
Symboli
 Exe
ution ofCon
urrent Obje
ts in CLPElvira Albert, Puri Arenas, and Miguel Gómez-ZamalloaDSIC, Complutense University of Madrid, SpainAbstra
t. In the
on
urrent obje
ts model, obje
ts have
on
eptuallydedi
ated pro
essors and live in a distributed environment with un-ordered
ommuni
ation by means of asyn
hronous method
alls. Method
allers may de
ide at runtime when to syn
hronize with the reply froma
all. This paper presents a CLP-based approa
h to symboli
 exe
utionof
on
urrent OO programs. Developing a symboli
 exe
ution engine for
on
urrent obje
ts is
hallenging be
ause it needs to
ombine the OOfeatures of the language,
on
urren
y and ba
ktra
king. Our approa
h
onsists in, �rst, transforming the OO program into an equivalent CLPprogram whi
h
ontains
alls to spe
i�
 builtins that handle the
on
ur-ren
y model. The builtins are implemented in CLP and in
lude primitivesto handle asyn
hronous
alls syn
hronization operations and s
hedulingpoli
ies, among others. Interestingly, symboli
 exe
ution of the trans-formed programs then relies simply on the standard sequential exe
u-tion of CLP. We report on a prototype implementation within the PETsystem whi
h shows the feasibility of our approa
h.1 Introdu
tionIn
reasing performan
e demands, appli
ation
omplexity and multi-
ore paral-lelism make distribution and
on
urren
y omnipresent in today's software appli-
ations. There is thus a renewed interest in investigating te
hniques that help insimulating, debugging, testing, verifying, et
., distributed and
on
urrent pro-grams. The fo
us of this paper is on developing a CLP-based framework forthe symboli
 exe
ution of
on
urrent obje
t-oriented (OO) imperative programs.Symboli
 exe
ution of a program
onsists in exe
uting it �a la Prolog�, i.e., usingas arguments free (logi
) variables. It allows thus reasoning about all the in-puts that take the same path through the program. Symboli
 exe
ution is at the
ore of software veri�
ation [14℄ and testing tools [15, 18, 23℄. In the latter
ase,by in
orporating
overage and termination
riteria, symboli
 exe
ution allowsautomati
ally obtaining test-inputs ensuring a
ertain degree of
ode
overage.Within the OO paradigm, there are two main approa
hes to
on
urren
y:(1) thread-based
on
urren
y models (like those of Java and C#) are based onthreads whi
h share memory and are s
heduled preemptively, i.e., they
an besuspended or a
tivated at any time. To prevent threads from undesired inter-leavings, low-level syn
hronization me
hanisms su
h as lo
ks have to be used.

Experien
e has shown that software written in the thread-based model is error-prone, di�
ult to debug, verify and maintain [20℄. (2) In order to over
omethese problems, the a
tive-obje
ts model [6,13,17,20,21℄ aims at providing pro-grammers with simple language extensions whi
h allow programming
on
urrentappli
ations with relatively little e�ort. A
tive (also
alled
on
urrent) obje
tsoperate similar to A
tors [1℄ and Erlang pro
esses [5℄.In this paper, we
onsider the imperative OO language ABS [12℄ whi
h isbased on the a
tive-obje
ts
on
urren
y model. A
on
urrent obje
t,
on
eptu-ally, has a dedi
ated pro
essor and it en
apsulates a lo
al heap whi
h is nota

essible from outside the obje
t. The language supports asyn
hronous method
alls, whi
h trigger a
tivities in other obje
ts without transferring
ontrol fromthe
aller. The method
aller may de
ide at runtime when to syn
hronize withthe reply from a
all. In general, an obje
t may have many method a
tivations
ompeting to be exe
uted. Among these, at most one pro
ess (or task) is a
-tive and the other pro
esses are suspended in a pro
ess pool. Pro
ess s
hedulingis non-deterministi
, but
ontrolled by pro
essor release points in a
ooperativeway. Cooperative s
heduling means that swit
hing between tasks of the same ob-je
t happens only at spe
i�
 s
heduling points during program exe
ution, whi
hare expli
it in the sour
e
ode and
an be synta
ti
ally identi�ed.The goal of this paper is to design (and implement) a CLP-based symboli
exe
ution engine for
on
urrent ABS programs. This is a
hallenging problemas one needs to
ombine the OO and
on
urrent aspe
ts of the ABS languagewith the ba
ktra
king me
hanism required to perform symboli
 exe
ution. Forsequential programs, we have seen in [7�9, 16℄ that, as symboli
 exe
ution isthe standard evaluation me
hanism of CLP, symboli
 exe
ution of imperativeprograms
an be performed in a natural and e�
ient way by: (1) �rst, translatingthe imperative program into an equivalent CLP program and, (2) then, relyingon the exe
ution me
hanism of CLP whi
h performs symboli
 exe
ution natively.The main
ontribution of this paper is to lift su
h CLP-based frameworkfrom the sequential to the
on
urrent OO setting. In parti
ular, we �rst pro-pose an automati
 transformation of
on
urrent imperative programs into CLPprograms whi
h in
lude spe
i�
 builtin operations to handle the
on
urren
yaspe
ts of the language. The global state is made expli
it in the translation asan additional argument of
lauses. It in
ludes the set of
on
urrent obje
ts withtheir �elds values and
orresponding queues of pending tasks. We then providean implementation in CLP of the builtins to treat all
on
urren
y aspe
ts of thelanguage: (a) asyn
hronous
alls are handled by adding
orresponding pendingtasks to the queues of the remote obje
ts on whi
h the
alls are performed, (b)syn
hronization operations
an be performed to suspend the exe
ution of a taskin an obje
t until
ertain
ondition holds, (
) future variables be
ome part ofthe state and allow syn
hronizing with the reply from a
all, and (d) di�erents
heduling poli
ies
an be easily integrated in our symboli
 exe
ution engine. Wereport on a prototype implementation of our proposal within the PET system [8℄(a generi
 platform for CLP-based testing) and evaluate it on a series of smallappli
ations whi
h are
lassi
al examples of
on
urrent programming.2

