Symbolic Execution of
Concurrent Objects in CLP

Elvira Albert, Puri Arenas, and Miguel Gémez-Zamalloa

DSIC, Complutense University of Madrid, Spain

Abstract. In the concurrent objects model, objects have conceptually
dedicated processors and live in a distributed environment with un-
ordered communication by means of asynchronous method calls. Method
callers may decide at runtime when to synchronize with the reply from
a call. This paper presents a CLP-based approach to symbolic execution
of concurrent OO programs. Developing a symbolic execution engine for
concurrent objects is challenging because it needs to combine the OO
features of the language, concurrency and backtracking. Our approach
consists in, first, transforming the OO program into an equivalent CLP
program which contains calls to specific builtins that handle the concur-
rency model. The builtins are implemented in CLP and include primitives
to handle asynchronous calls synchronization operations and scheduling
policies, among others. Interestingly, symbolic execution of the trans-
formed programs then relies simply on the standard sequential execu-
tion of CLP. We report on a prototype implementation within the PET
system which shows the feasibility of our approach.

1 Introduction

Increasing performance demands, application complexity and multi-core paral-
lelism make distribution and concurrency omnipresent in today’s software appli-
cations. There is thus a renewed interest in investigating techniques that help in
simulating, debugging, testing, verifying, etc., distributed and concurrent pro-
grams. The focus of this paper is on developing a CLP-based framework for
the symbolic execution of concurrent object-oriented (OO) imperative programs.
Symbolic execution of a program consists in executing it “a la Prolog”, i.e., using
as arguments free (logic) variables. It allows thus reasoning about all the in-
puts that take the same path through the program. Symbolic execution is at the
core of software verification [14] and testing tools [15,18,23]. In the latter case,
by incorporating coverage and termination criteria, symbolic execution allows
automatically obtaining test-inputs ensuring a certain degree of code coverage.

Within the OO paradigm, there are two main approaches to concurrency:
(1) thread-based concurrency models (like those of Java and C#) are based on
threads which share memory and are scheduled preemptively, i.e., they can be
suspended or activated at any time. To prevent threads from undesired inter-
leavings, low-level synchronization mechanisms such as locks have to be used.

Experience has shown that software written in the thread-based model is error-
prone, difficult to debug, verify and maintain [20]. (2) In order to overcome
these problems, the active-objects model [6,13,17,20,21] aims at providing pro-
grammers with simple language extensions which allow programming concurrent
applications with relatively little effort. Active (also called concurrent) objects
operate similar to Actors [1] and Erlang processes [5].

In this paper, we consider the imperative OO language ABS [12] which is
based on the active-objects concurrency model. A concurrent object, conceptu-
ally, has a dedicated processor and it encapsulates a local heap which is not
accessible from outside the object. The language supports asynchronous method
calls, which trigger activities in other objects without transferring control from
the caller. The method caller may decide at runtime when to synchronize with
the reply from a call. In general, an object may have many method activations
competing to be executed. Among these, at most one process (or task) is ac-
tive and the other processes are suspended in a process pool. Process scheduling
is non-deterministic, but controlled by processor release points in a cooperative
way. Cooperative scheduling means that switching between tasks of the same ob-
ject happens only at specific scheduling points during program execution, which
are explicit in the source code and can be syntactically identified.

The goal of this paper is to design (and implement) a CLP-based symbolic
execution engine for concurrent ABS programs. This is a challenging problem
as one needs to combine the OO and concurrent aspects of the ABS language
with the backtracking mechanism required to perform symbolic execution. For
sequential programs, we have seen in [7-9, 16] that, as symbolic execution is
the standard evaluation mechanism of CLP, symbolic execution of imperative
programs can be performed in a natural and efficient way by: (1) first, translating
the imperative program into an equivalent CLP program and, (2) then, relying
on the execution mechanism of CLP which performs symbolic execution natively.

The main contribution of this paper is to lift such CLP-based framework
from the sequential to the concurrent OO setting. In particular, we first pro-
pose an automatic transformation of concurrent imperative programs into CLP
programs which include specific builtin operations to handle the concurrency
aspects of the language. The global state is made explicit in the translation as
an additional argument of clauses. It includes the set of concurrent objects with
their fields values and corresponding queues of pending tasks. We then provide
an implementation in CLP of the builtins to treat all concurrency aspects of the
language: (a) asynchronous calls are handled by adding corresponding pending
tasks to the queues of the remote objects on which the calls are performed, (b)
synchronization operations can be performed to suspend the execution of a task
in an object until certain condition holds, (c¢) future variables become part of
the state and allow synchronizing with the reply from a call, and (d) different
scheduling policies can be easily integrated in our symbolic execution engine. We
report on a prototype implementation of our proposal within the PET system [§]
(a generic platform for CLP-based testing) and evaluate it on a series of small
applications which are classical examples of concurrent programming.

