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SUMMARY

Concurrent objects form a well established model for distributed concurrent systems. In this concurrency
model, objects are the concurrency units which communicate among them via asynchronous method
calls. This article presents a novel cost analysis framework for concurrent objects. Cost analysis aims
at automatically approximating the resource consumption of executing a program in terms of its input
parameters. While cost analysis for sequential programming languages has received considerable attention,
concurrency and distribution have been notably less studied. The main challenges of cost analysis in a
concurrent setting are: (1) Inferring precise size abstractions for data in the program in the presence of
shared memory. This information is essential for bounding the number of iterations of loops. (2) Distribution
suggests that analysis must infer the cost of the diverse distributed components separately. We handle this
by means of a novel form of object-sensitive recurrence equations which use cost centers in order to
keep the resource usage assigned to the different components separate. We have implemented our analysis
and evaluated it on several small applications which are classical examples of concurrent and distributed
programming.
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1. INTRODUCTION

Distribution and concurrency are currently mainstream. The Internet and the broad availability
of multi-processors radically influence software. Many standard desktop programs have to deal
with distribution aspects like network transmission delay and failure. Furthermore, many chip
manufacturers are turning to multicore processor designs as a way to increase performance in
desktop, enterprise, and mobile processors. This brings renewed interest in developing both new
concurrency models and associated programming languages techniques that help in understanding,
analyzing, and verifying the behaviour of concurrent and distributed programs.

One of the most important features of a program is its resource consumption. By resource,
we mean not only traditional cost measures (e.g., number of executed instructions, or memory
consumption) but also concurrency-related measures (e.g., number of tasks spawned, number of
requests to remote servers). Example 1 will illustrate these types of resources on a fragment of
our running example. Cost analysis (a.k.a. resource usage analysis) aims at statically inferring
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approximations of the resource consumption of executing the program. Automatically inferring
the resource usage of concurrent programs is challenging because of the inherent complexity of
concurrent behaviours.

In addition to traditional applications, like optimization [42], verification and certification of
resource consumption [16], cost analysis opens up interesting applications in the context of
concurrent programming. In general, having anticipated knowledge on the resource consumption
of the different components which constitute a system, is useful for distributing the load of work.
Upper bounds can be used to predict that one component may receive a large amount of remote
requests, while other siblings are idle most of the time. Also, our framework allows instantiating the
different components with the particular features of the infrastructure on which they are deployed.
Then, analysis can be used to detect the components that consume more resources and may introduce
bottlenecks. Lower bounds on the resource usage can be used to decide if it is worth executing
locally a task or requesting remote execution.

In order to develop our analysis, we consider a concurrency model based on the notion of
concurrently running (groups of) objects, similar to the actor-based and active-objects approaches
[35, 39, 1, 41, 28, 34]. These models take advantage of the concurrency implicit in the notion
of object in order to provide programmers with high-level concurrency constructs that help in
producing concurrent applications more modularly and in a less error-prone way. Concurrent objects
communicate via asynchronous method calls. Intuitively, each concurrent object is a monitor and
allows at most one active process to execute within the object. Scheduling among the processes of
an object is cooperative, i.e., a process has to release the monitor lock explicitly, except when it
terminates. Each object has an unbounded set of pending processes. In case the lock of a concurrent
object is free any process in the set of pending processes can grab the lock and start to execute
(hence process scheduling is non-deterministic).

Example 1 (notion of resource). Let us consider the concurrent method (which is part of our
running example that will be showed later) below. The notation f = o ! m(ē) is used to denote that
an asynchronous call m(ē) has been posted on object o and f is a future variable which allows us to
know if the execution of the asynchronous call has finished. In such case the result can be retrieved
by means of a get operation f.get. Also, we can synchronize the execution with the asynchronous
call by means of an await instruction, namely await f? is used to check if the asynchronous call
has finished, otherwise the processor can be released such that a task which was pending to execute
can take it.

Int process(Int pos) {
Fut〈Int〉 f;
Int i = 0;
Int res = 0;
while (i < elems) {

f = this ! hdRead(pos + i);
await f?;
res = this.update(res,f.get);
i = i + 1;

}
return res;

}

In the above method, elems is a class field. Our objective is to measure the resource consumption
of executing the above method. One crucial aspect will be to find out if field elems can be
modified at the await f? instruction. Observe that if the processor is released at the await and
another process that increases the value of elems takes the processor, the loop above might
not terminate. Our method relies on class invariants which contain information on the shared
memory at processor release points. By assuming that elems is not modified, we can now consider
different types of resources of interest. For instance, we can measure traditional cost measures like
number of executed instructions or memory consumption. In the former case, we will infer that
3 + elems ∗ (7 + hdReadinst + updateinst) instructions will be executed. In the expression, elems
corresponds to the maximum number of iterations of the loop, at each iteration 7 instructions are
executed (the loop condition, the two increments, two method invocations, the get and the await)
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and the number of instructions of executing methods hdRead and update, denoted hdReadinst

and updateinst respectively, are added as well. For simplicity, we ignore here the values of the
parameters. Besides, 3 instructions are executed outside the loop. The analysis will need to infer
also the cost of the methods hdRead and update and plug them in the expression above. As regards
memory consumption, new memory is not created in the loop, hence we would output an expression
of the form elems ∗ (hdReadheap + updateheap) which relies on the memory created by the invoked
methods (denoted hdReadheap and updateheap). Interestingly, we can also consider concurrency-
related measures like the number of tasks spawned. In the above method, we spawn one task
directly (but the method invocations might also spawn new tasks transitively). Therefore, we will
compute an expression of the form elems ∗ (1 + hdReadtasks + updatetasks) which relies on the
number of tasks spawned by the calls to hdRead and update. Observe that the types of resources we
have considered are platform independent (unlike WCET or energy consumption), i.e., they can be
inferred by inspecting the program, and the hardware on which the program will be executed can be
ignored. Platform dependent resources are beyond the scope of this work. �

1.1. Contributions

We propose a static cost analysis for concurrent objects, which is parametric w.r.t. the notion of
resource that can be instantiated to measure both traditional and concurrency-related resources. The
main contributions of this work are:

1. We present a flow-sensitive object-sensitive points-to analysis for concurrent programs which
adapts Milanova’s analysis framework [32] for Java to the concurrent object setting;

2. We introduce a sound size analysis for concurrent execution. The analysis is field-sensitive,
i.e., it tracks data stored in the heap whenever it is sound to do so; the accuracy of the field-
sensitive size analysis can be increased by means of class invariants [31] which contain
information on the shared memory;

3. We leverage the definition of cost used in sequential programming to the distributed setting
by relying on the notion of cost centers [33], which represent the (distributed) components
and allow separating their costs;

4. We present a novel form of object-sensitive recurrence relations which relies on information
gathered by the previous object-sensitive points-to analysis in order to generate the cost
equations. Interestingly, the resulting recurrence relations can still be solved to closed-form
upper/lower bounds using standard solvers for cost analysis of sequential programs;

5. We report on the SACO system, a prototype implementation of a cost analyzer for programs
written in ABS [27] (an Abstract Behavioural Specification language based on concurrent
objects).

It is recognized that performing the analysis on a high-level concurrency model, like the concurrent
objects model, makes verification more feasible. This is because analysis in concurrent systems
often needs to consider too many interleavings and thus ends up being limited to very small
programs in practice. We argue that our approach is of both practical and theoretical relevance.

This work is an extended and revised version of APLAS’11 [3]. Points 2 and 3 in the contribution
list can be considered as original contributions of the conference, while this journal paper has points
1 and 4 as original contributions, and also with an implementation of them (last point). However,
the treatment of fields in the size analysis (included in point 2 in the contribution list) has been
improved in this article.

1.2. Organization of the Article

The remainder of the article is organized as follows. Section 2 presents the syntax and semantics
of the language on which we develop our analysis. Section 3 defines the notion of cost for the
concurrent distributed programs that we aim at approximating by means of the resource analysis.

The next three sections present the resource-analysis framework in several steps. Our starting
point is a powerful cost analysis framework for sequential OO programs [7]. When lifting such
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framework to the concurrent and distributed setting, there are two main difficulties and novelties.
First, it is widely recognized that, due to the possible interleaving between tasks, tracking values
of data stored in the heap is challenging [13, 30]. In Section 5, we present the basic, novel, field-
sensitive size analysis for the concurrent setting.

The second difficulty is related to the fact that standard recurrence relations (in the sequential
setting) assume a single cost center which accumulates the cost of the whole execution. We
propose a novel form of recurrence relations which use cost centers to split the cost of the diverse
distributed components. This requires first the inference of object-sensitive points-to information
which approximates the set of objects which each reference variable may point. Section 4 adapts
the object-sensitive points-to analysis of Milanova [32, 37] to our setting. Then, the points-to
information gathered by the analysis allows us to define in Section 6 object-sensitive recurrence
relations which, together with the size abstractions, constitute the core of our analysis.

Section 7 presents SACO, a prototype implementation of our analysis, and evaluates it on a series
of typical applications of concurrent and distributed programming. Finally, Section 8 reviews the
related work and Section 9 recaps the main conclusions.

2. A LANGUAGE WITH CONCURRENT OBJECTS

The concurrency model of Java and C# is based on threads that share memory and are scheduled
preemptively, i.e., they can be suspended or activated at any time. To avoid undesired interleavings,
low-level synchronization mechanisms such as locks have to be used. Thread-based programs are
error-prone, difficult to debug, verify and maintain. In order to overcome these problems, several
higher-level concurrency models that take advantage of the inherent concurrency implicit in the
notion of object have been developed [35, 39, 26, 17, 31]. They provide simple language extensions
that allow programming concurrent applications with relatively little effort. Concurrent objects
[26, 17] form today a well established high-level model for distributed concurrent systems.

2.1. The Concurrency Model

For the sake of concreteness, we develop our analysis on a simple imperative language with
concurrent objects, which is the imperative subset of the ABS language [27]. However, our
techniques work for other languages that use actors (e.g., there are implementations of actor libraries
for Scala, Java, Erlang, among others). The central concept of this concurrency model is that of
concurrent object. Conceptually, each object has a dedicated processor and encapsulates a local
heap which is not accessible from outside this object, i.e., fields are always accessed using the this
object, and any other object can only access such fields through method calls. Concurrent objects
live in a distributed environment with asynchronous and unordered communication by means of
asynchronous method calls. Thus, an object has a set of tasks (i.e., calls) to execute and, among
them, at most one task is active and the others are suspended on a task queue.

Asynchronous method calls may be seen as triggers of concurrent activity, spawning new tasks
(so-called processes) in the called object. After asynchronously calling method m of object o
with arguments e, denoted by f := o ! m(e), the caller may proceed with its execution without
blocking on the call. Here f is a future variable which refers to a return value which has yet to
be computed. There are two operations on future variables, which control external synchronization.
First, await f? suspends the active task (allowing other tasks in the object to be scheduled) until
the future variable f has been assigned a value. Second, the value stored in f can be retrieved using
f.get, which blocks all execution in the object until f gets a value (in case it has not been assigned
a value yet).

Example 2 (syntax of ABS). Figure 1 shows the source code of our running example which
implements a simple file input stream (defined in class FileIS) that provides two different ways
of processing a file. The class contains three fields (defined as class parameters) which represent,
respectively, the name of the file fp, the length of the file lth, and the size of the block to be read from
the field blockS. Method readBlock reads file fp block by block (of sizes blockS) and sums the values
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class FileIS(String fp, Int lth, Int blockS) {
Int readBlock () {

Int res = 0; Int i = this.lth;
Int incr = 0; Int pos = 0;
while (i > 0) {
if (this.blockS > i) incr = i;
else incr = this.blockS;
Fut〈Int〉 f;
f = this ! readContent(pos,incr);
await f?;
res = res + f.get;
i = i - incr;
pos = pos + incr;

}
return res;

}
Int readOnce() {
Fut〈Int〉 f = this ! readContent(0,this.lth);
await f?;
return f.get;

}
Int readContent(Int pos, Int elems) {

Reader rd = new Reader (this.fp,elems);
Fut〈Int〉 f = rd ! process(pos);
await f?;
return f.get;

}
}// end class FileIS

class Reader(String fp, Int elems) {
Int hdRead(Int i){ · · · }
Int update(Int a, Int b){ · · · }
Int process(Int pos) {
Fut〈Int〉 f;
Int i = 0;
Int res = 0;
while (i < this.elems) {

f = this ! hdRead(pos + i);
await f?;
res = this.update(res,f.get);
i = i + 1;

}
return res;

}
}// end class Reader

main {
FileIS o1 = new FileIS("A.txt",20,2);
FileIS o2 = new FileIS("A.txt",20,3);
Fut〈Int〉 f1; Fut〈Int〉 f2;
∗©f1 = o1 ! readOnce();

f2 = o2 ! readBlock();
await f1?;
Int r1 = f1.get;
await f2?;
Int r2 = f2.get;

}

Figure 1. Running Example

retrieved using get. Method readOnce reads the whole file in just one invocation to readContent. The
latter method invokes method process of class Reader which reads and processes elems elements of
the file starting at position pos. Method hdRead represents the low-level access to the hard-disk and
method update performs some arithmetic operation on its arguments and returns an integer value.
We do not show the code of these methods as they are not relevant for the purpose of this article. �

2.2. A Rule-based Intermediate Language

To contextualize the formalization of the analysis in a simpler model, we develop our analysis on
an intermediate representation (IR) similar to those for Java bytecode and .NET [40, 7, 38, 18]. In
the IR, recursion is the only iterative mechanism and guards are the only form of conditional. In the
following, given any entity t, we use t̄ to denote the tuple 〈t1, . . . , tn〉. The compilation of a program
into the IR is done by building the CFG for the original program and representing each block in the
CFG by means of a rule. The following definition establishes the formal syntax of the IR.

Definition 1 (syntax of IR programs). A program in the IR consists of a set of classes C̄. Each
class C contains a set of fields f̄C and a set of procedures. A procedure m of class C is defined
by a set of guarded rules. A guarded rule for m has the form “r ≡ C.m(this, x̄, ȳ)← g , b̄.”, where
C.m(this, x̄, ȳ) is the head of the rule, this is the identifier of the object on which the method is
executing, g specifies the conditions for the rule to be applicable, and, b̄ is the rule’s body. Guards
g and instructions b ∈ b̄ are defined according to the following grammar:

b ::= x := rhs | this.f :=y | await x? | call(ct ,m(rec, x̄, ȳ))
g ::= true | x opR y
rhs ::= e | new C | x.get
e ::= null | this.f | x | n | x opA y
opR ::= <|>|=|6=|≥|≤ opA ::= + | − | / | ∗ ct ::= m | b
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where x and y denote variable names, f a field name, call(ct ,m(rec, x̄, ȳ)) a call to a method or
a block and n ∈ Z.

The first argument ct of a call call(ct ,m(rec, x̄ , ȳ)) can be either m or b. The identifier m is
used for asynchronous method calls whereas b is used for synchronous method calls or calls to
intermediate blocks. For instance, intermediate blocks can correspond to if-then-else statements or
loops; rec is a variable that refers to the receiver object. For synchronous method calls or calls to
blocks, rec is always this; the variables x̄ (respectively ȳ) are the formal parameters (respectively
return values). For methods, ȳ is either empty 〈〉 or contains a single output variable 〈y〉.

An instruction x = new C(̄t) in the target language, is represented in the IR by x := new C
followed by a call to the class constructor with the corresponding parameters t̄. For example,
assuming that the class C contains a field f of type integer, the instruction x = new C(2) will be
translated into x := new C, y := 2;Cinit(this, 〈y〉, 〈〉), where Cinit(this, 〈y〉, 〈〉)← this.f := y.

The translation from the high-level programs to the IR is (almost) identical to the translation of
Java (bytecode) to the IR in [7], where classes and fields in the IR are the same as in the original
program and each method m of a class C is represented in the IR by a single procedure named
C.m (the method entry). The other rules in the IR are intermediate procedures used only within the
method, with ct = b. The main method does not belong to any class. Without lack of generality,
we assume that method names are unique, and we omit C when referring to m. Furthermore, we
will omit those guards which are true. This happens in the rules corresponding to method entries.

Example 3 (CFG of an IR for the running example). Figure 2 depicts the IR (left) and the CFG
(right) of method readBlock. Loops are extracted in separate CFGs to enable compositional cost
analysis (e.g., the CFG at the bottom is the one for the while loop). The method is represented
by four procedures, readBlock, while, if and if c , which have a correspondence with blocks in the
CFG and the entry to the loop. Each procedure is defined by means of guarded rules. As notation
inp stands for 〈res, i , incr , pos〉 and out for 〈res, i , incr , pos〉. Guards in rules state the conditions
under which the corresponding blocks in the CFG can be executed. When there is more than one
successor in the CFG, we create a continuation procedure and the corresponding call in the rule.
Blocks in the continuation will in turn be defined by means of (mutually exclusive) guarded rules.
As a result of the translation, observe that all forms of iteration in the program are represented by
means of recursive calls. The unique parameter of the procedure readBlock is the reference to the
this object. When calling a block, we pass as arguments all local variables that are needed in the
block. The heap remains implicit. �

2.3. Operational Semantics

An object is of the form ob(o, C, h, 〈tv , b̄〉,Q), where o is the object identifier, C is its class name,
h is its local heap, 〈tv , b̄〉 is the execution context of the current task, being tv the table of local
variables and b̄ the sequence of instructions to be executed by the current task, and Q is the set of
pending tasks, being each of them an execution context. In the following we use ε to denote either
an empty sequence of instructions or an empty execution context. A heap h maps field names f̄C
declared in C to V = Z ∪ {null} ∪Objects , where Objects denotes the set of object identifiers. A
table of variables tv maps local variables to V. It contains the special entry ret to associate the return
variable of a method to the corresponding future variable. Future events have the form fut(fn, v)
where v ∈ V ∪ {⊥} and fn stands for a future variable identifier. The symbol ⊥ indicates that fn
does not have a value yet. For simplicity, we assume that all methods return a single value, while
intermediate blocks will often have several return values. An execution state (or configuration) S
has the form {a1, . . . , an}, where ai can be either an object or a future event. Execution states are
in fact represented as sets of objects and future events. In the following, we use the notation {a|S}
to denote the set {a} ∪ S.

The operational semantics is given in a rewriting-based style, where, at each step, a subset of the
state is rewritten according to the rules in Figure 3. Let us intuitively explain the semantics. Function
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readBlock(this, 〈〉, 〈r〉)←
res := 0 , i := this.lth,
incr := 0 , pos := 0 ,
call(b,while(this, inp, out)),
r := res.

while(this, inp, out)← i ≤ 0.
while(this, inp, out)← i > 0,
call(b, if (this, inp, out)).

if (this, inp, out)← this.blockS > i ,
incr := i,
call(b, ifc(this, inp, out)).

if (this, inp, out)← this.blockS ≤ i ,
incr := this.blockS,
call(b, if c(this, inp, out)).

if c(this, inp, out)←
call(m, readContent(this, 〈pos, incr〉, 〈f 〉)),
await f ?, v := f .get,
res := res + v , i := i − incr ,
pos := pos + incr ,
call(b,while(this, inp, out)).