T ::= B | I | D | D〈T̄ 〉 A ::= N | T | D〈Ā〉
Dd ::= data D[〈Ā〉] = Cons[| Cons] Cons ::= Co[(Ā)]

F ::= def A fn[〈Ā〉](A x) = e p ::= x | t | Co[(p̄)]
e ::= b | x | t | this | Co[(e)] | fn(e) | case e {p ⇒ e} t ::= Co[(t̄)] | null

IF ::= interface I [extends I] {Sg } Sg ::= T m (T x)

CL ::= classC [(T x)] [implements I] {T x; M} M ::= Sg {T x; s }
s ::= s ; s | x = rhs | await g | return e g ::= b | e? | g ∧ g

| if (b) { s } [else { s }] | while (b) { s } | skip
rhs ::= e | new C [(e)] | e ! m(e) | e.m(e) | x.getFig. 1. ABS Syntax for Fun
tional (top) and Con
urrent Obje
t Level (bottom)2 An Overview of Con
urrent Obje
tsOur method is presented for the
ore of the ABS language [12℄, a su

essor ofCreol [6, 13℄. ABS is an OO language for distributed
on
urrent systems whose
on
urren
y model is based on
on
urrent obje
ts. An ABS program de�nes in-terfa
es,
lasses, datatypes, and fun
tions, and has a main blo
k to
on�gurethe initial state. The fun
tional sub-language allows abstra
ting from imple-mentation details: abstra
t data types are used to spe
ify internal, sequential
omputations, while
on
urren
y is handled in the imperative part.Fig. 1 gives the syntax of ABS programs. In the fun
tional level (top), groundtypes T
onsist of basi
 types B (Bool, Int, et
.), names for interfa
es I anddata types D. In
ontrast to T , types A may
ontain type variables named N .

Dd stands for data type de
larations, where D has at least one
onstru
tor
Cons . Fun
tion de
larations F
onsist of a return type A, a fun
tion name fn,a list of variable de
larations x of types A, and an expression e. Expressions ein
lude Boolean expressions b, variables x, (ground) terms t, the spe
ial read-onlyvariable this whi
h refers to the identi�er of the obje
t,
onstru
tor expressionsof the form Co[(e)], fun
tion appli
ations of the form fn(e), and
ase expressionsof the form case e{p ⇒ e}, where p is a pattern, as de�ned in the grammar.In the
on
urrent obje
t level of ABS (bottom), an interfa
e IF has a name
I and method signatures Sg, and it
an extend other interfa
es I. A
lass has aname C, implements a list of interfa
es, may
ontain
lass parameters and statevariables x of type T , and methods M . The �elds of the
lass are both its param-eters and state variables. Obje
ts are instan
es of
lasses; their de
lared �eldsare initialized to arbitrary type-
orre
t values. A method signature Sg de
laresthe return type T of a method m and formal parameters x of types T . M de�nesa method with signature Sg, a list of lo
al variable de
larations x of types T ,and a statement s. All methods return a value (Unit plays the role of void in se-quential programming). Statements may a

ess �elds of the
urrent
lass, lo
allyde�ned variables, and the method's formal parameters. Right hand side expres-sions rhs in
lude obje
t
reation, method
alls, and expressions e. Statements3

data List〈A〉=Nil | Cons(A,List〈A〉);
data Set〈A〉=EmptyS | Insert(A,Set〈A〉);
data Pairs〈A,B〉=Pair(A,B);
data Map〈A,B〉=EmptyM |

Assoc(Pairs〈A,B〉,Map〈A,B〉);
type FN , Packet=String ;
type FNs=Set〈String〉;
type File=List〈Packet〉;
type Catalog=List〈Pairs〈Node,FNs〉〉;
def B lookup〈A,B〉(Map〈A,B〉 ms, A k)=
case ms {Assoc(Pair(k,y),_) ⇒ y;

Assoc(_,tm) ⇒ lookup(tm,k);}
def Bool contains〈A〉(Set〈A〉 s,A e)=
case s {

EmptyS ⇒ False;
Insert(e, _) ⇒ True;
Insert(_, xs) ⇒ contains(xs, e);}

def Node findServer (FN f,Catalog
)=
case
 {

Nil ⇒ null;
Cons(Pair(s, fs), r) ⇒
case contains(fs, f) {

True ⇒ s;
False ⇒ findServer(f, r); };}Fig. 2. (Fragment of) Fun
tional Sequential Part of ABS P2P Networkare standard for assignment x = rhs , sequential
omposition s1 ; s2, skip, if,

while, and return
onstru
ts. In await g, the guard g
ontrols pro
essorrelease and
onsists of Boolean
onditions b, return tests x? and
onjun
tions.If g evaluates to false, the pro
essor is released, the
urrent pro
ess is suspendedand the pro
essor be
omes idle. When the pro
essor is idle, any enabled pro
essfrom the obje
t's pool of suspended pro
esses may be s
heduled.Example 1. Our running example is a peer-to-peer (P2P) distributed appli
ationborrowed from [13℄. Fig. 2 shows a fragment of the fun
tional program whi
hin
ludes type de�nitions (String and Int are prede�ned) and three fun
tionswhi
h are exe
uted using stri
t evaluation. Fig. 3 shows the most relevant partof the imperative
on
urrent program (interfa
es and the implementation of
lassNetwork are not shown). Calls to fun
tions and fun
tional data appear in itali
s.Fun
tion nth returns the n-th element of a list and appr
on
atenates two lists.A P2P network is formed by a set of inter
onne
ted peers whi
h
an a
t as
lientsand servers. Peers make the �les stored in their database (an obje
t of type DB)available to other peers, without
entral
oordination. The only
oordination isby means of an obje
t of
lass Network. It is enough to know that nodes learnwho their neighbors are by invoking getNeighbors implemented in this
lass. Anode a
ting as
lient triggers
omputations with sear
hFile, whi
h �rst �nds aneighbor node s that
an provide the �le and then requests the �le using reqFile.Communi
ation in ABS is based on asyn
hronous method
alls, denoted
o ! m(e), and future variables (Fut〈·〉). Method
alls may be seen as triggersof
on
urrent a
tivity, spawning new tasks (so-
alled pro
esses) in the
alledobje
t. After asyn
hronously
alling x=o ! m(e), the
aller may pro
eed withits exe
ution without blo
king on the
all. Here x is a future variable, o isan obje
t (typed by an interfa
e), and e are expressions. A future variable xrefers to a return value whi
h has yet to be
omputed. There are two opera-tions on future variables, whi
h
ontrol external syn
hronization in ABS. First,a return test x? evaluates to false unless the reply to the
all
an be retrieved.Se
ond, the return value is retrieved by the expression x.get, whi
h blo
ks4

class DBImp(Map〈FN ,File〉 db)
implements DB {
File getFile(FN fId) {
return lookup(db, fId);}

