
N
M
A
a

b

c

A

D
a

K
S
E
O
M

1

t
o
a
m
s

T
E

(

h
R

Information and Software Technology 186 (2025) 107800

A
0
n

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

eural-guided superoptimization in ethereum
atheus Araújo Aguiar a , Elvira Albert b , Samir Genaim b , Pablo Gordillo b ,∗,
lejandro Hernández-Cerezo b , Daniel Kirchner a,c , Albert Rubio b

Ethereum Foundation, Zug, Switzerland
Complutense University of Madrid, Madrid, Spain
University of Bamberg, Bamberg, Germany

R T I C L E I N F O

ataset link: https://github.com/costa-group/g
sol-optimizer

eywords:
mart contracts
thereum
ptimization
achine learning

A B S T R A C T

Context: Superoptimization is a synthesis technique that, given a loop-free sequence of instructions, searches
for an equivalent sequence that is optimal wrt. an objective function. Superoptimization of Ethereum smart
contracts aims at minimizing the size of their bytecode and the gas consumption of executing the contract’s
functions. The search for the optimal solution poses huge computational demands – as the search space to find
the optimal sequence is exponential on the given size-bound – being the main challenge for superoptimization
today to scale up to real, industrial software. Even if the underlying problem for finding the optimal solution is
decidable, practical tools often prioritize efficiency over completeness. This means they might be implemented
to find a sub-optimal solution or even time out.
Objective: This work aims at leveraging superoptimization to a real setting: Ethereum blockchain. This paper
proposes a neural-guided superoptimization (NGS) approach which incorporates deep neural networks using
(supervised) learning into superoptimization to improve scalability by predicting: (1) if a sequence is already
optimal and hence the search can be skipped; (2) the size-bound for the optimal solution in order to reduce
the search space.
Method: We have downloaded over 13,000 smart contracts deployed on the blockchain for training and testing
the machine learning models, and a disjoint set with 100 of the smart contracts with more transactions to prove
our scalability gains and impact for the Ethereum community.
Results: Incorporating DNNs resulted in a 16x overall speedup (12x for gas) with only 12% optimization loss
(14% for gas), or a 3-4x speedup with no optimization loss. For the 100 analyzed contracts, this approach
reduced the average compilation time to 3 min per contract and achieved monetary savings of $1.24M.
Conclusions: The integration of machine learning models mitigates several limitations of traditional super-
optimization by drastically reducing execution times while maintaining most of the original optimization
gains.
. Introduction

This section introduces: the Ethereum blockchain, that constitutes
he industrial setting to which our work is applied; the technique
f superoptimization and its practical applications; the challenges of
pplying it on an industrial setting; the decidability of the problem; the
achine learning (ML) technology we use to define NGS; and a brief

ummary of the main contributions of our work.

he Ethereum blockchain. The industrial context of this work is the
thereum blockchain, a technology booming digital economy by means

∗ Corresponding author.
E-mail addresses: matheus.pit@gmail.com (M.A. Aguiar), elvira@sip.ucm.es (E. Albert), samir.genaim@fdi.ucm.es (S. Genaim), pabgordi@ucm.es

P. Gordillo), aleher06@ucm.es (A. Hernández-Cerezo), daniel.kirchner@ethereum.org (D. Kirchner), alberu04@ucm.es (A. Rubio).
1 Data gathered from https://etherscan.io/txs on Jan 14, 2024.

of thousands of decentralized applications: its current market capi-
talization is around $220B [1], the funds in decentralized finance
(DeFi) applications are around $51.86B, and the number of transactions
processed on the network is huge (e.g., on average, there were 1.05M
transactions per day in 20231). The Ethereum Blockchain distinguishes
itself from other chains, such as Bitcoin, by aiming to be a platform to
build decentralized applications that range from social networks and
identity systems to supply chain management and finances. The stored
data contains not only accounts and transactions, but also a machine
state which changes from block to block according to predefined rules
ttps://doi.org/10.1016/j.infsof.2025.107800
eceived 13 June 2024; Received in revised form 22 May 2025; Accepted 23 May
vailable online 16 June 2025
950-5849/© 2025 The Authors. Published by Elsevier B.V. This is an open access
c/4.0/).
2025

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://orcid.org/0009-0009-8226-1848
https://orcid.org/0000-0003-0048-0705
https://orcid.org/0000-0002-7176-1881
https://orcid.org/0000-0001-6189-4667
https://orcid.org/0000-0003-2109-8863
https://orcid.org/0000-0001-9229-1148
https://orcid.org/0000-0002-0501-9830
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
mailto:matheus.pit@gmail.com
mailto:elvira@sip.ucm.es
mailto:samir.genaim@fdi.ucm.es
mailto:pabgordi@ucm.es
mailto:aleher06@ucm.es
mailto:daniel.kirchner@ethereum.org
mailto:alberu04@ucm.es
https://etherscan.io/txs
https://doi.org/10.1016/j.infsof.2025.107800
https://doi.org/10.1016/j.infsof.2025.107800
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

M.A. Aguiar et al.

i
t
c
o
a

f
i
i
s
s
f
f
t
r
w
p
p

t
a
t

g

S
t

r
t
t

t
a

d
w
i
s

t

w
s

s
w
f
a
h
t
e

o
(
o
b
a

a
s
s
r
f

i

i
T
f
s
t

Information and Software Technology 186 (2025) 107800
and arbitrary programs, called smart contracts, consisting of machine
nstructions or opcodes. The Ethereum Virtual Machine (EVM) defines
he specific rules of state changing from block to block. Execution
ost in Ethereum is tightly metered to, among reasons, prevent Denial
f Service attacks on the network and is measured per opcode with
 metric called gas. Such costs can be significant, e.g., one of the

largest exchange platforms Uniswap (which reached more than US$
1.5 trillion trade volume in 2023 [2,3]), through one contract, Uniswap
V3 [4], has consumed more than 1.8 trillion gas [5] since 2022. Because
the amount of gas consumed is a determinant factor in the fee paid
or a transaction, which is usually handed down to the end-user, it
s important that smart contracts use the most efficient sequences of
nstructions to perform their actions. Optimization is critical to the
calability and composability of contracts and the services they provide,
ince it reduces the consumed gas and thus results in lower transaction
ees. This benefits not only the user of the contract, who pays a lower
ee, but also the entire network which has its load work reduced. Hence
he industry spends a lot of effort in hand-optimizing contract code to
educe the execution costs. However, manually optimized code (often
ritten in assembly) is harder to read and audit and thus more error-
rone than less-optimized high-level code. This can cause significant
roblems for example the security of contracts that move large sums

of funds, as Uniswap which reached more than US$ 1.5 trillion trade
volume in 2023 [2,3]. Therefore, automatic optimization techniques
are highly sought after and can provide significant benefit in this
context.

Superoptimization and its applications. Superoptimization is a synthesis
technique, pioneered by Massalin [6], that aims at finding the optimal
ranslation of an initial loop-free sequence of instructions by searching
ll possible alternative sequences that are semantically equivalent to
he initial one automatically, e.g., by using a SAT or SMT solver.

Hence, superoptimized code has two appealing features: correctness, as
semantic equivalence must be guaranteed, and optimality, as the final
oal is to find the optimal code for the considered objective function.

Superoptimization has very interesting applications. (1) Our main
target is its use as an extra layer of optimization within the com-
piler. Superoptimization can typically find optimizations which are
hard (or impossible) to be achieved by relying on predefined rule
transformations, as traditional optimizing compilers do. For instance, a
superoptimizer applied on stack-based bytecode can achieve optimiza-
tions by reordering the elements of the stack so that the number of
WAP opcodes is reduced; (2) Also, superoptimization has been used

o learn new peephole optimizations [7], which are local rewrites to
improve the efficiency and the code size, which can then be incorpo-
ated as rule optimizations within a compiler. (3) Finally, it achieves
hat advances in hardware design can be easily and safely transferred
o software: rather than having to rewrite the compiler to generate

efficient code for new hardware, one can provide a superoptimizer with
he instruction set and corresponding cost model for the new hardware
nd use it to generate efficient code.

In spite of these relevant applications and its clear potential to pro-
uce greener software, the use of superoptimization is not as
idespread as one could imagine. The main limitation for its use in

ndustry has been its huge computation demands: searching for optimal
olutions is very hard to scale.

Challenges in scaling superoptimization. The problem of finding the op-
imal code is a type of program synthesis problem (a problem which

is known to be hard to scale): from unoptimized code acting as a
specification, the synthesis procedure attempts to create a more effi-
cient implementation. An important class of synthesis algorithms work
by enumerating candidates and checking if each candidate meets the
specification. This approach has been applied to superoptimization as
well in [7,8]. A major step for enhancing scalability was given by [9]

ith the idea of unbounded superoptimization. Basically, instead of
earching through the full space of candidate instruction sequences and
 t

2
then calling the solver, unbounded superoptimization consists in lifting
the search for the target program to the solver. The advantage is that
SMT solvers are able natively to prune incorrect solutions and search
through a much smaller space of correct solutions towards finding
an optimal one. Such SMT-based approach is being used by modern
superoptimizers such as Souper [10], ebso [11] and GASOL [12]. In
spite of unprecedented advances in SMT solvers, searching for optimal
solutions is very hard to scale when the sequences to be optimized are
of considerable size, as it often happens. This is because the search
pace grows exponentially with the length of the sequence assumed
hen searching for the optimal solution (named size-bound in what

ollows). This article identifies two challenges for scaling SMT-based
pproaches to superoptimization that, in our case, have been key to
andle real smart contracts efficiently (i.e., greatly reducing optimiza-
ion times) and effectively (i.e., losing none or little optimization, and
ven sometimes gaining):

Challenge 1: Avoid unnecessary search. It can be the case that the
riginal sequence produced by the compiler is already the optimal one
e.g., our experiments reveal that this happens quite often for sequences
f stack-manipulating bytecode). The challenge is to be able to know it
eforehand and avoid unnecessary exploration for sequences that are
lready optimal.

Challenge 2: Use accurate size-bounds. When invoking the SMT solver,
bound for the size of the solution needs to be given to bound the

earch. The more accurate the bound is, the more efficient (and more
calable) the search will be. However, giving a bound smaller than the
equired size of the solution might lead to an unsatisfiable problem
or the SMT solver (and hence all possible optimization lost). The size

of the original code is often a sound upper bound (i.e., there exists a
optimal solution whose size s ≤ than the bound) but not necessarily
sound for all objective functions (e.g., when optimizing the size in
bytes having less opcodes but large constants is more expensive than
having more opcodes and smaller constants) and, importantly, it is
often larger than needed (hence making the overall cost of superop-
timization exponentially more expensive). The challenge is to infer
accurate size-bounds for the optimal solution.

Decidability of superoptimization. Given a jump-free block of code, the
problem of synthesizing a more efficient equivalent block (when con-
sidered in isolation from the rest of the program) is decidable (though
computationally intractable). Note that the size of the optimal block
can be at most equal to the cost of the original block, since each
instruction costs at least 1 unit, and the cost of the original block can
be statically bounded. This means that we can enumerate all possible
blocks up to this size, execute them on all possible inputs, and compare
the results with those of executing the original block (this is possible
because stack, memory, and storage are finite).

In the context of GASOL [12], this process is even simpler. Because
nstead of searching the whole space of possible blocks, we only con-

sider blocks that (1) use a subset of the original instructions, possibly
with the addition of instructions like PUSHX, SWAPX and DUPX; and (2)
respect some order dependencies between the memory/storage access
instructions. GASOL [12] formulates this optimization problem as an
SMT formula with linear arithmetic, which makes the problem (of
finding a block of this particular type) decidable. This will be explained
in Section 3 in detail.

It is important to note that even if the problem is decidable, actual
mplementations may not find an optimal solution given enough time.
his is on one hand due to design choices that sacrifice completeness
or efficiency in some of their components. In other words, they may
ometimes find a solution that is not optimal but only better than
he original code. Besides, completeness is also lost due to the use of
ime-outs in practice.