Fut〈Int〉 f;

await f?;

res = res + f.get;

pos = pos + incr;

Int incr = 0;

Int pos = 0;

Int res = 0;

return res;
while(this, res, i, incr, pos);

f = this ! readContent(pos, incr);

i = i− incr;

yes

yes

no

incr = i

i>0

Int i = this.lth;

incr = this.blockS

this.blockS>i
no

Figure 2. The IR and CFG for method readBlock

evale evaluates an expression e with respect to a heap h and a table of variables in the standard way.
Note that the heap is required to evaluate expressions of the form this.f , that returns h(f) as result.
Function evalgd(g , tv) in rule 4 returns true iff g ≡ true or g ≡ x1 opR x2 and tv(x1) opR tv(x2)
holds. Finally, the evaluation of the conditions in await instructions is done by function evalaw .
In particular, in rules 9 and 10, this function behaves as follows: evalaw (x?, tv ,S) = true iff
tv(x) = fn and fut(fn, v) ∈ S and v 6= ⊥. The notation tv [x 7→ v] (respectively h[f 7→ v]) is used
for storing v in the local variable x (respectively field f ).

Rules 1 and 2 operate in the expected way. In rule 3, it can be observed that the table of
variables tv maps x to o1. Function newRef () is in charge of generating fresh object identifiers and
procedure newHeap(D,h1) creates a new mapping for fields in D, where each field is initialized
to either 0 or null. In rule 4, a call to a block is resolved by finding a matching rule and
adding its body to the sequence of instructions to be executed. The notation r ≡ p(this ′, x̄′, ȳ)←
g ′, b′1 , . . . , b

′
n � P stands for a fresh renaming of a rule in P except for output variables ȳ and

function newEnv(vars(r)− {ȳ}) creates a new mapping for variables in r except for ȳ which
remain the same, where each variable is initialized to either 0 or null. In general, given any entity t,
we use vars(t) to denote the set of variables occurring in t. Furthermore, tv2 = tv1[this ′ 7→ o, x̄′ 7→
tv(x̄)] defines a new mapping tv2 as tv2(this ′) = o, tv2(x̄′) = tv(x̄) and tv2(z) = tv1(z) otherwise.
Similarly, tv ∪ tv2 defines the following mapping: if x ∈ dom(tv) then (tv ∪ tv2)(x) = tv(x), and
(tv ∪ tv2)(x) = tv2(x) otherwise. It is used to extend a local variable table with the new variables
introduced by the block. As notation dom(tv) stands for the set of variables on which tv is defined.
When the execution of a block finishes (rule 6) the state is prepared to later apply rule 11 to select
a new task from the queue. The condition ret 6∈ dom(tv) in rule 6 ensures that execution does not
correspond to an asynchronous call (because they always have a return ret) but rather to a block or
a synchronous one.

Rule 5 deals with asynchronous method invocations. When an object o1 calls a method p(x̄), the
information required to execute the call is stored in the queue of the object identified by o1. Note that
parameter passing is done in the construction of tv3, where the entries for this ′ and x̄′ are assigned
a local copy of the value of the actual parameters rec and x̄, respectively. Objects are not directly
passed as parameters. Instead we pass the corresponding object identifier, which is unique. Function
newFut() generates a fresh future variable identifier. Observe that tv3 has the special entry ret to
store the relation between the future variable fn where the result is stored and the output parameter
y′. This future variable is initially undefined, thus fut(fn,⊥) is added to the state. When the method
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(1)
v = evale(e, h, tv)

{ob(o, C, h, 〈tv , x := e · b̄〉,Q)|S}; {ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q)|S}

(2)
v = tv(y)

{ob(o, C, h, 〈tv , this.f := y · b̄〉,Q)|S}; {ob(o, C, h[f 7→ v], 〈tv , b̄〉,Q)|S}

(3)
o1 = newRef (), newHeap(D,h1)

{ob(o, C, h, 〈tv , x := new D · b̄〉,Q)|S};
{ob(o, C, h, 〈tv [x 7→ o1], b̄〉,Q), ob(o1, D, h1, ε, ∅)|S}

(4)
r ≡ p(this ′, x̄′, ȳ)← g ′, b′1 , . . . , b

′
n � P , o ≡ tv(this), tv1 = newEnv(vars(r)− {ȳ}),

tv2 = tv1[this ′ 7→ o, x̄′ 7→ tv(x̄)], evalgd (g ′, tv2 ) = true

{ob(o, C, h, 〈tv ,call(b, p(this, x̄, ȳ)) · b̄〉,Q)|S}; {ob(o, C, h, 〈tv ∪ tv2, b
′
1 · · · b′n · b̄〉,Q)|S}

(5)

r ≡ p(this ′, x̄′, y′)← b′1, . . . , b
′
n � P, o1 ≡ tv(rec), fn = newFut(),

tv2 = newEnv(vars(r)), tv3 = tv2[this ′ 7→ o1, x̄
′ 7→ tv(x̄), ret 7→ (y′, fn)]

{ob(o, C, h, 〈tv ,call(m, p(rec, x̄, y)) · b̄〉,Q), ob(o1, D, h1, 〈tv1, b̄1〉,Q′)|S};
{ob(o, C, h, 〈tv [y 7→ fn], b̄〉,Q), ob(o1, D, h1, 〈tv1, b̄1〉, {〈tv3, b

′
1 · · · b′n〉} ∪ Q′), fut(fn,⊥)|S}

(6)
ret 6∈ dom(tv)

{ob(o, C, h, 〈tv , ε〉,Q)|S}; {ob(o, C, h, ε,Q)|S}

(7)
ret ∈ dom(tv), (y, fn) = tv(ret), v = tv(y)

{ob(o, C, h, 〈tv , ε〉,Q), fut(fn,⊥)|S}; {ob(o, C, h, ε,Q), fut(fn, v)|S}

(8)
fn = tv(y), v 6= ⊥

{ob(o, C, h, 〈tv , x := y.get · b̄〉,Q), fut(fn, v)|S};{ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q), fut(fn, v)|S}

(9)
evalaw (x?, tv ,S) = true

{ob(o, C, h, 〈tv ,await x? · b̄〉,Q)|S}; {ob(o, C, h, 〈tv , b̄〉,Q)|S}

(10)
evalaw (x?, tv ,S) = false

{ob(o, C, h, 〈tv ,await x? · b̄〉,Q)|S}; {ob(o, C, h, ε, {〈tv ,await x? · b̄〉} ∪ Q)|S}

(11)
b ∈ Q

{ob(o, C, h, ε,Q)|S}; {ob(o, C, h, b,Q− {b})|S}

Figure 3. Operational Semantics

returns a value (rule 7), the entry ret is used to look for the corresponding future variable and ⊥ is
updated with the returned value.

Rule 9 checks if a future variable is ready. In such case the computation proceeds. Otherwise, in
rule 10, the await task is introduced in the corresponding queue, and the processor is released.
The instruction get blocks the execution until the future variable has a value in rule 8. In rule
11 another task is dequeued (because the current one has terminated or released the processor).
Note that this rule is applicable after applying rules 6 and 7 which correspond, respectively, to the
complete execution of a block and a method, and rule 10 in which the processor is released.

We assume that executions start from a main method. Thus, the initial configuration is of the
form {ob(main,⊥,⊥, 〈tv0,call(b, main(this, 〈〉, 〈〉))〉, ∅)} where the local variables in tv are
initialized to their default values. Abusing notation, we use ⊥ to denote an empty heap and an
undefined class. The execution then proceeds by applying non-deterministically the execution steps
in Figure 3. It is non-deterministic both in task and object selection. The execution finishes in a final
configuration in which all events are either future events or objects of the form ob(o, C, h, ε, ∅).
Executions can be regarded as traces T of the form S0 ; S1 ; · · ·; Sn.
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Example 4 (a trace in the running example). Consider the main method of the running example
(Figure 1). After executing the constructors we reach a configuration with three objects:
{ob(main,⊥,⊥, 〈tvmain, b̄〉, ∅), ob(o1,FileIS , ho1

, ε, ∅), ob(o2 ,FileIS , ho2
, ε, ∅)}

where b̄ corresponds to the sequence of instructions from the mark ∗© on. After processing both
asynchronous calls (rule 5) consecutively, the new state takes the form:
{ ob(main,⊥,⊥, 〈tvmain[f1 7→ fn1, f2 7→ fn2], b̄′〉, ∅),

ob(o1,FileIS , ho1 , ε, {〈tvo1 , bodyo1 〉}), fut(fn1 ,⊥),
ob(o2,FileIS , ho2 , ε, {〈tvo2 , bodyo2 〉}), fut(fn2 ,⊥) }

where bodyo1 (respectively bodyo2 ) is the renamed body of method readOnce (respectively
readBlock). Furthermore, tvo1

(respectively tvo2
) stores the assignment tvo1(ret) = (f1, fn1)

(respectively tvo2(ret) = (f2, fn2)). When the event 〈tvo1 , bodyo1
〉 is extracted from the queue

of o1 (rule 11), its complete processing will replace fut(fn1,⊥) by fut(fn1, v) (rule 7), where v
is the value returned by the method readOnce. Then, rule 9 can be used to process the instruction
await f1? of the object main. At this point the new state will take this form:
{ ob(main,⊥,⊥, 〈tvmain[f1 7→ fn1, f2 7→ fn2], b̄′′〉, ∅),

ob(o1,FileIS , ho1
, ε, ∅), fut(fn1 , v),

ob(o2,FileIS , ho2
, ε, {〈tvo2

, bodyo2
〉}), fut(fn2 ,⊥) }

�

3. COST AND COST MODELS FOR CONCURRENT PROGRAMS

In this section we define the notion of cost we want to approximate by using static analysis. An
execution step is annotated as S ;b

o S ′, which denotes that we move from a state S to a state S ′
by executing instruction b in object o. Note that from a given state there may be several possible
execution steps that can be taken since we make no assumptions on task scheduling and object
selection. In order to quantify the cost of an execution step, we use a generic cost model. The
following definition formalizes the notion of cost model, where Ins stands for the set of instructions
b built using the grammar in Def. 1.

Definition 2 (cost model and cost of execution steps). A cost model M is a function defined as
M : Ins 7→ R. The cost of an execution step is defined asM(S ;b

o S ′) =M(b).

In the execution of sequential programs, the cumulative cost of a trace T is obtained by applying
the cost model to each step of the trace. In our setting, this has to be extended because, rather than
considering a single machine in which all steps are performed, we have a potentially distributed
setting, with multiple objects possibly running concurrently on different CPUs. Thus, rather than
aggregating the cost of all executing steps, it is more useful to treat execution steps which occur
on different computing infrastructures separately. With this aim, we adopt the notion of cost
centers [33], proposed for profiling functional programs. Since the concurrency unit of our language
is the object, cost centers are used to charge the cost of each step to the cost center associated to the
object where the step is performed. For a given set of object identifiers O and a trace T , we define a
restricted trace, T |O = {Si ;b

o Si+1 | Si ;b
o Si+1 ∈ T , o ∈ O} to denote the set of execution steps

that are attributed to the objects in O. Then, we can define the cost executed by a particular object
for a given trace:

Definition 3 (cost attributed to an object). Given a trace T , a cost modelM and an object identifier
o, we define the cost of T w.r.t.M attributed to o as:

C(T , o,M) =
∑

t∈T |{o}

M(t)

3.1. Examples of Cost Models

We consider platform independent cost models (e.g., worst-case execution time or energy
consumption are excluded). A cost model for approximating the number of executed instructions
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can be defined as Mi(b) = 1, for all b ∈ Ins . Note that also calls of the form call(b, _) count
1. This is because the call either corresponds to a synchronous call or to a call block requiring the
execution of a guard. By ’_’, we mean any (valid) expression.

Other interesting cost models can be defined. For instance, a cost model that counts the total
number of objects created along the execution can be defined as Mo(b) = 1 if b ≡ new C
and Mo(b) = 0 otherwise. Since objects are the concurrency units, this cost model provides
an indication on the amount of parallelism that might be achieved. A cost model that counts
call(m, _), can be used to infer the number of tasks that are spawned along an execution. We can
also count the number of calls to specific methods or objects, e.g., by counting call(m, _(o, _, _))
we obtain bounds on the number of requests to a component o. This is useful for approximating the
components’ load and finding optimal deployment configurations (e.g., group objects according to
the amount of tasks they receive to execute, by also taking into account the infrastructure on which
they are deployed). The above cost models can also be used to prove termination of the program
by setting the underlying solver [4] to only bound the number of iterations in loops. It is customary
to have a cost model for memory consumption. The ABS language has a functional sub-language
used to create data types. Hence in our actual implementation, the memory consumption cost model
counts the sizes of constructed terms, and the sizes of the objects which are not intended to be
concurrency units.

4. POINTS-TO ANALYSIS FOR CONCURRENT PROGRAMS

The aim of points-to analysis is to approximate the set of objects which each reference variable
may point to during program execution. An analysis is object-sensitive [32, 37] if methods may be
analyzed separately for different (sets of) objects on which they are invoked. More precisely, the
analysis uses a finite set of object names to partition the (possibly infinite) set of objects allocated
at runtime into contexts which are analyzed separately.

This section presents a flow-sensitive object-sensitive points-to analysis for concurrent programs.
It is based on Milanova’s analysis framework [32] for Java. As Milanova’s analysis is flow-
insensitive, it is sound for concurrent programs because it implicitly considers all possible
interactions and interleavings between tasks that may happen in a concurrent program. However,
our proposed analysis is flow-sensitive since for the inference of the object-sensitive recurrence
relations in Section 6, it is fundamental to track flow-sensitive relations among objects.

It is known that flow-sensitive analysis of concurrent programs is challenging due to the
complexity of their flow. All possible task interleavings must be considered in order to develop
a sound analysis. As our contribution in this regard, we extend the analysis of [32] to make it flow-
sensitive in the presence of concurrent behaviours. The concurrency model guarantees that both
fields and local variables can only be modified locally in the active task (i.e., in a flow-sensitive
way) until the processor is released. At such release points, the values of local variables cannot be
changed, whereas the state of the fields might be modified by other tasks. The main idea of our
approach is to keep the flow-sensitive and the flow-insensitive abstractions separate. Besides, as we
will see in the analysis, not all information on fields has to be lost. By keeping track of the values of
the reference this, we can notably reduce information loss.

4.1. The Abstract Domain

The term allocation site refers to program points in which objects are created by executing a new
instruction. Let S={1, . . . , n} be the set of all allocation sites in a program. Given q ∈ N, where
1 ≤ q ≤ n, we define the set Sq as:

Sq = {s ≡ 〈i1, . . . , ip〉 | ij ∈ {1, . . . , n}, 1 ≤ j ≤ p, |s| = q}
where |s| stands for the number of elements in the tuple 〈i1, . . . , ip〉. Now, given a constant k ∈ N,
the analysis considers a finite set of object names, denotedN k, which is defined asN k = {os | os ≡
ε ∨ s ∈ Sq, 1 ≤ q ≤ k}.
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For example, if S={1, 2}, then S1={〈1〉, 〈2〉}, S2={〈1, 1〉, 〈2, 2〉, 〈1, 2〉, 〈2, 1〉} and N 2 =
{ε, o〈1〉, o〈2〉, o〈1,1〉, o〈2,2〉, o〈1,2〉, o〈2,1〉}. Note that k defines the maximum size of sequences of
allocation sites, and it allows controlling the precision of the analysis. Allocation sequences have
in principle unbounded length and, thus, to ensure termination it is sometimes necessary to lose
precision during analysis. This is done by just keeping the k rightmost positions in sequences whose
length is greater than k. We define the operation ⊕k as:

〈i1, . . . , ip〉 ⊕k i =

 〈i〉 k = 1
〈i1, . . . , ip, i〉 k > 1 ∧ |〈i1, . . . , ip, i〉| ≤ k
〈i(p+2)−k, . . . , ip, i〉 k > 1 ∧ |〈i1, . . . , ip, i〉| > k

Note that a variable in a program can be assigned objects with different object names. In order
to represent all possible objects pointed to by a variable, sets of object names are used. Given a
program, the set S of all allocation sites for it and k ≥ 0, the abstraction of an object created in
the program is an element of N k. Furthermore, o〈i1,...,ip〉 represents all run-time objects that were
created at program point ip when the enclosing instance method was invoked on an object which
was in turn created at program point ip−1.

As notation, we use V to represent the set of all possible reference local variables that may occur
in a program and F∗ to represent all possible pairs (os, f) which denote all possible accesses to the
reference field f through the objects os ∈ N k. In what follows, such pairs are represented as os.f .

Following Milanova’s approach, context sensitivity is achieved by maintaining multiple replicas
of each reference variable x for each possible context in which x may be used for calling a method.
Let x be a local variable and o an object name to which this may point to, we use the fresh variable
name xo to store the analysis information for x and context o. We drop the superscript o when it is
not relevant. The set of replicas is defined byR : V ×N k 7→ V∗, where V∗ = {xo | o ∈ N k, x ∈ V}.

Definition 4 (points-to abstract state). An abstract state is a tuple 〈φ, θ〉 where φ is a mapping
φ : V∗ ∪ F∗ 7→ ℘(N k), and θ is a mapping θ : F∗ 7→ ℘(N k).

In an abstract state 〈φ, θ〉, φ(xo) is the set of object names that represents the flow-sensitive
information regarding all possible objects that may be assigned to the local variable x when this
points to the object name o, and analogously for φ(o.f); and θ(o.f) is the set of object names that
represents the flow-insensitive information regarding all possible objects that may be assigned to
the field f for the object name o.

The abstract domain is the lattice 〈AS ,>,⊥,t,v〉, where AS is the set of abstract states
and > is the top of the lattice defined as 〈φ>, θ>〉 s.t. ∀xo ∈ V∗, φ>(xo) = N k, and ∀o.f ∈
F∗, φ>(o.f) = θ>(o.f) = N k. The bottom element of the lattice is ⊥, i.e., ∀xo ∈ V∗, φ⊥(xo) =
∅, ∀o.f ∈ F∗, φ⊥(o.f) = θ⊥(o.f) = ∅. Given two abstract states 〈φ1, θ1〉 and 〈φ2, θ2〉, we use
〈φ, θ〉 = 〈φ1, θ1〉 t 〈φ2, θ2〉 to denote that 〈φ, θ〉 is the least upper bound, defined as ∀xo ∈
V∗, φ(xo) = φ1(xo) ∪ φ2(xo) and ∀o.f ∈ F , φ(o.f) = φ1(o.f) ∪ φ2(o.f) and θ(o.f) = θ1(o.f) ∪
θ2(o.f). Similarly, 〈φ1, θ1〉 v 〈φ2, θ2〉 holds iff ∀xo, φ1(xo) ⊆ φ2(xo) and ∀o.f ∈ F∗, φ1(o.f) ⊆
φ2(o.f) and θ1(o.f) ⊆ θ2(o.f).

4.2. The Transfer Function

Our proposed analysis is a standard forward analysis that assigns an abstract state to each program
point by relying on a transfer function defined as follows.

Definition 5 (points-to transfer function). Given a set of object namesN k, the set of abstract states
AS and the set of instructions in the program Ins , the points-to transfer function τ is defined as a
mapping τ : ℘(N k)× Ins ×AS 7→ AS computed according to the table in Figure 4.