T :=B|I|D|D(T) A == N|T|D(A)
Dd ::= dat a D[(A)] = Cons]| | Cons] Cons ::= Co[(A)]
F w=def A fn[(A)](Az)=c¢ pu=uwx|t| Col(p)]
ex=blz|t|this]| Co[(e)]|fn(e) |case e {p=¢} t ::= Co[(t)] | nul |
IF == interface I [extends I] {Sg} Sg == T m (T x)
CL == class C[(T x)][i npl ement s T){T z; M} M == Sg{T z; s}
su=s; s|lz=rhs|await g|returne g == ble?|gAg
[if (b){s}[else{s}]|while (b){s}]|skip
rhs == e |new C[(€)] | e ! m(€) | e.m(€) | z.get

Fig. 1. ABS Syntax for Functional (top) and Concurrent Object Level (bottom)

2 An Overview of Concurrent Objects

Our method is presented for the core of the ABS language [12], a successor of
Creol [6,13]. ABS is an OO language for distributed concurrent systems whose
concurrency model is based on concurrent objects. An ABS program defines in-
terfaces, classes, datatypes, and functions, and has a nmai n block to configure
the initial state. The functional sub-language allows abstracting from imple-
mentation details: abstract data types are used to specify internal, sequential
computations, while concurrency is handled in the imperative part.

Fig. 1 gives the syntax of ABS programs. In the functional level (top), ground
types T consist of basic types B (Bool, Int, etc.), names for interfaces I and
data types D. In contrast to T', types A may contain type variables named N.
Dd stands for data type declarations, where D has at least one constructor
Cons. Function declarations F' consist of a return type A, a function name fn,
a list of variable declarations T of types A, and an expression e. Expressions e
include Boolean expressions b, variables z, (ground) terms ¢, the special read-only
variable t hi s which refers to the identifier of the object, constructor expressions
of the form Co[(€)], function applications of the form fn(€), and case expressions
of the form case e{p =€}, where p is a pattern, as defined in the grammar.

In the concurrent object level of ABS (bottom), an interface IF' has a name
I and method signatures Sg, and it can extend other interfaces I. A class has a
name C, implements a list of interfaces, may contain class parameters and state
variables Z of type T, and methods M. The fields of the class are both its param-
eters and state variables. Objects are instances of classes; their declared fields
are initialized to arbitrary type-correct values. A method signature Sg declares
the return type T of a method m and formal parameters Z of types T. M defines
a method with signature Sg, a list of local variable declarations Z of types T,
and a statement s. All methods return a value (Unit plays the role of void in se-
quential programming). Statements may access fields of the current class, locally
defined variables, and the method’s formal parameters. Right hand side expres-
sions rhs include object creation, method calls, and expressions e. Statements

dat a List(AYy=Nil | Cons(A,List(A)); def Bool contains(A)(Set(A) s,A e)=
dat a Set(A)=EmptyS | Insert(A,Set(A)); case s {

dat a Pairs(A,B)=Pair(A,B); EmptyS = False;
dat a Map(A,By=EmptyM | Insert(e,) = True;
Assoc(Pairs(A,B),Map(A,B)); Insert(_, xs) = contains(xs, e);}
type FN, Packet==String; def Node findServer(FN f,Catalog ¢)=
type FNs=Set(String); case c {
type File=List(Packet), Nil = null;
type Catalog—List{Pairs(Node,FNs)); Cons(Pair(s, fs), r) =
def B lookup(A,B)(Map(A,B) ms, A k)= case contains(fs, f) {
case ms {Assoc(Pair(k,y),)=y; True = s;
Assoc(_,tm) = lookup(tm,k);} False = findServer(f, r); };}

Fig. 2. (Fragment of) Functional Sequential Part of ABS P2P Network

are standard for assignment z = rhs, sequential composition sy ; so, Ski p,if,
whi | e, and return constructs. In awai t ¢, the guard g controls processor
release and consists of Boolean conditions b, return tests 7 and conjunctions.
If ¢ evaluates to false, the processor is released, the current process is suspended
and the processor becomes idle. When the processor is idle, any enabled process
from the object’s pool of suspended processes may be scheduled.

Ezample 1. Our running example is a peer-to-peer (P2P) distributed application
borrowed from [13]. Fig. 2 shows a fragment of the functional program which
includes type definitions (String and Int are predefined) and three functions
which are executed using strict evaluation. Fig. 3 shows the most relevant part
of the imperative concurrent program (interfaces and the implementation of class
Network are not shown). Calls to functions and functional data appear in italics.
Function nth returns the n-th element of a list and appr concatenates two lists.
A P2P network is formed by a set of interconnected peers which can act as clients
and servers. Peers make the files stored in their database (an object of type DB)
available to other peers, without central coordination. The only coordination is
by means of an object of class Network. It is enough to know that nodes learn
who their neighbors are by invoking getNeighbors implemented in this class. A
node acting as client triggers computations with searchFile, which first finds a
neighbor node s that can provide the file and then requests the file using reqFile.