M.A. Aguiar et al.

t

w
t
n
r
n
s
s
i
i
w

o
i
S

t

o
o

o
s
t
b

c

t
a
a
f
E
0
f
s

u
c

o

a

f

w

o
b

Information and Software Technology 186 (2025) 107800
Machine learning. Given the challenges mentioned above, and the na-
ure of our setting, we will use supervised learning [13] to build models

that predict the corresponding answers. In such approach the model
is trained using existing data that is labeled with the correct answers,

hich in our case consist of sequences of opcodes labeled with answers
hat correspond to the above challenges. We will rely on deep neural
etworks to build our model, which also allows learning an adequate
epresentation of the input data. In particular, we will use recurrent
eural networks (such as LSTM [14]) that are used to learn from
equences. This kind of network is ideal for solving problems where a
equence of items carries more information than individual items. This
s the case of our setting since optimization does not focus on a single
nstruction, but rather on their interaction and possibly the order in
hich the instructions are applied.

Summary of contributions. This paper introduces neural-guided super-
ptimization (NGS for short): a superoptimization framework which
ncorporates advanced ML technology to approach Challenges 1&2 in
ection 1. The framework is realized, and experimentally evaluated,

in the real context of the Ethereum blockchain. Briefly, the main
contributions of the paper are summarized as follows:

1. We present a classifier model that predicts whether a sequence
of opcodes is already optimal based on the list of opcodes in the
initial sequence (Challenge 1 above).

2. We introduce a regression model that infers an accurate bound
for the size of the optimal solution (Challenge 2 above).

3. We leverage a superoptimization algorithm for EVM smart con-
tracts to rely on the previous two models to greatly speed up the
process while little optimization gains are lost.

4. We implement our approach within the GASOL superoptimizer
[12] and assess its performance and impact on 100 of most-used
smart contracts (arguably the most relevant ones) deployed on
Ethereum.

2. Background

Superoptimization. Superoptimization [6] is a compilation technique
hat, given a loop-free sequence of instructions, searches for a se-

mantically equivalent sequence of instructions that is optimal wrt. an
ptimization criteria. There exist superoptimization tools for a range
f languages e.g., for LLVM [9,10], for EVM [12,15], for Wasm [16],

among others. As mentioned before, actual tools may not find an
ptimal solution given enough time when they use design choices that
acrifice completeness for efficiency in some component. This means
hat they may sometimes find a solution that is not optimal but only
etter than the original code. Besides, completeness is also lost due to

the use of time-outs in superoptimization tools.

The Ethereum virtual machine. The EVM contains more than 150 op-
odes [17] representing instructions that allow for arithmetic, bit-wise,

cryptographic and memory/storage operations, as well as opcodes for
control flow and stack manipulation. The EVM operates as a stack
machine with a depth of 1024 words, each of which has 256 bits in
size. There is also a temporary memory, much like RAM, that only stays
alive during the execution of a single call to a contract, but does not
persist across calls between contracts or between transactions. Finally,
here is a persistent key–value storage which is allocated to every
ccount on the chain. Each instruction of the EVM is represented using
 unique opcode, which consists of a single byte, which is in some cases
ollowed by an immediate argument for pushing constants to the stack.
ach opcode has a gas cost associated with it. For example, opcode
x01 corresponds to the instruction ADD, which consumes two operands
rom the stack and produces their sum (module 2256) as result on the
tack and has a cost of 3 gas. Since opcodes generally operate on the

top of the stack, the EVM involves specialized opcodes for duplicating
elements deeper on the stack (DUP1..DUP16) and swapping the top
3
element of the stack with deeper elements (SWAP1..SWAP16). Constants
can be put on stack using a set of PUSH opcodes with differently sized
immediate arguments, and elements can be removed from stack using
a POP opcode. Control flow is described using unconditional jumps
(JUMP) and conditional jumps (JUMPI) to absolute offsets into the
bytecode that have to be marked with the JUMPDEST opcode. The most
expensive opcodes are the ones manipulating the persistent key–value
store, SLOAD and SSTORE.

Optimization of EVM. The natural and most important optimization
criterion for EVM bytecode is the runtime gas cost (gc) that is incurred
pon the execution of a transaction. However, deploying EVM byte-
ode to the Ethereum blockchain is also associated with a one-time

cost of 200 gas for each byte of contract code, which necessitates a
tradeoff between optimizing for runtime gas cost (finding the sequence
of cheapest opcodes for any given computation) and optimizing for
size in bytes (sb) that results in the deploy time cost of the contract
(finding the shortest sequence of opcodes for any given computation).
This tradeoff depends on the expected number of interactions with the
contract over its lifetime. While in most cases (e.g. in the context of
a trading platform) a lot of transactions are expected over the lifetime
of a contract tilting this tradeoff strongly in favor of optimization for
runtime gas costs, some smart contracts like wallets intended for long-
term storage of assets may only expect a low number of transactions
and favor optimization for deploy time cost instead.

Objective functions. The objective functions used in our experimental
evaluation are those available in the GASOL system [12] to measure
optimization of EVM code: gc assigns to each EVM opcode the amount
f gas it consumes as specified in [17]; sb assigns size 1 to all opcodes

except PUSHX that has size X+1 bytes, 1 for the PUSH and X for the
rgument.

3. Neural-guided superoptimization

This section describes the architecture of the proposed NGS frame-
work in a language-agnostic way — which can be applied to practi-
tioners outside of the context of Ethereum (e.g., to the above tools).
Fig. 1 provides a general overview of the whole process (the new ML
components appear in dashed boxes): the process starts from a program
𝐏 to be superoptimized 1⃝ and a selection of an objective function
Obj 5⃝ (among those available in the system), and yields an optimized
code 10⃝ (optionally with a report of the gains 𝐆). According to the
original formulation in [6], superoptimization must guarantee:

(i) (correct) 𝐏′ is semantically equivalent to 𝐏, written 𝐏′ ≡ 𝐏;
(ii) (optimal) the cost of 𝐏′ is minimal wrt. Obj, i.e., 𝐎𝐛𝐣(𝐏′) =

𝐦𝐢𝐧{𝐎𝐛𝐣(𝐏′′) ∣ 𝐏′′ ≡ 𝐏};

Loop-free sequences. As mentioned in Sections 1 and 2, superoptimiza-
tion must be applied on loop-free sequences of instructions. Component
2⃝ takes the input program 𝐏 to be optimized and generates all loop-
ree sequences 𝐒 from 𝐏 on which the search for the optimal sequences

will be applied. This step requires the generation of the CFG for 𝐏 from
hich loops can be detected and the loop-free sequences extracted.

A common approach is to define 𝐒 as the sequences of instructions
within each block of the CFG (as done, e.g., in [10,11,18]). There are
other tools though that consider larger or smaller units. For instance,
unbounded superoptimization as presented in [9] treats as many blocks
together as possible and even propagates the guards in conditional
statements to the branches of the conditional. However, only small-
sized programs have been considered in the experiments in [9], and
the approach might become too expensive for larger code. This is why
ther superoptimization tools [12] split the blocks of the CFG into sub-
locks [12] when the size of the full block exceeds a fixed maximal

size. Component 2⃝ generalizes any of the above instantiations.

M.A. Aguiar et al.

C

d

t
t
p
o
o
s
t
t
t

Information and Software Technology 186 (2025) 107800
Fig. 1. Architecture of a Neural-Guided Superoptimizer. First, loop-free sequences are extracted from the source program (component 2⃝). From these sequences, a higher-level
representation is synthesized to guide the search (component 4⃝). Machine learning models (components 6⃝ and 7⃝) enhance the search for improved sequences (component 8⃝).
Finally, the optimized program is reconstructed from the resulting sequences.
o
b

S

b

ML optimal. The aim of component 6⃝ is to classify the loop-free se-
quences according to whether they can be optimized or not (addressing

hallenge 1 in Section 1). It can be realized as a binary classification
problem that generalizes to existing techniques in supervised learning
such as decision trees, support vector machines (SVM), or recurrent
neural networks (RRN). For the particular programming language used,
an appropriate representation has to be chosen to encode the original
sequence in order to be able to apply the ML technology. If the sequence
𝐬 should not be optimized, all the optimization process is skipped
and the original sequence is passed directly to the last component
9⃝ (see description below). Otherwise, the process continues with

the analysis and transformation of the sequence. This component can
greatly improve the performance of the approach as there are sequences
that are no longer analyzed, saving the time spent in computing the
optimization and in proving the optimality of the solution.

Analysis and transformation of sequences. Component 4⃝ takes a se-
quence of instructions 𝐬 ∈ 𝐒 and analyzes it in order to gather
ifferent types of information, which in turn may lead to transforming

the sequence. Most tools perform some form of symbolic execution
(which usually requires a transformation into SSA form) to synthesize
a higher-level intermediate representation (𝐬′) from which the search-
query can be more directly generated. For instance, [10] targets LLVM
and C++ programs by using their own intermediate representation,
while [9] uses the existing LLVM intermediate representation directly
o build the constraints passed to the corresponding solver. Besides,
he intermediate representation 𝐬′ can be simplified at this stage before
roceeding to the next one 8⃝, e.g., by carrying out arithmetic/bit-wise
perations that can be fully executed (like addition by zero, etc.) and
btain a simplified transformed form [12,19]. Besides transforming and
implifying 𝐬, the analysis can gather useful information from it. One
ype of analysis that not every optimizer uses is a size-bound predictor
hat provides an upper-bound 𝐮𝐛 for the size of the optimal solution and
he minimum size that it can have 𝐥𝐛. The bounds could be obtained

from 𝐬, but also from 𝐬′, and may vary according to the selected
Obj (see Challenge 2). We generalize within this component 4⃝ a range
of analysis and transformation techniques that may be applied to the
original sequence and simply assume that we obtain here a transformed
sequence (𝐬′) and the minimal length that the solution can have (𝐥𝐛)
and an upper-bound for it (𝐮𝐛). In the absence of this component, we
assume that 4⃝ simply returns 𝐬 and ⊥ for the size-bounds and thus the
original instructions are used as result.
 f

4
ML bound. Component 7⃝ aims to use advanced ML technology to
predict, given a loop-free sequence 𝐬, the size 𝐬𝐳 of the corresponding
optimal one (addressing Challenge 2 in Section 1). This component
generalizes to a regression problem, where the input is a sequence
of instructions and the output is a prediction 𝐬𝐳 for the size of the
ptimal solution. The results inferred by this learning might enhance
oth the performance and the savings obtained. Clearly, a better bound

reduces (exponentially) the search space for the optimal solution, what
might avoid timeouts in the search (and in turn might enable finding a
solution and increase optimization gains).

Search optimal. Component 8⃝ aims at searching all possible solutions
that are semantically equivalent to the original sequence 𝐬, or to its
transformed form 𝐬′, and it is carried out by a constraint solver. A
constraint encoding of the problem is automatically generated and 𝐬𝐳
is used to constrain the size of the solution. The semantics of the
instructions of the programming language being used must have been
encoded (with their corresponding costs for the objective functions
available). The search does not consider solutions that are larger than
the given bound 𝐬𝐳 (hence optimality results are ensured for solutions
up to this bound). The procedure returns the solution 𝐬𝐨𝐥 and the gain
𝐠 if a better solution has been found and otherwise it returns false.
State-of-the-art superoptimizers use SMT solvers [9–12] or SAT solvers
[20,21].

BuildOptimizedCode. There is a final engineering step 9⃝ in which, from
the solution, the sequence of instructions for the optimized code is
generated and the final optimized program 𝐏′ is rebuilt (e.g., jump
addresses have to be recomputed).

4. Neural-guided superoptimization in Ethereum

This section describes the realization of NGS and its associated
ML technology in the context of Ethereum. Section 4.1 first presents
the basic features of the algorithm used for superoptimizing EVM
smart contracts (without ML) and the following sections focus on the
ML components: Section 4.2 describes how EVM blocks are encoded;
ection 4.3 describes the set of blocks we use for training/validation;

Section 4.4 describes the model we build for predicting if a given EVM
lock is already optimal; and Section 4.5 describes the model we build
or predicting the size of the optimal block.