We use This to represent the set of object names which currently approximate the value of this ,
namely φ(this). We assume that the considered instruction b is located at program point i (noted as
i :b in Figure 4), that x, y are reference variables and that f , g are reference fields. It is important to
note that modifications to local variables (rows 1-4) affect φ in a flow-sensitive way (i.e., updates
on variables overwrite the previous abstract value). Fields behave differently (row 5), since they
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i : b τ(This, b, 〈φ, θ〉)
(1) x := new C 〈φ[xl 7→ {l ⊕k i}], θ〉 ∀l ∈ This

(2) x := y 〈φ[xl 7→ φ(yl)], θ〉 ∀l ∈ This

(3) x := this.f 〈φ[xl 7→ φ(l.f)], θ〉 ∀l ∈ This

(4) x := null 〈φ[xl 7→ ∅], θ〉 ∀l ∈ This

(5) this.f := y 〈φ[l.f 7→ φ(yl)], θ[l.f 7→ φ(yl) ∪ θ(l.f)]〉 ∀l ∈ This
(6) call(b,m(this, z̄, ȳ) interp(〈φ, θ〉,This,m(this, z̄, ȳ))

(7) call(m,m(x, z̄, y) t{interp(〈φ, θ〉, φ(xl),m(x, z̄, y)) | l ∈ This}
(8) await x? 〈φ[l.f 7→ φ(l.f) ∪ θ(l.f)], θ〉 ∀l ∈ This, ∀f ∈ f̄C
(9) x := y.get 〈φ[xl 7→ φ(yl)], θ〉 ∀l ∈ This

(10) otherwise 〈φ, θ〉

Figure 4. Transfer Function (where l ≡ o〈i1,...,ip〉, l ⊕k i ≡ o〈i1,...,ip〉⊕ki, and f̄C is the set of fields of the
objects pointed to by This).

are replicated in both φ and θ. The mapping θ maintains global, flow-insensitive information for
fields, whereas φ keeps flow-sensitive local updates. At the beginning of a method (row 7) and at
release points (row 8) flow-insensitive information for fields is added to φ, as fields might have been
modified by other tasks. Calls to blocks (row 6) are handled by interp(〈φ, θ〉,This,m(this, z̄, ȳ)),
which (a) looks up the definition for block m, let us say m(this, z̄′, ȳ′)← . . ., (b) projects z̄ using
φ to fit the calling context of m, resulting in a new mapping φ′, (c) uses φ′ and θ to analyze m,
and (d) after the analysis, which can modify θ, gets the analysis output φ′′ and modifies φ to set the
new values for ȳ, namely φ[ȳl 7→ φ′′((ȳ′)l)]. Calls to methods (row 7) differ from calls to blocks
in two aspects: the abstract value of x, i.e., φ(xl), is used instead of This , and the values for all
fields of xl must be updated with θ for each r ∈ φ(xl) to produce the mapping φ′ to analyze m,
i.e., φ′[r.g 7→ θ(r.g)],∀r ∈ φ(xl),∀g ∈ f̄D, where D is the class of the objects referenced by xl. In
addition, the abstract value returned by the execution of a method is stored in the local future variable
y, in order to be retrieved by a get instruction (row 9). The analysis of loops requires iterating the
corresponding code several times until a fix-point is reached. The analysis merges abstract states at
join points (i.e., after if and at loop entries) using the join operation t, and thus the corresponding
abstract states can only grow, which in turn guarantees convergence of the analysis because the
abstract domain is finite. Note that the points-to analysis computes, for each program point i, a pair
〈φi, θi〉. When it is clear from the context, we will omit the sub-index i from 〈φ, θ〉.

Example 5 (points-to analysis on the running example). Figure 5 shows (part of) the result of
applying the points-to analysis to the running example with k = 2. This is the smallest k for which
no information is lost when handling object names. For simplicity, we omit tuples when it is clear
from the context, i.e., we use oi1...ip to denote o〈i1,...,ip〉. Brackets are also omitted in singleton
sets. Keeping track of the value of the this reference is crucial for the precision of the points-
to analysis. All object creations use the object name(s) pointed to by this to generate new object
names by adding the current allocation site. E.g., at program point 3©, this may be either this 7→ o1

or this 7→ o2; the new object names created are o13 and o23, respectively. Observe that we keep the
calling context as a superscript to the variable such that rdo1 denotes the abstract value for rd when
this is o1. The value of this within a method comes from the object name(s) for the variable used
to call the method. The example only shows φ from the transfer function, since only local variables
are changed. Assignments to field variables would affect θ accordingly, as mentioned above. �

The following example illustrates how points-to analysis deals with fields.

Example 6 (points-to analysis with reference fields). Figure 6 shows an example of the points-to
analysis used in a program with fields. The points-to analysis generates φ for each program point
as shown to the right, and θ = {oa.f 7→ {oab, oac}}. The program shown to the left first creates
an object of class C1 and then calls m1 and m2 on the newly created object. The variable f is a
reference field of class C1 and is modified at program points b© and c©. Therefore, at the end of the
points-to analysis, oa.f may refer to either oab or oac, as it is stated in θ. At the beginning of m1,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



13

IR Program φ
readBlock(this, 〈〉, 〈r〉)←
. . . ,
call(b,while(this, inp, out)),
r := res.

while(this, inp, out)← i ≤ 0.
while(this, inp, out)← i > 0,
call(b, if (inp, out)).

if (this, inp, out)← . . .
if (this, inp, out)← . . . ,
call(b, if c(this, inp, out)).

if c(this, inp, out)←
call(m, readContent(this, 〈pos, incr〉, 〈f 〉)),
. . . .

readOnce(this, 〈〉, 〈r〉)→
call(m, readContent(this, 〈0 , lth〉, 〈f 〉)),
await f?,
r := f .get.

readContent(this, 〈pos, elems〉, 〈r〉)→
3©Reader_init(〈fp, elems〉, 〈rd〉),
call(m, process(rd , 〈pos〉, 〈f 〉)),
await f?,
r := f .get.

main(this, 〈〉, 〈〉)→
1©FileIS_init(ob1, 〈”A.txt”, 20, 2〉, 〈〉),
2©FileIS_init(ob2, 〈”A.txt”, 20, 3〉, 〈〉),
call(m, readOnce(ob1 , 〈〉, 〈f1 〉)),
call(m, readBlock(ob2 , 〈〉, 〈f2 〉)).

{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o2}
{this 7→ o1}
{this 7→ o1}
{this 7→ o1}
{this 7→ o1}
{this 7→ {o1, o2}} r©
{this 7→ {o1, o2}, rdo1 7→o13, rd

o2 7→o23}
{this 7→ {o1, o2}, rdo1 7→o13, rd

o2 7→o23} p©
{this 7→ {o1, o2}, rdo1 7→o13, rd

o2 7→o23}
{this 7→ {o1, o2}, rdo1 7→o13, rd

o2 7→o23}
{this 7→ ε}
{this 7→ ε, ob1 7→ o1}
{this 7→ ε, ob1 7→ o1, ob2 7→ o2}
{this 7→ ε, ob1 7→ o1, ob2 7→ o2}
{this 7→ ε, ob1 7→ o1, ob2 7→ o2}

Figure 5. Points-to analysis results for the running example.

IR Program φ

main(this, 〈〉, 〈〉)→
a©w := new C1,
Cinit (w, 〈null〉, 〈〉),
call(m,m1(w, 〈〉, 〈〉)),
call(m,m2(w, 〈〉, 〈〉)).

m1(this, 〈〉, 〈r〉)←
b©y := new C2(),
+©this.f := y,
call(m,m3(this, 〈〉, 〈ff 〉)),
x := this.f,
∗©await ff ?,
r := 0.

m2(this, 〈〉, 〈〉)←
c© . . . , u := new C2,
this.f := u.

m3(this, 〈〉, 〈〉)←
. . . , z := this.f, . . .

{this 7→oε, woε 7→oa}
{this 7→oε, woε 7→oa}
{this 7→oε, woε 7→oa}
{this 7→oε, woε 7→oa}

{this 7→oa, oa.f 7→{oab, oac}}
{this 7→oa, oa.f 7→{oab, oac}, yoa 7→oab}
{this 7→oa, oa.f 7→oab, yoa 7→oab}
{this 7→oa, oa.f 7→oab, yoa 7→oab}
{this 7→oa, oa.f 7→oab, yoa 7→oab, xoa 7→oab}
{this 7→oa, oa.f 7→{oab, oac}, yoa 7→oab, xoa 7→oab}
{this 7→oa, oa.f 7→{oab, oac}, yoa 7→oab, xoa 7→oab}

{this 7→oa, oa.f 7→{oab, oac}}
{this 7→oa, oa.f 7→{oab, oac}, uoa 7→oac}
{this 7→oa, oa.f 7→oac, uoa 7→oac}

{this 7→oa, oa.f 7→{oab, oac}}
{this 7→oa, oa.f 7→{oab, oac}, zoa 7→{oab, oac}}

Figure 6. Points-to analysis for fields.

φ(oa.f) is set to the flow-insensitive information stored in θ, but local information stored in φ can
be constrained to {oab} at program point +©, as this.f is assigned a fresh object. Local information
for the field f is valid until a release point is reached at ∗©. Therefore, φ(x) is set to the local value
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for f , {oab}. From program point ∗© downwards, local information regarding f is updated with the
information in θ, as other methods might modify f in the await instruction, as it happens in m2.
Regarding m2 and m3, points-to information for f is initially set to the global information stored in
θ at the beginning of those methods, although it is constrained locally in m2 where f is assigned,
similarly as it is done in m1. �

The next theorem states the soundness of the analysis. To that end, let us assume that object
identifiers in the semantics are of the form 〈Oid , s〉, where Oid is a unique identifier and s
is the (unbounded) allocation sequence for the object. The semantics can be easily adapted
to these identifiers by setting the function newRef () for generating fresh object identifiers to
newRef (i , othis), where i is the program point where the object was created and othis is the
object identifier for this , i.e., othis = 〈Oid , l〉. This function returns a unique reference as a pair
〈Oid ′, l ⊕∞ i〉 (⊕∞ stands for unbounded allocation site concatenation). In order to relate the
concrete semantics to the results inferred by the points-to analysis, we use name(o) to refer to
the object name in N k that represents the concrete object identifier o. Concretely, name(o) is the
longest suffix of length at most k of the unbounded allocation sequence of o encoded in the object
identifier.

Theorem 1. Let P be a program, T ≡ S0 ; · · ·; Sn a trace, and 〈φi, θi〉 the result of the points-
to analysis for every program point i in P . For every trace step Sj ;i:b

o Sj+1, 0 ≤ j < n, and for
every object ob(o, C, h, 〈tv , _〉, _) ∈ Sj+1, the following holds:

a) name(o) ∈ φi(this);
b) If x ∈ dom(tv) is a local reference variable, tv(x) 6= null and s = name(tv(x)), then s ∈

φi(x
name(o));

c) If f ∈ dom(h) is a reference field of class C, h(f) 6= null and q = name(h(f)), then q ∈
φi(name(o).f).

5. FIELD-SENSITIVE SIZE ANALYSIS FOR CONCURRENT OO PROGRAMS

The objective of size analysis is to infer size abstractions which allow reasoning on how the sizes
of data change along a program’s execution, which is fundamental for bounding the number of
iterations that loops perform. Intuitively, the cost of executing a loop can be then obtained by
multiplying the cost of each iteration by the number of iterations that it performs. This processed
is formalized by means of the recurrence equations presented in Section 6 which integrate the size
relations computed in the section.

5.1. The Basic Size Analysis

We present the size analysis in two steps: we first recall the notion of size measure that maps
variables and values to their sizes; and we then present an abstraction which compiles instructions
into size constraints, keeping as much information on global data (i.e., fields) as possible, while still
being sound in concurrent executions.

Recall that the language on which we develop our analysis is deliberately simplified so that it only
considers numerical and reference types, and thus the size analysis that we present in this section
will also be restricted to such types. However, our implementation supports other data-types, in
particular String and user-defined algebraic data-types, that we omit for the sake of simplifying the
formal presentation. In Section 5.2, we comment on the additional bits required to handle these
types in the size analysis.

Size Measures. For numerical data, the size is the actual numerical value. On the contrary,
references require a more sophisticated treatment. A commonly used size measure is path-
length [38], which counts the number of elements of the longest chain of references that can be
traversed through the initial object (e.g., length of a list, depth of a tree, etc.). However, in our
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B αρ(B) ρ′

(1) x op y ρ(x) op ρ(y) ρ′=ρ
(2) x op′ y _ ρ′=ρ
(3) null | x | this.f | n 0 | ρ(x) | ρ(f) | n ρ′=ρ
(4) await x? ⊥ ρ′=ρ[f̄C 7→ fresh(f̄C)]
(5) x := y.get | x := e ρ′(x)=ρ(y) | ρ′(x)=αρ(e) ρ′=ρ[x 7→ fresh(x)]
(6) this.f := y ρ′(f)=ρ(y) ρ′=ρ[f 7→ fresh(f)]
(7) x := new C ρ′(x)=1 ρ′=ρ[x 7→ fresh(x)]
(8) call(b, q(rec, x̄, ȳ)) q(ρ(rec), ρ(x̄ · f̄C), ρ′(ȳ · f̄C)) ρ′=ρ[ȳ·f̄C 7→fresh(ȳ·f̄C)]
(9) call(m, q(rec, x̄, y)) q(ρ(rec), ρ(x̄), ρ′(y)) ρ′=ρ[y 7→ fresh(y)]

(10) otherwise true ρ′=ρ

where in case (1) op ∈ opR ∪ {+,−} and in (2) op′ ∈ {∗, /}

Figure 7. Abstract compilation. ABST(Bk:i, ρ)=〈αρ(Bk:i), ρ
′〉

context, objects are intended to simulate concurrent computing entities and not data structures.
Thus, it is not common that they affect the number of iterations that loops perform. Therefore,
ignoring their sizes is sound and precise enough in most cases. A slightly more precise abstraction
distinguishes between the case in which a reference variable points to an object (size 1) or to null
(size 0). The size of a future variable is the same as the size of the value it holds. This is sound since
such variables can be used only through get, and the instruction get blocks the execution until the
variable has a value.

Abstract Compilation. Modeling shared memory is a main challenge in static analysis of OO
programs. Our starting point is [5], which models fields as local variables when the field to be
tracked satisfies: (1) its memory location does not change; and (2) it is always accessed through
the same reference (i.e., not through aliases). Both conditions can often be proven statically and the
transformation of fields into local variables can then be applied for many fragments of the program.
If we ignore concurrency, this approach could be directly adopted for our language. However,
concurrency introduces new challenges.

Example 7 (treatment of fields in release points). Consider the loop in the readBlock method in
Figure 1. Ignoring the await instruction, the above soundness conditions (1) and (2) hold for the
field blockS, and hence, we can track it as if it was a local variable. In a concurrent setting, however,
while readBlock is executing, another task in the same object might modify blockS. Therefore, when
analyzing readBlock, we cannot assume that the value of blockS is locally trackable. For instance,
readBlock might introduce non-termination if we add a method void p() {blockS = blockS− 2; }
to class FileIS. When the await is executed inside the loop, method p might change the value of
blockS to a non-positive value, and thus the loop counter i would not decrement. �

Handling fields requires identifying program points at which the shared memory might be
modified by other tasks. This can happen when: (1) an await is explicitly executed, and thus
allows other tasks (of the same object) to run; and (2) an asynchronous invocation is issued, and
until the called method starts to execute, the fields of the called object may be modified by other
tasks. We refer to such program points as release points. The above observation suggests that in a
sequence of instructions not including await, the shared memory can be tracked locally. However,
the values in the shared memory when a method starts to execute may not be identical to those when
it was called. We first present a safe abstraction which loses all information at release points and at
method entries. In a second step we discuss accuracy improvements at the release points in Section
5.3.

An abstract state is a set of linear constraints whose solutions define possible concrete states.
This representation allows describing relations that are essential for inferring cost and proving
termination, e.g., the size of x decreases by 1 in two consecutive states. The building blocks for
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this representation are constraints that describe the effect of each instruction b on a given state. In
order to abstract instructions and guards, we use a mapping ρ from variables and field names to
constraint variables that represent their sizes in the state before executing it.

Definition 6 (abstract compilation). Let B be an instruction or a guard. We define its abstract
compilation ABST(B, ρ) w.r.t. a mapping ρ as 〈αρ(B), ρ′〉, where 〈αρ(B), ρ′〉 is computed according
to the abstraction in Figure 7.

Let us describe the abstraction of some selected instructions. First, note that, except for
method/block calls and await instructions, αρ(B) returns a constraint and ρ′ is a new mapping
that refers to the sizes in the state after executing B. In Figure 7, given the variables x1, . . . , xn
(respectively the fields f1, . . . , fn), function fresh(x1, . . . , xn) (respectively fresh(f1, . . . , fn))
returns n fresh variable names (respectively field names). In Line 5, the instruction x := e is
abstracted into the equality ρ′(x) = αρ(e), where αρ(e) is the size of e w.r.t. ρ. As mentioned before,
ρ′(x) (respectively ρ(x)) refers to the size of x after (respectively before) executing the instruction.
The abstraction of await at Line 4 “forgets” sizes of those fields f̄C of class C. This is because
they might be updated by other methods that take the control when the current task suspends. When
abstracting a call to a block in Line 8, the class fields f̄C are added as arguments in order to track their
values. However, when abstracting calls to methods (Line 9) the fields are not added. For methods,
they are not added because their values at call time might not be the same as when the method
actually starts to execute. Since we use linear constraints only, non-linear arithmetic expressions
(Line 2) are abstracted to a fresh constraint variable “_” that represents any value. A program P is
transformed into an abstract program Pα, that approximates its behaviour w.r.t. a size measure, by
abstracting its rules as follows.

Definition 7 (abstract compilation of a rule). Given r ≡ m(this, x̄, ȳ)← g , b1 , . . . , bn ∈ P , and an
identity map ρ0 over vars(r) ∪ f̄C , the abstract compilation of r is rα ≡ m(this, Ī, ρn+1(Ō))←
gα, bα1 , . . . , b

α
n where:

1. ABST(g , ρ0 )=〈gα, ρ1 〉, ABST(bi, ρi)=〈bαi , ρi+1〉, 1 ≤ i ≤ n;
2. If m is a block then Ī=x̄·f̄C and Ō=ρn+1(ȳ·f̄C); and
3. If m is a method then Ī=x̄ and O=ρn+1(y).

The size abstraction ABST(r) for the rule r is gα ∧ bα1 ∧ . . . ∧ bαn and C(ABST(r)) =
∧
bαi such that

bαi is a linear constraint.

Note that, according to line 8 in Figure 7, when abstracting a rule corresponding to a block (item
2 in Definition 7), we add the fields f̄C to the input parameters. In what follows, we sometimes
represent conjunctions of linear constraints ϕ1 ∧ . . . ∧ ϕn as sets of the form {ϕ1, . . . , ϕn}.

Once the abstract compilation of the rule has finished, the renaming ρn+1 coming from
ABST(bn, ρn) = 〈αρn(bn), ρn+1〉 is applied to the output variables and fields. However, when
abstracting a method rule (item (3)) fields are not considered in the head of the method. This matches
line 9 in Figure 7.