Communication in ABS is based on asynchronous method calls, denoted
o ! m(€), and future variables (Fut(-)). Method calls may be seen as triggers
of concurrent activity, spawning new tasks (so-called processes) in the called
object. After asynchronously calling z=o0 ! m(e), the caller may proceed with
its execution without blocking on the call. Here z is a future variable, o is
an object (typed by an interface), and € are expressions. A future variable x
refers to a return value which has yet to be computed. There are two opera-
tions on future variables, which control external synchronization in ABS. First,
a return test x7 evaluates to false unless the reply to the call can be retrieved.
Second, the return value is retrieved by the expression x.get, which blocks

cl ass DBImp(Map(FN,File) db)
i npl enents DB {
File getFile(FN fId) {
return lookup(db, fId);}
Int getLength(FN fId) {
ret urn length(lookup(db,fId));}
Unit storeFile(FN fId, File file) {
db=Assoc(Pair(fld,file), db);
FNs listFiles() {
return keys(db);}

Int getlLength(FN fId) {

Fut(Int) 1th; lth=db ! getLength(fId);
awai t 1th?; return lth.get;}

Packet getPack(FN fId, Int pNbr) {
File f=Nil; Fut(File) ff;
ff=db ! getFile(fId);
awai t ff?7; f=ff.get ;
return nth(f, pNbr);}

Catalog availFiles (List(Peer) sL) {
Catalog cat=Nil; FNs fNs=FEmptyS;
Fut(FNs) {N; Catalog catL=Nil;
Fut(Catalog) cL;
if (sL 1= Nil) {

fN=head(sL) ! enquire();
cL—this ! availFiles(tail(sL));
awai t fN? & cL?;

catL=cL.get ; {Ns=fN.get ;
cat=appr(catL, Pair(head(sL),fNs));

cl ass Node(DB db,FN file)

i npl ement s Peer {

Catalog cat=Nil,

List(Peer) myN=Nil;

Network admin—null,

Unit run() {
Fut(Catalog) c; Fut(List(Peer)) f;
Server server ;
awai t admin != null; }

. . . return cat;}
f=admin ! getNeighbors(this); . el
awai t f2; myN—f.get : Unit reqFile(Server sId, FN fId) {

. e Fut(Int) 11; Fut(Packet) 12;
c=this ! availFiles(myN); ll:éId '>getLeng<th(ﬂd)->
it c?: cat— ; : ’
awai t ct; cat=c.get; awai t 117; Int lth—I1.get ;
server=findServer(file, cat); whi | e (Ith > 0) {
i f (server != null) {

this.reqFile(server file);}} lth=1Ith - 1;

= ! .
Unit setAdmin(Network admin) { l.’fwasiIf[i .l2g'ftlp3?zccl;c(ef;[d’alctltll12 ot -
this.admin=admin;} g pack=lz.get ;

. file=Cons(pack, file);}
FNs enquire() { db ! storeFile(fId, file);}
Fut(FNs) f; f=db ! listFiles(); }
awai t f7; return f.get;}

Fig. 3. Concurrent Part of ABS Implementation of P2P Network

all execution in the object until the return value is available. A synchronous
call, abbreviated as v=0.m(€), is internally transformed into the statement se-
quence z=o ! m(e€); if (o==this) awai t z?; v=z.get. Observe that checking
if o==this is necessary to avoid that the execution of the current object blocks
when a synchronous local call is performed.

Example 2. The following fragment of code corresponds to a possible mai n
method for the P2P example.

Map(FN, File) dataBase = Assoc(Pair(” fileg”, Cons(”a”, Cons(”b”, Cons(” ¢”, Nil)))),
Assoc(Pair(” file;”, Cons(”d”, Cons(”€”, Nil))), EmptyM));

DB db; = new DBImp(EmptyM); DB dbs = new DBImp(dataBase);

Peer n1 = new Node(db1,” filep”); Peer no = new Node(db1,” file;”);

Peer ng = new Node(dbs,” file;”); NetWork admin = new NetWork(n1, ns,ns);

n; ! setAdmin(admin); ny ! sesAdmin(admin); nz ! setAdmin(admin);
n; ! run(); ng ! run();

The network configuration consists of three nodes, two databases and one
Network object (admin). Nodes ny and ny are neighbors of n3. Such six objects be-
come distinct concurrent entities which communicate with each other by means
of asynchronous calls and use future variables to eventually return/retrieve the
results. Any concurrent object has its own heap, its queue of pending tasks and
an active task (if any).

3 CLP-Translated Programs

The translation of sequential imperative programs into equivalent CLP programs
has been subject of previous work (see, e.g., [3,7]). Intuitively, for each method
(or function), the translation represents the method (or function) as well as the
intermediate blocks within the method (e.g., loops, conditionals) by means of
predicates in the CLP program. The fact that the imperative program works
on a global state is simulated by representing the state using additional argu-
ments of all predicates. We will not go into details of how the transformation of
the sequential part is formalized (see [3,7]). Instead, we focus on the syntactic
extensions of the ABS translated concurrent programs.

3.1 Syntax of CLP-Translated Programs

An ABS CLP-translated program is made up of a set of predicates, each of them
defined by one or more mutually exclusive clauses, which adhere to the following
grammar:

Clause ::= Pred(Args, Args, S, S) : —[G,]B.

