
Smart, and also Reliable and Gas-Efficient,
Contracts

Elvira Albert∗†, Jesús Correas†, Pablo Gordillo†, Guillermo Román-Dı́ez‡ and Albert Rubio∗†
∗Instituto de Tecnologı́a del Conocimiento
†Complutense University of Madrid, Spain
‡Universidad Politécnica de Madrid, Spain

{ealberta,jcorreas,pabgordi,alberu04}@ucm.es, guillermo.roman@upm.es

Index Terms—Ethereum, Smart contracts, Resource Analysis,
Verification, Safety, Optimization

A smart contract is a software program that runs on top

of a blockchain. It contains a collection of public functions

that can be invoked within the transactions launched over

the contract by parties interacting with it. Being computer

programs, well-studied formal verification techniques can be

applied to them. Indeed, smart contracts are a very interesting

application domain for validation, verification and optimiza-

tion techniques since (1) they are relatively small in size,

hence the application of these techniques scales better than

when applied to larger industrial code, (2) they are valuable (in

the corresponding blockchain cryptocurrency), hence software

bugs or inefficiencies can cause economical losses and there

is much interest in formally proving their safety and security,

and (3) they require proving new specific properties to ensure

their reliability and efficiency.
The concrete context of our work is the Ethereum

blockchain, one of Bitcoin’s most prominent successors that

adds a quasi Turing-complete language to develop the smart

contracts. In Ethereum, replicated execution is implemented

by means of the Ethereum Virtual Machine (EVM), which is

a stack-based operational formalism, enriched with a number

of primitives that allow contracts to invoke each other, to refer

to the global blockchain state, and even to create new contract

instances dynamically. The EVM provides a convenient com-

pilation target, known as EVM bytecode, that multiple high-

level programming languages (e.g., Solidity or Vyper) compile

to. Our methods for verification and optimization work directly

on EVM bytecode. This has a number of advantages: (1) the

source code is not always available (e.g., the blockchain only

stores the bytecode), (2) the information to be gathered in the

analysis might be only visible at the level of bytecode (e.g.,

gas consumption is specified at the level of EVM instructions),

and (3) the analysis results may be affected by optimizations

performed by the compiler (thus the analysis/optimization

should be done ideally after compilation). However, analyzing

bytecode requires the decompilation of the EVM bytecode

into a high-level representation on which the analysis can be

defined: we use an extended version of Oyente [1] to recover

This work was funded partially by the Spanish MCIU, AEI and FEDER
(EU) project RTI2018-094403-B-C31/C33, the MINECO project TIN2015-
69175-C4-2/3-R, and by the CM project S2018/TCS-4314.

the CFG and the EthIR framework [4] to obtain a rule-based

representation of the bytecode.

We will focus on the verification of gas-related and safety

properties whose main goals are to save resources, prevent vul-

nerabilities and avoid potential attacks to Ethereum smart con-

tracts. As regards safety, we will present SAFEVM [2], a ver-

ification framework for Ethereum smart contracts that makes

use of state-of-the-art verification engines for C programs.

The main observation within the SAFEVM framework is that

the INVALID bytecode of EVM is key for verification, since

INVALID is executed both in assertion violations and several

sources of fatal operations (e.g., out-of-bounds access, division

by zero). Our verification approach consists in decompiling

the EVM bytecode into a C program in which the INVALID

operations are translated into calls to an error function so

that its unreachability can be proven by C verification tools. As

regards gas-related properties, we will present our framework

GASOL [3], for the inference and optimization of the gas

usage of smart contracts. GASOL works on a wide variety

of cost models, e.g., cost models to measure only storage

opcodes, to measure a selected family of gas-consumption

opcodes following the Ethereum’s classification, to estimate

the gas of a selected program line, etc. After choosing a

cost model and a function of interest, GASOL returns to the

user a gas upper bound of the cost for this function. As the

gas consumption is often dominated by the instructions that

access the storage, GASOL uses the gas analysis to detect

under-optimized storage patterns, and includes an (optional)

automatic optimization of the selected function.

REFERENCES

[1] Oyente: An Analysis Tool for Smart Contracts, 2018. https://github.com/
melonproject/oyente.

[2] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio.
SAFEVM: A Safety Verifier for Ethereum Smart Contracts. In D. Zhang
and A. Møller, editors, Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis 2019 (ISSTA’19), ACM,
pages 386–389, 2019.

[3] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio. GASOL:
Gas Analysis and Optimization for Ethereum Smart Contracts. In 26th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2020. Proceedings, Lecture Notes in
Computer Science, 2020. To appear.

[4] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey. EthIR: A
Framework for High-Level Analysis of Ethereum Bytecode. In ATVA,
volume 11138 of LNCS, pages 513–520. Springer, 2018.

2

2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)

978-1-7281-5778-8/20/$31.00 ©2020 IEEE
DOI 10.1109/ICST46399.2020.00010

