
Don’t Run on Fumes — Parametric Gas Bounds for
Smart Contracts

Elvira Alberta,b, Jesús Correasb, Pablo Gordillob, Guillermo Román-Dı́ezc,,
Albert Rubioa,b

aInstituto de Tecnoloǵıa del Conocimiento, Spain
bComplutense University of Madrid, Spain
cUniversidad Politécnica de Madrid, Spain

Abstract

Gas is a measurement unit of the computational effort that it will take to execute
every single replicated operation that takes part in the Ethereum blockchain
platform. If a transaction exceeds the amount of gas allotted by the user (known
as gas limit), an out-of-gas exception is raised and its execution is interrupted.
One of the main open problems in the analysis of Ethereum smart contracts is
the inference of sound bounds on their gas consumption.

We present, to the best of our knowledge, the first static analysis that is able
to infer sound parametric (i.e., non-constant) gas bounds for smart contracts.
The inferred bounds can be parametric on the sizes of the input parameters
for the functions, but also they can be parametric on the contract state, or
blockchain data. Our gas analysis is developed at EVM bytecode level, in which
Ethereum gas model is defined.

Our analysis is implemented in a tool named Gastap, Gas-Aware Smart
contracT Analysis Platform, which takes as input a smart contract and auto-
matically infers sound gas upper-bounds for its public functions. Gastap has
been applied over 318,093 functions fetched from the Ethereum blockchain, and
succeeded to obtain gas bounds for 90.24% of them.

Keywords: Smart contracts, Resource analysis, Static analysis, Decompilation

1. Introduction

In the Ethereum consensus protocol, every operation on a replicated blockchain
state, which can be performed in a transactional manner by executing a smart
contract code, costs a certain amount of gas [1]. Gas has a monetary value
in Ether, Ethereum’s currency, and it is paid by a transaction-proposing party.
Computations (initiated by a protocol client invoking a smart contract) that

Email addresses: elvira@sip.ucm.es (Elvira Albert), jcorreas@ucm.es (Jesús Correas),
pabgordi@ucm.es (Pablo Gordillo), guillermo.roman@upm.es (Guillermo Román-Dı́ez),
alberu04@ucm.es (Albert Rubio)

Preprint submitted to Journal of Systems and Software February 1, 2021

require more computational or storage resources, cost more gas than those that
require fewer resources. As regards storage, the Ethereum Virtual Machine
(EVM) has three areas where it can store items: (a) the storage is where all
contract state variables reside, every contract has its own storage and it is per-
sistent between external function calls (transactions) and quite expensive to use;
(b) the memory is used to hold temporary values, and it is erased between trans-
actions and thus is cheaper to use; (c) the stack is used to carry out operations
and it is free to use, but can only hold a limited amount of values.

The rationale behind the resource-aware smart contract semantics, instru-
mented with gas consumption, is three-fold. First, paying for gas at the moment
of proposing the transaction does not allow the emitter to waste other parties’
(aka miners) computational power by requiring them to perform a lot of worth-
less intensive work. Second, gas fees disincentivize users to consume too much of
replicated storage, which is a valuable resource in a blockchain-based consensus
system. Finally, such a semantics puts a cap on the number of computations
that a transaction can execute, hence prevents attacks based on non-terminating
executions (which could otherwise, e.g., make all miners loop forever).

The gas-instrumented operational semantics of EVM has introduced novel
challenges wrt. sound static reasoning about resource consumption, correctness,
and security of replicated computations: (i) While the EVM specification [1] pro-
vides the precise gas consumption of the low-level operations, most of the smart
contracts are written in high-level languages, such as Solidity [2] or Vyper [3].
The translation of the high-level language constructs to the low-level ones makes
static estimation of runtime gas bounds challenging (as we will see throughout
this paper), and is implemented in an ad-hoc way by state-of-the art compilers,
which are only able to give constant gas bounds, or return ∞ otherwise. (ii)
As noted in the recent study by Gretch et al. [4, 5], in general it is dangerous
for a smart contract to make its gas consumption dependent on the size of the
data it stores (i.e., the contract state), as well as on the size of its functions
inputs, or of the current state of the blockchain. However, according to our ex-
periments, almost 10% of the contract functions we have analyzed feature such
dependencies. Note that there are a number of situations that, without having
iterative code in the Solidity code, the Solidity compiler produces a loop at EVM
bytecode level. These “hidden” loops might come from functions that receive
as parameters arrays or strings, the size of the message data, or the length of
data structures in storage. Let us show an example:

1 contract HiddenLoops {
2 uint [] data;
3 function f (uint [] memory values) public { // loop1

4 delete data; // loop2

5 for (uint i = 0; i < values.length; i++) { // loop3

6 data.push(values [i]) ;
7 }
8 }
9 }

2

The gas consumed by function f does not only depend on the length of values as it
can be expected by looking at the source code. The EVM program obtained from
this Solidity program includes two hidden loops: one that copies the contents
of values in memory (loop1); and another one that traverses all elements stored
in data for setting them to 0 (loop2). The use of resource analysis techniques at
the level of the EVM allows us to infer the following accurate and sound upper-
bound expression that accumulates the costs of these two hidden loops: 5768 +
3 ∗ values︸ ︷︷ ︸
loop1

+ 5057 ∗ data︸ ︷︷ ︸
loop2

+ 40451 ∗ values︸ ︷︷ ︸
loop3

. The inability to soundly estimate the

cost, and the lack of analysis tools, might lead to design mistakes, which make
a contract unsafe to run or prone to exploits. For instance, a contract whose
state size exceeds a certain limit, can be made forever stuck, not being able to
progress. Those vulnerabilities have been recognized before, but only discovered
by means of unsound, pattern-based analysis of control-flow graphs [4].