Example 8 (abstract compilation for the running example). The following is the abstract
compilation of the block rule ifc in Figure 2, where inp, out and F denote, respectively, the input
parameters res, i , incr , pos , the output parameters res′′, i′′, incr′, pos′′ and the fields fp, lth, blockS .
The substitution ρ0 stands for the identity mapping on this, inp, out and F . The number at the right
of each instruction indicates the line in Figure 7 used to compute the abstract compilation.
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ifc(this, 〈inp,F 〉, 〈out ,F
′′〉)← ρ0

a© readContent(this, 〈pos, incr〉, 〈f ′〉), fresh(f ) = f ′, ρ1 = ρ0 [f 7→ f ′] (9)
b© ⊥, fresh(F ) = F

′
, ρ2 = ρ1[F 7→ F

′
] (4)

v ′ = f ′, fresh(v) = v′, ρ3 = ρ2[v 7→ v′] (5)
res ′ = res+ v′ fresh(res) = res ′, ρ4 = ρ3 [res 7→ res ′] (5)
i′ = i− incr fresh(i) = i′, ρ5 = ρ4[i 7→ i′] (5)
pos′ = pos+ incr fresh(pos) = pos ′, ρ6 = ρ5 [pos 7→ pos ′] (5)

c© while(this, 〈res ′, i ′, incr , pos ′,F
′〉, ρ7 = ρ6[res 7→res ′′, i 7→i ′′, incr 7→incr ′,

〈res ′′, i ′′, incr ′, pos ′′,F
′′〉). pos 7→ pos′′, F̄ 7→ F̄ ′′] (8)

where in c©, function fresh(res, i , inc, pos, F̄ ) returns res ′′, i ′′, incr ′, pos ′′, F̄ ′′. Furthermore, the
output parameters of ifc are the result of applying ρ7 to res, i , incr , pos, fp, lth, blockS . According
to the abstraction in Figure 7, at b© await is abstracted to ⊥ and the information on fields is lost.
At c© the fields are added to the call in order to keep track of their values, however, when calling a
method at a©, the abstraction “forgets” this information.

Let us consider now method readBlock. The abstract compilation of the method results in:

readBlock(this, 〈〉, 〈r ′〉)← ρ0

res ′ = 0, fresh(res) = res ′, ρ1 = ρ0 [res 7→ res ′] (5)
i ′ = lth, fresh(i) = i′, ρ2 = ρ1[i 7→ i′] (5)
incr ′ = 0, fresh(incr) = incr ′, ρ3 = ρ2 [incr 7→ incr ′] (5)
pos ′ = 0 fresh(pos) = pos ′, ρ4 = ρ3 [pos 7→ pos ′] (5)
while(this, 〈res ′, i ′, incr ′, pos ′,F 〉, ρ5 = ρ4[res 7→ res ′′, i 7→ i ′′,

〈res ′′, i ′′, incr ′′, pos ′′,F
′〉), incr 7→ incr′′, pos 7→ pos′′, F̄ 7→ F̄ ′] (8)

r′ = res ′′. fresh(r) = r′, ρ6 = ρ5[r 7→ r′] (5)

where in ρ5, function fresh(res, i , incr , pos, F̄ ) returns res ′′, i ′′, incr ′′, pos ′′, F̄ ′. According to Def.
7, the head of the rule does not contain fields but the call to while does. �

An abstract program Pα basically abstracts the behaviour of the original program with respect
to a size measure α. An abstract state has the form A ◦ φ, where A ≡ {aα1 , . . . , aαn}, aαi is an
abstract object of the form 〈b̄α, ρ̄〉 and φ is a linear constraint. In order to formalize the operational
semantics for an abstract program, we modify the presentation of the abstract rules, by storing also
the renamings computed in Def. 6. Therefore abstract rules are now of the form p(rec, x̄ , ȳ)←
gα, bα1 , . . . , b

α
n ◦ ρ0 · · · ρn+1 , where ρ0, . . . , ρn+1 is the tuple of all renamings that were used during

abstract compilation of that specific rule.

The operational semantics for an abstract program is given by the transition system in Figure 8,
which simply accumulates the constraints (when possible) and proceeds to execute the calls in the
body of the rules. Rules (1)α and (2)α correspond to calls to blocks and methods respectively. In
both cases a renamed apart abstract rule is selected from Pα. For the sake of simplicity, we avoid
another renaming step, by assuming that the renamed apart rule is retrieved with the same input x̄
and output ȳ variables that appear in the call. Rules (4)α and (5)α correspond to the abstraction
of an await instruction since await is abstracted to ⊥ (see Figure 7). In particular, when an
await instruction is evaluated to true (rule (9)) the execution proceeds. This is simulated by rule
(4)α. Similarly, if the evaluation of the await instruction fails (rule (10)), then the context of the
suspended task is introduced in the queue of pending tasks for the current object. Hence, in rule
(5)α the abstraction ⊥ of the corresponding await is kept until the associated await succeeds
and rule (4)α can be applied.

Finally note that rules (6) and (7) in Figure 3 handle those cases in which an asynchronous
method or block call, respectively, have finished the execution. This fact is captured by rule (6)α
that, as done in rules (6) and (7), simply removes the abstract execution context. Note also that,
after applying rules (6) and (7), since the execution context is ε, rule (11) can be applied to select
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(1)α
p(this, x̄, ȳ)← gα, bα1 , . . . , b

α
n ◦ ρ0 · · · ρn+1 � Pα, gα ∧ φ 6|= false

{〈call(b, p(this, x̄, ȳ)) · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈bα1 · · · bαn · b̄α, ρ1 · · · ρn+1 · ρ̄〉|A} ◦ φ ∧ gα

(2)α
p(rec, x̄ , y)← bα1 , . . . , b

α
n ◦ ρ1 · · · ρn+1 � Pα

{〈call(m, p(rec, x̄, y)) · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b̄α, ρ̄〉, 〈bα1 · · · bαn, ρ1 · · · ρn+1〉|A} ◦ φ

(3)α
ϕ ∧ φ 6|= false

{〈ϕ · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b̄α, ρ̄〉|A} ◦ φ ∧ ϕ

(4)α
{〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈b̄α, ρ̄〉|A} ◦ φ

(5)α
{〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ;α {〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ

(6)α
{〈ε, ρ〉|A} ◦ φ;α {ε|A} ◦ φ

Figure 8. Semantics of Abstract Programs

some new task from the queue of the corresponding object for execution. In the case of the abstract
semantics, such task exists inside the abstract configuration and thus it can be selected at any time
of the computation. Finally, rule (3)α basically accumulates constraints whenever it is possible. The
notation ϕ ∧ φ 6|= false means that ϕ ∧ φ is satisfiable.

The following example shows briefly the correspondence between concrete and abstract traces. In
order to simplify the example, we ignore renamings in the abstract states and focus on the abstract
rules that we apply.

Example 9 (correspondence between concrete and abstract traces). Consider the following IR
program and its associated abstract compilation:

p(this, 〈z〉, 〈f〉)← p(this, 〈z〉, 〈f2〉)←
f := z + 1. f2 = z + 1.

main(this, 〈〉, 〈〉)← main(this, 〈〉, 〈〉)←
a := new A(), a1 = 1,
z := 4, z1 = 4,
call(m, p(a, 〈z〉, 〈f〉)) p(a1, 〈z1〉, 〈f1〉),
await f? ⊥.

Let us consider the following concrete trace (we show the numbers of the ;-rules applied only and
the resulting state):
{ob(main,⊥,⊥, 〈tvmain ,call(b,main(this, 〈〉, 〈〉)))〉, ∅)};∗ (4), (3), (1), (5)
{ob(main,⊥,⊥, 〈tv1

main ,await f?〉, ∅), ob(oa, A, h, ε, {〈tva, f3 := z2 + 1〉}),
fut(fn,⊥)}

the renaming used in rule (5) is p(this1, 〈z2〉, 〈f3〉)← f3 := z2 + 1 and tv1
main(a) = oa,

tv1
main(z) = 4, tv1

main(f) = fn, tva(this1) = oa, tva(z2) = 4, tva(ret) = (fn, f3). At this point,
we can easily build a ;α trace as follows:
{〈call(b,main(this, 〈〉, 〈〉)), _〉} ◦ true ;∗α (1)α, (3)α, (3)α, (2)α
{〈⊥, _〉, 〈f3 = z2 + 1, _〉} ◦ z = 4 ∧ z2 = 4

Suppose now that we apply rule (10) to the concrete trace on object main. Then, since the future
variable is not ready, the task execution context is introduced in the queue of object main, resulting
in:
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{ ob(main,⊥,⊥, ε, {〈tv1
main ,await f?〉}),

ob(oa, A, h, ε, {〈tva, f3 := z2 + 1〉}), fut(fn,⊥)}
The point now is that we can apply rule (5)α on the abstract state and obtain exactly the same
abstract state, i.e., we delay the abstract trace until the await succeeds. Let us apply rule (11)
on object oa in order to extract the unique task from its queue, followed by rule (1). The resulting
concrete state is:
{ob(main,⊥,⊥, ε, {〈tv1

main ,await f?〉}), ob(oa, A, h, 〈ε, tv1
a〉, ∅), fut(fn,⊥)}

where tv1
a(f3) = 5. On the abstract state we can apply rule (3)α to compute {〈⊥, _〉, 〈ε, _〉} ◦ z =

4 ∧ z2 = 4 ∧ f3 = z2 + 1. Note that rule (3)α corresponds only to the application of rule (1) in
Figure 3 but rule (11) has not correspondence with any abstract rule. This is because in abstract states
there no exists the notion of queue since all tasks are in the same pool. Hence steps corresponding
to the application of rule (11) are simply ignored by the abstract operational semantics. Finally, on
the concrete state, using rule (7), we can fix the value of the future variable as follows:
{ob(main,⊥,⊥, ε, {〈tv1

main ,await f?〉}), ob(oa, A, h, ε, ∅), fut(fn, 5)}
and afterwards apply rules (11), (9) and (6) and obtain:
{ob(main,⊥,⊥, ε, ∅), ob(oa, A, h, ε, ∅), fut(fn, 5)}

For the case of the abstract state, it is enough to apply, first rule (6)α (corresponding to the
application of rule (7)) to compute {〈⊥, _〉, ε} ◦ z = 4 ∧ z2 = 4 ∧ f3 = z2 + 1, afterwards rule (4)α
(corresponding to rule (9)) what results in {〈ε, _〉, ε} ◦ z = 4 ∧ z2 = 4 ∧ f3 = z2 + 1, and finally
rule (6)α to obtain {ε, ε} ◦ z = 4 ∧ z2 = 4 ∧ f3 = z2 + 1. �

We now establish the soundness of the abstract compilation with respect to the chosen size
measure α. Intuitively, we prove that the size of the variables in a given concrete trace is computed
in a corresponding abstract trace. As notation, given an object a ≡ ob(o, C, h, 〈tv , b̄〉,Q), we say
that 〈tv , b̄〉 is its active task (denoted by active(a)) and we define pending(a) = {tk | tk ∈ Q} as
the set of pending tasks of a. Thus, we define the set of tasks for an object a, denoted as tasks(a),
as {active(a)} ∪ pending(a). Finally, given an state S = {a1, . . . , an}, we define the set of tasks in
S, denoted as tasks(S), as ∪ni=1tasks(ai).

Definition 8 (relation between abstract and concrete states). Let S be a concrete state. We say that
an abstract state A ◦ φ approximates S, denoted as A ◦ φ ≈ S if an only if:

1. φ is satisfiable;
2. for all 〈tv , b1 · · · bn〉 ∈ tasks(S), from an object ob(o, C, h, _, _) ∈ S, there exists
〈bα1 · · · bαn, ρ1 · · · ρn+1〉 ∈ A and an assignment σ : vars(tv) ∪ f̄C 7→ Z such that
ABST(bi, ρi) = 〈bαi , ρi+1〉, 1 ≤ i ≤ n, σ |= φ and:

• For all x ∈ dom(tv) such that tv(x) ∈ Z, it holds that σ(ρ1(x)) = tv(x);
• For all f ∈ f̄C such that h(f) ∈ Z, it holds that σ(ρ1(f)) = h(f);
• For all y ∈ dom(tv), if tv(y) = fn, fut(fn, v) ∈ S and v 6= ⊥, then σ(ρ1(y)) = v.

Example 10 (equivalence between concrete and abstract traces). Consider the concrete and abstract
states in Example 9, corresponding to the same execution step:
{ob(main,⊥,⊥, ε, {〈tv1

main ,await f?〉}), ob(oa, A, h, ε, ∅), fut(fn, 5)}
{〈⊥, _〉, ε} ◦ φ

where φ = z = 4 ∧ z2 = 4 ∧ f3 = z2 + 1. Let us select σ such that σ |= φ, i.e., σ(z) = 4 = σ(z2),
and σ(f3) = 5. Then it holds that tv1

main(z) = 4 = σ(z) and σ(z2) = 4 = σ(z). Furthermore note
that since tv1

main(f) = fn and fut(fn, 5) belongs to the concrete state, σ satisfies that σ(f3) = 5. �

The following theorem establishes that given a concrete trace, we can generate an abstract trace
of the same length and instantiate it (i.e., give the integer values to all constraints variables using a
consistent assignment σ) in such a way that the size of a variable in the i-th concrete state coincides
with the value of the corresponding constraint variable in the i-th abstract state.
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Theorem 2 (soundness of abstract compilation). Let P be an IR program, Pα the abstract
compilation of P and S0 = {ob(main,⊥,⊥, 〈tv0,call(b, main(this, 〈〉, 〈〉))〉, ∅)} an initial
state. If S0 ;n Sn then there exists an abstract trace A0 ◦ true ;n

α An ◦ φn , such that A0 ≡
{〈call(b,main(this, 〈〉, 〈〉)), ρ0 · ρ1〉} and for all Si, it holds that φn |= φi and Si ≈ Ai ◦ φi,
0 ≤ i ≤ n.

5.2. Handling Strings and Algebraic Data-Types

As already mentioned, our implementation handles String and user-defined algebraic data-types
(e.g., lists, trees, etc). Below we describe how such types are handled in the size analysis. For
each case (1) we describe corresponding size measures that allow abstracting data of such types
to numerical values; and (2) we describe corresponding abstract compilation for instructions that
manipulate such types.

String data-type. Strings are abstracted to their length. This is a classical size measure that
allows bounding the number of iterations of loops that traverse strings. In the abstract compilation
phase, instructions that manipulate strings are abstracted to linear constraints that describe
relations between the lengths of the strings on which they operate. For example, the instruction
c = strapp(a, b), which concatenates strings a and b into a new one c, is compiled into the constraint
c = a+ b to indicate that the length of c is as the sum of the lengths of a and b. In addition, we add
the constraint a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 to indicate that the length is a non-negative measure. Other
string manipulating instructions are treated similarly.

Algebraic data-types. A classic size measure used for algebraic data-types, mainly in the context
of termination analysis, is the term-size norm [14] which abstracts data-structures to the number of
occurrences of type constructs in the data-structure. For example, the size of the list Cons(F(a, b),
Cons(F(a, c),Nil)) is 9, where each occurrence of a type construct from {Cons, Nil,F, a, b, c}
contributes 1. In the abstract compilation phase, instructions that manipulate data-structures are
abstracted to linear constraints that describe relations between the term-size of the data-structures
on which they operate. For example, the instruction ys := Cons(x, xs), which constructs a list whose
head is x and whose tail is xs, is abstracted to ys = 1 + x+ xs ∧ ys ≥ 0 ∧ x ≥ 0 ∧ xs ≥ 0. Our
implementation allows choosing between the term-size and the term-depth measure (which abstracts
data-structures to their depth in a similar way). Besides, a recent extension includes state-of-the-art
size measures that are automatically extracted from the user-defined types [12]. Such type-based
norms do not count all type constructs of a given data-structures, but rather only those that are
potentially traversed by loops. For example, the size of the list above would be 3 because it will
only count Cons and Nil, which would lead to a more precise bound for a loop that traverses this
list but not its internal elements. Moreover, our implementation allows using several type-based
size measures simultaneously, which in turn allows abstracting one data-structure using several size
measures. This is particularly useful when the different parts of a data-structure are traversed by
different parts of the program.

5.3. Class Invariants in Cost Analysis

The accuracy of the size analysis can be improved by using a generalization of class invariants
(see, e.g., [31]). As discussed in Section 5.1, release points are problematic since at these points
other task(s) may modify the values of shared fields. However, it is often possible to gather useful
information about the shared variables, in the form of class invariants, which must hold at those
points. In sequential programs, class invariants have to be established by constructors and must hold
on termination of all (public) methods of the class. They can be assumed at (public) method entry
but may not hold temporarily at intermediate states not visible outside the object. In our context, we
need that such invariants hold on method termination and also at all release points of all methods.
This way, we can use them to improve the abstraction at the release points. In the following, given
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a class C, ΨC denotes the class invariant for class C, which is a set of linear constraints over the
fields of C and possibly some constant symbols.

Definition 9 (abstract compilation with class invariants). Let B be an instruction or a guard and
ΨC a class invariant for C. We define the abstract compilation ABSTI(B, ρ,ΨC) of B w.r.t. a
mapping ρ and a class invariant ΨC as ABSTI(B, ρ,ΨC) = ABST(B, ρ), if B 6= await x? and
ABSTI(B, ρ,ΨC) = 〈⊥ ∧ΨC [f̄C 7→ ρ′(f̄C)], ρ′〉 otherwise, where ABST(B, ρ) = 〈⊥, ρ′〉.

The definition above allows us to define the abstract compilation of a rule r ≡ m(this, x̄, ȳ)←
g , b1 , . . . , bn ∈ P of class C w.r.t. a class invariant ΨC defined in terms of f̄C as rα ≡
m(this, Ī, ρn+1(Ō))← ΦC ∧ gα, bα1 , . . . , bαn, where rα is computed as in Def. 7, using ABSTI

instead of ABST.

Example 11 (class invariants for the running example). The following invariants will be required
in order to obtain the cost of all methods of our running example: (1) In class Reader, we need
to know that field elems is bounded, i.e., 0 ≤ elems ≤ elemsmax where elemsmax is a constant
symbol that bounds the value of elems; and (2) in class FileIS, we also need to know that field lth
is bounded, i.e., 0 ≤ lth ≤ lthmax . Furthermore, we need the invariant blockS = blockSinit for the
loop in method readBlock. Thus, ΦReader = {0 ≤ elems ≤ elemsmax} and ΦFileIS = {0 ≤ lth ≤
lthmax ∧ blockS = blockSinit}.
Now, if we consider the abstract compilation of block ifc in Example 8, and we use as
invariant ΦFileIS , b© would be replaced ⊥ ∧ ρ2(ΦFileIS ), where ρ2(ΦFileIS ) = 0 ≤ lth′ ≤ lthmax ∧
blockS′ = blockSinit . �

The invariants above can be inferred automatically, for instance, by means of a syntactic analysis
that simply checks that the corresponding fields are initialized and never updated again. Note that
even if several processes modify lth we can still obtain the upper bounds that we have computed
before. This is because there is no loop whose termination relies on the value of lth. Observe that
the loop in readBlock first copies the value of lth into variable i and then the termination depends on
variable i. Thus, if we have several instances of method readBlock interleaving their computations,
we can still prove their termination and infer their resource consumption.