Int getLength(FN fId) {
return length(lookup(db,fId));}Unit storeFile(FN fId, File �le) {db=Assoc(Pair(fId,�le), db);}

FNs listFiles() {
return keys(db);}

}
class Node(DB db,FN �le)
implements Peer {
Catalog
at=Nil ;
List〈Peer〉 myN=Nil ;Network admin=null;Unit run() {Fut〈Catalog〉
; Fut〈List〈Peer〉〉 f;Server server ;
await admin != null;f=admin ! getNeighbors(this);
await f?; myN=f.get;
=this ! availFiles(myN);
await
?;
at=
.get;server=findServer(�le,
at);
if (server != null) {this.reqFile(server,�le);}}Unit setAdmin(Network admin) {this.admin=admin;}

FNs enquire() {Fut〈FNs〉 f; f=db ! listFiles();
await f?; return f.get;}

Int getLength(FN fId) {Fut〈Int〉 lth; lth=db ! getLength(fId);
await lth?; return lth.get;}

Packet getPa
k(FN fId, Int pNbr) {
File f=Nil ; Fut〈File〉 �;�=db ! getFile(fId);
await �?; f=�.get;
return nth(f, pNbr);}

Catalog availFiles (List〈Peer〉 sL) {
Catalog
at=Nil ; FNs fNs=EmptyS ;Fut〈FNs〉 fN; Catalog
atL=Nil ;Fut〈Catalog〉
L;if (sL != Nil) {fN=head(sL) ! enquire();
L=this ! availFiles(tail(sL));
await fN? &
L?;
atL=
L.get; fNs=fN.get;
at=appr(
atL,Pair(head(sL),fNs));}

return
at;}Unit reqFile(Server sId, FN fId) {Fut〈Int〉 l1; Fut〈Packet〉 l2;l1=sId ! getLength(fId);
await l1?; Int lth=l1.get;
while (lth > 0) {lth=lth - 1;l2=sId ! getPa
k(fId, lth);
await l2?; Packet pa
k=l2.get ;�le=Cons(pa
k, �le);}db ! storeFile(fId, �le);}}Fig. 3. Con
urrent Part of ABS Implementation of P2P Networkall exe
ution in the obje
t until the return value is available. A syn
hronous
all, abbreviated as v=o.m(e), is internally transformed into the statement se-quen
e x=o ! m(e); if (o==this) await x?; v=x .get. Observe that
he
kingif o==this is ne
essary to avoid that the exe
ution of the
urrent obje
t blo
kswhen a syn
hronous lo
al
all is performed.Example 2. The following fragment of
ode
orresponds to a possible mainmethod for the P2P example.

Map〈FN ,File〉 dataBase = Assoc(Pair(”file0 ”,Cons(”a”,Cons(”b”,Cons(”c”,Nil)))),
Assoc(Pair(”file1 ”,Cons(”d”,Cons(”e”,Nil))),EmptyM));DB db1 = new DBImp(EmptyM); DB db2 = new DBImp(dataBase);Peer n1 = new Node(db1, ”file0”); Peer n2 = new Node(db1, ”file1 ”);Peer n3 = new Node(db2, ”file1”); NetWork admin = new NetWork(n1,n2,n3);5

n1 ! setAdmin(admin); n2 ! setAdmin(admin); n3 ! setAdmin(admin);n1 ! run(); n2 ! run();The network
on�guration
onsists of three nodes, two databases and oneNetwork obje
t (admin). Nodes n1 and n2 are neighbors of n3. Su
h six obje
ts be-
ome distin
t
on
urrent entities whi
h
ommuni
ate with ea
h other by meansof asyn
hronous
alls and use future variables to eventually return/retrieve theresults. Any
on
urrent obje
t has its own heap, its queue of pending tasks andan a
tive task (if any).3 CLP-Translated ProgramsThe translation of sequential imperative programs into equivalent CLP programshas been subje
t of previous work (see, e.g., [3, 7℄). Intuitively, for ea
h method(or fun
tion), the translation represents the method (or fun
tion) as well as theintermediate blo
ks within the method (e.g., loops,
onditionals) by means ofpredi
ates in the CLP program. The fa
t that the imperative program workson a global state is simulated by representing the state using additional argu-ments of all predi
ates. We will not go into details of how the transformation ofthe sequential part is formalized (see [3, 7℄). Instead, we fo
us on the synta
ti
extensions of the ABS translated
on
urrent programs.3.1 Syntax of CLP-Translated ProgramsAn ABS CLP-translated program is made up of a set of predi
ates, ea
h of themde�ned by one or more mutually ex
lusive
lauses, whi
h adhere to the followinggrammar:
Clause ::=Pred(Args,Args, S ,S) : −[Ḡ,]B̄ .