In this article, we address these challenges in a principled way by developing
a new static analysis that is able to infer parametric gas bounds for smart
contracts. The upper-bounds we infer are given in terms of the sizes of the input
parameters of the functions, the contract state, and/or on the blockchain data
that the gas consumption depends upon (e.g., on the Ether value effective at the
moment when the corresponding transaction takes place). The inference of gas
requires complex transformation and analysis processes on the code that include:
(1) the construction of the EVM control-flow graphs and the decompilation
of low-level EVM bytecode to a higher-level rule-based representation of the
program; (2) the special treatment of EVM data types (e.g., strings and bytes are
challenging to deal with) and its storage and memory model; (3) the definition of
a static cost-model that captures the gas consumed by the program and that can
be plugged within state-of-the-art cost analysis tools; (4) the implementation
effort to take advantage of off-the-shelf analysis tools that are able to compute
parametric bounds for the input program.

A challenging aspect in the definition of the gas bounds analysis has been
the approximation of the EVM gas model (which is formally specified in [1]).
This is because the EVM gas model is highly complex and unconventional. The
gas consumption of each instruction has two parts: (i) the memory gas cost, if
the instruction accesses a location in memory which is beyond the previously
accessed locations (known as active memory [1]), it pays a gas proportional to
the distance of the accessed location. (ii) The second part, the opcode gas cost,
is related to the bytecode instruction itself. This is quite challenging to infer as,
somewhat counter-intuitively, it is not always a constant, but might depend in
some cases on the current state of a contract and the blockchain. Our analysis
is able to soundly approximate both components: the former is estimated by
means of an instance of a peak resource analysis [6, 7] and the latter using a
parametric cost model within standard resource analysis [8].

The analysis is implemented in a tool named Gastap, a Gas-Aware Smart
contracT Analysis Platform, which is, to the best of our knowledge, the first
automatic and sound gas analyzer for smart contracts. Gastap takes as input

3

Opcode
 Gas Bound

RBR Generation

Smart
Contract

Gas
Bounds

Concrete
RBR

Gas RBR Refinement

Gas Abstract
RBR

Memory RBR Refinement

Memory Abstract
RBR

Memory
 Gas Bound

Control-Flow
Graph

Gas
 Cost Model

Value
Analysis

Standard Resource
Analysis

Peak Resource Analysis

Figure 1: Architecture of Gastap. White boxes are components implemented by us. Gray
boxes are off-the-shelf tools.

a smart contract provided in Solidity source code [2], or in low-level (possibly
decompiled [9]) EVM code, and automatically infers upper-bounds on the gas
consumption for each of its public functions. Figure 1 provides an overview of
the architecture of our analyzer and its different components will be introduced
throughout the paper. Gastap has a wide range of applications for contract
developers, attackers and owners, including the detection of vulnerabilities, de-
bugging and verification/certification of gas usage. For contract developers and
owners, a precise resource analyzer makes it possible to answer the following
query about a specific smart contract: “what is the amount of gas necessary
to safely (i.e., without an out-of-gas exception) reach a certain execution point
in the contract code, or to execute a function?” This can be used for debug-
ging, verifying/certifying a safe amount of gas for running, as well as ensuring
progress conditions. Besides, Gastap allows calculating the safe amount of gas
that one must provide to an external data source (e.g., contracts using the pop-
ular Oraclize service [10]) in order to enable a successful asynchronous callback
in a forthcoming separate response transaction. On the other hand, a ratio-
nal attacker, can use a resource analysis in order to estimate how much Ether
(in gas), they have to pour into a contract in order to execute the Denial-of-
Service attack. We note that such an attack may, however, be economically
impractical [4].

1.1. Summary of Contributions

In summary, this article makes the following main contributions:

1. Rule-based representation of EVM code. The starting point for our analysis
is EVM bytecode from which a control flow graph (CFG) is obtained by
our tool. This has required the implementation of an address analysis that

4

figures out all possible jumping addresses. From the CFG, the box RBR
generation of Figure 1 provides the decompilation from EVM bytecode to
a high-level Rule-Based Representation (RBR) that enables subsequent
static analysis on the EVM code. Our decompiled programs represent
explicitly the local and state variables, the operand stack, and blockchain
data, by means of rule parameters.

2. Handling EVM data and storage/memory model. In Section 4, we will
describe the box GAS RBR refinement of Figure 1 that by means of a
number of program transformations in the RBR allows us to handle the
specific features of EVM programs. In particular, we are able to handle
strings and bytes —what is fundamental to achieve a precise gas analysis
of EVM programs. The transformation in this case consists in retrieving
the sizes of these data types and making them visible within the variables
of the RBR. Another transformation is performed in order to represent
the storage and memory accesses within the RBR program so that we can
infer information on them in the subsequent analysis.

3. Opcode gas bounds. In order to be able to apply a cost analysis framework
to infer gas upper-bounds, we need to provide the definition of the gas
operations cost model which (over-)approximates the gas usage of every
EVM bytecode instruction. Over-approximation is needed because the
gas model of EVM [1] is declared for concrete executions in which the
state is fully instantiated (e.g., the gas cost of EXP varies logarithmically
depending on the value of operand on which it is applied, the gas cost
of SSTORE varies depending on whether the value to be stored is equals to
zero or not). However, in order to statically infer gas bounds, we need to
provide a static, parametric, gas model that soundly defines the gas cost
for any concrete state that might arise during the execution.

4. Memory gas bounds. The memory gas costs are computed separately in
our framework by using a non-standard cost analysis. As we will explain,
the inference of memory gas bounds boils down to inferring the address
of the highest slot of memory accessed and, then, instantiating this value
within the formula for the memory gas cost. We propose to infer this
highest slot by means of a peak resource analysis [6]. As we will describe
in Section 5.2, this can be done by means of a transformation within the
RBR which annotates –using acquire declarations– the memory address
accessed. The peak analysis then infers the peak value of all the acquire
annotations, hence obtaining the highest slot accessed that we need.