G ::= Num™ Opr Num™ | Ref;\ == Refs | Var = FTerm”™ |
diff (Var, FTerm™) |type(S, Ref*, C)

B::= Var #= Num®™ Opa Num™ | Pred(Args, Args, S,S) | Var=FTerm |
new(C, Ref*, S, S) | getField(Ref™, FSig, Var, S) | async(Ref*, Call, S, S) |
setField(Ref*, FSig, Var*, S, S) | await(Call, Call, S, S) |
get(Var, Var, Call, S, S) | return(Var*, Var, S, S) | futAvail(Var, Var)

Call ::= Pred(Args, Args) Ref :=null | Var

Pred ::= BlockN | MethodN | FuncN Oppru=#> | #< | #>= | #=<| #=| #\ =
Args =[] | [Data*|Args] Opau=+| — | x|/ | mod

Data::= Num | Ref | FTerm S = Var

We use FuncN, MethodN , F'Sig to denote the set of functions names, methods
and field signatures. Clauses can define methods and functions which appear in
the original source program (MethodN, FuncN) and additional predicates which
correspond to intermediate blocks in the program (BlockN). Num is a number,
Var is a Prolog variable and FTerm is a term that represents a corresponding
functional data (namely p in Fig. 1). An asterisk on any element denotes that
it can be either as defined by the grammar or a variable. Each clause receives
as input a possibly empty list of parameters (1st argument) and a global state

(3rd argument), and returns an output (2nd argument) and a final global state
(4th argument). The body of a clause may include a sequence of guards followed
by a sequence of instructions, including: arithmetic operations, calls to other
predicates, builtins to create objects and to write and read on object fields, and
builtins to handle the concurrency.

We use three different kinds of inequalities in guards, namely, “\==", “="
and diff to represent, resp., arithmetic comparisons, comparisons of references
and pattern matchings in ABS functions. Virtual method invocations in the
OO0 language are resolved at compile-time and translated into a choice of type
builtins followed by the corresponding method invocation for each runtime in-
stance. As expected, the builtin new(C, R, Sy, S2) creates a new object of class
C in state S7 and returns its assigned reference R and the updated state Ss;
getField(R, FSig, V, S) retrieves in variable V' the value of field FSig of the ob-
ject referenced by R in the state S; setField(R, F'Sig, V,S;, S2) sets the field
FSig of the object referenced by R in S7 to V' and returns the modified state Ss.

In the translation of concurrent programs, when a concurrency construct ap-
pears (namely an asynchronous call, an awai t or get statement), we introduce
a call to a corresponding builtin predicate that will simulate the concurrent be-
haviour. Besides, an important point to notice is that, for all awai t and get
statements, we introduce a continuation predicate which allows us to suspend
the current task (if needed) and then be able to resume its execution at this
precise point. Also, we introduce in the translation return statements in order
to syntactically identify in the CLP-translated program when the execution of
a task finishes and thus another task from the queue can be scheduled.

Ezample 3. The following code shows the CLP-translated program for method
reqFile of class Node.

"Node.reqFile’([This, SId, FId], [Out], S1, S2) :-
async(SId, Node.getLength’([SId, FId),[L:]), S1, Ss3),
await(awguard; ([L1],[_]), cont; ([This, SId, FId, L], [Out]), Ss, S2).
awguard; ([L],[V]) - futAvail(Ly, V).
cont; ([This, SId, FId, L],[Out], Sy, S2) :-
get(Ly, Lth, conts ([This, SId, FId, Lth], [Out]), S1, S2).
conts ([This, SId, FId, Lth], [Out], S1, 82) = File = Nil’,
while([This, SId, FId, File, Lth], [Out], S1, S2).
while([This, SId, FId, File, Lth], [Out], S1, S2) - # <= (Lth, 0),
getField(This, Node.db’, Db, Sy),
async(Db,’ DBImp.storeFile’([Db, FId, File],[], S1,S3),
return ([’ Unit’], [Out], Ss, Sz).
while([This, SId, FId, File, Lth], [Out], S1, S2) - # > (Lth, 0),# = (Lthy, Lth — 1),
async(SId,’ Node.getPack’([SId, FId, Lth;],[Lz2]), S1, Ss3),
await(awguards ([Le],), conts([This, SId, FId, File, Ly, Lth;],[Out]), Ss, S2).
awguardy ([Lz], [V]) - futAvail(La, V).
conts ([This, SId, FId, File, Lz, Lth], [Out], S1, S2) :-
get(Lz, Pack, conty ([This, SId, FId, File, Pack, Lth], [Out], S1, S2).
conty ([This, SId, FId, File, Pack, Lth], [Out], S1, S2) :- File; =" Cons’(Pack, File),
while([This, SId, FId, File;, Lth], [Out], 51, S2).

The main features that can be observed from the translation are: (1) Meth-
ods (like reqFile), intermediate blocks (like cont;) and functions are uniformly
represented by means of predicates and are not distinguishable in the trans-
lated program. The input arguments list of all rules includes: the this reference,
the list of input parameters of the ABS method from which the rule originates,
and, in the case of predicates corresponding to intermediate blocks, their local
variables. The output arguments list is always a unitary list with the return
value. (2) Conditional statements and loops in the source program are trans-
formed into guarded rules and recursion in the CLP program, resp., e.g., rules
for while. (3) Additional rules are produced for the continuations after await
and get statements. The calls to such continuation rules are included within the
arguments of the await and get builtins (see e.g. rules Node.regqFile’ for the case
of await or cont; for get). This allows the symbolic execution engine to suspend
the execution at this point and resume it later. (4) A global state is explicitly
handled. Observe that each rule includes as arguments an input and an output
state. The state is carried along the execution being used and transformed by
the corresponding builtins as a black box, therefore it is always a variable in the
CLP program.