M.A. Aguiar et al.

p
n

c

s

a

e

e

f
f

T

=

o
t

P

b
i
a
a
c
w
s
:
i
r
v

m

Information and Software Technology 186 (2025) 107800
4.1. EVM superoptimization (without ML)

Input: Smart contract 𝐏, Objective function 𝐎𝐛𝐣, Timeout 𝐓𝐨𝐮𝐭
Output: Optimized EVM bytecode 𝐏′, Gain 𝐆
Ensures: 𝐏′ ≡ 𝐏 ∧𝐎𝐛𝐣(𝐏′) = 𝑚𝑖𝑛{𝐎𝐛𝐣(𝐏′′) | 𝐏′′ ≡ 𝐏} (if 𝐓𝐨𝐮𝐭 not
reached) ∨ 𝐎𝐛𝐣(𝐏′) ≤ 𝐎𝐛𝐣(𝐏) (if 𝐓𝐨𝐮𝐭 reached)

1 Superoptimization(𝐏,𝐎𝐛𝐣,𝐓𝐨𝐮𝐭)
2 𝐒 ← 𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎𝙱𝚕𝚘𝚌𝚔𝚜(𝐏)
3 NewSq ←[]
4 for 𝐬 ∈ 𝐒 do
5 optimize← 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚊𝚋𝚕𝚎(𝐬,𝐎𝐛𝐣)
6 if optimize then
7 𝐢𝐧𝐢, 𝐟 𝐢𝐧 ← 𝚂𝚢𝚖𝚋𝚘𝚕𝚒𝚌(𝐬)
8 𝐮𝐛, 𝐥𝐛 ← 𝙲𝚘𝚖𝚙𝚞𝚝𝚎𝙱𝚘𝚞𝚗𝚍𝚜(𝐬, 𝐢𝐧𝐢, 𝐟 𝐢𝐧)
9 𝐬𝐳 ← 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍(𝐬,𝐥𝐛,𝐮𝐛,𝐎𝐛𝐣)
10 𝐬𝐨𝐥, 𝐠 ← 𝚂𝚎𝚊𝚛𝚌𝚑𝙾𝚙𝚝𝚒𝚖𝚊𝚕(𝐢𝐧𝐢, 𝐟 𝐢𝐧,𝐎𝐛𝐣,𝐓𝐨𝐮𝐭,𝐬𝐳)
11 if 𝐠 > 0 then
12 NewSeq ← NewSeq.append((𝐬𝐨𝐥,𝐠))
13 else
14 NewSeq ← NewSeq.append((𝐬,0))
15 else
16 NewSeq←NewSeq.append((𝐬,0))
17 𝐏′,𝐆 ← 𝙱𝚞𝚒𝚕𝚍𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚎𝚍𝙲𝚘𝚍𝚎(NewSeq)

Algorithm 1: GASOL+ML: Superoptimization using Deep Neural
Networks. The framed instructions are our contributions to the
superoptimization algorithm in GASOL. First, the smart contract is
divided into sequences in 𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎𝙱𝚕𝚘𝚌𝚔𝚜. Next, a model deter-
mines whether a block can be further optimized. If so, 𝚂𝚢𝚖𝚋𝚘𝚕𝚒𝚌

performs symbolic execution to produce a representation of the
initial and final states, and 𝙲𝚘𝚖𝚙𝚞𝚝𝚎𝙱𝚘𝚞𝚗𝚍𝚜 generates safe lower
and upper bounds on the number of instructions for the search.
A second model, used in 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍, infers a more
precise upper bound for the search, which is then carried out
in 𝚂𝚎𝚊𝚛𝚌𝚑𝙾𝚙𝚝𝚒𝚖𝚊𝚕 within a specified timeout. Once the search
concludes or the timeout is reached, the resulting sequence is in-
corporated into the optimized program if it improves 𝐎𝐛𝐣. Finally,
in 𝙱𝚞𝚒𝚕𝚍𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚎𝚍𝙲𝚘𝚍𝚎, a smart contract is constructed from the
optimized sequences.

Algorithm 1 outlines the implementation of the Ethereum superop-
timization algorithm in GASOL [12]: the framed instructions were not
art of the existing algorithm but are rather novel components of our
eural-guided extension (named GASOL+ML in what follows).

Input–output. The input to the basic superoptimization algorithm (Al-
gorithm 1) is a smart contract 𝐏 (either in Solidity source code or
ompiled EVM bytecode, component 1⃝ in Fig. 1) to be optimized

according to the selected objective function Obj (that can be gc or sb,
ee Section 2). This function is represented by component 5⃝ in Fig. 1.

The output will be an optimized bytecode 𝐏′ together with the gains
achieved by superoptimization 𝐆 (component 10⃝ in Fig. 1). In order to
use superoptimization in a real setting, an additional parameter 𝐓𝐨𝐮𝐭
is used to end up the search process when such timeout is reached. As
state-of-the-art SMT solvers (e.g., Z3 [22], OMS [23], Barcelogic [24])
re able to return the best solution found within the timeout, the

algorithm ensures the better property (𝐎𝐛𝐣(𝐏′) ≤ 𝐎𝐛𝐣(𝐏)) if there
are sequences that reach the timeout and optimality for those that
complete the search before the timeout is reached. This means that the
algorithm is incomplete for optimality (ii) but keeps the correctness
guarantee in (i).
Case study. The smart contract Seaport 2 [25], which is part of our
valuation testbed (Section 5), will be used in this section to explain

2 Deployed on 2022-06-11 21:19:20 on block 14,946,474.
5
the techniques and results. It is written in Solidity and models a
marketplace protocol to manage NFTs. Its public functions have been
xecuted in 13,124,146 transactions.3

𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎𝙱𝚕𝚘𝚌𝚔𝚜. This procedure, invoked at Line 2, generates loop-
ree sequences of instructions from the blocks of the CFG obtained
rom the EVM bytecode as defined in Definition 1. We refer to [26–29]

for EVM CFG generation. As it can be seen in the definition below,
the blocks are obtained from the partitions induced by jump-related
EVM instructions (JUMP, JUMPI, JUMPDEST). These jump instructions
are not kept in the sequence but rather recalculated and integrated
later by 𝙱𝚞𝚒𝚕𝚍𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚎𝚍𝙲𝚘𝚍𝚎. Each block may be split into sub-blocks
(and one sequence is produced for each sub-block) due to instruc-
tions that cannot be relocated to ensure the original semantics of the
block (e.g., GAS, CALL, LOGX, CREATE, CODECOPY, among others). This
procedure corresponds to component 2⃝ in Fig. 1.

Definition 1 (Block-Generation). Given a sequence of instructions 𝐼 =
[𝑖0, 𝑖1,… , 𝑖𝑛], we define its block-partitioning as follows:

blocks(𝐼)

=

{

𝐼𝑥 ≡ 𝑖𝑥,… , 𝑖𝑦
|

|

|

|

|

(∀𝑘.𝑥 < 𝑘 < 𝑦, 𝑖𝑘 ∉ Jump ∪ Terminal ∪ Split ∪
{JUMPDEST}) ∧ (𝑥 = 0 ∨ 𝑖𝑥−1 ∈ Split ∪ {JUMPDEST}) ∧
(𝑦 = 𝑛 ∨ 𝑖𝑦+1 ∈ Jump ∪ Split ∪ Terminal)

}

where
Jump = {JUMP, JUMPI}

erminal = {RETURN,REVERT,STOP,INVALID}
Split = {LOGX,CALL,GAS,DELEGATECALL,STATICCALL,

CALLDATACOPY,
CODECOPY,EXTCODECOPY,RETURNDATACOPY}

Given a smart contract P, and let 𝐼 be the sequence of instructions
of its EVM bytecode, 𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎𝙱𝚕𝚘𝚌𝚔𝚜(P) returns the set of blocks S
𝑏𝑙 𝑜𝑐 𝑘𝑠(𝐼), as described in Definition 1.

Example 1 (Generation of Sequences). The EVM bytecode of Seaport,
compiled from the main contract (the root one), has 17,030 EVM
pcodes contained in 1420 blocks. The next fragment of opcodes leads
o three basic blocks according to Definition 1:
[PUSH2 0x2dc4 PUSH2 0x4ea0]Block1 JUMP
JUMPDEST [SWAP2 ISZERO ISZERO PUSH1 0x20 SWAP3 DUP4 MUL
SWAP2 SWAP1 SWAP2 ADD SWAP1 SWAP2 ADD MSTORE DUP1 MLOAD
USH1 0x60 ADD MLOAD DUP1 MLOAD PUSH1 0x00]Block2
JUMPDEST [DUP2 DUP2 LT ISZERO PUSH2 0x2e44]Block3 JUMPI

beginning and end of blocks are marked between brackets.

𝚂𝚢𝚖𝚋𝚘𝚕𝚒𝚌. The next step is to generate symbolic structures that capture
the effect of executing a sequence of instructions. These structures can
e later used in the search for optimal solutions. For this purpose, we
ntroduce a symbolic structure to represent how the stack is affected
nd which memory accesses occur after executing certain instructions
s follows. A symbolic state, state := (stack, mem), consists of two
omponents: a symbolic stack (stack) and symbolic memory (mem),
hich includes store operations both in the memory and storage. The

ymbolic execution step begins with an initial symbolic state, ini
= (istack, []), where [] indicates that no memory access occurs
nitially. We statically compute the minimum number of stack elements
equired to execute all the instructions, and assign a distinct stack
ariable 𝑠𝑖 to each element in istack. Using this state, we compute fin
:= (fstack, fmem), which represents the final stack elements and
emory accesses after the symbolic execution over ini.

Example 2 (Symbolic). For Block 2, we determine that at least four
elements are required initially in the stack. Thus, we construct the

3 Statistics on 2023-05-10.

M.A. Aguiar et al.

o

F

f

Information and Software Technology 186 (2025) 107800
Fig. 2. Resulting state after performing symbolic execution of the sequence Block2 in Example 1. The state comprises three components: the initial symbolic stack , the resulting
utput stack , and the symbolic memory .
b

E

F
b
n

b

symbolic stack before executing the sequence . Through symbolic
execution of , we obtain the output stack  and symbolic memory
 in Fig. 2.

At this stage, we apply simplification rules to simplify the expres-
sions. Additionally, we perform a flattening step, ensuring that every
computation in our symbolic structures is associated with a unique
stack element 𝑠𝑖. A complete formalization of this process can be found
in [30].

Example 3 (Flattening). In the previous example, no simplification
rules apply. After flattening, the resulting state is ([s4,s9,s7,s3],
[MSTORE(s13,s15)]), where different terms and subterms to variables
have been mapped through the following transformation:

{s4 ↦ 0x00,s5 ↦ 0x60,s6 ↦ MLOAD(s3),

s7 ↦ ADD(s5,s6)s8 ↦ MLOAD(s7),

s9 ↦ MLOAD(s8),s10 ↦ 0x20,

s11 ↦ MUL(s10,s0),s12 ↦ ADD(s11,s1),

s13 ↦ ADD(s10,s12),s14 ↦ ISZERO(s2),s15 ↦ ISZERO(s14), }

Note that flattening allows us identifying elements that must be
duplicated. For instance, element s7 appears both as part of the term
s8 and in the final stack.

𝙲𝚘𝚖𝚙𝚞𝚝𝚎𝙱𝚘𝚞𝚗𝚍𝚜. As described in Definition 2, for the size-bound (Line
8 in Algorithm 1), the length of the original solution may be used as
upper bound 𝐮𝐛. Note that more refined bounds can be obtained if
some simplifications [12,31] are applied over the original sequence
of instructions. These simplification rules capture the semantics of
the instructions taking advantage of algebraic identities. Regarding
the lower bound 𝐥𝐛, it can be inferred from the flattened symbolic
structures.

Definition 2 (Upper-Bound). Given a sequence of instructions 𝐼 =
[𝑖0, 𝑖1,… , 𝑖𝑛], we define its upper bound as:

𝑢𝑏(𝐼) = 𝑚𝑖𝑛(𝑛 + 1, 𝑛 + 1 − 𝑜)

where 𝑜 = len(optimize_sequence(I)). Hence, 𝑜 is the length of the
sequence of instructions obtained by applying the simplification rules
defined in [12,31] to I.