5. Implementation and experimental evaluation. Finally, Section 6 describes
our experimental evaluation: we have analyzed more than 34,000 real
smart contracts, and have succeeded to analyze 318,093 public functions
and inferred gas bounds for 90.24% of them in 407.5 hours. Gastap can
be used from a web interface at https://costa.fdi.ucm.es/gastap.

5

https://costa.fdi.ucm.es/gastap

Basically, the first contribution (item 1 above) enables using a standard resource
analyzer but it requires solving the unique problems presented by smart con-
tracts that are the contributions listed in item 2 (i.e., handling its storage/mem-
ory model and data), item 3 (providing a static definition of the gas operations
cost model), and item 4 (developing new techniques to infer the memory gas
costs).

A preliminary version of the decompilation phase in Section 3 appeared as a
tool demonstration paper in the proceedings of ATVA’18 [11] and a first descrip-
tion of the basic components of the gas analyzer appeared in the proceedings
of VECoS’19 [12]. This article provides the formal basis for these tools and
formally describes all the steps carried out in the analysis: namely we formalize
a rule-based representation and a new gas-aware semantics that can be used for
multiple purposes beyond gas analysis; as another novelty w.r.t. the previous
publications, we present the extensions in item 2 above to handle the particu-
larities of EVM code within static analysis; and we give a formal definition of
the gas cost model (item 3) and the computation of the memory gas bounds by
relying on existing cost analysis techniques. Beyond the formal contributions,
we have also improved the experimental evaluation of [11] and [12] significantly,
since the former versions of our tool were relying on [13] to build the CFGs (that
could be incomplete and was failing in many examples) and we have now fully
implemented the CFG generation. Besides, we have applied our tool to more
contracts (namely to the top-valued 300 contracts whose Solidity code was avail-
able) and assessed the accuracy of the upper bounds obtained for the analyzed
functions by comparing them with the actual gas cost of real transactions.

2. Preliminaries: Stack-Sensitive Control Flow Graphs

The EVM language is a simple stack-based language with words of 256 bits
with a local volatile memory that behaves as a simple word-addressed array
of bytes, and a persistent storage that is part of the blockchain state. A more
detailed description of the language and the complete set of operation codes can
be found in [1]. In this section, we only describe the (Stack-Sensitive) CFGs
from which our contribution starts. As usual, the computation of the CFG is
based on the notion of block. In general [14], given a program P , a block is
a maximal sequence of straight-line consecutive code in the program with the
properties that the flow of control can only enter the block through the first
instruction in the block, and can only leave the block at the last instruction.
In the case of EVM programs, blocks are split by using jumping instructions,
jump destinations and ending instructions like RETURN, INVALID or REVERT. One
significant difference between the EVM and other virtual machine languages
(like Java Bytecode or CLI for .Net programs) is the use of the stack for saving
the jump addresses instead of having them explicit in the code of the jumping
instructions. In EVM, instructions JUMP and JUMPI will jump, unconditionally
and conditionally respectively, to the program counter stored in the top of the
execution stack. The difficulty is that the address might have been stored in
a different block, as we will show in the example below. This happens for

6

JUMPDEST
PUSH1 0x03
DUP1
SLOAD
SWAP1
POP
DUP2
LT
ISZERO
PUSH2 0x06d0
JUMPI

Block 661

PUSH1 0x03
DUP2
DUP2
SLOAD
DUP2
LT
ISZERO
ISZERO
PUSH2 0x066f
JUMPI

JUMPDEST
SWAP1
PUSH1 0x00
MSTORE
PUSH1 0x20
PUSH1 0x00
SHA3
ADD
SLOAD
DUP4
GT
ISZERO
ISZERO
PUSH2 0x06c3
JUMPI

JUMPDEST
DUP1
DUP1
PUSH1 0x01
ADD
SWAP2
POP
POP
PUSH2 0x0653
JUMP

Block 66F

Block 6C3

Block 653

JUMPDEST
PUSH1 0x00
DUP1
PUSH1 0x00
SWAP1
POP

Block 64B

Block 941

Block 123

Block 66E

PUSH1 0x01
DUP2
·····
ISZERO
PUSH2 0x0691
JUMPI

Block 690

Block 683

JUMPDEST

Block 6D0

JUMPDEST
POP
SWAP2
SWAP1
POP
JUMP

Block 6D1

JUMPDEST
SWAP1
·····
POP
PUSH2 0x06d1
JUMP

Block 691

Block 954

Block 142

JUMPDEST
MOD
ADD
PUSH1 0x0a
DUP2
SWAP1
SSTORE
POP
PUSH2 0x0954
PUSH1 0x0a
SLOAD
PUSH2 0x064b
JUMP JUMPDEST

·····
OR
SWAP1
SSTORE
…...
ISZERO
PUSH2 0x09ba
JUMPI

JUMPDEST
PUSH1 0x40
MLOAD
…..
DUP2
MSTORE
PUSH 0x20
……
MLOAD
DUP1
SWAP2
SUB
SWAP1
RETURN

JUMPDEST
POP
PUSH2 0x0142
PUSH1 0x04
DUP1
CALLDATASIZE
SUB
DUP2
…..
PUSH2 0x064b
JUMP

INVALID

INVALID

1 contract EthereumPot {
2 address [] public addresses ;
3 address public winnerAddress;
4 uint [] public slots ;
5 function findWinner (uint random) constant returns (address winner) {
6 for (uint i = 0; i < slots . length; i++) {
7 if (random <= slots[i]) {
8 return addresses [i];
9 }

10 }
11 }
12 // Other functions
13 }

Figure 2: Excerpt of Solidity code for EthereumPot contract and its S-CFG

instance when a public function is invoked privately from other methods of the
same contract, the returning program counter is introduced by the invokers at
different program points and it will be used in a unique JUMP instruction when
the invoked method finishes in order to return to the particular caller that
invoked that function. This feature of the EVM requires, in order to obtain the
control flow graph of the program, to keep track of the information stored in
the stack and compute the different stack sizes with which the blocks can be
reached.