G ::=Num∗ OpR Num∗ | Ref ∗1 \ == Ref ∗2 | Var = FTerm∗ |
diff (Var ,FTerm∗) |type(S ,Ref ∗,C)

B ::=Var #= Num∗ OpA Num∗ | Pred(Args,Args, S ,S) | Var=FTerm |new(C ,Ref ∗,S ,S) | getField(Ref ∗,FSig ,Var , S) | asyn
(Ref ∗,Call ,S ,S) |setField(Ref ∗,FSig ,Var∗,S , S) | await(Call ,Call ,S ,S) |get(Var ,Var ,Call ,S ,S) | return(Var∗,Var , S ,S) | futAvail(Var ,Var)
Call ::=Pred(Args,Args)
Pred ::=BlockN | MethodN | FuncN
Args ::= [℄ | [Data∗|Args℄
Data ::=Num | Ref | FTerm Ref ::= null | Var

OpR ::=#> | #< | #>= | #=< | #= | #\ =
OpA ::=+ | − | ∗ | / | mod

S ::=VarWe use FuncN ,MethodN , FSig to denote the set of fun
tions names, methodsand �eld signatures. Clauses
an de�ne methods and fun
tions whi
h appear inthe original sour
e program (MethodN , FuncN) and additional predi
ates whi
h
orrespond to intermediate blo
ks in the program (BlockN). Num is a number,
Var is a Prolog variable and FTerm is a term that represents a
orrespondingfun
tional data (namely p in Fig. 1). An asterisk on any element denotes thatit
an be either as de�ned by the grammar or a variable. Ea
h
lause re
eivesas input a possibly empty list of parameters (1st argument) and a global state6

(3rd argument), and returns an output (2nd argument) and a �nal global state(4th argument). The body of a
lause may in
lude a sequen
e of guards followedby a sequen
e of instru
tions, in
luding: arithmeti
 operations,
alls to otherpredi
ates, builtins to
reate obje
ts and to write and read on obje
t �elds, andbuiltins to handle the
on
urren
y.We use three di�erent kinds of inequalities in guards, namely, �\==�, �=�and diff to represent, resp., arithmeti

omparisons,
omparisons of referen
esand pattern mat
hings in ABS fun
tions. Virtual method invo
ations in theOO language are resolved at
ompile-time and translated into a
hoi
e of typebuiltins followed by the
orresponding method invo
ation for ea
h runtime in-stan
e. As expe
ted, the builtin new(C ,R, S1 , S2)
reates a new obje
t of
lass
C in state S1 and returns its assigned referen
e R and the updated state S2;getField(R,FSig,V , S) retrieves in variable V the value of �eld FSig of the ob-je
t referen
ed by R in the state S; setField(R,FSig,V , S1 , S2) sets the �eldFSig of the obje
t referen
ed by R in S1 to V and returns the modi�ed state S2.In the translation of
on
urrent programs, when a
on
urren
y
onstru
t ap-pears (namely an asyn
hronous
all, an await or get statement), we introdu
ea
all to a
orresponding builtin predi
ate that will simulate the
on
urrent be-haviour. Besides, an important point to noti
e is that, for all await and getstatements, we introdu
e a
ontinuation predi
ate whi
h allows us to suspendthe
urrent task (if needed) and then be able to resume its exe
ution at thispre
ise point. Also, we introdu
e in the translation return statements in orderto synta
ti
ally identify in the CLP-translated program when the exe
ution ofa task �nishes and thus another task from the queue
an be s
heduled.Example 3. The following
ode shows the CLP-translated program for method
reqFile of
lass Node.'Node.reqFile'([This, SId ,FId], [Out], S1 ,S2) :-

async(SId ,'Node.getLength'([SId , FId], [L1]),S1 ,S3),
await(awguard1 ([L1], [_]), cont1 ([This, SId ,FId ,L1], [Out]), S3 ,S2).

awguard1 ([L1], [V]) :- futAvail(L1 ,V).
cont1 ([This, SId ,FId ,L1], [Out], S1 , S2) :-

get(L1 ,Lth, cont2 ([This,SId ,FId ,Lth], [Out]), S1 , S2).
cont2 ([This, SId ,FId ,Lth], [Out], S1 ,S2) :- File ='Nil ',

while([This,SId ,FId ,File,Lth], [Out], S1 ,S2).
while([This,SId ,FId ,File,Lth], [Out], S1 ,S2) :- # <= (Lth, 0),

getField(This,'Node.db',Db,S1),
async(Db,'DBImp.storeFile'([Db,FId ,File], [_],S1 ,S3),
return(['Unit '], [Out], S3 ,S2).

while([This,SId ,FId ,File,Lth], [Out], S1 ,S2) :- # > (Lth, 0),# = (Lth1 ,Lth − 1),
async(SId ,'Node.getPack '([SId , FId ,Lth1], [L2]),S1 ,S3),
await(awguard2 ([L2],_), cont3 ([This, SId ,FId ,File,L2 ,Lth1], [Out]), S3 ,S2).

awguard2 ([L2], [V]) :- futAvail(L2 ,V).
cont3 ([This, SId ,FId ,File,L2 ,Lth], [Out], S1 , S2) :-

get(L2 ,Pack , cont4 ([This,SId ,FId ,File,Pack ,Lth], [Out], S1 ,S2).
cont4 ([This, SId ,FId ,File,Pack ,Lth], [Out], S1 , S2) :- File1 ='Cons'(Pack ,File),

while([This,SId ,FId ,File1 ,Lth], [Out], S1 , S2).7

The main features that
an be observed from the translation are: (1) Meth-ods (like reqFile), intermediate blo
ks (like cont1) and fun
tions are uniformlyrepresented by means of predi
ates and are not distinguishable in the trans-lated program. The input arguments list of all rules in
ludes: the this referen
e,the list of input parameters of the ABS method from whi
h the rule originates,and, in the
ase of predi
ates
orresponding to intermediate blo
ks, their lo
alvariables. The output arguments list is always a unitary list with the returnvalue. (2) Conditional statements and loops in the sour
e program are trans-formed into guarded rules and re
ursion in the CLP program, resp., e.g., rulesfor while. (3) Additional rules are produ
ed for the
ontinuations after awaitand get statements. The
alls to su
h
ontinuation rules are in
luded within thearguments of the await and get builtins (see e.g. rules 'Node.reqFile' for the
aseof await or cont1 for get). This allows the symboli
 exe
ution engine to suspendthe exe
ution at this point and resume it later. (4) A global state is expli
itlyhandled. Observe that ea
h rule in
ludes as arguments an input and an outputstate. The state is
arried along the exe
ution being used and transformed bythe
orresponding builtins as a bla
k box, therefore it is always a variable in theCLP program.3.2 The Global StateIn a sequential OO language, the global state
arried along by the CLP-translatedprogram only
ontains the data stored in the heap. Instead, in our
on
urrentsetting, it has to in
lude the set of existing
on
urrent obje
ts, ea
h of them withits asso
iated internal state. The internal state of an obje
t in
ludes two pie
esof information: (1) its heap (set of �elds) whi
h is not a

essible from outsidethe obje
t and (2) the queue of pending tasks. Formally, the syntax of the globalstate is as follows:
State ::= [] | [(Num,Object)|State] Object ::= object(C ,Fields,Q)
Fields ::= [] | [field(f ,Data)|Fields] Q ::= [] | [Task |Q]