Furthermore, even if a field is modified at a release point, we can use the points-to analysis
of Section 4 to determine if the field is read by means of references different from those used
to write the field. If this is the case, then such a field can be preserved in rule 4 of Figure 7. In
the following, given a rule m(this, x̄, ȳ)→ g, b1, . . . , bn, we use body(m) to refer to the multiset
of instructions {b1, . . . , bn}. Now, we define the set Read(C, f) = {o | x := this.f ∈ body(m), o ∈
φm(this),m is a rule in C, m 6≡ Cinit} of references used to read a field f in class C. Similarly, we
can define the set Write(C, f) but considering instructions of the form this.f := x in rules of class
C. Then we define the set trackable(C ) as the set {f ∈ f̄C |Read(C, f) ∩Write(C, f) = ∅}.

Example 12 (automatic inference of class invariants). Let us consider the field blockS
in Figure 1. Then, since φreadBlock (this) = {o2} (see Example 5), and the field is
only read, then Read(FileIS, blockS) = {o1} but Write(FileIS, blockS) = ∅. Hence blockS ∈
trackable(FileIS) i.e., this field is not lost when processing the instruction await f? inside
the while loop in readBlock . For fields lth and fp, it holds that Read(FileIS, lth) = {o2},
Write(FileIS, lth) = ∅, Read(FileIS, fp) = {o1, o2} and Write(FileIS, fp) = ∅. Hence both fields
belong to trackable(FileIS). Thus trackable(FileIS) = {blockS, lth, fp}. �

Differently to the sequential setting in [5], a field satisfying that Read(C, f) = Write(C, f) =
{o}, i.e., the field is read and written using the same reference, cannot be considered trackable. The
following example illustrates this.

Example 13 (comparison with the sequential setting). Consider the following two methods:
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void m1(A o){
Fut<Int> x;
while (this.f > 0) {

x = o ! p();
await x?;
this.f = this.f - 1;

}
}

void m2(A o){
Fut<Int> x;
while (this.f < 0) {

x = o ! p();
await x?;
this.f = this.f + 1;

}
}

that belong to the same class C, where f is a field in C. Assume that the points-to analysis computes
φm1(this) = φm2(this) = {o1}. Then Read(C, f) = Write(C, f) = {o1}. However, in a setting in
which the execution of m1 and m2 are continuously interleaved because the corresponding await
instructions do not hold, termination is not guaranteed, since m1 decreases f what endangers the
termination of m2. Similarly, as m2 increases f, the termination m1 cannot be guaranteed. �

The same idea can be also applied to points-to analysis where class invariants can be used to state
which fields remain unchanged at release points. In this case, the class invariant Ψpt

C is a set of field
names that are guaranteed to remain unchanged after their initialization. To take this information
into account, row 8 of the transfer function in Figure 4 is changed to update φ only for those fields
that are not in the class invariant, that is:

τ(This, 〈await x?〉, 〈φ, θ〉) = 〈φ[l.f 7→ φ(l.f) ∪ θ(l.f)], θ〉,∀l ∈ This,∀f ∈ f̄C \ΨptC

Example 14 (class invariants for points-to analysis). If Ψpt
C = {f} was inferred for the program of

Example 6, local information for the field f would be valid even after the release point at ∗©.

6. OBJECT-SENSITIVE RESOURCE ANALYSIS

In this section, we present the process of obtaining upper bounds on the resource consumption.
Our analysis follows the classical two-fold approach to cost analysis [42] in which: (1) a program
is first transformed into a set of cost relations [7] which (2) can then be solved into closed-form
upper/lower bounds [4], i.e., cost expressions that are not in recursive form. The cost relations we
generate can be solved using [4] without requiring any modification; thus we do not describe this
second phase and, in what follows, we focus exclusively on the first phase of the resource analysis.

After showing an intuitive example in Section 6.1, the presentation of the analysis is performed
in two steps. First, we illustrate in Section 6.2 how an object-insensitive analysis can be defined as
in sequential programming, by using the size abstraction computed in Section 5, and point out its
limitations. Then, Section 6.3 defines the object-sensitive analysis which, by relying on the object-
sensitive points-to information of Section 4, overcomes the limitations of the object-insensitive
analysis.

6.1. An Intuitive Example

Let us consider the following simple code (left) and its IR (right):

void m(A a,int n) {
a.p(n);
n++;
A b=new A();
b.p(n);

}
void p(int n){

n++;
}

m(this, 〈a, n〉, 〈〉)←
call(m, p(a, 〈n〉, 〈〉)),
n := n+ 1,
b := new A,
call(m, p(b, 〈n〉, 〈〉).

p(this, 〈n〉, 〈〉)←
n := n+ 1.
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We want to infer automatically the number of instructions executed by m. The most relevant point
is that method p is invoked from two different objects and with two different arguments. Intuitively,
the transformation of an IR program into cost relations can be formalized by transforming each
rule in the program into a cost equation, which accumulates the cost of the instructions in the rule
and contains the applicability conditions for the equations resulting from the abstract program. Our
analysis is based on the three components introduced in the previous sections as follows. First,
(1) the cost models introduced in Section 3 are used by the analysis to determine the cost of each
instruction. For instance, we now use the cost model that counts the number of executed instructions
and apply it to each rule. We have that the rule for m, denoted m, accumulates 4 instructions and
the one for p accumulates 1. Second, (2) the size relations in Section 5 are necessary to generate the
applicability conditions (guards) for cost relations and to determine how the size of data changes
when the equations are applied. In particular, we infer the equations:

m(n) = 4 + p(n) + p(n′) {n′ = n+ 1}
p(n) = 1

In the equation for m, we can observe that the size relation {n′ = n+ 1} tells us that the size of n
is increased by one in the second call to p. In this case, the equations have no guards as they apply
unconditionally.

Up to this point, we have obtained object-insensitive equations, because we do not distinguish the
object which is executing the instructions. In the third step, (3) the points-to analysis in Section 4
is necessary to define the cost centers, which are the artifacts used by the analysis to separate the
cost of the distributed components so that we can then distinguish the resource consumption of each
component. In the example, three cost centers are obtained: c(this) for the object executing m, c(a)
for the object that is passed as parameter to m, and c(b) for the object created in m. Now, when we
account for the cost of executing an instruction, we take into account the object that executes it. In
particular, we obtain the following equations:

m(n) = 4∗c(this) + pa(n) + pb(n
′) {n′ = n+ 1}

pa(n) = c(a)∗1
pb(n) = c(b)∗1

We can observe that attached to the cost we add the cost center for the object executing the
instruction. The 4 instructions for method m are attributed to this . When a method is executed
from different objects, we create object-sensitive equations which distinguish all possible calling
contexts. In the example, we generate two equations for method p, one in which the cost is attributed
to a and one to b. Solving the equations results in the upper bound:

m(n) = 4 ∗ c(this) + 1∗c(a) + 1∗c(b)
While the cost in this example is constant, in general the cost is a function of the data input sizes,
what makes the problem more interesting and challenging.

6.2. Object-Insensitive Analysis

The generation of cost relations from our concurrent and distributed programs, for a generic cost
model M, can be done exactly as for sequential programs [7], by using the size abstractions in
Section 5 which already take the concurrent behaviour into account, and then simply applying the
generic cost model in Section 3 to each instruction of each rule.

Definition 10 (object-insensitive resource analysis). Let M be a cost model, P an IR
program, r ≡ m(this, x̄, ȳ)← g , b1 , . . . , bn a rule in P and rα ≡ m(this, x̄, y′)← gα, bα1 , . . . , b

α
n

its abstract compilation, where ϕ ≡ C(gα ∧ bα1 ∧ . . . ∧ bαn). Let calls(rα) = {p(w̄) | bαi ≡
call(ct ,p(rec, w̄, _)), 1 ≤ i ≤ n} be the multiset of calls to methods or blocks in rα. The cost
equation associated to r is defined as:

m(x̄) =

n∑
i=1

M(bi) +
∑

p(w̄)∈calls(rα)

p(w̄), ϕ

Given a program P , its cost relation system (CRS for short) is obtained by applying the above
definition to all rules. The CRS is like a standard CRS for sequential programs with the following
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features: (i) equations do not have output arguments, as we aim at obtaining the cost as a function of
the input argument sizes; (ii) given a rule being analyzed, its cost equation is obtained by applying
the cost modelM to each of the basic instructions in the body (first summation in the equation); (iii)
a call in the program is substituted by a call to its corresponding cost equation (second summation
in the equation); (iv) the linear constraints ϕ obtained from the size abstraction of the rule are
attached to the rule to define its applicability conditions and the size relations among the variables
in the equation. When we have class invariants available, they are added to the constraints in the
equations. Finally, the CRS is called object-insensitive because it does not separate the cost per
object, but rather it accumulates the cost carried out by all objects in the program.

Example 15 (object-insensitive cost equations). Let us see the application of Definition 10 to the
rule readBlock (shown in Figure 2) w.r.t. the cost modelMi (see Section 3) that counts the number
of executed instructions. First we applyMi to all instructions in the abstract body of readBlock (see
Example 8), what results in the constant 6. In addition, we have to include the cost of the while
loop, i.e., we add the call to while with its corresponding arguments:

readBlock() = 6+while(i ′, blockS ), ϕ

where ϕ ≡ {i ′=lth, 0 ≤ lth ≤ lthmax , blockS = blockSinit} and ϕ comes from the abstract
compilation in Example 8 and the class invariant ΦFileIS in Example 11. In what follows we
only include the constraints of the class invariants that are relevant for obtaining the upper
bounds. For the rule readBlock we only include the part of the class invariant ΦFileIS that is
needed for obtaining the upper bound, 0 ≤ lth ≤ lthmax . Moreover, note that, according to the
abstract compilation of readBlock in Example 8, the call to while should have as input arguments
〈res ′, i ′, incr ′, pos ′, fp, lth, blockS 〉. For the sake of clarity, we only include those arguments that
are relevant for obtaining the cost, i.e., those involved in guards (see [6] for more details). In the
case of while, we only include i′ and blockS . Now, by applying Definition 10 to all rules in the IR
of the running example, we obtain the following CRS:

main() = 14+readOnce() + readBlock() {}
readBlock() = 6+while(i ′, blockS) {i ′=lth, 0 ≤ lth ≤ lthmax},
while(i , blockS) = 0 {i ≤ 0}
while(i , blockS) = 1+if (i , blockS) {i>0, blockS = blockSinit}
if (i , blockS) = 2+if c(i , blockS , incr) {blockS > i , incr = i}
if (i , blockS) = 2+if c(i , blockS , incr) {blockS ≤ i , incr = blockS}
if c(i , blockS , incr) = 7+readContent()+ {i′ = i−incr}

while(i ′, blockS)

readOnce() = 4+readContent() {}
readContent() = 7+process() {}
process() = 4 + while1 (i, elems) {i=0 , 0 ≤ elems≤elemsmax}
while1 (i, elems) = 0 {i≥elems}
while1 (i, elems) = 15+while1 (i′, elems ′) {i<elems, i′=i+ 1}

We assume that the executions of methods hdRead and update have constant costs, which are
accounted in the constant 15 of the second equation for while1 . Likewise, the constant 7 in the
equation for readContent includes the cost of executing the constructor of class Reader which is
assumed to be 2 (two fields are initialized). Note that the constraints of the equation process include
the class invariant of the class Reader, i.e., ΦReader = {0 ≤ elems ≤ elemsmax}. For brevity, we do
not include ΦFileIS in the equations readContent and readOnce as it is not relevant for solving the
equations. The constraint blockS = blockSinit from ΦFileIS is only relevant in the equation while.
Observe that the constraints capture (1) the conditions required to apply the rule, as well as (2)
the constraints that state how their values are modified along the program execution, e.g., in the
first equation for if we see that, (1) when blockS > i, (2) the value of i is updated, i′ = i− incr.
This CRS is solved using [4] (without requiring any modification to the solving process) into the
following closed-form upper bounds:
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UBprocess() = 4 + 15 ∗ nat(elemsmax )
UBreadContent() = 11 + 15 ∗ nat(elemsmax )
UBreadOnce() = 15+15 ∗ nat(elemsmax )
UBreadBlock() = 6+nat(lthmax )∗(21+15∗nat(elemsmax ))

Let us explain the different parts of the upper bound computed for readBlock. The constant 6
comes from the constant in the equation for readBlock . We use the nat operator to avoid negative
evaluations. Concretely nat(e) is defined as e if e > 0, and 0, otherwise. The cost of the loop is the
following quadratic expression:

nat(lthmax )∗(21+15∗nat(elemsmax ))

where nat(lthmax ) is an upper bound on the number of iterations of the loop and
21+15∗nat(elemsmax ) is the worst-case cost of each iteration. At each iteration, method
readContent is invoked. This method contains a loop whose cost is linear on elemsmax . Thus,
the component nat(elemsmax ) in the upper bound above is due to such method invocation.
As the cost equation for main includes the cost of readOnce and readBlock , its upper bound is:

UBmain() = 14 + 15+15 ∗ nat(elemsmax )︸ ︷︷ ︸
readOnce

+

6+nat(lthmax )∗(21+15∗nat(elemsmax ))︸ ︷︷ ︸
readBlock

�

The above analysis has a main drawback: it is not capable of distinguishing the different
distributed components. Instead, the resource usage contributed by all objects is accumulated in
a single cost center which corresponds to the whole execution of the distributed system.

6.3. Adding Cost Centers to the Equations

As its main novelty, CRS in our object-sensitive resource analysis uses cost centers in order to
keep the resource usage corresponding to the different components separate. The main idea is
to take advantage of the object-sensitive points-to information to generate cost equations for all
possible contexts (and thus objects). In particular, the object-sensitive equations will allow us to
count separately the cost that corresponds to different instances of objects that are created at the
same allocation site but correspond to different object names and potentially different distributed
components. Given a program rule whose first instruction is at program point h, we annotate the
rule as follows:

r ≡ [m(this, x̄, ȳ)]φh(this) ← g , [b1 ]O1 , . . . , [bn ]On ∈ P

where Oi is defined as follows:

1. if bi is a call of the form call(m,m(rec, w̄ , z )) occurring at program point j, then Oi =
{φj(recol)ol |ol ∈ φh(this)};

2. Otherwise, i.e., bi is not a method call, then Oi is the empty set.

Observe that we are annotating the head of the rule with set the object names that might be this
for this rule, that is, φh(this). In addition we annotated the calls to methods with a set of sets: for
each element in φh(this) we obtain the set of possible object names that might be pointed by rec,
and, in addition, we keep as super-index the value of this used for obtaining such set, φj(recol)ol .

Example 16 (annotated rules). The annotated rules using the information gathered by points-to
analysis with k = 2 are of this form:
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[main(this, 〈〉, 〈〉)]{ε}← . . . ,

[call(m, readOnce(ob1 , 〈〉, 〈f1 〉))]{{o1}}, [call(m, readBlock(ob2 , 〈〉, 〈f2 〉))]{{o2}}, . . .

[readBlock(this, 〈〉, 〈r〉)]{o2}← . . . , [call(b,while(inp, out))]{{o2}}, . . .

[if c(inp, out)]{o2}← . . . ,

[call(m, readContent(this, 〈pos, incr〉, 〈f 〉))]{{o2}}, . . .

[readOnce(this, 〈〉, 〈r〉)]{o1} ← . . . ,

[call(m, readContent(this, 〈0 , lth〉, 〈f 〉))]{{o1}}, . . .

[readContent(this, 〈pos, incr〉, 〈f 〉)]{o1 ,o2} ← . . . ,

[call(m, process(rd , 〈pos〉, 〈f 〉))]{{o13}o1 ,{o23}o2 }, . . .

[process(this, 〈pos〉, 〈r〉)]{o13 ,o23} ← . . .

Some blocks of method readBlock are omitted since all of them are annotated with {o2}, and
also some irrelevant calls are omitted. As it is shown in Figure 5, at program point marked with
r©, φ r©(this) = {o1, o2}, then we annotate the rule readContent with the set {o1, o2}. Similarly,

process are annotated with {o13, o23}. At program point p©, shown in Figure 5, depending on the
value of this, we have different object names which might be pointed by rd, φ p©(rdo1) = o13 and
φ p©(rdo2) = o23. Then we annotate the call to process with {{o13}o1 , {o23}o2}. �

Now, given an annotated rule r ≡ [m(this, x̄, ȳ)]This ← g , [b1 ]O1 , . . . , [bn ]On , we also annotate
its abstract compilation as rα ≡ [m(this, x̄, _)]This ← g , [bα1 ]O1 , . . . , [bαn ]On , and we use the
following functions:

• methods(rα) to obtain the multiset of annotated elements [q(rec, w̄ , z )]O which correspond
to calls to methods of the form [call(m, q(rec, w̄ , z ))]O in the body of rα;

• blocks(rα) to refer to the multiset of elements p(this, w̄ , z̄ ) which are calls to intermediate
rules of the form call(b, p(this, w̄ , z̄ )) in the body of rα.

Definition 11 (object-sensitive resource analysis). Let M be a cost model, P an IR
program, r ≡ m(this, x̄, ȳ)← g , b1 , . . . , bn a rule in P and rα ≡ m(this, x̄, y′)← gα, bα1 , . . . , b

α
n

its abstract compilation, where ϕ ≡ C(gα ∧ bα1 ∧ . . . ∧ bαn). Let us consider the annotated
abstract rule [m(this, x̄, ȳ)]This ← _ for r, where methods(rα) = {[m1 (y1 , w̄1 , z1 )]O1 ,
. . . , [mk(yk, w̄k, zk)]Ok}. Then the following set of equations defines the cost of r: for each o ∈ This ,
and for each 〈o1, . . . , ok〉 ∈ Oo1 × · · · ×Ook such thatOoi ∈ Oi, 1 ≤ i ≤ k, we generate the equation:

m_o(x̄) =
∑

b∈body(r)

c(o) ∗M(b) +
∑

p(this,w̄ ,z̄)∈blocks(rα)

p_o(w̄) +m1_o1(w̄1) + · · ·+mk_ok(w̄k), ϕ

where mi_oi is the name of the equation that represents a call to method mi from object oi, and
c(o) denotes the cost center associated to o.

Intuitively, the above definition generates, from one rule, as many equations as needed for defining
its cost such that all possible contexts (i.e., object names of callees) are considered. The new names
are obtained by concatenating the corresponding object name to the rule name. Besides, as regards
method invocations, all combinations have to be generated. This is done in the definition by means
of the Cartesian product Oo1 × · · · ×Ook which gives us all possible combinations for the elements
in the sets. The cost expressions we accumulate are multiplied by a symbolic expression c(o) which
denotes the cost center of the object on which the call is performed. As an example, if we have a
rule, where m2 and m3 are calls to methods:

[m1(this, 〈x〉, 〈y〉)]{o1,o2} ← [m2(_, 〈x, u〉, 〈〉)]{{o3}o1 ,{o4,o5}o2}+
[m3(_, 〈u, y〉, 〈〉)]{{o6,o7}o1 ,{o8}o2}

Intuitively, when this points to o1, then x (inm2) may point to o3 and u to o6 or o7 (inm3). Similarly,
when this points to o2, then x (in m2) may point to o4 or o5 and u (in m3) may point to o8. From
the above rule, the following four equations are generated to cover all cases:
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m1_o1(x) = m2_o3(x, u) +m3_o6(u, y)
m1_o1(x) = m2_o3(x, u) +m3_o7(u, y)
m1_o2(x) = m2_o4(x, u) +m3_o8(u, y)
m1_o2(x) = m2_o5(x, u) +m3_o8(u, y)

Multiple rules for the same procedure are interpreted as non-deterministic choices and the upper
bound solver computes the maximum over them. Therefore, the fact that multiple non-deterministic
rules are introduced (e.g., two rules for m1_o1(x)) does not degrade the quality of the upper bound
obtained.