Following [15, 4, 16], in order to precisely infer the possible addresses at
jumping program points, we need a context-sensitive static analysis that an-
alyzes separately all blocks for each possible stack that can reach them (only
considering the addresses stored in the stack). This context-sensitive analysis

7

information is used to compute a stack-sensitive control flow graph (S-CFG) of
the form S-CFG = 〈V,E〉 in that, for producing the set of vertices V , we repli-
cate each block for each different stack state that could be used for invoking it
(e.g. gray nodes in Figure 2 are cloned in the S-CFG) and the corresponding
edges E are replicated according to the replicated blocks. Each block in V has
the form blocki:id, where i is the program counter of the first instruction of the
block and id is a numeric identifier for the clone. For those blocks which are
not cloned, we use 0 as identifier and omit it when it is clear from the context.
We also use function getSize(pc, id), which returns the size of the stack at pro-
gram point pc for the clone identified with id. A precise definition of this phase
and the assumed function getSize is available in an online technical report [17].
There are some cases in which this analysis is not able to generate an S-CFG ,
mostly due to the use of recursion and higher-order programming in Solidity.
Importantly, the analysis is incomplete but sound: if an S-CFG is generated for
a given EVM program P , then for each execution trace of P there exists a cor-
responding path in the S-CFG that correctly represents it (proofs of soundness
the S-CFG-generation can be found at the above cited technical report [17]).

Example 1. In order to describe our techniques, we use as running example
method findWinner extracted from the EthereumPot contract [18] that implements
a lottery system. Figure 2 shows the blocks (nodes) obtained for findWinner and
their corresponding jump invocations. Solid and dashed edges represent the two
possible execution paths depending on the entry block: solid edges represent the
path that starts from block 941 and dashed edges the path that starts from 123.
Interestingly, these two paths end in block 6D1, where we have a JUMP (marked
with I) that takes the return address from function findWinner. If findWinner

is publicly invoked, it jumps to address 142 (pushed at block 123 at ?) and if it
is invoked from function __callback it jumps to 954 (pushed at block 941 at ?).
The S-CFG includes non-replicated nodes for those blocks that only receive one
possible stack state (white nodes in Figure 2). However, the nodes that could
be reached by two different stack states (gray nodes in Figure 2) are cloned in
our S-CFG. For example, the S-CFG includes block653:1, block653:2, block661:1
and block661:2. The edges also consider the different replicas of the nodes and
we have block653:1 → block661:1 and block653:2 99K block661:2.

�

3. From the S-CFG to a High-Level Rule-Based Representation

This section presents the process of obtaining a high-level rule-based rep-
resentation (RBR) from the S-CFG described in Section 2. This part of the
analysis, has been implemented as a standalone tool, EthIR [11], to facilitate
its integration into other tools and corresponds to the RBR generation box in
Figure 1. Given a S-CFG , it provides a set of rules that contain a high-level
representation of all bytecode instructions in the block (e.g., a PUSH operation is
represented as an assignment to a stack variable). The rules have as parameters
an explicit representation of the stack as well as of the memory, storage and

8

blockchain data. Conditional branching in the CFG is represented by means of
guarded rules that contain mutually exclusive boolean guards. The grammar of
the RBR language into which the EVM is translated is as follows:

RBR → Rule RBR | ε
Rule → rulename (s, MEM,STO,BLC)⇒ Guard ”|” Instr (Call | ε)
Instr → S, Instr | ε
S → V ar = Exp | nop(EVMInstr)

Exp → num | V ar | BLC(Blcvar) | si + sj | si − sj | si ∗ sj | si/sj | si % sj |
s
sj
i | eq(si, sj) | lt(si, sj) | gt(si, sj) |
and(si, sj) | or(si, sj) | xor(si, sj) | not(si)

Call → call(rulename (s, MEM,STO,BLC))

Guard → si = 0 | si 6= 0

Var → si | MEM[si] | STO[si]

Blcvar → GAS | BALANCE | NUMBER | . . .

We assume that all instructions Instr in the RBR rules are of the form pp:b
where pp is a unique program point identifier in the RBR program and b is either
an assignment or a nop instruction. In what follows, we will ignore the program
point unless it is required. Note that, the program point of the RBR does not
correspond to the program counter of the original EVM program because some
blocks have been replicated. The left hand side of RBR rules has the form
rulename (v), where v are parameters that can be of the following types:

1. Stack variables (s): A relevant ingredient of the transformation is that
the stack is flattened into explicit variables, i.e., the different stack ele-
ments used by the instructions are modeled by using different variables
s0, s1, s2, . . . , sn−1, where sn−1 represents the top of the stack. The stack is
explicitly received by the rules as parameters s0, s1, . . . , sn−1 and denoted
as s̄ and its size for any block Bi:id is obtained from function getSize(i, id).
We use ST to refer to the set of all stack variables used in the program.

2. Memory variables (MEM): We use the array MEM (that has a size of 2256

elements, like the maximum memory size) to model the content of the
local memory of the transaction. The memory position to be accessed is
pushed in the stack, hence accesses to the array will use as index a stack
variable si, i.e., MEM[si] accesses the memory location stored in si.

3. State variables (STO): We also model the contract state variables by means
of an array STO (again with 2256 elements, as the maximum storage size).
As for memory, it is indexed using the stack variables as follows STO[si],
where stack variable si contains the address involved in the operation.

4. Blockchain data (BLC): We model blockchain data using a mapping BLC(var),
where var is the name of a blockchain variable that represents the environ-
mental or blockchain data, as e.g. BLC(GAS) or BLC(NUMBER). All these data
are accessed through dedicated opcodes, which may consume some offsets

9

of the stack and normally place the result on top of the stack (some of
them, like CALLDATACOPY, can besides store information in the local mem-
ory). We will extend the notation to refer to additional parameters for
some environmental information, as e.g. BLC(CALLDATALOAD, sn−1) to refer
to the access to the word of the message call input data pointed by sn−1.
We use BLV to refer to the set of names of blockchain variables.