Definition 3 (Lower-Bound). Given the initial state (istack, [])
and the final flattened state (fstack, fmem) with the mapping map
obtained from a sequence of instructions 𝐼 , we define the number of
times an element is used as:

𝑢𝑠𝑒𝑑𝐼 (𝑠𝑖) = #(𝑠𝑖,fstack) + #(𝑠𝑖,fmem) + #(𝑠𝑖,map) − #(𝑠𝑖,istack)
The function # counts the occurrences of an element in each structure.
or map, it counts the appearances of 𝑠𝑖 in right-hand side terms.

If 𝐼 represents the set of all stack variables from the initial and
inal flattened states, the lower bound can be computed as:

𝑙 𝑏(𝐼) =
∑

|𝑢𝑠𝑒𝑑𝐼 (𝑠𝑖)| + 𝑙 𝑒𝑛(fmem).

𝑠𝑖∈𝐼

6
Note that we take the absolute value of used because some initial
elements may not be used elsewhere, resulting in negative values. As
we want to remove these elements with POP, our formula considers
these instructions as well. Moreover, store accesses are not included
in the mapping and must be counted separately. Informally, our lower
bound accounts for the operations required, the duplication of stack
elements, and the POP operations needed to discard unused elements.
The following example illustrates this computation.

Example 4 (Size-Bound). The initial length of the sequence of instruc-
tions for Block 2 is 23 and we cannot apply any simplification rule
ased on the semantics of the instructions. Therefore, according to

Definition 2, we use 23 as 𝐮𝐛 for Block 2. The value for 𝐥𝐛 inferred
by GASOL is 16, derived from the following values of used:

used(𝑠𝑖) =
⎧

⎪

⎨

⎪

⎩

2 if 𝑖 ∈ [3,7]
0 if 𝑖 ∈ [0,1,2]
1 otherwise

and the formula in Definition 3:
∑

𝑠𝑖∈𝐼

|used𝐼 (𝑠𝑖)| + len(fmem) = |2 ∗ 2| + |0 ∗ 3| + |1 ∗ 11| + 1 = 16

The informal reasoning to infer 𝐥𝐛 = 16 from Example 2 is as
follows: The element at 1 in  only needs 1 opcode to be computed.
lement 2 needs 6 opcodes (those 4 that appear explicitly plus a PUSH

for the constant and a duplication for s3). Element 3 only needs one
opcode to be duplicated, as it has been computed previously at position
2 of . s3 at position 4 does not add any opcode as it is already in .
or the symbolic memory, we need 1 opcode for MSTORE, 5 opcodes to
uild the first argument (elements s0 and s1 are already in  and do
ot appear in ) and the second argument needs 2 more.

Therefore, procedure 𝙲𝚘𝚖𝚙𝚞𝚝𝚎𝙱𝚘𝚞𝚗𝚍𝚜 implements component 4⃝ in
Fig. 1 and produces 𝐮𝐛 and 𝐥𝐛 which are used by 6⃝ and 7⃝.

𝚂𝚎𝚊𝚛𝚌𝚑𝙾𝚙𝚝𝚒𝚖𝚊𝚕. Finally, the optimal solution 𝐬𝐨𝐥 (within the size-
ounds given) and the gains 𝐠 are automatically obtained by means

of an SMT solver invoked in Line 10 (corresponds to component 8⃝ in
Fig. 1). When ML is not used, 𝚂𝚎𝚊𝚛𝚌𝚑𝙾𝚙𝚝𝚒𝚖𝚊𝚕 uses 𝐮𝐛 and 𝐥𝐛 instead
of 𝐬𝐳 to bound the search from above and below. Definition 4 shows a
high-level description of the encoding used by a SMT solver to find
the optimal solution. The encoding captures the effect of selecting
a computation to perform at each possible execution step as hard
constraints while the objective function is encoded as soft constraints.
For each sequence of instructions, given its initial stack, its final stack,
and the mapping map with the set of possible computations carried
out in the block (that is followed from the final symbolic state and its
associated mapping), we have to encode the following: (i) 𝑆𝑉 contains
the representation of the stack and the elements that it contains during
the execution of the block. We use existentially quantified variables
to express the word stored at each stack position and propositional
variables to represent the utilization of the stack, as not all the positions
are used at each execution step. (ii) 𝐶𝐼 denotes the encoding of the
EVM instructions. (iii) 𝐵 contains the constraints that represent how

M.A. Aguiar et al.

t
w
t
T
s
m
r
a
𝑥
𝑖
t
l
w
𝑗
a
g
s

𝚂

l
s

v
p
e
o
e
a
t
b
s

e

a
t
t
c
l
p
n
r

s
s

c

d
G
t
w
f

p

f
𝑝

Information and Software Technology 186 (2025) 107800
the stack at the beginning is and, (iv) 𝐸 describes how the stack at
he end is. Finally, (v) 𝐶𝐶 𝑂 𝑆 𝑇 represents the cost of the instructions
e select, as the cost of the solution can be expressed in terms of

he cost of each individual instruction (both for gas and size criteria).
he solution has to satisfy the hard constraints, ensuring an equivalent
olution, (they correspond to 𝑆𝑉 , 𝐶𝐼 𝑁 𝑆 , 𝐵, and 𝐸 in Definition 4) and
inimize the soft constraints, seeking for minimal cost (constraints

epresented by 𝐶𝐶 𝑂 𝑆 𝑇 in Definition 4. For instance, a DUPX instruction
t step 𝑗 introduces in its encoding (among others) the hard constraint:
0,𝑗+1 = 𝑥𝑋−1,𝑗 , where 𝑥𝑖,𝑗 represents the content of the stack position
after executing the opcode at position 𝑗 in the sequence, indicating

hat the content of the top of the stack after step 𝑗 contains the element
ocated at position X-1 of the stack. Its soft constraint is (𝑡𝑗 = DUPX, 𝑤)
here 𝑤 is the cost returned by Obj if opcode DUPX is selected at step
(3 for gc and 1 for sb). Arithmetic and bit-wise operations are treated
s uninterpreted functions and hence optimality results in GASOL are
iven for the stack-manipulating opcodes (and within the considered
ize-bounds). All details of the encoding can be found in [12,19].

Definition 4 ((High-Level) Description of SMT Encoding). Given the
initial stack ini and the final stack fin for a sequence of instructions 𝐼 ,
the mapping map obtained from the symbolic execution, and the bound
over the length of the solution, the encoding has this form:

𝑂 = 𝑆𝑉 ∧ 𝐶𝐼 ∧ 𝐵 ∧ 𝐸 ∧ 𝐶𝐶 𝑂 𝑆 𝑇

Example 5 (Optimal Solution). For Block 2 in Example 1 and with the
previous 𝐮𝐛 and 𝐥𝐛 bounds (using objective sb), procedure
𝚎𝚊𝚛𝚌𝚑𝙾𝚙𝚝𝚒𝚖𝚊𝚕 timeouts in 20 s when searching for the optimal so-
ution. However, it will be able to find a solution when a smaller
ize-bound is predicted by procedure 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍.

BuildOptimizedCode. The last step is reconstructing the bytecode
after superoptimization. We replace each block where the optimized
ersion achieves further gains. Since the superoptimization process
reserves block equivalence, this translation is straightforward. Nev-
rtheless, there are certain EVM instructions which depend directly
n bytecode positions and can be affected by the optimization. For
xample, JUMP instructions require the specific bytecode of the target
ddress, meaning that changes in bytecode size can misalign jump des-
inations. To address this, we optimize not directly the EVM bytecode
ut rather the ‘‘EVM Assembly Format’’ used by the Solidity compiler
olc. In Section 6, we further discuss how using this format, together

with solc, enables accurate reconstruction of the optimized bytecode.

4.2. Encoding EVM blocks for learning

The first problem one encounters when applying ML is how to
ncode the input data. In our case, the input is an EVM block as

described in Section 4.1, and thus it is natural to encode it as a sequence
of tokens where each token corresponds to an opcode. The choice of
this representation is also influenced by the use of recurrent neural
networks (RNNs) as we will see later.

Tokens are numbers between 1 and 130 (we have 130 different
opcodes as the instructions that induce partitioning, see Section 4.1, are
excluded from the block), in addition to 𝟶 that is used for padding se-
quences to make them of the same length during training. An exception
re the PUSHX opcodes (for 1 ≤ 𝚇 ≤ 32) that take as operand a value
hat fits in X bytes. We have considered several approaches to encode
hese numbers. The first approach (E1) encodes an operand using its
orresponding sequence of digits. This, on the one hand, might result in
ong sequences (numbers in EVM are of 256 bits) which might affect the
recision of the learning process, and, on the other hand, is not really
eeded since optimizations are rarely affected by the actual values, but

ather by the fact that several PUSHX instructions use the same value.

7
This leads us to a second approach (E2) that first replaces each operand
by a corresponding constant 𝐶𝑖, where different occurrences of the
ame number are encoded to the same 𝐶𝑖, and then encodes 𝐶𝑖 as the
equence of the digits of 𝑖 (with a special leading token that corresponds

to ‘#’). This requires adding 11 more tokens, and thus in total we
have 141 tokens. The third approach (E3) that we have considered
discards all operands, which is reasonable since PUSHX already carries
information on the number of bytes (X) used to represent the operand.

4.3. The training (and validation) data set

For training we downloaded the last 5,000 verified contracts from
Etherscan [32] on three different dates: (July 22, 2022), (January 12,
2023) and (March 14, 2023). From these 15,000, we removed those
that were compiled with a version of the Solidity compiler solc lower
than 0.8, the ones that raised a compilation error and those that were
duplicated, i.e., those whose runtime compiled bytecode generated by
the compiler is the same. This resulted in 13,195 smart contracts that
ontain 9,861,151 blocks. We have compiled and optimized them with

the version 0.8.19 of solc4 and using the flag −−optimize in order to
assess the additional gains of applying superoptimization as a second
optimization layer, i.e., on code that has been already optimized by the
compiler. After removing duplicates (according to E2 representation),
we have remained with 95,140 blocks (see Section 5 for details on
uplicates). Out of these 95,140 blocks, we only use those for which
ASOL either proved that the block is already optimal or succeeded

o optimize it: (1) for gc we have 57,583 EVM blocks; and (2) for sb
e have 57,233 EVM blocks. Every input block is labeled with the

ollowing data: if the block is already optimal (for the corresponding
criteria); the number of opcodes in the corresponding block generated
by GASOL; and the corresponding 𝐥𝐛.

Note that although we call them training sets, they will actually
be used for training and validation. Testing is done comparing the
performance of GASOL and GASOL+ML on a different set of contracts
(see Section 5), which we also use to evaluate the models in Sections 4.4
and 4.5.

4.4. Learning a model for 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚊𝚋𝚕𝚎

Our aim is to develop a model, based on deep neural networks, that
redicts if a given EVM block 𝐬 is already optimal or not (Challenge 1 in

Section 1). This is a classical binary classification problem, where the
input is a sequence of tokens (see Section 4.2) and the output is class
0 (for already optimal) and class 1 (for not optimal).

The general structure of the neural network that we use to learn
such a model is depicted in Fig. 3. The first layer is an embedding layer
that maps tokens into vectors in R𝑑 . This layer can also be replaced
by a straightforward embedding that maps each token 𝑡 into 1-hot
vector of dimension that is equal to the number of tokens (referred
as 1-hot embedding). The next layer is a RNN layer (e.g., LSTM [14]
or GRU [33]), followed by a dropout layer which is effective for
regularization (it basically zeroes some of the elements of the input
tensor with probability 𝑝). This is followed by several hidden linear
layers (with a corresponding ReLU activation function), which are
followed by a final output linear layer with two output channels 𝑐0
and 𝑐1. Given values for 𝑐0 and 𝑐1, the predicted class is 1 if 𝑒𝑐1

𝑒𝑐1+𝑒𝑐0 >𝑝
or a given probability threshold 𝑝; otherwise 0. During training we fix

to 0.5, and when using the model we can adjust 𝑝 to increase the
confidence in the answer.