Example 17 (object sensitive cost equations for the running example). In the running example,
method readContent is executed by two different objects, and consequently. This is captured in the
points-to analysis by means of two object names, o1 and o2 for the this reference of readContent (see
Example 5). Nevertheless, the upper bound for main shown in Example 15, accumulates the cost
executed by all objects together. By applying Definition 11 to the annotated rules in Example 16,
the equations in the CRS (Example 15) are replicated for all possible object names that could execute
the equations. For example, as the rule readContent is annotated with {o1, o2} and the call to process
is annotated with {{o13}o1 , {o23}o2}, the replicated equations obtained by the object sensitive cost
analysis are as follows:

readContent_o1() = c(o1) ∗ 7 + process_o13() {}
readContent_o2() = c(o2) ∗ 7 + process_o23() {}
process_o13() = c(o13) ∗ 4 + while1_o13(i, elems) {i=0 , 0 ≤ elems≤elemsmax}
process_o23() = c(o23) ∗ 4 + while1_o23(i, elems) {i=0 , 0 ≤ elems≤elemsmax}

Note that the replication of the rule process is analogous, but for the set {o13, o23}. The equations
include the cost center corresponding to the equation responsible of accumulating such cost, i.e., the
cost accumulated by the equation readContent_o1 is multiplied by c(o1). Using such cost centers,
the closed-form upper bounds now keep separate the resource consumption associated to each cost
center oi by means of a symbolic constant c(oi). From the above equations for readContent the solver
obtains the following upper bounds:

UBreadContent_o1
() = c(o1) ∗ 7 + c(o13) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸

process_o13

UBreadContent_o2
() = c(o2) ∗ 7 + c(o23) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸

process_o23

Similarly for readOnce and readBlock , which are annotated with o1 and o2 (respectively), we obtain
the upper bounds:

UBreadOnce_o1
() = c(o1) ∗ 4 + c(o1) ∗ 7 + c(o13) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸

readContent_o1

UBreadBlock_o2
() = c(o2) ∗ 6 + c(o2) ∗ nat(lthmax ) ∗ 10 +

nat(lthmax ) ∗ (c(o2) ∗ 7 + c(o23) ∗ (4 + 15 ∗ nat(elemsmax )))︸ ︷︷ ︸
readContent_o2

With the object sensitive cost analysis, in contrast to the upper bound obtained in Example 15, the
cost centers added in the cost expressions the closed-form upper bound for main keeps the number
of instructions executed on each object multiplied by its corresponding cost center:

UBmain () = c(ε) ∗ 14 + c(o1) ∗ 4 + c(o1) ∗ 7 + c(o13) ∗ (4 + 15 ∗ nat(elemsmax ))︸ ︷︷ ︸
readOnce_o1

c(o2) ∗ 6 + c(o2) ∗ nat(lthmax ) ∗ 10 +︸ ︷︷ ︸
readBlock_o2

nat(lthmax ) ∗ (c(o2) ∗ 7 + c(o23) ∗ (4 + 15 ∗ nat(elemsmax )))︸ ︷︷ ︸
readBlock_o2

�

The upper bound for a set of objects O, UBp|O, is obtained by setting c(o) to 1 for all object
names o ∈ O and to 0 for the remaining ones. Note that, if we replace c(o) by 1 (for all object
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names o), the accuracy of object-insensitive CRS in Def. 10 coincides with that of object-sensitive
CRS.

Example 18 (object sensitive upper bound accuracy). If we are interested in the number of
instructions performed by the cost centers {o13} and by {o23}, we replace the symbolic expression
c(o13), c(o23), respectively, by 1 and the rest of cost centers by 0. Then,

UBmain ()|{o13} = 4 + 15 ∗ nat(elemsmax )

UBmain ()|{o23} = nat(lthmax ) ∗ (4 + 15 ∗ nat(elemsmax ))

Such upper bound captures the instructions executed by process when we call it from readOnce. The
main observation is that the accuracy of the upper bound for main is significantly better when the
analysis is performed with k = 2 than with k = 1. If the points-to analysis is performed for k = 1,
the object names o13 and o23 are merged in a single object name o3, resulting in the upper bound
UBk=1

main :
UBk=1

main () = c(ε) ∗ 14 + c(o1) ∗ 4 + c(o1) ∗ 7 + c(o3) ∗ (4 + 15 ∗ nat(elemsmax ))

c(o2) ∗ 6 + c(o2) ∗ nat(lthmax ) ∗ 10 +

nat(lthmax ) ∗ (c(o2) ∗ 7 + c(o3) ∗ (4 + 15 ∗ nat(elemsmax )))

Therefore, it would not be possible to distinguish between the objects created at program point 3©
and the costs are aggregated together resulting in a less precise upper bound that accumulates the
expressions for c(o13) and for c(o23):

UBk=1
main ()|{o3} = (4 + 15 ∗ nat(elemsmax )) + nat(lthmax ) ∗ (4 + 15∗nat(elemsmax )) �

The following theorem relates the concrete cost C(T , o,M) defined in Definition 3 with the upper
bound inferred by the analysis.

Theorem 3 (soundness). Let P be a program and S0 an initial state. If T ≡ S0 ;n

Sn, then for all object identifier o such that ob(o, _, _, _, _) ∈ Si, 0 ≤ i ≤ n, it holds that
C(T , o,M)≤UBmain()|{name(o)}.

Given the soundness of the size and points-to analyses used to generate the equations, soundness of
the object-sensitive cost analysis is proved by simply showing that the above CRS can be obtained
by cloning the program as many times as determined by the number of object names computed
by the points-to analysis and applying the standard object-insensitive cost analysis to each of the
versions.

Finally, the use of cost centers easily allows us to instantiate our analysis with different
deployment strategies. Such strategies determine the groups of objects that share the processor (see,
e.g., JCobox [35]). The resource consumption of each group can be obtained by our approach by
setting c(o) to 1 for all object names o that belong to the group, and to 0 for the remaining ones.

7. EXPERIMENTAL EVALUATION

We have implemented our analysis in SACO [2], an analyzer of ABS programs which can be
tried out online at: http://costa.ls.fi.upm.es/saco/web/. This section presents our
experimental evaluation using the SACO system with a set of typical concurrent programs as
benchmarks. The overall goal of the evaluation is to measure the accuracy and performance of
our cost analysis. First, in Section 7.1 we evaluate the accuracy of the object insensitive analysis, by
evaluating the obtained upper bounds against the actual cost obtained in real runs using a profiler.
Then, Section 7.2 evaluates the accuracy and performance of the object sensitive analysis and the
impact of using more precise points-to analyses. Finally, we evaluate and discuss the potential
applications of our cost analysis using a larger and real application, namely, the TradingSystem,
a case study developed within the FP7 HATS project http://www.hats-project.eu.

7.1. Object-Insensitive Experiments

In this section we evaluate the accuracy of the object insensitive analysis. This is done by comparing
the actual number of executed instructions in real runs with a series inputs using the aPET system [9]
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Figure 9. Evaluating precision of object-insensitive analysis

as profiler, against the estimated cost obtained by evaluating the generated upper bounds with
the Mi cost model for the corresponding abstractions of the inputs. E.g., if a concrete list in
algebraic form is used as input for one run, the corresponding evaluation of the upper bound is
done with its term-size abstraction (see Section 5.2). The following typical concurrent applications
have been used as benchmarks: PeerToPeer, a pure peer-to-peer file sharing application; BBuffer, a
classical bounded-buffer for communicating several producers; BookShop, a web shop client-server
application; Mail, a simple model of a Mail server; and DistHT, a distributed implementation of a
hash table. The source code of all benchmarks is available at the SACO web page.

The chart in Figure 9 depicts the loss-of-accuracy ratio (Y axis) for each input of each benchmark
(X axis). The loss-of-accuracy ratio is obtained by dividing the estimated cost by the real cost.
Thus, the higher the ratio the less accurate the upper bound is, and the closer the ratio to one, the
more precise it is. In the X axis, the range 0-1 corresponds to the different runs with the BBuffer
benchmark, the range 1-2 to Mail, the range 2-3 to DistHT, the range 3-4 to PeerToPeer, and the
range 4-5 to BookShop. Within each range, higher values correspond to higher real costs. The loss-
of-accuracy ratio seems reasonable, namely from 1.1 to 7.7. For most runs it is less than 5, except
for some runs of the PeerToPeer benchmark. It is important to note that we infer upper bounds on
the worst-case cost, and thus it is clear that their quality varies when applying them to different
inputs (because they must over-approximate the cost of a program for all possible inputs). Apart
from this, there are several reasons why our analysis can lose precision, namely, the size measures
for algebraic data structures (see Section 5.2), field maximizations, the precision of the underlying
analyses, etc. All these factors directly affect the precision of the inferred loop bounds, which are
the basic ingredients used to build upper bounds. It is important to note, however, that the ratio
stays reasonably stable within each benchmark, and more importantly, that it does not increase for
executions of higher cost, but it fluctuates with different combinations of inputs. In the case of the
PeerToPeer benchmark it can be observed that the ratio tends to decrease for executions of higher
cost.

7.2. Object-Sensitive Experiments

In this section we evaluate the accuracy and performance of object-sensitive cost analysis. We use
the same benchmarks as in Section 7.1, plus an additional one, namely Chat, a chat application,
which could not be used in the previous section since it could not be handled by the aPET profiler.
In general, the more precise the points-to analysis is, the results of the cost analysis can be more
precise as well. In this experimental evaluation, our objectives are: (1) to experimentally measure
how an improvement in the precision of points-to analysis affects the precision of cost analysis;
(2) to evaluate the impact of using more precise (and thus more costly) points-to analysis on the
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Benchmark #ev k=1 k=2
#c #e T #c #e T %c %m %M %A

BBuffer 1280 15 96 602 21 143 1078 40.0 0.2 36.2 12.9
DistHT 1458 10 78 1036 17 131 1808 70.0 20.4 44.0 30.8
MailServer 1250 7 93 644 13 159 1012 71.4 3.3 42.9 19.1
Chat 1250 12 81 231 15 104 275 25.0 13.3 20.6 16.4
BookShop 3072 7 116 1485 10 162 1969 42.9 1.8 17.4 10.5
PeerToPeer 864 11 306 14648 19 581 28019 72.7 39.4 48.5 45.0

Benchmark
k=3 k=4

#c #e T %c %m %M %A #c #e T %c %m %M %A
BBuffer 35 253 1620 66.7 3.9 48.8 21.8 47 301 1645 68.6 2.5 47.0 24.4
DistHT 27 229 3324 58.8 13.4 44.0 32.9 39 385 4165 44.4 7.7 39.9 29.1
MailServer 13 159 1023 0.0 0.0 0.0 0.0 13 159 1027 0.0 0.0 0.0 0.0
Chat 17 118 288 76.0 3.8 19.2 10.0 19 118 305 2.4 0.4 0.5 0.4
BookShop 11 195 2047 40.0 5.6 24.3 18.2 11 195 2042 0.0 0.0 0.0 0.0
PeerToPeer 19 581 28312 0.0 0.0 0.0 0.0 19 581 28371 0.0 0.0 0.0 0.0

Table I. Statistics about the Object-Sensitive Resource Analysis (times in ms.)

efficiency of the overall cost-analysis, (3) to find out which value, or values, of k achieve the best
balance between precision and performance. In order to tackle such questions, we have applied
object-sensitive cost analysis with four different values of k (see Section 4), k = 1, k = 2, k = 3
and k = 4.

Table I summarizes the results obtained on an Intel Core 2 Duo at 2.53GHz with 4GB of RAM,
running Linux 3.2.0. Columns #c, #e show, for each value of k, the number of cost centers identified
by points-to analysis and the number of equations of the CRS, respectively. Column T shows
the time taken to apply the overall cost analysis, including the generation of the CRS and the
time to solve the CRS into a closed-form upper bound. In order to measure the accuracy gain
when incrementing the value of k, we have evaluated the upper bound for different combinations
of the input arguments and computed the average. Column #ev shows the number of different
combinations evaluated for the benchmark. The result of each evaluation is a positive integer value
for each cost center identified by the points-to analysis. To measure the accuracy gain, we compare
such value for a given ki with the value (upper bound) obtained for the next ki+1 for each cost
center. Observe that a cost center obtained in k = i might be split in two (or more) cost centers for
k = i+ 1, and such partition might result in a smaller (more precise) upper bound. %c shows the
percentage of cost centers for k = i for which the upper bound of its corresponding cost center(s)
with k = i+ 1 is smaller. The gain for a cost center c for k = i, for which c′ is its corresponding
cost center for k = i+ 1, is obtained as (1−UBk=i+1|c′ /UBk=i|c) ∗ 100 where UBk=i+1|c′ is the
upper bound obtained with k = i+ 1 for the cost center c′. UBk=i|c′ is the upper bound obtained
with k = i for c′. Columns %m and %M show, respectively, the minimum and the maximum gains,
and column %A shows the average of the gains obtained for all cost centers that improve their
results.

Let us start by discussing benchmarks BBuffer and DistHT. In their main methods, a structure of
objects is created from which the different methods are invoked. The same method is often called
from different objects and thus replication of the equations is required. In BBuffer, it can be seen that
the number of equations increases from 96, with k = 1 up to 301 with k = 4. As a consequence,
analysis time increases from 602ms to 1645ms. We have a similar behaviour in DistHT, it goes
from 78 to 385 equations, and the time goes from 1036 ms to 4165ms. In both benchmarks, the
accuracy is improved when k grows. In particular, the number of cost centers which improve their
precision ranges between 40% and 70% and the actual gain ranges from 13.4% to 33%. In summary,
as expected, an increment on the number of cost centers found by the points-to analysis multiplies
the number of equations, leading to more precise bounds and requiring larger analysis time.

As regards MailServer and PeerToPeer, the best precision is achieved with k = 2, i.e.,
incrementing the value of k does not lead to further improvements in the cost analysis. In particular,
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72% of the cost centers improve their precision and, for the MailServer the gain is on an average
19.1%, while for PeerToPeer it is 45.0%. For both benchmarks, the time taken by the analysis
increases with the number of new equations created. In MailServer, we need from 644ms for 93
equations to 1027ms for 159 equations and in the PeerToPeer, from 306 equations in 14,6s to 581
equations in 28s. For BookShop, we obtain the best precision with k = 3, achieving an improvement
in 40% of the cost centers, and a gain of 18.2% in the upper bounds, which is higher than the
improvement obtained from k = 1 to k = 2, on average 10.5% for 42.9% of the cost centers. Note
that, while the efficiency of the analysis significantly degrades when going from k = 1 to k = 2,
the performance is not significantly affected by the increment in the precision from k = 2 to k = 3.
Regarding Chat, we can see that the analysis obtains its best precision with k = 4. Despite that, the
improvement from k = 3 to k = 4 is not significant, as only 2.4% of the cost centers improve their
precision, and the improvement is not relevant, 0.5%.

All in all, we argue that our experimental evaluation shows that object-sensitive cost analysis is
feasible and accurate. As expected, the more precise the points-to analysis is, the more precise the
upper-bounds obtained are. According to the experiments, the best value for k is between 2 and 3, but
we point out that this is quite dependent on the benchmarks. In our benchmarks, the application of
the points-to analysis with k = 2 is precise enough to obtain a good balance between precision and
performance. Another interesting conclusion is that incrementing the value of k does not degrade the
performance when there is no accuracy to be gained. This can be observed in MailServer, BookShop
and PeerToPeer as, when the increment in the value of k does not produce new cost centers, the
analysis is almost the same as for the previous value of k.

7.3. Case Study: Trading System

In this section, we aim at evaluating object sensitive cost analysis on a larger application, namely
on the TradingSystem case study. Our objective is to use the analysis results to identify potential
bottlenecks related to the high resource consumption in some components (objects) of the distributed
system and be able to give some hints on the deployment of the application (i.e., how to allocate
objects to machines for the actual deployment). The TradingSystem models a supermarket cash
desk line: it includes the processes at a single cash desk (e.g., scanning products using a bar
code scanner, paying by cash or by credit card); it also handles bill printing, as well as other
administrative tasks. A store consists of an arbitrary number of cash desks. Each of them is
connected to the store server, holding store-local product data such as inventory stock, prices, etc.
The system is divided into two main parts, the CashDeskInstallation and the CashDeskEnvironment.
The CashDeskInstallation contains those classes that are in charge of modeling the hardware
behaviour and the CashDeskEnvironment, which models at higher level the behaviour of the
system. Furthermore, the TradingSystem includes a class for modeling a bank implementation and
another one that models an inventory system. The program has 1350 lines of code. Some minor
modifications have been done on the source code of the program in order to handle some loops
whose number of iterations could not be bounded, such as loops whose number of iterations depends
on one particular keystroke, or loops that terminate when the credit card is read properly. Besides,
we have added some class invariants to specify that fields are unchanged at release points (these
invariants could be automatically obtained by using [10]).

One interesting aspect of the TradingSystem is that the program points at which the objects that
compose the system are created are always placed in object initializations and our points-to analysis
identifies all of them with k = 1. Thus, no gain is obtained for greater values of k. Points-to analysis
identifies 23 cost centers and all of them correspond to a different class which models a different
element that composes the system, e.g., a printer, a light display, a bar code scanners or a card reader.
The application of the object-insensitive cost analysis takes 689 seconds and the time taken by the
object-sensitive analysis with k = 1 is 875 seconds. This is an expected time due to the complexity
and the size of the application. The number of equations goes from 343 for the object insensitive
CRS to 413 equations in the object-sensitive approach. This slight increment is due to the fact that
each object created in the program is responsible of modeling a concrete part of the system, and
we only have one instance of each object and, in most cases, its methods are invoked only once. In
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order to see which objects can very overloaded and which objects do not have much computation
(and thus can be grouped together and share the processor), we have applied the object-sensitive
cost analysis and evaluated the upper bound for concrete values of the input arguments. In this case,
we have obtained the percentage of instructions attributed to each cost center with respect to the
total number of instructions. According to the results obtained we see three main groups of objects:
(1) the objects responsible of creating the system structure, the bank and the inventory, accumulate
a low number of instructions, namely 9 different objects that accumulate less than 0.7% of the
instructions per object; (2) the objects that belong to the CashDeskEnvironment which accumulate,
on average, around 9% of the total number of instructions per object; and, (3) those objects that
correspond to the CashDeskInstallation which accumulate a quite significant part of the total number
of instructions, because they include the most complex parts of the system. Such information can be
useful for determining the number of servers that are needed to deploy the system. As the objects
that belong to the first group execute a very low number of instructions, we can suggest that their
tasks be executed in only one processor. For the second set of objects, we would recommend that the
objects that model the CashDeskEnvironment run in a single server. Such server should have more
capacity than the one for the first type of objects. For the objects that interact with the hardware in
CashDeskInstallation, we suggest that they have their own processor to avoid contention in this part
of the system.

