// //
// Program file name: Inverse.java //
// //
// Tao Pang 2006 //
// //
// Last modified: January 18, 2006 //
// //
// (1) This Java program is part of the book, "An Introduction to //
// Computational Physics, 2nd Edition," written by Tao Pang and //
// published by Cambridge University Press on January 19, 2006. //
// //
// (2) No warranties, express or implied, are made for this program. //
// //
///////////////////////////////////////////////////////////////////////////
// An example of performing matrix inversion through the
// partial-pivoting Gaussian elimination.
import java.lang.*;
public class Inverse {
public static void main(String argv[]) {
double a[][]= {{ 100, 100, 100},
{-100, 300, -100},
{-100, -100, 300}};
int n = a.length;
double d[][] = invert(a);
for (int i=0; i<n; ++i)
for (int j=0; j<n; ++j)
System.out.println(d[i][j]);
}
public static double[][] invert(double a[][]) {
int n = a.length;
double x[][] = new double[n][n];
double b[][] = new double[n][n];
int index[] = new int[n];
for (int i=0; i<n; ++i) b[i][i] = 1;
// Transform the matrix into an upper triangle
gaussian(a, index);
// Update the matrix b[i][j] with the ratios stored
for (int i=0; i<n-1; ++i)
for (int j=i+1; j<n; ++j)
for (int k=0; k<n; ++k)
b[index[j]][k]
-= a[index[j]][i]*b[index[i]][k];
// Perform backward substitutions
for (int i=0; i<n; ++i) {
x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1];
for (int j=n-2; j>=0; --j) {
x[j][i] = b[index[j]][i];
for (int k=j+1; k<n; ++k) {
x[j][i] -= a[index[j]][k]*x[k][i];
}
x[j][i] /= a[index[j]][j];
}
}
return x;
}
// Method to carry out the partial-pivoting Gaussian
// elimination. Here index[] stores pivoting order.
public static void gaussian(double a[][],
int index[]) {
int n = index.length;
double c[] = new double[n];
// Initialize the index
for (int i=0; i<n; ++i) index[i] = i;
// Find the rescaling factors, one from each row
for (int i=0; i<n; ++i) {
double c1 = 0;
for (int j=0; j<n; ++j) {
double c0 = Math.abs(a[i][j]);
if (c0 > c1) c1 = c0;
}
c[i] = c1;
}
// Search the pivoting element from each column
int k = 0;
for (int j=0; j<n-1; ++j) {
double pi1 = 0;
for (int i=j; i<n; ++i) {
double pi0 = Math.abs(a[index[i]][j]);
pi0 /= c[index[i]];
if (pi0 > pi1) {
pi1 = pi0;
k = i;
}
}
// Interchange rows according to the pivoting order
int itmp = index[j];
index[j] = index[k];
index[k] = itmp;
for (int i=j+1; i<n; ++i) {
double pj = a[index[i]][j]/a[index[j]][j];
// Record pivoting ratios below the diagonal
a[index[i]][j] = pj;
// Modify other elements accordingly
for (int l=j+1; l<n; ++l)
a[index[i]][l] -= pj*a[index[j]][l];
}
}
}
}