3.1. RBR generation

The starting point of the RBR generation is the CFG for the bytecode as
described in Section 2. Intuitively, for each block in the CFG, we produce an
RBR rule and the edges in the CFG induce the invocations between the different
rules. Besides, each bytecode is transformed into a corresponding high-level
instruction and an associated nop storing the original EVM operation. EVM
instructions are kept in the RBR so as to precisely compute the gas cost of
executing the original EVM instructions. The following definition formalizes the
transformation of each EVM bytecode instruction into RBR instructions:

Definition 1 (RBR instructions). Given an EVM instruction of the form bpc ∈
Bi:id where b is the EVM bytecode and pc is the program counter in the EVM
program, we define function φ(bpc, id) as follows:

φ(bpc, id) = φ′(bpc, n), nop(bpc)

where n = getSize(pc, id) and φ′(b, n) is defined for some representative EVM
instructions as follows:

b φ′(b, n)

JUMP|JUMPI|JUMPDEST ε
PUSHx v sn = v
DUPx sn = sn−x

SWAPx sn = sn−1,
sn−1 = sn−1−x,
sn−1−x = sn

ADD|SUB|MUL|DIV sn−2 = sn−1 + | − | ∗ | / sn−2

GT sn−2 = gt(sn−1, sn−2)
LT sn−2 = lt(sn−1, sn−2)
EQ sn−2 = eq(sn−1, sn−2)
ISZERO sn−1 = eq(sn−1, 0)
MLOAD sn−1 = MEM[sn−1]
MSTORE MEM[sn−1] = sn−2

SLOAD sn−1 = STO[sn−1]
SSTORE STO[sn−1] = sn−2

CALLDATASIZE sn = BLC(CALLDATASIZE)
ADDRESS sn = BLC(ADDRESS)
. . .

�

10

It can be seen that function φ translates each bytecode into two different
components: (1) it applies function φ′ to produce the corresponding high-level
assignments between the RBR variables; and (2) it adds to the RBR the original
bytecode instruction by simply wrapping it within a nop functor. Observe that
function φ′ transforms EVM instructions into assignments between explicit stack
variables (see PUSH, DUP or SWAP), converts arithmetic operations into the same
operations between elements in the stack, boolean operations are transformed
into functions, or accesses to MEM, STO arrays or to map BLC. We now formalize
the generation of the RBR rules using φ:

Definition 2 (RBR rules). Given the stack-sensitive control flow graph S-CFG =
〈V,E〉 of an EVM program P , and a block Bi:id ∈ V with instructions Bi:id ≡
bi, . . . , bj in P , the generated rules are:

(1) if bj ≡ JUMPI ∧ (Bi:id → Bi2:id2) ∈ E ∧ (Bi:id → Bi3:id3) ∈ E
block i id(s0, . . . , sn−1,MEM,STO,BLC) ⇒

true |
φ(bi, id), . . . , φ(bj , id),
call(jump i id(s0, . . . , sm+1,MEM,STO,BLC))

jump i id(s0, . . . , sm+1,MEM,STO,BLC) ⇒
sm 6= 0 |
call(block i2 id2(s0, . . . , sm−1,MEM,STO,BLC))

jump i id(s0, . . . , sm+1,MEM,STO,BLC) ⇒
sm = 0 |
call(block i3 id3(s0, . . . , sm−1,MEM,STO,BLC))

(2) if bj 6≡ JUMPI ∧ (Bi:id → Bi2:id2) ∈ E
block i id(s0, . . . , sn−1,MEM,STO,BLC) ⇒

true |
φ(bi, id), . . . , φ(bj , id),
call(block i2 id2(s0, . . . , sm−1,MEM,STO,BLC))

(3) if bj 6≡ JUMPI∧ 6 ∃ (Bi:id →) ∈ E
block i id(s0, . . . , sn−1,MEM,STO,BLC) ⇒

true |
φ(bi, id), . . . , φ(bj , id)

where n = getSize(i, id), m = getSize(i2, id2).
�

In the RBR generation we distinguish three cases: (1) if the last bytecode in
the block is a conditional jump (JUMPI) we produce two additional guarded rules
(with a guard different from true) which represent the continuation when the
condition holds, and when it does not; (2) if it is not a conditional jump and the
S-CFG includes an outgoing edge from the corresponding block, we generate a
single rule with a call to the continuation block; and (3) if the block ends in
an instruction which terminates the execution, e.g. REVERT or INVALID, we just
produce the rule without any call. Note that the number of stack variables n
(m for the calls) is determined by the size of the stack at the first instruction of
the rule by means of the function getSize of Section 2.

Example 2. Using Definition 2 to translate blocks 64B and 653 in the CFG of
Figure 2 we obtain the following rules:

11

block 653 1 (s0, . . . , s8, MEM,STO,BLC)⇒
true |
nop(JUMPDEST),
s9 = 3, nop(PUSH1),
s10 = s9, nop(DUP1),
s10 = STO[s10], nop(SLOAD),
s11 = s9, s9 = s10, s10 = s11, nop(SWAP1),
nop(POP),
s10 = s8, nop(DUP2),
s9 = lt(s10, s9), nop(LT),
s9 = eq(s9, 0), nop(ISZERO),
s10 = 0x6D0, nop(PUSH2),
nop(JUMPI),
call(jump 653 1 (s0, . . . , s10, MEM,STO,BLC))

jump 653 1 (s0, . . . , s10, MEM,STO,BLC)⇒
s9 6= 0 |
call(block 6D0 1 (s0, . . . , s8, MEM,STO,BLC))

jump 653 1 (s0, . . . , s10, MEM,STO,BLC)⇒
s9 = 0 |
call(block 661 1 (s0, . . . , s8, MEM,STO,BLC))