8. RELATED WORK

Our work is closely related to other resource usage analysis frameworks [24, 25]. Most of such
frameworks assume a sequential execution model and thus do not deal with the main challenges
addressed in this paper. Notable exceptions are [29, 20]. In particular, a live heap space analysis for
a concurrent language is proposed in [29]. This analysis is proposed for a simple model of shared
memory and besides only considers a particular type of resource (memory) while we use a generic
notion of cost. The approach in [20] is completely different to ours, and thus not directly comparable.
It is based on the use of dynamic matrices for modeling cost analysis of concurrent programs. The
use of cost centers has been proposed in the context of profiling, but to our knowledge, its use in the
context of static analysis is new.

The termination of multi-threaded programs presented in [15] is based on inferring conditions on
the global state which are sufficient to guarantee termination and are similar to our class invariants.
Observe that such conditions are only one component within our cost analysis framework, which
additionally requires the generation of a new form of recurrence relations and the definition of cost
models for the concurrent setting. The particular case of occurrence counting analysis in mobile
systems of processes, which in our proposal can be obtained using a particular cost model, has been
addressed by several contributions in the literature, although they focus on high-level models, such
as the π-calculus and BioAmbients [19, 23].

When considering cumulative cost models, as we do in this paper, asynchronous calls can be
handled exactly as synchronous calls without sacrifying precision. This is because, in such cost
models, what is important is to approximate the number of times a method is executed (i.e.,
called), and not how many of them might be running in parallel. In contrast, when considering
noncumulative cost models, information on the lifetime of each task is important, since it might
directly affect the peak consumption of the corresponding resource. As future work, we plan to
integrate in our framework cost models that are noncumulative [8].

There exist other analyses for ABS programs that infer liveness properties (namely deadlock
freeness), and they are thus complementary to ours. Recent work [22, 21] studies the problem of
inferring deadlock freeness, i.e., there is no state in which a non-empty set of tasks cannot progress
because all tasks are waiting for the termination of other tasks in the set, or otherwise we show the
tasks involved in a potential deadlock set. In this case, the analysis tries to infer dependencies among
instructions which may lead to deadlocks. As the goal of this analysis is different from ours, the
basic techniques used in deadlock analysis are unrelated to those used in resource and termination
analysis. However, both deadlock and resource analyses can benefit from the same underlying
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analysis. In both cases, points-to analysis and may-happen-in-parallel are auxiliary analysis that
can greatly improve their efficiency. As we have seen, points-to analysis allows us to approximate
to which objects a reference variable might be pointing. We can have an object-sensitive deadlock
analysis which uses the information inferred by the points-to analysis in a similar way as we do. In
the cases of may-happen-in-parallel, the deadlock analysis in [21] shows how it can greatly increase
the accuracy of the analysis. For termination and resource consumption, a recent extension of our
framework [10] proposes to rely on may-happen-in-parallel relations in order to automatically infer
class invariants (like those defined in Section 5.3) which allow us to reason on the values of fields
at processor release points.

An alternative approach to static cost analysis is the measurement-based approach [43], where
the program is first executed on a set of input values in order to measure the cost of interest
(e.g., execution time) for some code fragments, and then the results are combined to generate an
estimation of the overall cost. This measurement can also be used in a probabilistic model to infer
properties such average cost or its distribution [36]. The measurement-based approach is particularly
useful when the cost of interest depends on external factors other than the program instructions.
This is the case, for example, of timing analysis or energy consumption, where the time or energy
required for executing an instruction depends on the current state of the underlying machine
(e.g., the state of the cache). It is clearly less effective when analyzing a modeling languages
like ours where the underlying execution architecture is not know. In such setting we typically
concentrate on cost models that depend only on the program instructions and data, independently
from the environment on which they will be deployed. In a recent work [11] we have explored the
combination of static analysis of ABS with a simulation based approach, where the upper-bounds
inferred for the (sequential) functional part of ABS where used to estimate the imperative part of
the model by means of simulation, under some higher-level assumptions on the resources available
in the underlying deployment component.

9. CONCLUSIONS, CURRENT AND FUTURE WORK

We have presented a novel cost analysis framework for concurrent and distributed programs
based on actor-based concurrency. In summary, our main results are: (1) a sound size analysis
for concurrent execution which is field-sensitive, i.e., it tracks data stored in the heap whenever
it is sound to do so. The size analysis can be used in combination with class invariants which
contain information on the shared memory; (2) an extension of the notion of cost used in sequential
programming to the distributed setting by relying on the notion of cost centers, which represent
the (distributed) components and allow separating their costs; (3) a flow-sensitive object-sensitive
points-to analysis for the concurrent objects setting setting; (4) a novel form of object-sensitive
recurrence relations which relies on information gathered by the object-sensitive points-to analysis
in order to generate the cost equations; (5) a prototype implementation of a cost analyzer for
programs written in the ABS language.

To develop the analysis, we have considered an object-oriented language based on the notion of
concurrent objects which live in a distributed environment with asynchronous communication. The
basics of our techniques could be adapted to other concurrent programming languages. In particular,
the idea of having equations parametric on the cost centers is of general applicability. The size
analysis is tailored for the concurrency primitives of our language, but similar abstractions could be
developed for other languages which use monitors, and an analogous abstraction would be directly
applicable to other actor-based languages (e.g., Scala or Erlang).

Current work is focused on the automatic inference of class invariants which can be used to know
the values of fields at processor release points. The challenge is on being able to infer the resource
consumption and prove termination even in cases in which fields involved in the loop conditions are
modified by several methods. For instance, consider the following two methods which belong to the
same class (elems is a field):
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Int m() {
Int i = 0;
while (i < elems) {

f = o ! remoteCall();
await f?;
i = i + 1;

}
return i;

}

void inc() {
elems = elems + 1;

}

An interleaved execution of them would not allow us to prove termination. Recent work [10]
proposes the use of a may-happen-in-parallel analysis to detect whether at the await instruction
in the body of the loop, we might have an instance of method inc pending to be executed. If this is
not the case, we can safely prove termination of the loop in m. Even more, even if there might be
an instance of inc in the object queue when the processor is released, we would be able to prove
termination, as the value of elems will be incremented once, but it will then remain stable. The
general reasoning proposed in [10] is to prove that we have a finite number of instructions which
update the field of interest in the queue. If this is the case, the value of the field will eventually not
be modified any longer. Thus, the required invariants should establish the boundness of the field
values.
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PROOFS (added for reviewers’ convenience and to appear in an electronic appendix)

A. SOUNDNESS (PROOF SKETCH FOR THEOREM 1)

In the following, when we talk about ;-traces, we refer to traces in which the application of rule
(11) in Figure 3 is not considered. This is because such a rule only selects tasks from a queue but
does not make any computation.

In order to prove the Theorem, we can reason by induction on the length n of the trace S0 ;n Sn.

Base Case: If the trace is of length 0, i.e., (n = 0) then

S0 ≡ {ob(〈id0, ε〉,⊥,⊥, 〈tv0,call(b,main(〈this〉, 〈〉))〉, {})}
and Theorem 1 trivially holds.

Inductive Case: Let us consider traces of length n+ 1 > 0. Assuming that the theorem holds for
all ;-traces of length n ≥ 0 (the induction hypothesis), we show that it also holds for traces that
consist of n+ 1 steps. Consider a ;-trace of length n, S0 ; . . .; Sn. By the induction hypothesis,
Theorem 1 holds for all Sj , 0 ≤ j ≤ n. In what follows, i stands for the program point of the
instruction executed in state Sn+1. We use φi, θi to refer to the components of the abstract state after
instruction i, and φpred(i), θpred(i) to refer to the abstract state before instruction i. We will also use
name(o) to refer to the object name of an object identifier o, as described in Section 4.2. To extend
the Theorem to traces of length n+ 1 we reason for all possible cases in Figure 3. In all cases except
Rule (5), Theorem 1 holds for Sn and tv(this) is not modified in Sn+1, then name(o) ∈ φi(this)
holds and therefore case a) of Theorem 1 holds for Sn+1. We assume we select non-deterministically
one a ∈ Sn as follows.

[Rule (1)] a ≡ ob(o, C, h, 〈tv , x := e · b̄〉,Q). If x is a reference variable, e may be one of the
following:

• e ≡ y, where y is a local variable (different from x). Points-to analysis applies row 2 of
the transfer function τ shown in Figure 4, updating φi as follows:

φi = φpred(i)[x
l 7→ φpred(i)(y

l)],∀l ∈ φpred(i)(this)

By the induction hypothesis, name(tv(y)) ∈ φpred(i)(y
name(o)) holds. At state Sn+1 Rule

(1) sets tv(x) = tv(y). As state Sn+1 does not change tv(y) and τ sets φi(xname(o)) =
φpred(i)(y

name(o)), then name(tv(x)) ∈ φi(xname(o)) holds.
• e ≡ this.f , where f is a field of class C. This case is similar to the previous case,

applied to fields. Points-to analysis applies row 3 of the transfer function τ shown in
Fig. 4, updating φi as follows:

φi = φpred(i)[x
l 7→ φpred(i)(l.f)],∀l ∈ φpred(i)(this)

By the induction hypothesis name(h(f)) ∈ φpred(i)(name(o).f) holds. At state Sn+1

Rule (1) sets tv(x) = h(f). As state Sn+1 does not change h(f) and τ sets φi(xname(o)) =
φpred(i)(name(o).f), then name(tv(x)) ∈ φi(xname(o)) holds.

• e ≡ null. In this case Theorem 1 is not applicable.

In all applicable cases, case b) of Theorem 1 holds. Case c) also holds, as φi(name(o).f) does
not change for any f ∈ f̄C .
[Rule (2)] a ≡ ob(o, C, h, 〈tv , this.f := y · b̄〉,Q). If f is a reference field, the points-to
analysis applies row 5 of the transfer function τ shown in Figure 4, updating φ and θ as
follows:

φi = φpred(i)[l.f 7→ φpred(i)(y
l)],∀l ∈ φpred(i)(this) (1)

θi = θpred(i)[l.f 7→ φpred(i)(y
l) ∪ θpred(i)(l.f)],∀l ∈ φpred(i)(this) (2)
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By the induction hypothesis, name(tv(y)) ∈ φpred(i)(y
name(o)). At state Sn+1 Rule (2) sets

h(o.f) = tv(y). As state Sn+1 does not change tv(y) and τ sets φi(name(o).f) = φi(y
name(o)),

name(h(f)) ∈ φi(name(o).f) holds. Therefore, case c) of Theorem 1 holds. Case b) also
holds, as φi(xname(o)) does not change for any x ∈ dom(tv).

Observe that, as a result of the application of τ , φi(l.f) ⊆ θi(l.f), ∀f ∈ φ(this),∀f ∈ f̄C (1
and 2). Flow-insensitive analysis information stored in θ is propagated along all program
points, and it only grows as a result of the application of row 5 of the transfer function.
Flow-insensitive information for fields will be used in rows 7 and 8 (Rules (5) and (9) of the
semantics, respectively).
[Rule (3)] a ≡ ob(o, C, h, 〈tv , x := new D · b̄〉,Q). As a result of the application of this rule,
a fresh object identifier o1 is created and stored in tv(x) by means of newRef (i , o).
Points-to analysis applies row 1 of the transfer function τ shown in Figure 4, updating φi as
follows:

φi = φpred(i)[x
l 7→ {l ⊕k i}],∀l ∈ φpred(i)(this)

φi(x
name(o)) is a set with a single object name which is the abstraction produced by name(o1).

Therefore, case b) of Theorem 1 holds.
[Rule (4)] a ≡ ob(o, C, h, 〈tv ,call(b, p(this, x̄, ȳ)) · b̄〉,Q). This rule generates a fresh
renaming of program rule p and creates a new mapping in which reference variables are
initialized to null. Then the fresh variables x̄′ that correspond to formal parameters are
assigned the values of the actual parameters in the call, tv(x̄).
Row 6 in Table 4 describes calls to blocks in the transfer function τ . The
function interp projects the abstractions of actual input parameters stored in φ
into formal parameters, resulting in a new mapping φ′. Therefore, for each xj ∈
x̄ and x′j ∈ x̄′, φ′i = φpred(i)[(x

′
j)
l 7→ φpred(i)(x

l
j)],∀l ∈ φpred(i)(this). Since name(o) ∈

φpred(i)(this), name(tv(x′j)) = name(tv(xj)) and name(tv(xj)) ∈ φpred(i)(x
name(o)
j ) hold,

then name(tv(x′j)) ∈ φi((x′j)name(o)) holds and also case b) of Theorem 1.
[Rule (5)] a ≡ ob(o, C, h, 〈tv ,call(m, p(rec, x̄, y)) · b̄〉,Q). This rule corresponds to an
asynchronous call to a method on object o1 = tv(rec) that adds a new task to object o1 with
the formal parameters x̄′ initialized to the actual parameters x̄ in the call, i.e.,

ob(o1, D, h1, _, {〈tv3, b
′
1 · · · b′n〉} ∪ Q′)

whereD is the class that o1 belongs to, h1 is the current mapping of fields to values in o1 local
heap, and tv3 is a mapping of local variables, initialized to 0 or null, and parameters, that
take their values from tv , namely tv3(x̄′) = tv(x̄) and tv3(this) = tv(rec) = o1.
The points-to analysis uses function interp for handling method calls in row 7 of Table 4 as
follows:

〈φi, θi〉 = interp(〈φpred(i), θpred(i)〉, φpred(i)(rec
l),m(rec, x̄, y)),∀l ∈ φpred(i)(this)

It projects the abstractions of rec and actual parameters stored in φpred(i) into this and
formal parameters, resulting in a new mapping φ′, which is then used to analyze m. By the
induction hypothesis, name(o) ∈ φpred(i)(this) and name(tv(rec)) ∈ φpred(i)(rec

name(o)). For
each l ∈ φpred(i)(this), function interp sets φ′(this) to φpred(i)(rec

l). Therefore, there is one
l for which name(o1) ∈ φ′(this) and case a) of Theorem 1 holds.
Regarding the parameters, for each l ∈ φpred(i)(this) and for each xj ∈ x̄ and x′j ∈ x̄′,

φ′ = φ⊥[(x′j)
r 7→ φpred(i)(x

l
j)],∀r ∈ φ′(this)

Since name(tv3(x′j)) = name(tv(xj)) and by the induction hypothesis name(tv(xj)) ∈
φpred(i)(x

name(o)
j ) holds, then name(tv3(x′j)) ∈ φ′((x′j)name(o1)) also holds and thus case b)

of Theorem 1 holds.
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Fields in φ′ are updated with the flow-insensitive information in θpred(i) as follows:

φ′ = φ′[r.f 7→ θpred(i)(r.f)],∀r ∈ φ′(this)

As mentioned in the case of rule (2), flow-insensitive analysis information stored in θ is
propagated along the program, and it is updated when a field r.f is assigned a value, adding
the new abstract value to θ(r.f). Therefore, φ′(name(o1).f) correctly stores all possible values
that field f may be assigned to by other tasks of the same object, and thus case c) of Theorem 1
holds.
Finally, after the analysis of method m function interp stores the analysis results of the
returning value of m in the future variable y, i.e.,

φi = φpred(i)[y
l 7→ ∪{φ′′((y′)r) | r ∈ φpred(i)(rec

l)}],∀l ∈ φpred(i)(this)

where φ′′ is the transfer function at the end of method m. Note that in φ′′ there are as many
replicas of y′ as elements in the set φpred(i)(rec

l) that are joined to produce a result to assign
to yl. The value stored in yl will be used when retrieving the result of the method by means
of a get instruction, as it is detailed in Rule (8) below.
[Rules (6) and (7)] a ≡ ob(o, C, h, 〈tv , ε〉,Q). Both rules correspond to the end of a block or
a method, respectively. By the induction hypothesis, Theorem 1 holds for Sn. Rules (6) and
(7) do not change this nor local variables or fields, therefore Theorem 1 also holds for Sn+1.
Observe that rule (7) stores the value returned by an asynchronous execution of a method in
fut(fn, v) ∈ Sn+1. This value is used by rule (8) below.
[Rule (8)] a ≡ ob(o, C, h, 〈tv , x := y.get · b̄〉,Q). This rule corresponds to the execution of
a get instruction. By the induction hypothesis, Theorem 1 holds for Sn and previous states.
The application of this rule requires the application of rule (7) in a previous step Sj for some
j ≤ n, in order to set a value for the future variable fut(fn, v) ∈ Sj . Since future variables
are not removed from the states of a trace, in any trace k > j, fut(fn, v) ∈ Sk holds, and in
particular fut(fn, v) ∈ Sn.
If x is a reference variable and the method whose call is linked to the future variable y
returns a reference, the points-to analysis stores the returning value of the method in the local
future variable y, i.e., φ(yl),∀l ∈ φpred(i)(this), by means of function interp used in row 7 of
Table 4. This value is then used in row 9 of Table 4 for get:

φi = φpred(i)[x
l 7→ φpred(i)(y

l)],∀l ∈ φpred(i)(this)

Since name(o) ∈ φpred(i)(this), φi(xname(o)) = φpred(i)(y
name(o)) holds. As seen in rule (5),

the returning value is properly stored in φ(yname(o)). Therefore, name(tv(x)) ∈ φi(xname(o))
holds, and also case b) of Theorem 1. Case c) also holds, as φi(name(o).f) does not change
for any f ∈ f̄C .
[Rules (9) and (10)] a ≡ ob(o, C, h, 〈tv ,await x? · b̄〉,Q). These rules correspond to the
execution of an await instruction. First rule considers the case in which the future variable
is ready, and the task continues executing. In the case of rule (10), the condition of the await
does not hold and the processor is released. Any other task in o may continue executing,
possibly changing field values in h.
When an await instruction is found, the points-to analysis applies row 8 of Table 4 as
follows:

φi = φpred(i)[l.f 7→ φpred(i)(l.f) ∪ θpred(i)(l.f)],∀l ∈ φpred(i)(this)

As it has been mentioned in the case of rule (2), flow-insensitive analysis information stored
in θ is propagated along the program, and it is updated when a field l.f is assigned a value,
adding the new abstract value to θ(l.f).
Since name(o) ∈ φpred(i)(this), φi(name(o).f) correctly stores all possible values that field
f may be assigned to by other tasks of the same object, and thus case c) of Theorem 1 holds.
Case b) also holds, as φi(xname(o)) does not change for any x ∈ dom(tv).
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B. SOUNDNESS (PROOF SKETCH FOR THEOREM 2)

In the following, when we talk about ;-traces, we refer to traces in which the application of
rule (11) in Figure 3 is not considered. This is because such a rule only selects tasks from a
queue but does not make any computation. Note that, each time we give a ;α-step, of the form
A ◦ φ;α A′ ◦ φ′, it holds that φ′ = φ ∧ ϕ. This means that φ′ |= φ trivially. Hence it is trivial that
in any α-trace of the formA0 ◦ φ0 ;α . . .;α An ◦ φn it holds that φn |= φi, for all 1 ≤ i ≤ n. The
rest of conditions of the Theorem are proved by the induction on the length n of the trace S0 ;n Sn.