Fut ::= ready(Data)|Var Task ::= call(Call) | await(Call ,Call) |
get(Fut,V ar,Call)The state is represented as a list of pairs, where Num is a unique referen
e tothe obje
t Object . Ea
h obje
t is a term whi
h in
ludes its
lass C, a list of�elds Fields and a queue Q of pending tasks. Ea
h element in Fields is a term
ontaining a �eld name and its asso
iated data. The meaning of the di�erentkinds of tasks Task and the syntax of future variables Fut is related to thesymboli
 exe
ution of the translated programs and will be explained in detail inthe next se
tion.Example 4. Consider an exe
ution of the main method in Ex. 2 whi
h startsfrom an initial state []. After
reating the obje
ts of type DBImp, the state takesthe form [odb1 , odb2], where odb1=(1 , object('DBImp', [field(db,'EmptyM ')], []))and odb2=(2 , object('DBImp', [field(db, dataBase)], []))]. Here, 1 and 2 are thereferen
es for db1 and db2, respe
tively. Similarly, the next three new instru
tionsadd three new elements to the state, resulting in [odb1 , odb2 , on1

, on2
, on3

], where:8

asyn
(Ref,Call,S1,S2) :- addTask(S1,Ref,
all(Call),S2).await(Cond,Cont,S1,S3) :-Cond =..[_,[This|_℄,[Ret℄℄, buildCall(Cond,S1,S2,CondCall), CondCall,(Ret = 'False' -> addTask(S1,This,await(Cond,Cont),S2), swit
hContext(S2,S3); buildCall(Cont,S1,S3,ContCall), ContCall).get(FV,V,Cont,S1,S3) :- Cont =..[_,[This|_℄,_℄,(var(FV) -> addTask(S1,This,get(FV,V,Cont),S2), swit
hContext(S2,S3); FV = ready(V), buildCall(Cont,S1,S3,ContCall), ContCall).return([Ret℄,[ready(Ret)℄,S1,S2) :- swit
hContext(S1,S2).futAvail(FV,'False') :- var(FV), !.futAvail(ready(_),'True').addTask(S1,Ref,T,S2) :- getCell(S1,Ref,obje
t(C,Fs,Q1)),insert(Q1,T,Q2), setCell(S1,Ref,obje
t(C,Fs,Q2),S2).swit
hContext(S1,S3) :- S1 = [(Ref,_)|_℄, �rstToLast(S1,S2),swit
hContext_(S2,S3,Ref).swit
hContext_(S,S,Ref1) :- S = [(Ref2,obje
t(_,_,[℄))|_℄, Ref1 == Ref2, !.swit
hContext_(S1,S3,Ref) :-(extra
tTask(S1,Task,S2) -> runTask(Task,S2,S3)�rstToLast(S1,S2), swit
hContext_(S2,S3,Ref)).runTask(
all(ShortCall),S1,S2) :- buildCall(ShortCall,S1,S2,Call), Call.runTask(await(Cond,Cont),S1,S2) :- await(Cond,Cont,S1,S2).runTask(get(FV,V,Cont),S1,S2) :- get(FV,V,Cont,S1,S2).buildCall(ShortCall,S1,S2,Call) :- ShortCall =..[RN,In,Out℄, Call =..[RN,In,Out,S1,S2℄.Fig. 4. Implementation of Con
urren
y builtins
on1 = (3 , object('Node', [field(db, 1), field(file, ”file0”), field(cat ,'Nil '),

field(myN ,'Nil '), field(admin, null)], []))and on2
, on3

are similar to on1
ex
ept for the obje
t identi�ers (4 and 5 respe
-tively) and the value of �eld file (whi
h is ”file1” in both obje
ts). Field db hasvalue 1 for on2

, and value 2 for on3
.4 Symboli
 Exe
ution of Con
urrent Obje
tsIn dynami
 (or
on
rete) exe
ution, the initial state must be a ground term (e.g.,if exe
ution starts from a main, it is an empty list). Obje
ts must be
reatedusing new/4 before their �elds
an be read or written. In symboli
 exe
ution, theintuitive idea proposed in [8℄ is that the state
ontains two parts: the known part(beginning of the list) with the obje
ts that have been expli
itly
reated duringsymboli
 exe
ution, and the unknown part whi
h is a logi
 variable (tail of thelist) in whi
h new data
an be added by produ
ing the
orresponding bindings.Therefore, the state starts being a free variable, and the implementation of get-Field/4 and setField/5 invokes predi
ates getCell/3 and setCell/4 whi
h, if theobje
t whose �elds are going to be read or written is not in the known part,9

they instantiate the unknown part of the heap to be able to assume the previousallo
ation of the obje
t and a

ess its �elds. Figure 4 shows the CLP implemen-tation of the builtins to handle
on
urren
y. They rely on the above getCell/3and setCell/4 operations (whose implementation is in [8℄) to symboli
ally a

essthe heap. The following se
tions explain the behavior of the di�erent builtins.4.1 Asyn
hronous CallsPredi
ate asyn
(Ref,Call,S1,S2), given the
urrent state S1 adds the asyn
hronous
all Call to the queue of tasks of the re
eiver obje
t Ref produ
ing the updatedstate S2. The
all to addTask/4 sear
hes the state for the obje
t pointed to byreferen
e Ref by means of getCell/3, adds the task to its queue and updates thestate with the updated obje
t. As explained above, if the obje
t pointed to byRef is not in the known part of the state, getCell/3 produ
es a
orrespondinginstantiation on the unknown part so that after this operation the obje
t is inthe state.Example 5. Let us
onsider the symboli
 exe
ution of method reqFile, i.e., we runin CLP the goal 'Node.reqFile'(In,Out , S0 , S1). After the �rst
all to asyn
/4the following instantiations are produ
ed:
S0=[(SId , object('Node', [field('Node.db',DB), . . .]), [])]
S1=[(SId , object('Node', [field('Node.db',DB), . . .]), [call('Node.getLength'(. . .))])]Observe that, as expe
ted, asyn
hronous
alls do not transfer
ontrol from the
aller, i.e., they are not exe
uted when they o