We have tried with several settings that use different encodings for
the input and different parameters for the model above. The one that
achieved the best performance is as follows: the blocks are encoded
using E2, the embedding layer is a 1-hot vector of dimensions 141,

4 The latest version released up to April 2023.

M.A. Aguiar et al.

h
s
w
f
o
v

b
(
i

g

Information and Software Technology 186 (2025) 107800
Fig. 3. The neural network architecture.
Fig. 4. The precision–recall curves for size and gas consumption. The 𝑌 -axis corresponds to precision, which is the number of 1 answers that are correct out of all 1 answers. The
𝑋-axis is the recall, which is the probability that a block labeled as 1 will be answered as 1.
a

i

r
b

o

the RNN used is LSTM, the dropout probability is 0.5, and we have 2
idden layers with 128 channels (for input and output). Based on this
etting, we have learned two models to predict if a block is optimal: one
rt. sb, and one wrt. gc. The learning loop uses the Cross Entropy loss

unction, an optimizer based on the Adam algorithm, and a learning rate
f 0.001. We have used 80% of the data sets for training, and 20% for
alidation (the data sets that we have are quite balanced, with about

50% in each class).
To evaluate the performance of the models, we provide their corre-

sponding Precision–Recall (PR) Curve for class 1 in Fig. 4. This graph is
ased on 101 samples for different values of the probability threshold 𝑝
𝑝𝑖 = 𝑖∕100 for 0 ≤ 𝑖 ≤ 100). A good model (and probability threshold)
s one that has a high recall and high precision at the same time.

For the case of sb, the training PR curve is almost ideal, and the
validation PR curve is quite good since the recall and precision are both
above 0.9 for all probability thresholds between 𝑝 = 0.22 and 𝑝 = 0.78,
and for 𝑝 = 0.5 we have 0.92 precision and 0.94 recall. For the case of
c, we have a similar situation. The training PR curve is almost ideal,
 t

8
and the validation curve is quite good since the recall and precision
re both above 0.9 for all probability thresholds between 𝑝 = 0.02 and

𝑝 = 0.72, where for 𝑝 = 0.5 we have 0.95 precision and 0.93 recall. We
have also applied the model to the testset of Section 5 (only to those
that can be handled by GASOL without ML, i.e., can be labeled), after
eliminating repeated blocks and blocks that already appeared in the
training/validation set. We got a precision and recall very similar to
that of the validation set.

To summarize, procedure 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚊𝚋𝚕𝚎(𝐬,𝐎𝐛𝐣)
mplements component 6⃝ in Fig. 1 and is as follows: encode the block
𝐬 using E2, apply the corresponding model to obtain 𝑐0 and 𝑐1, and then
eturn 1 if 𝑒𝑐1

𝑒𝑐1+𝑒𝑐0 >𝑝 for the given probability threshold 𝑝 (controllable
y the user); otherwise 0.

Example 6. Given the blocks of Example 1, 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚊𝚋𝚕𝚎

classifies Block 1 and Block 3 as already optimal and Block 2 as
ptimizable. When considering the 1420 blocks of Seaport, 1098 of
hem are classified as optimal while the remaining 322 are considered

M.A. Aguiar et al.

𝐬
t
𝚕

w
d
t
n

s
e
i
m
p
i
p
S
a
a

Information and Software Technology 186 (2025) 107800
Table 1
Precision of the bound model for sb and gc. Each table has two blocks, one for training and one for validation. Each block has 4 columns: (#) the number of blocks with the
corresponding 𝑑𝑠; (=) the number of cases that were predicted exactly; (>) the number of larger predictions; and (<) the number of smaller predictions.
𝑑𝑠 Training Validation Training Validation

= > < # = > < # = > < # = > <

0 23,800 23,017 783 0 5915 5581 334 0 27,816 27,413 403 0 7002 6760 242 0
1 10,861 9,673 463 725 2719 2190 256 273 9,577 8,641 449 487 2342 1939 234 169
2 4,095 3,027 358 710 991 542 161 288 2,984 2,343 282 359 770 452 148 170
3 2,412 1,728 279 405 610 278 119 213 1,695 1,229 223 243 442 194 93 155
4 1,720 1,230 257 233 420 192 84 144 1,187 857 151 179 292 122 53 117
5 1,187 882 228 77 349 169 79 101 835 599 90 146 210 74 26 110
6 842 625 173 44 201 86 55 60 690 517 56 117 161 61 27 73
7 475 373 76 26 120 54 23 43 425 300 33 92 102 34 14 54
8 295 206 71 18 79 39 15 25 249 125 44 80 58 8 10 40
9 150 85 49 16 48 16 10 22 144 83 31 30 26 11 0 15

10 84 52 25 7 33 12 8 13 81 48 21 12 18 7 2 9
11 81 57 14 10 17 7 2 8 59 38 5 16 16 3 1 12
12 49 28 0 21 12 5 0 7 33 17 0 16 5 2 0 3
13 11 0 0 11 2 0 0 2 8 0 0 8 3 0 0 3
14 3 0 0 3 1 0 0 1 1 0 0 1 0 0 0 0
15 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

sb gc
v
<
G
n
G
b
b

i

2

optimizable with sb. From the 1098 blocks, GASOL is able to optimize
16 of them (1.45%), saving 24 additional bytes. Hence, GASOL+ML
loses 5.71% of the savings. However, thanks to the learning GASOL+ML
greatly improves performance (saving 3962.56 s out of the 6568.90
s needed by GASOL). If we select gc, we obtain that 1183 blocks
are classified as optimal, and 237 optimizable. 26 blocks out of the
1183 optimal (2.19%) are optimized by GASOL, losing 125 gas in
GASOL+ML from the 1022 saved gas. Importantly, GASOL+ML reduces
the time to almost one third (from 6207.75 s to 2353.84 s).

4.5. Learning a model for 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍

Our aim is to develop a model, based on deep neural networks, that
for a given EVM block 𝐬 predicts the size 𝑛𝑠 of a corresponding optimal
block (Challenge 2 in Section 1). This is a regression problem, where
the input is a sequence of tokens (see Section 4.2) that correspond to
, and the output is the desired size 𝑛𝑠. Instead of building a model
hat directly predicts 𝑛𝑠, we build one to predict 𝑑𝑠 = 𝑛𝑠 − 𝚕𝚋(𝐬) where
𝚋(𝐬) is a lower bound 𝐥𝐛 at Line 8 of Algorithm 1. Then, if the model

answers 𝑑𝑠 for a block 𝐬, we can use 𝑑𝑠 + 𝚕𝚋(𝐬) as a prediction for the
size of the optimal block. The advantage of predicting 𝑑𝑠 instead of 𝑛𝑠
is that its set of possible values is much smaller than that of 𝑛𝑠, e.g.,
in our training set it reduces the possible values from [1..54] to [0..18],

here 97% of the blocks have 0 ≤ 𝑑𝑠 ≤ 5. This improves the precision
ramatically in practice. Another important problem that we faced is
hat the prediction for 𝑑𝑠 is not necessarily an integer, and thus we
eed to convert it to an integer value using 𝑟𝑜𝑢𝑛𝑑(𝑑𝑠), ⌊𝑑𝑠⌋, or ⌈𝑑𝑠⌉. In

what follows we use 𝑟𝑜𝑢𝑛𝑑(𝑑𝑠), which achieves better predictions when
compared to the others.

The general structure of the neural network that we use to learn
such a model is as the one used in Section 4.4 (see Fig. 3), but the
output layer has only one output channel 𝑑𝑠. We have tried with several
ettings that use different encodings for the input and different param-
ters for the model above. The one that achieved the best performance
s as follows: the blocks are encoded using E2, the embedding layer
aps tokens into vectors in R64, the RNN used is GRU, the dropout
robability is 0.5, and we have 2 hidden layers with 128 channels (for
nput and output). Based on this setting, we have learned two models to
redict 𝑑𝑠: one wrt. sb, and one wrt. gc. The learning loop uses the Mean
quare Error loss function, an optimizer based on the Adam algorithm,
nd learning rate 0.001. We have used 80% of the data sets for training,
nd 20% for validation.
9
The performance of the models on the training and validation sets is
as follows. For the case of sb, the model succeeded to correctly predict
𝑑𝑠 for 80% of the blocks in the validation set (the average loss is 0.4)
and 89% for the training set (the average loss is 0.1). For gc, the model
succeeded to predict 𝑑𝑠 for 84% of the blocks in the validation set (the
average loss is 0.5) and 92% for the training set (the average loss is
0.08). We have also applied the model to the testset of Section 5 as
described in Section 4.4. We got similar results, in particular it correctly
predicted 𝑑𝑠 for 85% of the blocks for sb (the average loss is 0.3), and
85% for gc (the average loss is 0.5).

In Table 1 we give detailed information on the predictions men-
tioned above, for each value of 𝑑𝑠∈[0..18]. Recall that we round the
prediction to the nearest integer. We can see that the precision is very
high for small 𝑑𝑠 values, and decreases for larger ones. This is explained
by the fact that the training set does not have enough cases for large
alues of 𝑑𝑠. The ‘‘problematic’’ predictions are those in the column
, since they lead to a bound smaller than the optimal size and thus
ASOL+ML would spend time looking for an optimal block but it will
ot find one. Those in column > will improve the performance of
ASOL+ML when they are smaller than the bound that GASOL uses
y default, and they will never diminish performance of GASOL+ML
ecause they are simply discarded in such case (Line 9 of Algorithm

1).
To summarize, procedure 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍(𝐬, 𝐥𝐛,𝐮𝐛,𝐎𝐛𝐣)

mplements component 7⃝ in Fig. 1 and is as follows: encode the block
𝐬 using E2, apply the corresponding model to obtain 𝑑𝑠, and return
𝑚𝑖𝑛(𝐮𝐛, 𝐥𝐛 + 𝑟𝑜𝑢𝑛𝑑(𝑑𝑠)).

Example 7. The bound 𝐬𝐳 returned by 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍(𝐬,16,
3, sb) for Block 2 of Example 1 is 22. This small difference between

𝐮𝐛 and 𝐬𝐳 avoids reaching the timeout of 20 s, as the search takes
12.01 s. The solution returned is: PUSH1 0x20 MUL ADD PUSH1 0x20
DUP4 SWAP3 ISZERO ISZERO SWAP2 ADD MSTORE MLOAD PUSH1 0x60
ADD MLOAD DUP1 MLOAD PUSH1 0x00 that saves 4 bytes in size (as it
removes 5 SWAPX instructions from the initial block and transforms a
DUP instruction into a PUSH1) and 15 gas.

Considering all blocks of Seaport using sb, there are 15 blocks for
which GASOL reaches the timeout limit. In addition, in 9 of them
GASOL is not able to find a solution. However, GASOL+ML is able
to handle them, finding a solution for the 9 blocks, and proving the
optimality for the remaining 6. For all of them, the predicted bound 𝐬𝐳
is smaller than 𝐮𝐛. Indeed, it holds for 187 blocks. For 1209 blocks, 𝐬𝐳
and 𝐮𝐛 have the same value. In 13 blocks, the predicted bound 𝐬𝐳 is too

M.A. Aguiar et al.

w
b

u

i
t
i
t
E

s
G

3

t
a
s
g
f
p
s
w
S
w
c
u
s

a

o
t
p
t
i
p

s
S

A
t
p
0
o
(
e

i
t
e
(
a
t
e
i
o
n
a
t

Information and Software Technology 186 (2025) 107800
small making the SMT encoding unsatisfiable, and losing 10 bytes that
ere saved by GASOL. Despite this fact, GASOL+ML is able to save 96
ytes more than GASOL.