We can see that some operations produce assignments between the explicit
stack variables (e.g. PUSH1, DUP1, . . .), and that bytecode instructions that op-
erate on storage or memory are transformed into assignments on the involved
variables, e.g, SLOAD in block 653 1 is translated into s10 = STO[s10]. For arith-
metic operations, boolean operations, bit-wise operations, etc., the variables they
operate on are also made explicit, e.g., LT operates on s10 and s9 and it is
transformed into lt(s10, s9). The guards of the rules also make explicit the cor-
responding condition and the stack variable involved on it (e.g. s9 = 0). In
this example we have included true guards, however, in the rest of the paper
for brevity we will omit them. Observe that conditional jumps are implemented
by means of two rules (e.g. jump 653 1) with the same name and mutually
exclusive guards. As explained in Section 2, conditional jumps (JUMPI opcodes)
take the two top-most elements from the stack, the jump address and a value
(that comes from checking some boolean condition). If the value is 1, then the
execution jumps to the opcode located in the address read from the stack and if
it is 0 it continues with the next opcode.

�

3.2. A Gas-Aware Semantics

Rules in Figure 3 define a gas-aware operational semantics for the (EVM)
RBR. We use a · as to denote a non-empty sequence of elements, where as
can be the empty sequence, denoted as ε. An activation record has the form
〈r, bs, st〉, where r is a rule name, bs is a sequence of instructions in r, if it is
not empty is denoted as b · bs where b is the next instruction to be executed,
and st is a mapping of stack variables to their values st : ST 7→ Z, where

12

(1)

b ≡ si = expr, si ∈ dom(st), eval(expr, st,mem, sto) = v
〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈p, bs, st[si 7→ v]〉 · As,mem, sto, O,M〉

(2)

b ≡ si = BLC(bc), si ∈ dom(st), bc ∈ BLV, blc(bc) = v
〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈p, b · bs, st[si 7→ v]〉 · As,mem, sto, O,M〉

(3)

b ≡ MEM[sj] = si, si ∈ dom(st), sj ∈ dom(st), st(si) = v, st(sj) = id
〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈p, b · bs, st〉 · As,mem[id 7→ v], sto, O,M〉

(4)

b ≡ STO[sj] = si, si ∈ dom(st), sj ∈ dom(st), st(si) = v, st(sj) = id
〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈p, b · bs, st〉 · As,mem, sto[id 7→ v], O,M〉

(5)

b ≡ nop(instr), instr 6∈ Call, op gas(instr, st, sto) = gaso, O
′ = O + gaso,

mem gas(instr, st) = gasm,M
′ = max(M, gasm), O′ +M ′ ≤ blc(GAS)

〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈p, b · bs, st〉 · As,mem, sto, O′,M ′〉

(6)

b ≡ nop(instr), instr ∈ Call, op gas(instr, st, sto) = gaso,
external call(instr, st,mem, sto) = 〈meme, stoe, gase〉, O′ = O + gaso + gase,

mem gas(instr, st) = gasm,M
′ = max(M, gasm), O′ +M ′ ≤ blc(GAS)

〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈p, b · bs, st〉 · As,meme, stoe, O
′,M ′〉

(7)

b ≡ call(q(sq)), q(s′q)⇒ gq|bsq ∈ RBR,
eval(gq, st) = true, stq = st∅, ∀si ∈ sq.stq [si 7→ st(si)]

〈〈p, b · bs, st〉 · As,mem, sto, O,M〉; 〈〈q, bsq, stq〉 · 〈p, bs, st〉 · As,mem, sto, O,M〉

(8) 〈〈q, ε, 〉 · As,mem, sto, O,M〉; 〈As,mem, sto, O,M〉

Figure 3: RBR Semantics

Z is the set of all possible values that can be stored in an EVM word, i.e.,
Z = {z ∈ N ∪ {0} | z < 2256}.

A program state S has the form 〈A · As,mem, sto, O,M〉 where A · As is a
sequence of activation records, mem is a mapping of local memory addresses
to their values1 mem : Z 7→ Z, sto is a mapping of storage addresses to their
values sto : Z 7→ Z, blc is a mapping of blockchain variables blc : BLV 7→ Z,
and O,M ∈ N∪ {0} correspond to the gas consumption accumulated up to the
current state of the execution for instructions execution and memory allocation,
respectively. Rule (1) handles the assignment of an expression to a stack variable
si. According to the grammar seen before, this expression can be a constant, the
contents of a memory or storage address, the contents of a blockchain variable,
an arithmetic operation between stack variables, or some other operations repre-
sented by a functor as for example xor(si, sj). Function eval(expr, st,mem, sto)
evaluates the expression using 256-bit arithmetics with respect to the mappings
of stack, memory and storage variables. Rule (2) models the assignment of a

1Although the local memory is byte addressable with instruction MSTORE8, for the sake
of keeping the semantics simple we will only consider the general case of word-addressable
MSTORE.