3.2 The Global State

In a sequential OO language, the global state carried along by the CLP-translated
program only contains the data stored in the heap. Instead, in our concurrent
setting, it has to include the set of existing concurrent objects, each of them with
its associated internal state. The internal state of an object includes two pieces
of information: (1) its heap (set of fields) which is not accessible from outside
the object and (2) the queue of pending tasks. Formally, the syntax of the global
state is as follows:

State ::= []| [(Num, Object)|State] Object ::= object(C, Fields, Q)
Fields ::= []| [field(f, Data)|Fields] Q == []| [Task|Q]
Fut ::= ready(Data)| Var Task ::= call(Call) | await(Call, Call) |

get(Fut,Var,Call)

The state is represented as a list of pairs, where Num is a unique reference to
the object Object. Each object is a term which includes its class C, a list of
fields Fields and a queue @ of pending tasks. Each element in Fields is a term
containing a field name and its associated data. The meaning of the different
kinds of tasks Task and the syntax of future variables Fut is related to the
symbolic execution of the translated programs and will be explained in detail in
the next section.

Example 4. Consider an execution of the main method in Ex. 2 which starts
from an initial state [|. After creating the objects of type DBImp, the state takes
the form [o4p,, 0dp,], Where ogy,=(1, object(’ DBImp’, field(db,’ EmptyM’)],[1))
and ogp,=(2, object(’ DBImp’, [field(db, dataBase)],[|))]. Here, 1 and 2 are the
references for dby and dby, respectively. Similarly, the next three new instructions
add three new elements to the state, resulting in [04p, , Odby ; Ony » Ony ;s Ong), Where:

async(Ref,Call,S1,S2) :- addTask(S1,Ref,call(Call),S2).
await(Cond,Cont,S,S3) -
Cond =..[_,[This|_],[Ret]], buildCall(Cond,S;,S2,CondCall), CondCall,
(Ret = 'False’ -> addTask(S1,This,await(Cond,Cont),S2), switchContext(S2,S3)
; buildCall(Cont,S1,S3,ContCall), ContCall).
get(FV,V,Cont,S1,S3) :- Cont =..[,[This|],],
(var(FV) -> addTask(S1,This,get(FV,V,Cont),S2), switchContext(S2,Ss3)
; FV = ready(V), buildCall(Cont,S1,S3,ContCall), ContCall).
return([Ret],[ready(Ret)],S1,S2) :- switchContext(S1,S2).
futAvail(FV, False’) :- var(FV), L
futAvail(ready(), True’).

addTask(S1,Ref,T,S2) - getCell(S1,Ref,object(C,Fs,Q1)),

insert(Q1,T,Qz2), setCell(S1,Ref,object(C,Fs,Q2),S2).
switchContext(S1,S3) - S1 = [(Ref,)|], firstToLast(S1,S2),

switchContext _ (S2,S3,Ref).
switchContext (S,S,Refy) :- S = [(Refz,object(_, ,[]))|] Refi == Refy, L.
switchContext (S1,S3,Ref) :-

(extractTask(S1,Task,S2) -> runTask(Task,S2,S3)
firstToLast(S1,S2), switchContext (S2,S3,Ref)).

runTask(call(ShortCall),S1,S2) :- buildCall(ShortCall,S4,S2,Call), Call.
runTask(await(Cond,Cont),S1,S2) :- await(Cond,Cont,S1,S2).
(
[

runTask(get(FV,V,Cont),S51,S2) :- get(FV,V,Cont,S1,S2).
buildCall(ShortCall,S1,S2,Call) :- ShortCall =..[RN,In,Out], Call =..[RN,In,Out,S1,S2].

Fig. 4. Implementation of Concurrency builtins

on, = (8, object(’Node’, [field(db, 1), field(file,” fileo”), field(cat,’ Nil’),
field(myN ' Nil’), field(admin,null)],[]))

and oy,,, 0,, are similar to o,, except for the object identifiers (4 and 5 respec-

tively) and the value of field file (which is ” file;” in both objects). Field db has

value 1 for o,,, and value 2 for o,,.

4 Symbolic Execution of Concurrent Objects

In dynamic (or concrete) execution, the initial state must be a ground term (e.g.,
if execution starts from a mai n, it is an empty list). Objects must be created
using new/4 before their fields can be read or written. In symbolic execution, the
intuitive idea proposed in [8] is that the state contains two parts: the known part
(beginning of the list) with the objects that have been explicitly created during
symbolic execution, and the unknown part which is a logic variable (tail of the
list) in which new data can be added by producing the corresponding bindings.
Therefore, the state starts being a free variable, and the implementation of get-
Field/4 and setField/5 invokes predicates getCell/3 and setCell/4 which, if the
object whose fields are going to be read or written is not in the known part,

they instantiate the unknown part of the heap to be able to assume the previous
allocation of the object and access its fields. Figure 4 shows the CLP implemen-
tation of the builtins to handle concurrency. They rely on the above getCell/3
and setCell/4 operations (whose implementation is in [8]) to symbolically access
the heap. The following sections explain the behavior of the different builtins.