5. Experimental evaluation

This section reports on GASOL+ML, our implementation of NGS
within the GASOL system [12]. GASOL5 is implemented in Python and
ses OptiMathSAT [23] version 1.7.3 as Max-SMT solver. The new

ML-layout has been built on top of GASOL and it allows executing
the two learned models described in Section 4. Our ML-layout is also
mplemented in Python using PyTorch [34] and its source code for
he ML modules as well as the smart contracts analyzed are available
n a separate repository.6 To experimentally assess the efficiency/effec-
iveness and impact of NGS, we downloaded (using BigQuery [35] and
therscan [32]) two different sets of contracts:

1. The 100 most-called contracts deployed on Ethereum (hence the
most relevant ones to be optimized) whose source code was
available and were compiled with version 0.8 of solc

2. 1000 contracts randomly selected from the contracts deployed
throughout 2023, whose source code meets the same require-
ments as for the previous set.

We compiled them again using the same setting as for the training
et of Section 4.3. Then, we optimized these contracts combining
ASOL with the different ML models for both objective functions. All

experiments have been performed on an AMD Ryzen Threadripper PRO
995WX 64-cores and 512 GB of memory, running Debian 5.10.70. In

what follows we refer to the model of Section 4.4 as the classifier, and
the model of Section 4.5 as the bound predictor.

Our experimental evaluation addresses four research questions:

RQ1: Which gains does NGS bring over plain superoptimization?
RQ2: How should GASOL+ML be leveraged to an industrial setting

using the introduced techniques?
RQ3: Which type of blocks are filtered by the classifier? How is the

outcome affected by the bound predictor?
RQ4: What is the impact of NGS in the Ethereum blockchain?

To address RQ1, Figs. 5 and 6 show the overall results when
optimizing wrt. sb and gc resp. for different combinations of models,
imeouts and datasets. The results are similar for both datasets, thus we
re focusing on the results for dataset (1). These figures include the time
pent in minutes (left) and the gains in number of bytes and units of
as (right) resp. that correspond to 𝐠 in Line 10 of Algorithm 1. In these
igures, we analyze different model configurations (enabling the bound
redictor or the classifier, both or neither), alongside different timeout
ettings. These settings follow the formula 𝑁 ⋅ (1 + #𝚂𝚃𝙾𝚁𝙴) seconds,
hich is the default timeout formula in GASOL (since in many cases,
TORE opcodes define subsequences that turn out to be independent
rt. the optimization). Moreover, the top 𝑥-axis and in-bar percentages
ompare the gains and overhead relative to the default configuration
sed in GASOL, (𝑡 = 10 s,∅); and with the configuration with the
ame timeout and no model enabled (𝑡 = 𝑁 𝑠,∅), resp. For instance,

Fig. 5 (upper-left) shows that configuration (𝑡 = 2 s, 𝚋+𝚘𝚙𝚝) for dataset
(1) reduces the overall time to 8.04% compared to the configuration
(𝑡 = 10 s,∅) for sb, which can be followed from the corresponding bar
being between 5 − 10% wrt. the top axis; while reducing it to 26.4%
compared to (𝑡 = 2 s,∅).

By looking at the percentages inside the bars, we see that the
configurations that include the classifier reduce the overall time to
t least to 40% (for size) and a half (for gas) while preserving more

5 https://github.com/costa-group/gasol-optimizer.
6 https://github.com/costa-group/gasol_ml.
10
than 95% of the gains. The impact the bound predictor has is more
subtle, but yet very prominent. The gains in categories that only include
𝚋 (green bars) are always over 100% compared to the configuration
with no model and same timeout. This happens because, in general,
with the original upper-bound 𝐮𝐛, the solver reaches the time out
with a worse solution (if any) than when using a smaller ML-bound
𝐬𝐳 (since the search space is larger). For smaller timeouts, this is even
more relevant because the timeout is reached earlier. Thus, to answer
RQ2, our approach is to decrease the default timeout in GASOL and
include the new ML techniques, similar to setting (𝑡 = 2 s, 𝚋+𝚘𝚙𝚝). The
median time GASOL spends optimizing a contract in this setting for
both datasets is ∼2 min and the maximum is ∼19 min. In the Ethereum
ecosystem, we consider them to be reasonable times because of the
reasons listed in Section 1.

As already mentioned, we found out that a significant amount of
blocks from the evaluation sets already appeared in the dataset of
Section 4.3, when in principle they are completely unrelated sets of
smart contracts (downloaded in different dates and using different
forms of selection criteria, namely the dataset of Section 4.3 are from
the three different days and the others are either the most used or
contracts throughout 2023). Therefore, in order to check the validity
f our evaluation, we reproduced the tables in this section just for
he subset of non-repeated blocks and obtained results which are
roportionally similar to the ones with repetitions, which confirms
he relevance and validity of our experiments. Block repetitions are
nherent to the Ethereum setting, mainly due to two reasons. There exist
opular standards (e.g., ERC20 [36], ERC721 [37] or OpenZeppelin

contracts [38]) that are widely adopted in smart contracts. Besides, solc
tends to repeat similar block patterns in all contracts to handle specific
ituations. For instance, similar blocks (according to the encoding of
ection 4.2) are used to select which function has been called in

a transaction. Our findings show that there are few blocks that are
repeated a huge amount of times but lead to no savings and very little
overhead, while most gains and overhead comes from the blocks that
are repeated fewer times or none. Hence, ML techniques are important
to deal with challenging blocks.

Fig. 7 dives further into how the optimization outcomes are affected
by the different configurations in order to address RQ3. The classifier
filters out ∼80% blocks for both criteria. Most filtered blocks are from
lr, which decreases from nearly ∼70% to less than 1%. It also reduces

he blocks in Tout nearly by a third in all configurations. The bound
redictor only leads to unsatisfiable SMT problems in 0,4% for sb and
.7% for gc configurations, which means very few blocks cannot be
ptimized due to an unsound bound. For categories (𝑡 = 1 s,∅) and
𝑡 = 1 s, 𝚋), it also increases significantly the amount of blocks in Optim,
xplaining why savings are more significant in these configurations.

Finally, Table 2 shows the percentage that savings in Figs. 5 and 6
represent wrt. the original sizes and an estimation on the gas consump-
tion of all smart contracts resp. for datasets (1) and (2). For instance, for
(𝑡 = 10 s, 𝚋+𝚘𝚙𝚝) we have reduced the size of the bytecode by 1.91% in
dataset (1) (this is computed as 17,810/930,677*100, where 930,677
s the total size of the bytecode of the 100 contracts). To estimate
he overall gas consumption, we have assumed that each instruction is
xecuted once and that relevant instructions whose gas cost is dynamic
e.g., STORE) have the most usual gas cost. To assess the impact of the
pproach, let us observe the savings for gc in dataset (1) (0.1–0.2%), as
hey comprise a large number of transactions. They are as one would
xpect when optimizing stack-manipulating bytecode as their gas cost
s small when compared to other non-stack operations. However, in
rder to understand their great impact in the overall blockchain, we
eed to consider that such popular contracts manage millions of trans-
ctions. To answer RQ4, we have downloaded all transactions from
he 100 analyzed contracts as of block 17,226,4877 using Etherscan’s

7 Produced on 2023-05-10 12:36:23 AM +UTC.

https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol_ml

M.A. Aguiar et al. Information and Software Technology 186 (2025) 107800
Fig. 5. Time overhead (left) and size savings (right) for optimization wrt. sb for combinations of timeouts and models (Y-axis). The top row displays the results for dataset (1),
while the bottom row shows the results for dataset (2). 𝑡 = 𝑁 𝑠 expresses that the superoptimization halts after 𝑁 ⋅ (1 + #𝚂𝚃𝙾𝚁𝙴) seconds. ∅ (purple) represents no model has been
used; in 𝚋 (green) and 𝚘𝚙𝚝 (red) the bound predictor and the classifier is used resp. and 𝚋+𝚘𝚙𝚝 (blue) denotes the combination of both models. The bottom 𝑋-axis represents
the absolute value of the corresponding measure and the top 𝑋-axis represents the percentage of gains and overhead compared to (𝑡 = 10 s,∅). Each bar contains an additional
percentage that compares the corresponding configuration (𝑡 = 𝑁 𝑠, 𝑚) with (𝑡 = 𝑁 𝑠,∅).
Table 2
Overall savings for sb and gc for combinations of timeouts and models with datasets (1) and (2).

𝑡 = 10 s 𝑡 = 5 s 𝑡 = 2 s 𝑡 = 1 s
∅ b opt b+opt ∅ b opt b+opt ∅ b opt b+opt ∅ b opt b+opt

(1) sb 1.91 1.99 1.85 1.91 1.68 1.84 1.66 1.81 1.45 1.7 1.43 1.68 1.3 1.59 1.28 1.57
(1) gc 0.2 0.21 0.2 0.2 0.18 0.19 0.18 0.19 0.16 0.18 0.15 0.18 0.13 0.17 0.13 0.16

(2) sb 1.95 2.11 1.92 2.07 1.78 1.98 1.76 1.94 1.47 1.8 1.46 1.78 1.19 1.65 1.18 1.63
(2) gc 0.27 0.28 0.27 0.28 0.25 0.27 0.25 0.27 0.2 0.25 0.2 0.25 0.17 0.22 0.17 0.22
Python API [39], consisting of 41,106,276 transactions. Then we have
combined the transaction fee information with the price per Eth in
dollars in the corresponding day (downloaded from [40]), resulting
in $656.25M spent in transaction fees. Finally, we have removed the
costs inherently tied to the transactions (default 21,000 units of gas
fee plus the fee for sending the transaction data), which results in a
total of $509.1M of execution costs. Assuming these contracts were
deployed using setting (𝑡 = 2 s, 𝚋+𝚘𝚙𝚝), whose estimated gas savings are
0.18%; and considering these savings affect all transactions uniformly,
this translates to savings of $1.24M just on these 100 contracts, while
the average compilation time is around 3 min. Such a compilation time
is not far from the times of state of the art compilers when the higher
optimization options are activated on large code. Overall, we argue
that our experimental results prove the impact of NGS in the Ethereum
industry and its scalability wrt. plain superoptimization: it achieves
11
a speedup of 16x (12x for gas) by only losing ∼12% of optimization
(∼14% for gas), or a speedup of 3-4x while no optimization is lost.

6. Threats to validity

Concerning external threats to validity, there are two questions:
(1) whether our results for superoptimizing EVM code using super-
vised learning generalize to other code unrelated to Ethereum, and (2)
whether there are limitations on the EVM code we are able to analyze.
Let us start by discussing (1). We distinguish here between the superop-
timization framework and the learning add-ons. As regards the former,
its constituent components (for generating the loop-free sequences,
analyzing and transforming them and searching for the optimal) can
be developed for any other languages without requiring conceptual
changes. As a matter of fact, [41] applies this framework to superopti-
mize Wasm code. Regarding the ML add-ons, the main changes would

M.A. Aguiar et al. Information and Software Technology 186 (2025) 107800
Fig. 6. Time overhead (left) and gas savings (right) for optimization wrt. gc for combinations of timeouts and models. It follows the same notation as Fig. 5.
be on the encoding of the blocks for the corresponding code being
optimized. For other bytecode languages, our approach can be directly
used while higher-level languages would require a proper encoding.
As regards the optimization objective, both the 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙾𝚙𝚝𝚒𝚖𝚒𝚣𝚊𝚋𝚕𝚎

and 𝙿𝚛𝚎𝚍𝚒𝚌𝚝𝙱𝚕𝚘𝚌𝚔𝚂𝚒𝚣𝚎𝙱𝚘𝚞𝚗𝚍 use the gas consumption or the bytecode-
size to construct the models. However, the definition of the models
is generic and other cost models could be used without requiring any
change to them.