ur but rather added as pendingtasks on the re
eiver obje
ts that will eventually s
hedule them for exe
ution.4.2 Implementation of Distribution and Con
urren
yThe fa
t that obje
ts do not share memory ensures that their exe
ution states(and thus the global state) are not a�e
ted by how distribution is realized.Therefore, symboli
 exe
ution
an simulate distribution in any
onvenient way.We implement it in the following spe
i�
 way: ea
h obje
t exe
utes its s
heduledtask as far as possible and, when a task �nishes or gets blo
ked, simulationpro
eeds
ir
ularly with the next obje
t in the state (whi
h
ould be running inparallel in an a
tual deployment
on�guration). In
ontrast,
on
urren
y o

ursat the level of obje
t in the sense that tasks in the obje
t queue are exe
uted
on
urrently. Cooperative s
heduling of the ABS language only spe
i�es that theexe
ution of the
urrent task must pro
eed until a
all to return/4, await/4 orget/5 is found. The s
heduling poli
y whi
h de
ides the task that exe
utes next(among those ready for exe
ution) is left unspe
i�ed.Predi
ate swit
hContext/2 is used when the exe
ution of the
urrent task
anno longer pro
eed. It gives the turn of exe
ution to the �rst task (a

ording tothe s
heduling poli
y) of the following obje
t (the next one in the state). This isimplemented by always keeping the
urrent obje
t in the head of the state, andmoving it to the last position when its
urrent task �nishes or gets blo
ked, as it10

an be observed in the implementation of swit
hContext/2. If the
urrent obje
thas some pending task in its queue, the task is run (
alling runTask/3). Otherwise(predi
ate extra
tTask/3 fails), the following obje
t is tried. The exe
ution of thewhole appli
ation �nishes when there is no pending task in any obje
t (see �rstrule of swit
hContext_/3). Observe that there are three di�erent types of tasks,
all, await and get, whose behaviour is explained below.One
an implement di�erent s
heduling poli
ies by providing
on
rete im-plementations of predi
ates insert/3 and extra
tTask/3. For instan
e, a FIFOs
heduling poli
y is implemented by 1) inserting at the end of the queue, and2) extra
ting always the �rst task. One
an also use priority queues. The im-plementation be
omes parametri
 on the s
heduling poli
y by just asserting thesele
ted poli
y and adding a parameter to predi
ates insert and extra
tTask toapply the sele
ted poli
y. Furthermore, the language allows that di�erent obje
tsapply di�erent s
heduling poli
ies. Thus, one
an also sele
t the desired poli
yper obje
t. In this
ase, when s
heduling a new task, we �rst read the assertedinformation whi
h indi
ates the s
heduling poli
y at the obje
t level and, then,invoke the appropriate implementation of insert and extra
tTask for the
urrentobje
t. Having parametri
 s
heduling poli
ies is interesting in the appli
ation ofsymboli
 exe
ution to regression testing, as one then wants to save the sele
tedpoli
y within the test-
ases in order to be able to replay them.4.3 Syn
hronization: future variables, await, get and returnAwait. Predi
ate await(Cond,Cont,S1,S3) �rst
he
ks its
ondition Cond by meansof the meta-
all CondCall. If the
ondition holds (Ret gets instantiated to 'True'),a meta-
all to the
ontinuation Cont is made (meta-
all ContCall). Otherwise (Retis 'False'), an await task is added to the queue of the involved obje
t and weswit
h
ontext. Let us observe that the
alls wrapped within asyn
s, awaits andgets as well as those stored in obje
t queues, do not in
lude states but just inputand output arguments (see grammars in Se
t. 3). This is be
ause when a task isto be exe
uted the
urrent state must be used (and not the one that was
urrentwhen the task was �rst
reated). Predi
ate buildCall/4 builds a full
all from a
all without states and the two states involved.Future variables. The evaluation of await
onditions
an involve return testson future variables. This is represented in our CLP programs by a
all to thefutAvail/2 builtin. Future variables o

ur in the global state in the output argu-ments of
all tasks, and are available when they get instantiated. Sin
e, in the
ontext of symboli
 exe
ution, the return value of a method
an be a variable
V , we use the spe
ial term ready(V) to know whether the exe
ution has �nished(see the global state grammar in Se
t. 3.2). Predi
ate futAvail/2 then just has to
he
k whether the future variable is a CLP variable or is instantiated to ready(_)and returns, resp., 'False' or 'True'.Example 6. Let us
ontinue with the symboli
 exe
ution of method reqFile rightafter the exe
ution of the �rst asyn
 (see Ex. 5). The
all to await �rst pro-du
es a
all to awguard1 whi
h
he
ks whether the return value L1 (future11