13

blockchain data to a stack variable. Rules (3) and (4) correspond to assign-
ments of stack variables to memory or storage elements. Rule (5) corresponds
to the evaluation of a nop annotation of any EVM instruction except external
calls, i.e. the ones in the set Call = {CALL, CALLCODE, DELEGATECALL, STATICCALL}.
At this point, the gas consumption O,M in the program state must be updated
with the cost of the corresponding EVM instruction. For this purpose, func-
tions op gas(instr, st, sto) and mem gas(instr, st) provide the gas consumed
by instr, as defined in Appendix H of [1], and will be defined on the RBR in
Sections 3.3.1 and 3.3.2 for some representative cases. GAS is the blockchain
variable that contains the amount of available gas for the current transaction.
If the execution exceeds the gas limit there is no matching rule in the semantics
and hence the execution does not progress further (in the blockchain execu-
tion it throws an out-of-gas exception). The instructions that correspond to
external calls, i.e., those in set Call, are handled separately by Rule (6). In
this case, besides the gas consumed by the instruction itself, the gas limit must
also consider the gas consumed by the external contract execution. In addi-
tion, according to [1], an external call might change the data stored in memory
and storage (for instance, external contracts might perform callback calls to the
current contract, possibly modifying storage variables). This is expressed in
the semantics by a call to the function external call(instr, st,mem, sto), that
returns a tuple 〈meme, stoe, gase〉 that contains the state of the local memory
and the storage after executing the external call, as well as the gas consumed
by the executed contract, respectively. Rule (7) evaluates a call to a rule in the
RBR. A fresh activation record is created containing the code of the called rule,
and the argument values are passed to it. Finally, Rule (8) corresponds to the
termination of an activation record.

Program execution. The execution of a function f of a smart contract starts
from an initial state S0 of the form 〈〈block0, b · bs, st∅〉,mem∅, sto0, 0, 0〉, where
block0 is the RBR rule for the first block, b · bs is the block code, st∅ and mem∅
represent the empty mappings for stack variables and local variables, respec-
tively, and sto0 contains the current mapping of state variables to their values
in the blockchain. Additionally, blc contains the current state of blockchain
variables as well as message data such as the hash code bound to f . A trace is
of the form t ≡ S0 ; · · · ; Si ; · · · Sn. As we have already mentioned, there
are no infinite traces: Rules (5) and (6) guarantee that any execution of a smart
contract terminates, as the gas consumed is limited to the amount of gas set
in the blockchain variable GAS at the beginning of the execution. Therefore, an
execution trace terminates either because it runs out of gas, or the last state of
the trace is of the form 〈ε, , , , 〉, where ε is the empty sequence of activation
records.

Definition 3 (RBR gas cost). Given a function f of a smart contract with ini-
tial storage state sto0 and blockchain information blc, the execution trace of f on
blc is of the form t ≡ S0 ; · · ·; Si ; · · · Sn where Sn = 〈ε,memn, ston, On,Mn〉
and its gas consumption is defined as G(f, blc) = On +Mn. �

14

3.3. The Gas Cost Model

The EVM gas cost model is complex and unconventional. Its computation
can be separated into two different components: (1) one part depends on the
EVM instruction executed, represented by the function op gas (described in
Section 3.3.1); and (2) another part of the gas consumed is related to the memory
consumption represented by function mem gas (described in Section 3.3.2).

3.3.1. Opcode gas model

In this section we focus on the computation of the gas attributed to the EVM
instructions. In order to compute the gas fee bound to each opcode, we define
the function op gas that is used in the RBR semantics.

Definition 4 (opcode cost function). Given an EVM opcode b, a stack mapping
st, and a storage mapping sto, op gas is a function defined for the different EVM
opcodes in the following table:

b op gas(b, st, sto)

Fixed b ∈ FixedCost k[1]

Cond. Constant

SSTORE

{
20000 if st(sn−2) 6= 0 ∧ st(sn−1) = i ∧ sto(i) = 0

5000 otherwise

CALL 700 + CXFER + CNEW

DELEGATECALL CXFER ≡
{
9000 if st(sn−3) 6= 0

0 otherwise

CALLCODE CNEW ≡
{
25000 if DEAD(st(sn−2)) ∧ st(sn−3) 6= 0

0 otherwise

STATICCALL

SELFDESTRUCT 5000 +

{
25000 if DEAD(st(sn−1)) ∧ BALANCE 6= 0

0 otherwise

Parametric

EXP

{
10 if st(sn−2) = 0

10+50·(1+blog256(st(sn−2)c) if st(sn−2) > 0

CALLDATACOPY

CODECOPY 3 + 3 · dst(sn−3)÷ 32e
RETURNDATACOPY

EXTCODECOPY 700 + 3 · dst(sn−4)÷ 32e
LOGX 375+8·st(sn−2)+X · 375 where X ∈ {0, 1, 2, 3, 4}
SHA3 30 + 6 · dst(sn−2)÷ 32e

�

Observe that op gas takes three elements, an EVM opcode, the state of
the stack and the mapping of state variables when reaching the opcode, and
returns the gas consumed by the corresponding instruction. It can be seen that
Definition 4 distinguishes between three types of instructions:

1. Most bytecode instructions have a fixed constant gas consumption. We
define the set

FixedCost = Wzero ∪Wbase ∪Wverylow∪
Wlow ∪Wmid ∪Whigh ∪Wextcode∪
{SLOAD, EXTCODE, BALANCE, CREATE, JUMPDEST, BLOCKHASH}

15

using the sets defined in [1] for all these instructions. For example, the gas
consumption of JUMPDEST is 1, and the gas consumption of SLOAD is 200.
We use a generic k in Definition 4 to refer to these fixed costs.

2. Bytecode instructions that have different constant gas consumption gs1 or
gs2 depending on some given condition. This is the case of SSTORE that
costs gs1 = 20000 if the storage value is set from zero to non-zero (first
assignment), and gs2 = 5000 otherwise. It is also the case for CALL and
SELFDESTRUCT. To refer to all these instructions, we define the set

ConstantCost = {SSTORE, CALL, DELEGATECALL, CALLCODE,
STATICCALL, SELFDESTRUCT}

The gas consumption for these EVM opcodes, except SSTORE, in Defini-
tion 4 varies with the actual value of blockchain variables such as BALANCE,
GAS, and DEAD (the latter checks if an account is non-existent or it has no
code, no activity and zero balance). Observe that the execution cost of
the external code invoked by call instructions is not included in this gas
model, as it is already captured by means of the function external call in
Rule (6) in the semantics.