As regards (2), one limitation on the code we can handle could
be related to optimizing instructions whose arguments depend on the
code itself. However, GASOL accepts ‘‘EVM Assembly Format’’, an in-
termediate representation used by solc to represent EVM code without
instantiating concrete values for instructions whose arguments depend
on the code itself (such as jumps or CODECOPY). This representa-
tion includes all EVM instructions, along with new pseudo-instructions
that act as placeholders for these values — similar to the use of
labels in low-level languages. We have used this format in the exper-
imental section, as it allows direct comparison with EVM code.8 For
CODECOPY, two different instructions are used to express certain pa-
rameters: PUSH [$], which is replaced by the offset in the code to
copy; PUSH #[$], which is replaced by the size of the run-time code.
Additionally, for JUMP instructions, the format introduces the concept
of tags with numerical identifiers. These tags are unique and can be ref-
erenced using the instruction PUSH [tag] tag_id. The solc compiler

8 The complete list of assembly pseudo-instructions can be found at the fol-
lowing link: https://github.com/ethereum/solidity/blob/develop/libevmasm/
Assembly.cpp#L218.
12
allows reimporting this assembly format without further optimizations
by setting the flag ‘‘–import-asm-json’’ in the Command Line Interface;
or by providing the assembly code in the Standard JSON format. In
addition, the ‘‘EVM Assembly Format’’ stores the metadata code sepa-
rated from the deployment and runtime code. Relying on this pipeline
provides an additional layer of correctness, as we are effectively using
the same mechanisms as solc to instantiate these instructions. While
this format is specific to the Solidity language, code from other sources
can be easily adapted to it and further optimized.

The main internal threat concerns possible biases in the selection
of contracts, that could influence the quality of models and also the
relevance of precision/accuracy in the evaluation phase. However, this
threat is mitigated for the following reasons:

• Non-random selection of data. The contracts used both for
testing and validation (Section 4.3) and those used in the experi-
mental evaluation (Section 5) correspond to contracts deployed
in different dates. The contracts used in the training set and
validation set have been deployed in three different dates which
are 8 months apart. In order to study the impact of our approach
in a real setting, we downloaded the 100 most-called contracts
deployed on Ethereum whose source code was available and were
compiled with version 0.8 of solc. These contracts were deployed
between March 2021, 25 and Feb 2023, 14 in 92 different dates.
In addition, we have executed our approach on a second data
set (see Section 5). We have downloaded from Ethereum all the
contracts deployed in 2023 (from Jan 2023, 1 to Dec 2023, 31)
whose source code was available and that were compiled with the
version 0.8 of solc, and we select 1000 contracts randomly.

https://github.com/ethereum/solidity/blob/develop/libevmasm/Assembly.cpp#L218
https://github.com/ethereum/solidity/blob/develop/libevmasm/Assembly.cpp#L218

M.A. Aguiar et al. Information and Software Technology 186 (2025) 107800
Fig. 7. Optimality results for sb (left) and gc (right) for combinations of timeouts and models. The results for dataset (1) are shown in the top row, while those for dataset (2)
are in the bottom row. 𝑡 = 𝑁 𝑠 refers to the timeout formula 𝑁 ⋅ (1+ #𝚂𝚃𝙾𝚁𝙴). 𝚋, 𝚘𝚙𝚝, ∅, 𝚋+𝚘𝚙𝚝 denote whether the bound predictor, classifier, neither of them or both are enabled,
resp. Optim (brown) represents the percentage of blocks that found the optimal solution before reaching the timeout and improved the original block. Alr (green) is similar to
Optim but the optimal solution found did not improve the original block. Bet (orange) and Non (purple) are similar to Optim and Alr resp. but the timeout was reached and an
intermediate solution was found. Tout (yellow) corresponds to blocks that reached the timeout and no solution was found. Fil (blue) groups blocks filtered out by the classifier.
Unsat (red) represents blocks whose bound was too low, leading to an unsatisfiable SMT problem. The concrete percentage is shown inside the bar for those categories with a
higher number of blocks, as well as for Unsat category just right the bar (as long as it is > 0).
• Duplicated code. In order to avoid redundancies, we remove
duplicates in two different steps when considering the contracts
in the training set (see Section 4.3): (i) we remove those con-
tracts whose runtime compiled bytecode generated by solc is the
same and, (ii) we remove those EVM blocks that have the same
sequence of instructions (abstracting the corresponding constants
of the PUSHX instructions).

• Compiler version. The different versions of solc compiler used
to compiled the source code of the smart contracts and deployed
them on the blockchain may affect to the accuracy of our ap-
proach. However, despite the compiler version used to deploy the
contracts, we have recompiled them using the same version of
solc. Hence, we have described the results obtained by analyzing
the runtime bytecode generated with the version 0.8.19 of solc
for all the smart contracts.

7. Related work

Massalin [6] coined the term ‘‘superoptimization’’ emphasizing the
idea that the technique is applied as a second layer after compilation.
It originally assumed that the input program was written in machine
language and the optimization function is the length of the code. The
technique in [6] was defined as follows: The search finds the shortest
13
program that computes the same function as the source program by doing
an exhaustive search over all possible programs. The search space is defined
by choosing a subset of the machine’s instruction set, and the op-codes of
these instructions are stored in a table. Superoptimizer consults this table
and generates all combinations of these instructions, first of length 1, then
of length 2, and so on. Each of these generated programs is tested, and if
found to match the function of the source program, superoptimizer prints
the program and halts. By that time, there was no soundness guarantee
since testing was used to check program equivalence. Denali [42]
generalized the original technique to more complex objective functions
and proposed a goal-directed approach that encoded the semantics of
the original code to guide the search.

The use of SMT solvers in superoptimization was first proposed
in [9]. Since then, with the enormous advances on SMT, superopti-
mization has become a more tractable problem, and numerous tools
are emerging, including LLVM superoptimizers [10,18], Ethereum byte-
code superoptimizers [11,12], WebAssembly superoptimizer [16], and
recently superoptimization for Quantum circuits [43]. The main distin-
guishing features of the various tools are:

• Souper [18] has investigated the use of dataflow-based techniques
to speed up the process;

M.A. Aguiar et al.

f
p
o
s
i

t
b
s

p

c
t
O
u

i
–
R
G
t
i
d
C
&
M
W
s
i
F

c
i

Information and Software Technology 186 (2025) 107800
• ebso [11] has proposed the gas model of Ethereum smart con-
tracts as objective function; and a full SMT encoding of the EVM
bytecode semantics that is very hard to scale;

• GASOL [12] has proposed a pre-phase for which the bytecode
is first symbolically executed and optimized by applying peep-
hole optimizations so that the SMT search only focuses on the
stack operations and performs much more efficiently; item Green-
Thumb [8] applies different search techniques in parallel.

Another effort to scale superoptimization is [21] which consists in
ormulating the loop-free superoptimization task as a stochastic search
roblem. All such previous proposals for speeding up the process are
rthogonal and complementary to ours. The use of ML to speed up
uperoptimization has been also explored in [44]. In their case, learning
s used to decide which instructions are the most likely to appear in

the optimal solution so that the search is guided to use them. This is
fundamentally different from our proposal since we do not use ML in
he search but rather to predict external parameters. In the context of
ytecode optimization though, the most used instructions are typically
tack operations and we do not see much interest in the type of guided

search of [44] in this context. ML has been used in combination with
rogram synthesis [45] and static analysis [46]. As these methods differ

from supercompilation both in their goals and components, the ML
extension differs substantially as well.

8. Conclusions

This article leverages synergies of superoptimization and ML. On the
one hand, using ML directly to optimize code (i.e. replacing the exhaus-
tive search that superoptimization does by an ML-predicted optimized
ode) is unlikely to achieve as good results as using the SMT-search due
o the huge variety of code patterns that can appear in real programs.
n the other hand, trying to manually predict heuristic components
sed within a superoptimizer (i.e., size bounds for the optimal solution)

will clearly lead to worse results than learning them from the results
gathered from thousands of examples. Our synergistic approach highly
contributes to transfer our tool to a real industrial context: it achieves a
speedup of 12–16x by only losing ∼12−14% of optimization (the range
varies according to the objective function), or a speedup of 3–4x while
no optimization is lost.

CRediT authorship contribution statement

Matheus Araújo Aguiar:Writing – review & editing, Writing – orig-
nal draft, Validation, Resources, Methodology. Elvira Albert: Writing
 review & editing, Writing – original draft, Validation, Software,
esources, Methodology, Formal analysis, Conceptualization. Samir
enaim: Writing – review & editing, Writing – original draft, Valida-

ion, Software, Resources, Methodology, Formal analysis, Conceptual-
zation. Pablo Gordillo: Writing – review & editing, Writing – original
raft, Validation, Software, Resources, Methodology, Formal analysis,
onceptualization. Alejandro Hernández-Cerezo: Writing – review
 editing, Writing – original draft, Validation, Software, Resources,
ethodology, Formal analysis, Conceptualization. Daniel Kirchner:
riting – review & editing, Writing – original draft, Validation, Re-

ources, Methodology. Albert Rubio: Writing – review & editing, Writ-
ng – original draft, Validation, Software, Resources, Methodology,
ormal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
14
Acknowledgments

This research has been funded partially by the Spanish MCI, AEI and
FEDER (EU) project PID2021-122830OB-C41, by the CM projects TEC-
2024/COM-235 and PR17/24 BOVIR, and by the Ethereum Foundation
under grants GASOL (no. FY21-0372) and FORVES (no. FY22-0698).

Data availability

Source code available at https://github.com/costa-group/gasol-opt
imizer.

References

[1] Live ethereum price, 2022, https://blockworks.co/price/eth.
[2] Uniswap protocol cumulative volume, 2023, https://dune.com/queries/2393272/

3926150.
[3] Uniswap trading volume, 2023, https://cryptopotato.com/uniswap-surpasses-1-

5t-trading-volume-data/.
[4] UniswapV3 contract, 2022, https://docs.uniswap.org/contracts/v3/overview.
[5] Uniswap V3 gas consumption, 2022, https://dune.com/k2rbpz/df12g3h4j3.
[6] H. Massalin, Superoptimizer - a look at the smallest program, in: Proceedings of

the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), 1987, pp. 122–126, http://dx.
doi.org/10.1145/36206.36194.

[7] S. Bansal, A. Aiken, Automatic generation of peephole superoptimizers, in: J.P.
Shen, M. Martonosi (Eds.), Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, ACM, 2006, pp.
394–403, http://dx.doi.org/10.1145/1168857.1168906.

[8] P.M. Phothilimthana, A. Thakur, R. Bodík, D. Dhurjati, Scaling up superoptimiza-
tion, in: T. Conte, Y. Zhou (Eds.), Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016, ACM, 2016, pp.
297–310, http://dx.doi.org/10.1145/2872362.2872387.

[9] A. Jangda, G. Yorsh, Unbounded superoptimization, in: Proceedings of the
2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2017, Vancouver, BC,
Canada, October 23 - 27, 2017, 2017, pp. 78–88, http://dx.doi.org/10.1145/
3133850.3133856.

[10] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja, J. Regehr, Souper:
A synthesizing superoptimizer, 2017, CoRR abs/1711.04422. arXiv:1711.04422.
URL http://arxiv.org/abs/1711.04422.

[11] J. Nagele, M.A. Schett, Blockchain superoptimizer, in: Preproceedings of 29th
International Symposium on Logic-Based Program Synthesis and Transformation,
LOPSTR 2019, 2019, https://arxiv.org/abs/2005.05912.

[12] E. Albert, P. Gordillo, A. Hernández-Cerezo, A. Rubio, A max-SMT superoptimizer
for EVM handling memory and storage, in: D. Fisman, G. Rosu (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held As Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 13243,
Springer, 2022, pp. 201–219, http://dx.doi.org/10.1007/978-3-030-99524-9_11.

[13] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of machine learn-
ing, Adaptive computation and machine learning, MIT Press, ISBN: 978-0-
262-01825-8, 2012, URL http://mitpress.mit.edu/books/foundations-machine-
learning-0.

[14] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[15] J. Nagele, M.A. Schett, Blockchain superoptimizer, in: Preproceedings of the 29th
International Symposium on Logic-Based Program Synthesis and Transformation,
LOPSTR 2019, 2019.

[16] J. Cabrera-Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, M.
Monperrus, Superoptimization of WebAssembly bytecode, in: A. Aguiar, S. Chiba,
E.G. Boix (Eds.), Programming’20: 4th International Conference on the Art,
Science, and Engineering of Programming, Porto, Portugal, March 23-26, 2020,
ACM, 2020, pp. 36–40, http://dx.doi.org/10.1145/3397537.3397567.

[17] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, 2025,
https://ethereum.github.io/yellowpaper/paper.pdf.