4.1 Asynchronous Calls

Predicate async(Ref,Call,S1,S2), given the current state S; adds the asynchronous
call Call to the queue of tasks of the receiver object Ref producing the updated
state So. The call to addTask/4 searches the state for the object pointed to by
reference Ref by means of getCell/3, adds the task to its queue and updates the
state with the updated object. As explained above, if the object pointed to by
Ref is not in the known part of the state, getCell/3 produces a corresponding
instantiation on the unknown part so that after this operation the object is in
the state.

Example 5. Let us consider the symbolic execution of method reqFile, i.e., we run
in CLP the goal *Node.reqFile’(In, Out, Sy, S;). After the first call to async/4
the following instantiations are produced:

So=[(SId, object(’ Node’, [field(’ Node.db’, DB), ...]), [])]

S1=[(SId, object(’Node’, [field(’ Node.db’, DB), .. .]), [call(’ Node.getLength'(. . .))])]

Observe that, as expected, asynchronous calls do not transfer control from the
caller, i.e., they are not executed when they occur but rather added as pending
tasks on the receiver objects that will eventually schedule them for execution.

4.2 Implementation of Distribution and Concurrency

The fact that objects do not share memory ensures that their execution states
(and thus the global state) are not affected by how distribution is realized.
Therefore, symbolic execution can simulate distribution in any convenient way.
We implement, it in the following specific way: each object executes its scheduled
task as far as possible and, when a task finishes or gets blocked, simulation
proceeds circularly with the next object in the state (which could be running in
parallel in an actual deployment configuration). In contrast, concurrency occurs
at the level of object in the sense that tasks in the object queue are executed
concurrently. Cooperative scheduling of the ABS language only specifies that the
execution of the current task must proceed until a call to return/4, await/4 or
get/5 is found. The scheduling policy which decides the task that executes next
(among those ready for execution) is left unspecified.

Predicate switchContext/2 is used when the execution of the current task can
no longer proceed. It gives the turn of execution to the first task (according to
the scheduling policy) of the following object (the next one in the state). This is
implemented by always keeping the current object in the head of the state, and
moving it to the last position when its current task finishes or gets blocked, as it

10

can be observed in the implementation of switchContext/2. If the current object
has some pending task in its queue, the task is run (calling runTask/3). Otherwise
(predicate extractTask/3 fails), the following object is tried. The execution of the
whole application finishes when there is no pending task in any object (see first
rule of switchContext /3). Observe that there are three different types of tasks,
call, await and get, whose behaviour is explained below.

One can implement different scheduling policies by providing concrete im-
plementations of predicates insert/3 and extractTask/3. For instance, a FIFO
scheduling policy is implemented by 1) inserting at the end of the queue, and
2) extracting always the first task. One can also use priority queues. The im-
plementation becomes parametric on the scheduling policy by just asserting the
selected policy and adding a parameter to predicates insert and extractTask to
apply the selected policy. Furthermore, the language allows that different objects
apply different scheduling policies. Thus, one can also select the desired policy
per object. In this case, when scheduling a new task, we first read the asserted
information which indicates the scheduling policy at the object level and, then,
invoke the appropriate implementation of insert and extractTask for the current
object. Having parametric scheduling policies is interesting in the application of
symbolic execution to regression testing, as one then wants to save the selected
policy within the test-cases in order to be able to replay them.

4.3 Synchronization: future variables, await, get and return

Await. Predicate await(Cond,Cont,S1,S3) first checks its condition Cond by means
of the meta-call CondCall. If the condition holds (Ret gets instantiated to "True’),
a meta-call to the continuation Cont is made (meta-call ContCall). Otherwise (Ret
is 'False’), an await task is added to the queue of the involved object and we
switch context. Let us observe that the calls wrapped within asyncs, awaits and
gets as well as those stored in object queues, do not include states but just input
and output arguments (see grammars in Sect. 3). This is because when a task is
to be executed the current state must be used (and not the one that was current
when the task was first created). Predicate buildCall/4 builds a full call from a
call without states and the two states involved.

Future variables. The evaluation of await conditions can involve return tests
on future variables. This is represented in our CLP programs by a call to the
futAvail /2 builtin. Future variables occur in the global state in the output argu-
ments of call tasks, and are available when they get instantiated. Since, in the
context of symbolic execution, the return value of a method can be a variable
V', we use the special term ready(V) to know whether the execution has finished
(see the global state grammar in Sect. 3.2). Predicate futAvail /2 then just has to
check whether the future variable is a CLP variable or is instantiated to ready()
and returns, resp., 'False’ or 'True'.

Example 6. Let us continue with the symbolic execution of method reqFile right
after the execution of the first async (see Ex. 5). The call to await first pro-
duces a call to awguard; which checks whether the return value L; (future

11

D=50 D=75 D=100

Benchmark

#I |#S|T #1 | #S | T #I | #S | T
Producerlmpl.loop 11751 29 | 30| 8028 | 134 | 140 35291 437 | 630
Consumerlmpl.loop 35 2 |10 159 4 20 254 5 20

BoundedBuffer.append| 2751 | 77 | 10 || 10494 | 198 | 30 24840 360 40
DistHT.lookupNode 319 | 11 |20 697 17 10 1219 23 10