Base Case: If the trace is of length 0, i.e., n = 0, then

S0 ≡ {ob(main,⊥,⊥, 〈tv0,call(b,main(this, 〈〉, 〈〉))〉, {})}

and we can take ρ0 as the identity mapping, and ρ1 and ABST(call(b,main(this, 〈〉, 〈〉)), ρ0) =
〈call(b,main(this, 〈〉, 〈〉)), ρ1〉.

Inductive Case: Let us consider traces of length n+ 1 > 0. Assuming that the theorem holds for
all ;-traces of length n ≥ 0 (the induction hypothesis), we show that it also holds for traces that
consist of n+ 1 steps. Consider a ;-trace of length n:

S0 ≡ {ob(main,⊥,⊥, 〈tv0,call(b,main(this, 〈〉, 〈〉))〉, {})}; Sn
By the induction hypothesis, there exists an abstract trace:

A0 ≡ 〈call(b,main(this, 〈〉, 〈〉)), ρ · ρ′〉 ◦ true ;n
α An ◦ φn

such that Si ≈ Ai ◦ φi, 1 ≤ i ≤ n. Let us analyze how the theorem extends to all possible ;-traces
of length n+ 1 generated from the above concrete and abstract traces. We reason for all possible
cases in Figure 3, by assuming we select non-deterministically one a ∈ Sn as follows:

[Rule (1)] a ≡ ob(o, C, h, 〈tv , x := e · b̄〉,Q). Then Sn+1 is equals to Sn by replacing object
a by the new one ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q). Now by the induction hypothesis, it holds that
aα ≡ 〈ϕ · b̄α, ρ1 · ρ2 · ρ̄〉 ∈ An ◦ φn. Let us now analyze all possible forms of expression e:

• e = y. Then evale(e, h, tv) = tv(y) and ϕ = ρ2(x) = ρ1(y). Let us σ be the assignment
satisfying point 2 of Def. 8. Let us define σ′ as σ together with σ(ρ2(x)) = v. Then
by the induction hypothesis φn is satisfiable, and thus, since ρ2(x) is a fresh variable,
then φn+1 ≡ φn ∧ ρ2(x) = ρ1(y) is also satisfiable and we can apply the ;α rule
(1)α. Consider σ′ defined as σ together with σ′(ρ2(x)) = v. The only points to be
proved are tv [x 7→ v](x) = v = σ′(ρ2(x)) and σ′ |= φn+1. The first point is trivial. The
second one can be deduced by the induction hypothesis together with the following
v = tv(y) = σ(ρ2(y)) = σ(ρ1(y)) = σ′(ρ1(y)).

• e = this.f , evale(e, h, tv) = h(f) = v and ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q) ∈ Sn+1. By the
induction hypothesis it holds that 〈ρ2(x) = ρ1(f), ρ1 · ρ2 · ρ̄〉 ∈ An ◦ φn. For the same
reason as in the previous case φn+1 ≡ φn ∧ ρ2(x) = ρ1(f) is satisfiable, and we can
apply rule (1)α to compute An+1 ◦ φn+1 satisfying that 〈b̄α, ρ2 · ρ̄〉 ∈ An+1 ◦ φn+1. Let
us define σ′ as σ extended with σ′(ρ2(x)) = v and σ′(ρ2(f)) = v. Then it is enough
to note first that σ′(ρ2(x)) = v = tv [x 7→ v](x). And second, since by the induction
hypothesis σ(ρ1(f)) = h(f) = v, then σ′(ρ2(f)) = σ(ρ1(f)).

• The remaining cases can be reasoned similarly as ones above.

[Rule (2)] Then ob(o, C, h, 〈tv , this.f := y · b̄〉,Q)∈Sn and ob(o, C, h[f 7→ v], 〈tv , b̄〉,Q) ∈
Sn+1. After applying the induction hypothesis we compute 〈ρ2(f) = ρ1(y) · b̄α, ρ1 · ρ2 · ρ̄〉 ◦
φn ∈ An and the conditions of the Theorem hold. Concretely there exists σ satisfying φn
which trivially satisfies also φn+1 ≡ φn ∧ ρ2(f) = ρ1(y). Then we can apply rule (3)α to
compute 〈b̄α, ρ2 · ρ̄〉 ◦ φn+1 ∈ An+1. Let us consider σ′ defined as σ and extended with
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σ′(ρ2(f)) = v. In order to prove this case it is enough to prove that σ′(ρ2(f)) = h(f), what
trivially holds because of the definition of σ′.

[Rule (3)] a ≡ ob(o, C, h, 〈tv , x := new D · b̄〉,Q) and 〈o, C.h, 〈tv [x 7→ o1], b̄〉,Q〉 〈o1,
D, h1, ε, ∅〉 belongs to Sn+1. By the induction hypothesis 〈ρ2(x) = 1 · b̄α, ρ1 · ρ2 · ρ̄〉 ∈ An ◦
φn, and Def. 8 holds. Note that since ρ2(x) is a fresh variable and φn is satisfiable (by the
induction hypothesis), then φn+1 ≡ φn ∧ ρ2(x) = 1 is also satisfiable. Let σ be an assignment
ensuring Sn ≈ An ◦ φn. Let us consider σ′ defined as σ together with σ′(ρ2(x)) = 1. Then
Sn+1 ≈ An+1 ◦ φn+1 follows from the induction hypothesis and by the definition of σ′. Note
that since tasks(ob(o1, D, h1, ε, ∅)) = ∅, this object has not to be considered.

[Rule (4)] For this case it holds that ob(o, C, h, 〈tv ,call(b, p(this, x̄, ȳ)) · b̄〉,Q) ∈ Sn
and ob(o, C, h, 〈tv ∪ tv2, b

′
1 · · · b′n · b̄〉,Q) ∈ Sn+1 and r ≡ p(this ′, x̄′, ȳ)← g ′, b′1, . . . , b

′
n

� P, tv1 = newEnv(r − {ȳ}), tv2 = tv1[this ′ 7→ o, x̄′ 7→ tv(x̄)], evalgd(g ′, tv2 ) = true.
By the induction hypothesis, we can build the abstract trace A0 ;n

α An+1, where
〈call(b, p(this1 , x̄1 , ȳ1 )) · b̄α, ρ0 · ρ1 · ρ̄〉 ∈ An ◦ φn. and the conditions of the Theorem
hold. Concretely, ρ0(this) = this1 , ρ0(x̄) = x̄1 and ρ1(ȳ) = ȳ1. Furthermore, if σ is the
assignment satisfying the Theorem, then σ(ρ0(this)) = tv(this) = tv2 (this ′) and σ(ρ0(x̄)) =
tv(x̄) = tv2(x̄). Let us select rα as p(this1 , x̄1 , ȳ1 )→ g1 , b

α
1 , . . . , b

α
n ◦ ρ0 · · · ρ1 . Suppose

now that g ′ ≡ z ′3w ′ and g ′ ≡ z ′′3w ′′. Then since σ(ρ0(z′′)) = tv2(z′) and σ(ρ0(w′′)) =
tvq(w

′) and evalgd(z′3w′, tv2), then σ |= ρ0(z′′)3ρ0(w′′). Hence σ |= φn+1, where φn+1 ≡
φn ∧ z′′3w′′ and we can apply rule (2)α to get 〈bα1 · · · bαn · b̄α, ρ0 · · · ρ1 · ρ1 · · · ρ̄〉 ◦ φn+1. The
only point to prove now is that ABST(b′i, ρi) = 〈bαi , ρi+1〉. The result trivially holds (by the
induction hypothesis) for x̄, ȳ and this . For the rest of variables which are fresh, it is enough
to select the corresponding renamings satisfying the condition.

[Rule (5)] Then ob(o, C, h, 〈tv ,call(m, p(rec, x̄, y)) · b̄〉,Q), ob(o1, D, h1, 〈tv1, b̄1〉,Q′) ∈
Sn, where r ≡ p(this ′, x̄′, y′)← b′1, . . . , b

′
n � P, tv(rec) = o1, fn = newFut(),

tv2 = newEnv(r), tv3 = tv2[this ′ 7→ o1, x̄
′ 7→ tv(x̄), ret 7→ (y′, fn)]. The application

of rule (5) generates ob(o, C, h, 〈tv [y 7→ fn], b̄〉,Q), 〈o1, D, h1, 〈tv1, b̄1〉, {〈tv3, b
′
1

· · · b′n〉} ∪ Q′〉, fut(fn,⊥) ∈ Sn+1. By the induction hypothesis, it holds that
〈call(m, p(rec1, x̄1, y1)), ·b̄α, ρ1 · ρ2 ◦ ρ̄〉, 〈b̄α1 , ρ̄1〉 ∈ An ◦ φn where ρ1(rec) = rec1 ,
ρ1(x̄) = x̄1, ρ2(y) = y1 and the conditions of the Theorem holds. Let us select the
abstract rule rα ≡ p(rec1, x̄1, y1)→ bα1 , . . . , b

α
n ◦ ρ1 · · · ρ2, coming from abstracting rule

r. If we apply rule (2)α, then 〈b̄α, ρ2 ◦ ρ̄〉, 〈bα1 , . . . , bαn · b̄α1 , ρ1 · · · ρ2 · ρ̄1〉 ∈ An ◦ φn.
Let σ be the assignment satisfying Sn ≈ An ◦ φn. The important points to prove are
σ(ρ1(x̄1)) = tv3(x̄′), σ(ρ1(rec)) = tv3 (this ′) and σ(ρ1(y) = tv3(y). But by the induction
hypothesis it holds that σ(ρ1(x̄1)) = tv(x̄) = tv3(x̄′), σ(ρ1(rec)) = tv(rec) = tv3 (this ′) and
σ(ρ1(y)) = tv(y) = tv3 (y ′).

[Rule (6)] In this case the result trivially holds by the induction hypothesis and the application
of rule (6)α.

[Rule (7)] In this case it holds that ob(o, C, h, 〈tv , ε〉,Q), fut(fn,⊥) ∈ Sn, ret ∈
dom(tv), (y, fn) = tv(ret), v = tv(y) and ob(o, C, h, ε,Q), fut(fn, v) ∈ Sn+1. The appli-
cation of rule (7) comes from the complete execution of some method m. Let us select the
state Sk in which the call to m is selected to be evaluated. Then we have the following
situation: ob(o1, D, h1, 〈tv1,call(m,m(rec, _, y) · b̄〉,Q1), ob(o, C, h2, 〈tv2, b̄2〉,Q2) ∈ Sk
and ob(o1, D, h3, 〈tv3, b̄〉,Q3), ob(o, C, h2, 〈tv2, b̄2〉,Q3 ∪ {〈tv4, body(m)〉}) ∈ Skk+1

, where
tv1(rec) = 0 , tv3(y) = fn, tv4(ret) = (fn, y′), body(m) is the renamed rule selected to
give the ;-step, where y′ is the corresponding renaming of y. Now let us consider the
sub-trace Sk+1 ; Sn, where the task 〈tv4, body(m)〉 is now completely resolved. Then
ob(o1, D, h6, 〈tv6, b̄6〉,Q6) ∈ Sn and tv(ret) = tv4(ret) = (fn, y′) and tv6(y) = tv3(y) =
fn.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



42

By the induction hypothesis we can build the α-trace A0 ;n
α An satisfying the conditions of

the Theorem. Concretely 〈ε, ρ〉 ∈ An ◦ φn, where φn is satisfiable. Rule (6)α can be applied
on An to get An+1 = 〈ε, ρ〉. The only point to prove is that since y ∈ dom(tv6), tv6(y) = fn

and (fn, v) ∈ Sn+1, then σ(ρ(y)) = v, where σ is the assignment satisfying the conditions
of the Theorem on Sn and An. However, since tv(y′) = v, then by the induction hypothesis
σ(ρ(y′)) = v. By construction of the α-trace, it holds ρ(y′) = ρ(y).

[Rule (8)] In this case ob(o, C, h, 〈tv , x := y.get · b̄〉,Q), fut(fn, v) ∈ Sn, where fn =
tv(y), v 6= ⊥. By the induction hypothesis, 〈ρ2(x) = ρ1(y) · b̄α, ρ1 · ρ2 · ρ̄〉 ∈ An ◦ φn, where
φn is satisfiable, and there exists σ such that σ |= φn and σ(ρ1(y)) = v. Now we apply rule (8)
on Sn, what transforms Sn as ob(o, C, h, 〈tv [x 7→ v], b̄〉,Q), fut(fn, v) ∈ Sn+1. Since φn is
satisfiable and ρ2(x) is a fresh variable, then φn+1 ≡ φn ∧ ρ2(x) = ρ1(y) is satisfiable and we
can apply rule (1)α to compute 〈bα, ρ2 · ρ̄〉 ∈ An+1. Let us choose an assignment σ′ defined
as σ but extended with σ′(ρ2(x)) = v. This assignment satisfies that σ′ |= φn+1. Furthermore
σ′(ρ2(x)) = tv [x 7→ v](x) = v. Thus the result holds.

[Rules (9) and (10)] In both cases the proof follows immediately from the induction
hypothesis by applying respectively, rules (4)α and (5)α. Note that for rule (10) we have
that tasks(Sn) = tasks(Sn+1 ) since the task is only introduced in the queue of the current
object.

C. SOUNDNESS (PROOF SKETCH FOR THEOREM 3)

We sketch the main ideas of the proof for the object-insensitive analysis, and then we comment on
the straightforward changes required to handle the object-sensitive case. The proof sketch consists
of two parts:

• In the first one, we instrument the abstract states in the abstract operational semantics of
Figure 8 with a cost component that measures the cost of abstract executions; and show that
each concrete trace has a corresponding abstract one with the same cost.

• Then, in a second part, we show that the cost relations generated from the abstract program
indeed approximate the resource consumption behaviour of the abstract program.

Figure 10 depicts an abstract operational semantics derived from the one of Figure 8 by
instrumenting the abstract states with a component that accumulates cost. Namely, an abstract state
now has the formA ◦ φ ◦ ewhere e is the amount of resources consumed so far. The instrumentation
is straightforward: when executing bα we simply accumulate the cost M(bα) that, by abusing of
notation, we assume to be equivalent toM(b), i.e., to the cost of the original instruction from which
bα originate. Given an abstract trace T α ≡ A0 ◦ true ◦ 0 ;n

α An ◦ φn ◦ en , its cost is defined as
M(T α) = en. Note that this instrumentation has no effect on the abstract executions, i.e., we still
have the same abstract traces as those generated using the abstract semantics of Figure 8, and,
moreover, Theorem 2 holds for the instrumented abstract semantics of Figure 10.

Now let S0 be an initial state, and let T ≡ S0 ;n Sn be a concrete trace that starts from S0.
Recall that the cost of T , denoted M(T ), is defined as the sum of all M(b) for each instruction
b used in an execution step of T . From Theorem 2, it immediately follows that there is a
corresponding abstract trace T α ≡ A0 ◦ true◦;n

α An ◦ φn ◦ en such thatM(T α) = en =M(T ).
This is because according to the proof in Appendix B, the instructions of T and T α coincide, i.e.,
whenever we make a concrete step that uses an instruction b, we can also make an abstract step that
uses bα. This means that any concrete trace T , has a corresponding abstract one with the same cost.

Next we briefly explain why the cost relations generated from the abstract rules approximate the
resource consumption of the abstract program, and thus the resource consumption of the original
program. We do this by starting from the abstract program and the abstract semantics of Figure 10,
and then modify them several times until we obtain the corresponding cost relations and the
corresponding semantics [4].
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(1)α
p(this, x̄, ȳ)← gα, bα1 , . . . , b

α
n ◦ ρ0 · · · ρn+1 � Pα, gα ∧ φ 6|= false, e ′ =M(p(this, x̄ , ȳ)) + e

{〈call(b, p(this, x̄, ȳ)) · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈bα1 · · · bαn · b̄α, ρ1 · · · ρn+1 · ρ̄〉|A} ◦ φ ∧ gα ◦ e′

(2)α
p(rec, x̄ , y)← bα1 , . . . , b

α
n ◦ ρ1 · · · ρn+1 � Pα, e ′ =M(p(rec, x̄ , ȳ)) + e

{〈call(m, p(rec, x̄, y)) · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b̄α, ρ̄〉, 〈bα1 · · · bαn, ρ1 · · · ρn+1〉|A} ◦ φ ◦ e′

(3)α
ϕ ∧ φ 6|= false, e′ =M(ϕ) + e

{〈ϕ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b̄α, ρ̄〉|A} ◦ φ ∧ ϕ ◦ e′

(4)α
e′ =M(⊥) + e

{〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈b̄α, ρ̄〉|A} ◦ φ ◦ e′

(5)α
{〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e;α {〈⊥ · b̄α, ρ · ρ̄〉|A} ◦ φ ◦ e

(6)α
{〈ε, ρ〉|A} ◦ φ ◦ e;α {ε|A} ◦ φ ◦ e

Figure 10. Semantics of Abstract Programs with Cost Annotations

In the first step, we consider a program that is obtained from the abstract program by removing
all output variables, we refer to this program as output-free program. Clearly, any trace obtained
using the abstract program has a corresponding trace that is obtained using the output-free program
with the same resource consumption. This is true since the only difference is that in each step we
might add less constraints to the store (we do not add those that match the formal and actual output
parameters).

In the second step, we change the abstract semantics such that instead of accumulating the
resource consumption of each execution step, it accumulates the resource consumption of all
abstract instructions immediately when they are added to the abstract state in rules (1)α and (2)α.
This change amounts to: (i) changing rules (3)α and (4)α such that they do not accumulate any
cost, and (ii) changing rules (1)α and (2)α to accumulate also c =M(bα1 ) + · · ·+M(bαn). Clearly,
this change only anticipates the consumption of resources, and thus for any abstract trace that is
obtained using the output-free program and the abstract semantics of Figure 10, we can generate a
corresponding abstract trace using the same program and the modified abstract semantics such that
it consumes at least the same amount of resources.

In the third step, we eliminate Rules (3)α-(6)α from the abstract semantics and we modify rules
(1)α and (2)α such that (i) they add all constraints that appear in the body of the selected rules
(let us call them ϕ = ϕ1 ∧ ϕk) to the store, and the rest, which are calls, are added as usual to the
corresponding task. It is still guaranteed that using this abstract semantics we can reproduce the
resource consumption of any trace generated in the above step. This is because the constraints in
the body are obtained by applying a single static assignment transformation, thus for any i > j the
constraint ϕi does not restrict the values of the variables in ϕj .

Now let us consider an equation p(x̄) = c+ Σqi(w̄i), ϕ in the cost relation. Here c and ϕ are the
total resource consumption and the constraints of a given rule respectively (as above). It is easy to
see that this equation is just a denotational form of the resource consumption as developed in the
third step above. Thus, any upper-bound of the cost relation is also an upper bound in the resource
consumption of the corresponding abstract traces.

The correctness for the object-sensitive case is straightforward given the soundness of the points-
to analysis. The above proof can be adapted to the object-sensitive case by: (i) modifying the abstract
program such that it includes corresponding points-to annotations; and (ii) change the abstract
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semantics in order to accumulate expressions of the form c(o) ∗M(b). The correctness of the points-
to analysis guarantees that if in the concrete setting we accumulate M(b) when executing within
object o′, then in the abstract setting we accumulate c(o) ∗M(b) where o is the approximation of
the o′ inferred by the points-to analysis. Finally, cloning the equation as done in Definition 11 just
makes the points-to information explicit in the rules names.
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