[18] M. Mukherjee, P. Kant, Z. Liu, J. Regehr, Dataflow-based pruning for speeding up
superoptimization, Proc. ACM Program. Lang. 4 (OOPSLA) (2020) 177:1–177:24,
http://dx.doi.org/10.1145/3428245.

[19] E. Albert, P. Gordillo, A. Rubio, M.A. Schett, Synthesis of super-optimized smart
contracts using max-SMT, in: S.K. Lahiri, C. Wang (Eds.), Computer Aided
Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I, in: Lecture Notes in Computer Science,
vol. 12224, Springer, 2020, pp. 177–200, http://dx.doi.org/10.1007/978-3-030-
53288-8_10.

https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://github.com/costa-group/gasol-optimizer
https://blockworks.co/price/eth
https://dune.com/queries/2393272/3926150
https://dune.com/queries/2393272/3926150
https://dune.com/queries/2393272/3926150
https://cryptopotato.com/uniswap-surpasses-1-5t-trading-volume-data/
https://cryptopotato.com/uniswap-surpasses-1-5t-trading-volume-data/
https://cryptopotato.com/uniswap-surpasses-1-5t-trading-volume-data/
https://docs.uniswap.org/contracts/v3/overview
https://dune.com/k2rbpz/df12g3h4j3
http://dx.doi.org/10.1145/36206.36194
http://dx.doi.org/10.1145/36206.36194
http://dx.doi.org/10.1145/36206.36194
http://dx.doi.org/10.1145/1168857.1168906
http://dx.doi.org/10.1145/2872362.2872387
http://dx.doi.org/10.1145/3133850.3133856
http://dx.doi.org/10.1145/3133850.3133856
http://dx.doi.org/10.1145/3133850.3133856
http://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://arxiv.org/abs/2005.05912
http://dx.doi.org/10.1007/978-3-030-99524-9_11
http://mitpress.mit.edu/books/foundations-machine-learning-0
http://mitpress.mit.edu/books/foundations-machine-learning-0
http://mitpress.mit.edu/books/foundations-machine-learning-0
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0950-5849(25)00139-9/sb15
http://refhub.elsevier.com/S0950-5849(25)00139-9/sb15
http://refhub.elsevier.com/S0950-5849(25)00139-9/sb15
http://refhub.elsevier.com/S0950-5849(25)00139-9/sb15
http://refhub.elsevier.com/S0950-5849(25)00139-9/sb15
http://dx.doi.org/10.1145/3397537.3397567
https://ethereum.github.io/yellowpaper/paper.pdf
http://dx.doi.org/10.1145/3428245
http://dx.doi.org/10.1007/978-3-030-53288-8_10
http://dx.doi.org/10.1007/978-3-030-53288-8_10
http://dx.doi.org/10.1007/978-3-030-53288-8_10

M.A. Aguiar et al. Information and Software Technology 186 (2025) 107800
[20] R. Sharma, E. Schkufza, B.R. Churchill, A. Aiken, Conditionally correct super-
optimization, in: J. Aldrich, P. Eugster (Eds.), Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, Part of SPLASH 2015, Pittsburgh,
PA, USA, October 25-30, 2015, ACM, 2015, pp. 147–162, http://dx.doi.org/10.
1145/2814270.2814278.

[21] E. Schkufza, R. Sharma, A. Aiken, Stochastic superoptimization, in: V. Sarkar, R.
Bodík (Eds.), Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, ACM, 2013, pp.
305–316, http://dx.doi.org/10.1145/2451116.2451150.

[22] L.M. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: C.R. Ramakrishnan, J.
Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, in: Lecture Notes in Computer
Science, vol. 4963, Springer, 2008, pp. 337–340, http://dx.doi.org/10.1007/978-
3-540-78800-3_24.

[23] A. Cimatti, A. Griggio, B.J. Schaafsma, R. Sebastiani, The MathSAT5 SMT
solver, in: Tools and Algorithms for the Construction and Analysis of Systems
- 19th International Conference, TACAS 2013. Proceedings, 2013, pp. 93–107,
http://dx.doi.org/10.1007/978-3-642-36742-7_7.

[24] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio, The
barcelogic SMT solver, in: Computer Aided Verification, 20th International
Conference, CAV 2008, Princeton, USA, July 7-14, 2008, Proceedings, 2008, pp.
294–298, http://dx.doi.org/10.1007/978-3-540-70545-1_27.

[25] Seaport contract, 2022, https://etherscan.io/address/
0x00000000006c3852cbef3e08e8df289169ede581#code.

[26] N. Grech, S. Lagouvardos, I. Tsatiris, Y. Smaragdakis, Elipmoc: advanced decom-
pilation of ethereum smart contracts, Proc. ACM Program. Lang. 6 (OOPSLA1)
(2022) 1–27, http://dx.doi.org/10.1145/3527321.

[27] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, Y. Smaragdakis, MadMax:
surviving out-of-gas conditions in ethereum smart contracts, Proc. ACM Program.
Lang. 2 (OOPSLA) (2018) 116:1–116:27, http://dx.doi.org/10.1145/3276486.

[28] N. Grech, L. Brent, B. Scholz, Y. Smaragdakis, Gigahorse: thorough, declarative
decompilation of smart contracts, in: J.M. Atlee, T. Bultan, J. Whittle (Eds.),
Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, IEEE / ACM, 2019, pp.
1176–1186, http://dx.doi.org/10.1109/ICSE.2019.00120.

[29] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, B. Scholz,
Vandal: A scalable security analysis framework for smart contracts, 2018, CoRR
abs/1809.03981. arXiv:1809.03981. URL http://arxiv.org/abs/1809.03981.

[30] E. Albert, M.G. de la Banda, A. Hernández-Cerezo, A. Ignatiev, A. Rubio, P.J.
Stuckey, Superstack: Superoptimization of stack-bytecode via greedy, constraint-
based, and SAT techniques, Proc. ACM Program. Lang. 8 (PLDI) (2024)
1437–1462, http://dx.doi.org/10.1145/3656435.
15
[31] E. Albert, P. Gordillo, A. Hernández-Cerezo, A. Rubio, M.A. Schett, Super-
optimization of smart contracts, ACM Trans. Softw. Eng. Methodol. (ISSN:
1049-331X) 31 Issue 4 (70) (2022) 1–29, http://dx.doi.org/10.1145/3506800.

[32] Etherscan, 2018, https://etherscan.io.
[33] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,

Y. Bengio, Learning phrase representations using RNN encoder-decoder for
statistical machine translation, in: A. Moschitti, B. Pang, W. Daelemans (Eds.),
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, a Meeting of
SIGDAT, a Special Interest Group of the ACL, ACL, 2014, pp. 1724–1734,
http://dx.doi.org/10.3115/v1/d14-1179.

[34] T.P. Team, PyTorch, http://pytocrh.org.
[35] BigQuery, 2023, https://cloud.google.com/bigquery.
[36] ERC-20 token standard, 2023, https://ethereum.org/en/developers/docs/

standards/tokens/erc-20/.
[37] ERC-721 non-fungible token standard, 2023, https://ethereum.org/en/

developers/docs/standards/tokens/erc-721/.
[38] OpenZeppelin contracts repository, 2023, https://github.com/OpenZeppelin/

openzeppelin-contracts.
[39] P. Kotsias, pcko1/etherscan-python, 2020, http://dx.doi.org/10.5281/zenodo.

4306855, URL https://github.com/pcko1/etherscan-python.
[40] EthereumPrice, 2023, https://ethereumprice.org/history/?start=2019-02-

28&end=2023-05-10¤cy=USD.
[41] J. Cabrera Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, M.

Monperrus, Superoptimization of WebAssembly bytecode, in: Companion Pro-
ceedings of the 4th International Conference on Art, Science, and Engineering
of Programming, Programming ’20, Association for Computing Machinery, New
York, NY, USA, ISBN: 9781450375078, 2020, pp. 36–40, http://dx.doi.org/10.
1145/3397537.3397567.

[42] R. Joshi, G. Nelson, Y. Zhou, Denali: A practical algorithm for generating
optimal code, ACM Trans. Program. Lang. Syst. 28 (6) (2006) 967–989, http:
//dx.doi.org/10.1145/1186633.

[43] M. Xu, Z. Li, O. Padon, S. Lin, J. Pointing, A. Hirth, H. Ma, J. Palsberg, A.
Aiken, U.A. Acar, Z. Jia, Quartz: superoptimization of quantum circuits, in: R.
Jhala, I. Dillig (Eds.), PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA, USA, June
13 - 17, 2022, ACM, 2022, pp. 625–640, http://dx.doi.org/10.1145/3519939.
3523433.

[44] S. Singh, M. Zhang, S. Khurshid, Learning guided enumerative synthesis for su-
peroptimization, in: F. Biondi, T. Given-Wilson, A. Legay (Eds.), Model Checking
Software - 26th International Symposium, SPIN 2019, Beijing, China, July 15-16,
2019, Proceedings, in: Lecture Notes in Computer Science, vol. 11636, Springer,
2019, pp. 172–192, http://dx.doi.org/10.1007/978-3-030-30923-7_10.

[45] A. Kalyan, A. Mohta, O. Polozov, D. Batra, P. Jain, S. Gulwani, Neural-guided
deductive search for real-time program synthesis from examples, in: 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net,
2018, URL https://openreview.net/forum?id=rywDjg-RW.

[46] B. Mariano, Y. Chen, Y. Feng, G. Durrett, I. Dillig, Automated transpilation of
imperative to functional code using neural-guided program synthesis, Proc. ACM
Program. Lang. 6 (OOPSLA) (2022) 1–27, http://dx.doi.org/10.1145/3527315.

http://dx.doi.org/10.1145/2814270.2814278
http://dx.doi.org/10.1145/2814270.2814278
http://dx.doi.org/10.1145/2814270.2814278
http://dx.doi.org/10.1145/2451116.2451150
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-540-70545-1_27
https://etherscan.io/address/0x00000000006c3852cbef3e08e8df289169ede581#code
https://etherscan.io/address/0x00000000006c3852cbef3e08e8df289169ede581#code
https://etherscan.io/address/0x00000000006c3852cbef3e08e8df289169ede581#code
http://dx.doi.org/10.1145/3527321
http://dx.doi.org/10.1145/3276486
http://dx.doi.org/10.1109/ICSE.2019.00120
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1809.03981
http://dx.doi.org/10.1145/3656435
http://dx.doi.org/10.1145/3506800
https://etherscan.io
http://dx.doi.org/10.3115/v1/d14-1179
http://pytocrh.org
https://cloud.google.com/bigquery
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
http://dx.doi.org/10.5281/zenodo.4306855
http://dx.doi.org/10.5281/zenodo.4306855
http://dx.doi.org/10.5281/zenodo.4306855
https://github.com/pcko1/etherscan-python
https://ethereumprice.org/history/?start=2019-02-28&end=2023-05-10¤cy=USD
https://ethereumprice.org/history/?start=2019-02-28&end=2023-05-10¤cy=USD
https://ethereumprice.org/history/?start=2019-02-28&end=2023-05-10¤cy=USD
http://dx.doi.org/10.1145/3397537.3397567
http://dx.doi.org/10.1145/3397537.3397567
http://dx.doi.org/10.1145/3397537.3397567
http://dx.doi.org/10.1145/1186633
http://dx.doi.org/10.1145/1186633
http://dx.doi.org/10.1145/1186633
http://dx.doi.org/10.1145/3519939.3523433
http://dx.doi.org/10.1145/3519939.3523433
http://dx.doi.org/10.1145/3519939.3523433
http://dx.doi.org/10.1007/978-3-030-30923-7_10
https://openreview.net/forum?id=rywDjg-RW
http://dx.doi.org/10.1145/3527315

	Neural-guided superoptimization in ethereum
	Introduction
	Background
	Neural-Guided Superoptimization
	Neural-Guided Superoptimization in Ethereum
	EVM Superoptimization (without ML)
	Encoding EVM Blocks for Learning
	The Training (and Validation) Data Set
	Learning a model for PredictOptimizable
	Learning a model for PredictBlockSizeBound

	Experimental Evaluation
	Threats to Validity
	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