DistHT.getAllData 6 1 |10 1406 21 40 9466 111 130
DistHT.getAllKeysAux|| 96 3 (10 849 14 60 15622 173 | 360
DistHT.getAllKeys 22 1 |11 160 3 30 1177 14 119
DistHT .putData 2220 | 50 | 10 || 14608 | 242 | 30 47532 612 70
DBImp.getLength 9108 | 253 | 61 || 30940 | 595 | 160 78208 | 1128 | 359
Node.run 0 0 |10 | 51241 | 720 | 240 |[14219536|148466|45640
Node.getLength 3731 91 | 40| 20475 | 351 | 150 55081 741 | 360
Node.getPack 1736 | 42 [20|| 9919 | 169 | 40 26961 361 60
Node.reqFile 0 0 |10 1988 28 | 110 16530 190 | 390
SessionImp.order 0 0 |30 0 0 110 5647 59 320
Agentlmp.free 616 | 22 | 10 1435 35 10 2491 47 10

DBImp.confirmOrder ||95568|2167(599(|4863238|71277|21230 - - -

Table 1. Statistics about the Analysis Process

variable) of the call to getLength is already available (by means of the call
to futAvail/2). Since it is not the case (i.e, a ’False’ is returned) the execu-
tion of the current task cannot proceed, therefore the await task is added to
the current object (so that it is re-tried later on) and context is switched (see
the calls to addTask/4 and switchContext/2). This, in turn, produces a call to
runTask(call('Node.getLength'(...)),S2,S3) where the current state is now

So=[(SId, object(’Node’, [field(’ Node.db’, DBy),...]), []),
(This, object(’ Node’, [field(’ Node.db', DBz), . ..]), [await(awguard; (. ..), conts (.. .))])]

Return. When a method finishes its execution, we reach a return statement which
instantiates the future variable V associated to the current task to ready(V). This
allows that, if the task that requested the execution of this one was blocked await-
ing on this future variable, it can proceed its execution when it is re-scheduled.

Get. Predicate get first checks if the task can resume execution because the
future variable that is blocking it has become instantiated. In such case, the
continuation of the get is executed (meta-call ContCall). Otherwise, the current
task is added to the queue and context is switched.

5 Experimental Results in aPET

PET [8] is a test-case generation tool which aims at being a generic platform
for CLP-based test-case generation of different languages. This work implements

12

the core part of aPET, an extension of PET to generate test-cases from concur-
rent, ABS programs. Currently, we have implemented the automatic translation
of ABS programs into CLP equivalent programs and extended the symbolic ex-
ecution engine of PET with the concurrency primitives of ABS described along
the paper. Experimental evaluation has been carried out using several typical
concurrent applications: BBuffer, a classical bounded-buffer for communicat-
ing several producers and consumers, DistHT which implements a distributed
hash-table, PeerToPeer, our running example; BookShop, which implements a
web shop client-server application. The code of the examples can be found in
http://costa.ls.fi.upm es/pet/apet.

Table 1 summarizes our experiments. Each set of rows contains the results of
symbolically executing methods which belong to the above benchmarks. Sym-
bolic execution for all methods works properly but, in the table, we have only
showed the results for the methods which have more complex code and whose
symbolic execution takes longer. As methods contain loops or recursion, symbolic
execution does not terminate unless we introduce some termination criteria. In
our case, we limit the length of the branches of the symbolic execution tree to
a constant D (i.e., the depth of the tree to D). For each experiment, we show
three sets of columns with the results of setting D to 50, 75 and 100 steps.
Then, column #I shows the total number of instructions that have been exe-
cuted including all branches, #S shows the number of solutions (branches) in
the resulting symbolic execution tree, and T the total time (in milliseconds)
required to build the tree. Experiments have been performed on an Intel Core i5
at 3.2GHz with 3.1GB of RAM, running Linux. All times have been computed
as the average of 5 runs. When time is negligible, the system gives T = 10.
As expected, when allowing larger values for the depth of the tree, the number
of branches grows exponentially and thus the total time. This is not a problem
related to our approach, but rather inherent to symbolic execution. Methods
Node.run and DBImp.confirmOrder have larger times (and number of instruc-
tions) because the size of the code reachable from them is much larger (they
contain many calls to other methods). For the last one, no result is computed in
a reasonable time for D=100. In order to alleviate this problem, testing tools
often limit the number of iterations on loops to a small number. Otherwise, the
process can become quite expensive and too many test-cases can be obtained,
as it can be observed from the large number of solutions obtained.

6 Conclusions and Related Work

We have presented the first CLP-based approach to symbolic execution of con-
current objects. The main idea is that concurrent distributed imperative pro-
grams can be translated into equivalent CLP programs which contain calls to
builtin operations that simulate the concurrent behavior of the active objects
paradigm. A unique feature of our approach is that, as the builtin operations
can be fully implemented in logic programming, symbolic execution boils down
to standard sequential execution of the CLP transformed program.