Ben
hmark D=50 D=75 D=100#I #S T #I #S T #I #S TProdu
erImpl.loop 1175 29 30 8028 134 140 35291 437 630ConsumerImpl.loop 35 2 10 159 4 20 254 5 20BoundedBu�er.append 2751 77 10 10494 198 30 24840 360 40DistHT.lookupNode 319 11 20 697 17 10 1219 23 10DistHT.getAllData 6 1 10 1406 21 40 9466 111 130DistHT.getAllKeysAux 96 3 10 849 14 60 15622 173 360DistHT.getAllKeys 22 1 11 160 3 30 1177 14 119DistHT.putData 2220 50 10 14608 242 30 47532 612 70DBImp.getLength 9108 253 61 30940 595 160 78208 1128 359Node.run 0 0 10 51241 720 240 14219536 148466 45640Node.getLength 3731 91 40 20475 351 150 55081 741 360Node.getPa
k 1736 42 20 9919 169 40 26961 361 60Node.reqFile 0 0 10 1988 28 110 16530 190 390SessionImp.order 0 0 30 0 0 110 5647 59 320AgentImp.free 616 22 10 1435 35 10 2491 47 10DBImp.
on�rmOrder 95568 2167 599 4863238 71277 21230 - - -Table 1. Statisti
s about the Analysis Pro
essvariable) of the
all to getLength is already available (by means of the
allto futAvail/2). Sin
e it is not the
ase (i.e, a 'False' is returned) the exe
u-tion of the
urrent task
annot pro
eed, therefore the await task is added tothe
urrent obje
t (so that it is re-tried later on) and
ontext is swit
hed (seethe
alls to addTask/4 and swit
hContext/2). This, in turn, produ
es a
all torunTask(
all('Node.getLength'(. . .)),S2,S3) where the
urrent state is now
S2=[(SId , object('Node', [field('Node.db',DB1), . . .]), []),
(This, object('Node', [field('Node.db',DB2), . . .]), [await(awguard1 (. . .), cont1 (. . .))])]Return.When a method �nishes its exe
ution, we rea
h a return statement whi
hinstantiates the future variable V asso
iated to the
urrent task to ready(V). Thisallows that, if the task that requested the exe
ution of this one was blo
ked await-ing on this future variable, it
an pro
eed its exe
ution when it is re-s
heduled.Get. Predi
ate get �rst
he
ks if the task
an resume exe
ution be
ause thefuture variable that is blo
king it has be
ome instantiated. In su
h
ase, the
ontinuation of the get is exe
uted (meta-
all ContCall). Otherwise, the
urrenttask is added to the queue and
ontext is swit
hed.5 Experimental Results in aPETPET [8℄ is a test-
ase generation tool whi
h aims at being a generi
 platformfor CLP-based test-
ase generation of di�erent languages. This work implements12

the
ore part of aPET, an extension of PET to generate test-
ases from
on
ur-rent ABS programs. Currently, we have implemented the automati
 translationof ABS programs into CLP equivalent programs and extended the symboli
 ex-e
ution engine of PET with the
on
urren
y primitives of ABS des
ribed alongthe paper. Experimental evaluation has been
arried out using several typi
al
on
urrent appli
ations: BBu�er, a
lassi
al bounded-bu�er for
ommuni
at-ing several produ
ers and
onsumers, DistHT whi
h implements a distributedhash-table, PeerToPeer, our running example; BookShop, whi
h implements aweb shop
lient-server appli
ation. The
ode of the examples
an be found in
http://costa.ls.fi.upm.es/pet/apet.Table 1 summarizes our experiments. Ea
h set of rows
ontains the results ofsymboli
ally exe
uting methods whi
h belong to the above ben
hmarks. Sym-boli
 exe
ution for all methods works properly but, in the table, we have onlyshowed the results for the methods whi
h have more
omplex
ode and whosesymboli
 exe
ution takes longer. As methods
ontain loops or re
ursion, symboli
exe
ution does not terminate unless we introdu
e some termination
riteria. Inour
ase, we limit the length of the bran
hes of the symboli
 exe
ution tree toa
onstant D (i.e., the depth of the tree to D). For ea
h experiment, we showthree sets of
olumns with the results of setting D to 50, 75 and 100 steps.Then,
olumn #I shows the total number of instru
tions that have been exe-
uted in
luding all bran
hes, #S shows the number of solutions (bran
hes) inthe resulting symboli
 exe
ution tree, and T the total time (in millise
onds)required to build the tree. Experiments have been performed on an Intel Core i5at 3.2GHz with 3.1GB of RAM, running Linux. All times have been
omputedas the average of 5 runs. When time is negligible, the system gives T = 10.As expe
ted, when allowing larger values for the depth of the tree, the numberof bran
hes grows exponentially and thus the total time. This is not a problemrelated to our approa
h, but rather inherent to symboli
 exe
ution. MethodsNode.run and DBImp.
on�rmOrder have larger times (and number of instru
-tions) be
ause the size of the
ode rea
hable from them is mu
h larger (they
ontain many
alls to other methods). For the last one, no result is
omputed ina reasonable time for D=100. In order to alleviate this problem, testing toolsoften limit the number of iterations on loops to a small number. Otherwise, thepro
ess
an be
ome quite expensive and too many test-
ases
an be obtained,as it
an be observed from the large number of solutions obtained.6 Con
lusions and Related WorkWe have presented the �rst CLP-based approa
h to symboli
 exe
ution of
on-
urrent obje
ts. The main idea is that
on
urrent distributed imperative pro-grams
an be translated into equivalent CLP programs whi
h
ontain
alls tobuiltin operations that simulate the
on
urrent behavior of the a
tive obje
tsparadigm. A unique feature of our approa
h is that, as the builtin operations
an be fully implemented in logi
 programming, symboli
 exe
ution boils downto standard sequential exe
ution of the CLP transformed program.13

Pro
ess s
heduling in
on
urrent obje
ts has some similarities with the dy-nami
 s
heduling available in Prolog systems. However, the behavior is not thesame and it
annot be dire
tly used. This is be
ause syn
hronization using dy-nami
 s
heduling
an resume the exe
ution of a task as soon as the await
on-dition is satis�ed, while
ooperative s
heduling only allows swit
hing betweentasks at spe
i�
 s
heduling points. As
on
urrent obje
ts do not share memory,one
ould think of using Prolog's parallelism [11℄ to simulate the distributedexe
ution by running ea
h obje
t as a parallel task. However, there is no sup-port to simulate the fa
t that one obje
t re
eives requests from another oneby means of asyn
hronous
alls. Some systems, like SWI, implement parallelismusing threads with asso
iated queues and syn
hronization is a
hieved by meansof asserted variables. Indeed, for
on
rete exe
ution, we have a working imple-mentation using SWI Prolog parallelism in whi
h tasks
ommuni
ate by meansof global variables (asserted in Prolog's database). However, the use of impurefeatures does not allow the ba
ktra
king required in symboli
 exe
ution. Re-
ent years are witnessing a wealth of resear
h in testing
on
urrent programs.Symboli
 exe
ution is the
entral part of most stati
 test-
ase generation tools,whi
h typi
ally obtain the test-
ases from the bran
hes of the symboli
 exe
utiontree. There is previous related work on using Creol for modeling and testing sys-tems against spe
i�
ations [2℄, though the problem of symboli
 exe
ution is notstudied there. Later, [10℄ studies dynami
 symboli
 exe
ution of Creol programswhi
h
ombines
on
rete and symboli
 exe
ution. A fundamental di�eren
e withour approa
h is that they use an interpreter of Creol to perform symboli
 exe
u-tion, while in our
ase, we transform the ABS program into an equivalent CLPwhi
h does not require any interpretation layer, rather it is exe
uted natively inCLP. Simulation tools for ABS programs that perform
on
rete exe
ution [4℄ areonly tangentially related to our work. This is be
ause dynami
 exe
ution doesnot require ba
ktra
king and hen
e the use of CLP has less interest.Re
ent work on testing thread-based languages studies ways to improve s
al-ability [19℄ whi
h
ould also be adapted to our
ontext. Likewise, [22℄ proposesnew
overage
riteria in the
ontext of
on
urrent languages that
ould be stud-ied in our CLP-based setting. As future work, we plan to integrate our symboli
exe
ution me
hanism within a test-
ase generation tool in order to generate unittests for ABS programs in a fully automati
 way.A
knowledgments. This work was funded in part by the Information & Com-muni
ation Te
hnologies program of the European Commission, Future andEmerging Te
hnologies (FET), under the ICT-231620 HATS proje
t, by theSpanish Ministry of S
ien
e (MICINN) under the TIN-2008-05624DOVES proje
t,the UCM-BSCH-GR35/10-A-910502 GPD Resear
h Group and by the MadridRegional Government under the S2009TIC-1465 PROMETIDOS-CM proje
t.Referen
es1. G.A. Agha. A
tors: A Model of Con
urrent Computation in Distributed Systems.MIT Press, Cambridge, MA, 1986. 14

2. B. K. Ai
hernig, A. Griesmayer, R. S
hlatte, and A. Stam. Modeling and TestingMulti-Threaded Asyn
hronous Systems with Creol. ENTCS, 243:3�14, 2009.3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysisof Java Byte
ode. In Pro
. of ESOP'07, volume 4421 of LNCS, pages 157�172.Springer, 2007.4. E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. S
hlatte, andS. L. Tapia Tarifa. Simulating Con
urrent Behaviors with Worst-Case CostBounds. In Pro
. of FM'2011, vol. 6664 of LNCS, pages 353�368. Springer, 2011.5. J. Armstrong, R. Virding, C. Wistrom, and M. Williams. Con
urrent Programmingin Erlang. Prenti
e Hall, 1996.6. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. InPro
. of ESOP'07, volume 4421 of LNCS, pages 316�330. Springer, 2007.7. M. Gómez-Zamalloa, E. Albert, and G. Puebla. De
ompilation of Java Byte
odeto Prolog by Partial Evaluation. JIST, 51:1409�1427, 2009.8. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Obje
t-Oriented Imperative Languages in CLP. TPLP, ICLP'10 Spe
ial Issue, 2010.9. A. Gotlieb, B. Botella, and M. Rueher. A CLP Framework for Computing Stru
-tural Test Data. In Computational Logi
, 2000.10. A. Griesmayer, B. K. Ai
hernig, E. B. Johnsen, and R. S
hlatte. Dynami
 Symboli
Exe
ution of Distributed Con
urrent Obje
ts. In Pro
. of FMOODS/FORTE'2009,volume 5522 of LNCS, pages 225�230. Springer, 2009.11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Exe
u-tion of Prolog Programs: a Survey. ACM TOPLAS, 23(4):472�602, July 2001.12. E. B. Johnsen, R. Hähnle, J. S
häfer, R. S
hlatte, and M. Ste�en. ABS: A CoreLanguage for Abstra
t Behavioral Spe
i�
ation. In Pro
. of FMCO'2010, LNCS.Springer, 2011. To appear.13. E. B. Johnsen and O. Owe. An Asyn
hronous Communi
ation Model for Dis-tributed
on
urrent obje
ts. Software and Systems Modeling, 6(1):35�58, 2007.14. S. Khurshid, C. S. P�as�areanu, and W. Visser. Generalized Symboli
 Exe
ution forModel Che
king and Testing. In Pro
 of TACAS, pages 553�568, 2003.15. J. C. King. Symboli
 Exe
ution and Program Testing. Commun. ACM, 19(7):385�394, 1976.16. C. Meude
. Atgen: Automati
 Test Data Generation using Constraint Logi
 Pro-gramming and Symboli
 Exe
ution. Softw. Test., Verif. Reliab., 11(2):81�96, 2001.17. B. Meyer. Obje
t-Oriented Software Constru
tion. Prenti
e-Hall, In
., Upper Sad-dle River, NJ, USA, 2nd edition, 1997.18. Roger A. Müller, Christoph Lembe
k, and Herbert Ku
hen. A Symboli
 JavaVirtual Ma
hine for Test Case Generation. In IASTED Conf. on Software Engi-neering, pages 365�371, 2004.19. N. Rungta, E.G. Mer
er, and W. Visser. E�
ient Testing of Con
urrent Programswith Abstra
tion-Guided Symboli
 Exe
ution. In Pro
. of SPIN'09. Springer, 2009.20. J. S
häfer and A. Poetzs
h-He�ter. J
obox: Generalizing A
tive Obje
ts to Con
ur-rent Components. In Pro
. of ECOOP'10, volume 6183 of LNCS, pages 275�299.Springer, 2010.21. S. Srinivasan and A. My
roft. Kilim: Isolation-Typed A
tors for Java. In Pro
. ofECOOP'08, volume 5142 of LNCS, pages 104�128. Springer, 2008.22. J. Takahashi, H. Kojima, and Z. Furukawa. Coverage based Testing for Con
urrentSoftware. In ICDCS Workshops, pages 533�538. IEEE Computer So
iety, 2008.23. Nikolai Tillmann and Jonathan de Halleux. Pex-white Box Test Generation for.NET. In TAP, pages 134�153, 2008. 15