13

Process scheduling in concurrent objects has some similarities with the dy-
namic scheduling available in Prolog systems. However, the behavior is not the
same and it cannot be directly used. This is because synchronization using dy-
namic scheduling can resume the execution of a task as soon as the await con-
dition is satisfied, while cooperative scheduling only allows switching between
tasks at specific scheduling points. As concurrent objects do not share memory,
one could think of using Prolog’s parallelism [11] to simulate the distributed
execution by running each object as a parallel task. However, there is no sup-
port to simulate the fact that one object receives requests from another one
by means of asynchronous calls. Some systems, like SWI, implement parallelism
using threads with associated queues and synchronization is achieved by means
of asserted variables. Indeed, for concrete execution, we have a working imple-
mentation using SWI Prolog parallelism in which tasks communicate by means
of global variables (asserted in Prolog’s database). However, the use of impure
features does not allow the backtracking required in symbolic execution. Re-
cent, years are witnessing a wealth of research in testing concurrent programs.
Symbolic execution is the central part of most static test-case generation tools,
which typically obtain the test-cases from the branches of the symbolic execution
tree. There is previous related work on using Creol for modeling and testing sys-
tems against specifications [2], though the problem of symbolic execution is not
studied there. Later, [10] studies dynamic symbolic execution of Creol programs
which combines concrete and symbolic execution. A fundamental difference with
our approach is that they use an interpreter of Creol to perform symbolic execu-
tion, while in our case, we transform the ABS program into an equivalent CLP
which does not require any interpretation layer, rather it is executed natively in
CLP. Simulation tools for ABS programs that perform concrete execution [4] are
only tangentially related to our work. This is because dynamic execution does
not require backtracking and hence the use of CLP has less interest.

Recent work on testing thread-based languages studies ways to improve scal-
ability [19] which could also be adapted to our context. Likewise, [22] proposes
new coverage criteria in the context of concurrent languages that could be stud-
ied in our CLP-based setting. As future work, we plan to integrate our symbolic
execution mechanism within a test-case generation tool in order to generate unit
tests for ABS programs in a fully automatic way.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS project, by the
Spanish Ministry of Science (MICINN) under the TIN-2008-05624 DOVES project,
the UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the Madrid
Regional Government under the S2009TIC-1465 PROMETIDOS-CM project.

References

1. G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, 1986.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. K. Aichernig, A. Griesmayer, R. Schlatte, and A. Stam. Modeling and Testing
Multi-Threaded Asynchronous Systems with Creol. ENTCS, 243:3—-14, 20009.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis
of Java Bytecode. In Proc. of ESOP’07, volume 4421 of LNCS, pages 157-172.
Springer, 2007.

E. Albert, S. Genaim, M. Gomez-Zamalloa, E. B. Johnsen, R. Schlatte, and
S. L. Tapia Tarifa. Simulating Concurrent Behaviors with Worst-Case Cost
Bounds. In Proc. of FM’2011, vol. 6664 of LNCS, pages 353-368. Springer, 2011.
J. Armstrong, R. Virding, C. Wistrom, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall, 1996.

F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316-330. Springer, 2007.

M. Gomez-Zamalloa, E. Albert, and G. Puebla. Decompilation of Java Bytecode
to Prolog by Partial Evaluation. JIST, 51:1409-1427, 2009.

M. Gomez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Object-
Oriented Imperative Languages in CLP. TPLP, ICLP’10 Special Issue, 2010.

A. Gotlieb, B. Botella, and M. Rueher. A CLP Framework for Computing Struc-
tural Test Data. In Computational Logic, 2000.

A. Griesmayer, B. K. Aichernig, E. B. Johnsen, and R.. Schlatte. Dynamic Symbolic
Execution of Distributed Concurrent Objects. In Proc. of FMOODS/FORTE’2009,
volume 5522 of LNCS, pages 225-230. Springer, 2009.

G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM TOPLAS, 23(4):472-602, July 2001.

E. B. Johnsen, R. Hihnle, J. Schifer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMC0’2010, LNCS.
Springer, 2011. To appear.

E. B. Johnsen and O. Owe. An Asynchronous Communication Model for Dis-
tributed concurrent objects. Software and Systems Modeling, 6(1):35-58, 2007.

S. Khurshid, C. S. Pasdreanu, and W. Visser. Generalized Symbolic Execution for
Model Checking and Testing. In Proc of TACAS, pages 553-568, 2003.

J. C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385—
394, 1976.

C. Meudec. Atgen: Automatic Test Data Generation using Constraint Logic Pro-
gramming and Symbolic Execution. Softw. Test., Verif. Reliab., 11(2):81-96, 2001.
B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 2nd edition, 1997.

Roger A. Miiller, Christoph Lembeck, and Herbert Kuchen. A Symbolic Java
Virtual Machine for Test Case Generation. In TASTED Conf. on Software Engi-
neering, pages 365-371, 2004.

N. Rungta, E.G. Mercer, and W. Visser. Efficient Testing of Concurrent Programs
with Abstraction-Guided Symbolic Execution. In Proc. of SPIN’09. Springer, 2009.
J. Schifer and A. Poetzsch-Heffter. Jcobox: Generalizing Active Objects to Concur-
rent Components. In Proc. of ECOOP’10, volume 6183 of LNCS, pages 275-299.
Springer, 2010.

S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In Proc. of
ECOOP’08, volume 5142 of LNCS, pages 104—128. Springer, 2008.

J. Takahashi, H. Kojima, and Z. Furukawa. Coverage based Testing for Concurrent
Software. In ICDCS Workshops, pages 533-538. IEEE Computer Society, 2008.
Nikolai Tillmann and Jonathan de Halleux. Pex-white Box Test Generation for
NET. In TAP, pages 134-153, 2008.

15