3. Bytecode instructions with a non-constant (parametric) gas consumption
that depends on the value of some stack location. We define the set

ParamCost = {EXP, CALLDATACOPY, CODECOPY, RETURNDATACOPY,
EXTCODECOPY, LOGX, SHA3}

to include them. A complex case is EXP, whose gas consumption is defined
as 10 + 50 · (1 + blog256(st(sn−2))c) if sn−2 6= 0 (and 10 otherwise), i.e, the
gas consumption depends on the value of the exponent, that is stored in
sn−2, accounting for the larger computational effort.

3.3.2. Memory gas model

The second component that adds gas to a transaction is the amount of mem-
ory accessed. The memory gas of an EVM instruction b is defined in [1] as the
difference Cmem(µ′)−Cmem(µ), where µ and µ′ denote the highest memory slot
accessed in the local memory before and after the execution of b, respectively,
and Cmem(a) is a function that, for a given memory slot a, is defined as

Cmem(a) = 3 · a+

⌊
a2

512

⌋
.

The cost computed for all the EVM instructions is accumulated to obtain the
final memory cost. Column µ′ in Definition 5 shows how µ′ is computed in
[1], given an EVM instruction b, the local state of the stack st, and the actual
highest memory slot accessed µ. It uses an auxiliary function M , defined as
follows:

M(h, f, l) =

{
h if l = 0

max(h, d(f + l)/32e) otherwise

16

It can be seen that, besides MLOAD or MSTORE, instructions like SHA3 or CALL,
among others, use the local memory, and hence can increase the memory gas
cost.

In our semantics, the maximum cost is computed by Rules (5) and (6) of
Figure 3. Hence, the function mem gas has to infer only the memory gas of the
slot being accessed by each operation executed in the program.

Definition 5 (memory cost function). Given an EVM opcode b, and a stack
mapping st, mem gas is defined as

mem gas(b, st) = Cmem(highest(b, st))

where highest(b, st) is defined as follows:

b µ′ highest(b, st)

MLOAD max(µ, d(st(sn−1) + 32)/32e) d(st(sn−1) + 32)/32e
MSTORE max(µ, d(st(sn−1) + 32)/32e) d(st(sn−1) + 32)/32e
MSTORE8 max(µ, d(st(sn−1) + 1)/32e) d(st(sn−1) + 1)/32e
CALLDATACOPY
CODECOPY M(µ, st(sn−1), st(sn−3)) MRBR(st(sn−1), st(sn−3))

RETURNDATACOPY

EXTCODECOPY M(µ, st(sn−2), st(sn−4)) MRBR(st(sn−2), st(sn−4))

LOGX M(µ, st(sn−1), st(sn−2)) MRBR(st(sn−1), st(sn−2))

CALL M(M(µ, st(sn−4), st(sn−5)), max(MRBR(st(sn−4), st(sn−5)),

CALLCODE st(sn−6), st(sn−7)) MRBR(st(sn−6), st(sn−7)))

DELEGATECALL M(M(µ, st(sn−3), st(sn−4)), max(MRBR(st(sn−3), st(sn−4)),

STATICCALL st(sn−5), st(sn−6)) MRBR(st(sn−5), st(sn−6)))

RETURN M(µ, st(sn−1), st(sn−2)) MRBR(st(sn−1), st(sn−2))

REVERT M(µ, st(sn−1), st(sn−2)) MRBR(st(sn−1), st(sn−2))

SHA3 M(µ, st(sn−1), st(sn−2)) MRBR(st(sn−1), st(sn−2))

CREATE M(µ, st(sn−2), st(sn−3)) MRBR(st(sn−2), st(sn−3))

and function MRBR is defined as

MRBR(f, l) =

{
0 if l = 0

d(f + l)/32e otherwise

�

The last column of the table shown in Definition 5, highest(b, st), shows the
computation of the highest memory slot accessed by the EVM instruction b in
the RBR semantics. Note that MRBR is replacing the original M above with
the only difference that the computation of the maximum is extracted from it
and computed by Rules (5) and (6). Hence, MRBR returns 0 if l = 0 instead
of the highest slot of memory accessed up to this point as M does, and the
maximum cost is kept thanks to the max function in Rules (5) and (6).

4. GAS-RBR: RBR Transformations for Gas Analysis

An RBR program, together with its instrumented semantics, allows dynam-
ically computing the gas consumption of concrete EVM transactions. However,

17

in order to enable the use of existing analyzers for statically inferring gas bounds
that are sound for any transaction, we need to make some transformations into
the RBR. Section 4.1 details the adaptations in the RBR to model the local
memory and the storage accesses by means of local variables. This allows that
a resource analysis that only handles local variables can be used to infer gas
on EVM programs, without requiring specific extensions for the EVM memory
and storage models. Besides, as the contents in the storage and in the memory
can be modified when a call to another contract is executed, in Section 4.2 we
describe some additional transformations. Finally, in Section 4.3 we will see
how RBR programs are transformed to abstract strings and byte arrays into
their sizes, enabling a resource gas analyzer to deal with them.

4.1. Flattening the Storage and Memory Locations

It is well known that shared mutable data structures, such as those stored
in the heap, are the bane of formal reasoning and static analysis and most tools
are not able to keep track of object fields nor of array contents. As we have
seen in Section 3.2, the RBR semantics models the local memory and storage
with arrays, imitating their treatment in EVM programs. Inspired by the ideas
of [19], we aim at flattening memory/storage allocated data by means of vari-
ables that contain the contents of particular addresses of the memory/storage.
This avoids the need of extending resource analyzers with a complex treatment
for reasoning on array contents. Our proposal consists in analyzing the addresses
used in the load and store instructions, i.e., MLOAD, MSTORE, SLOAD and SSTORE,
to identify those addresses accessed that are trackable. Basically, if the load-
/store instruction always accesses the same address, we use a explicit variable
for modeling this location and otherwise we do not track it. Existing heap and
pointer [20, 21, 22] analyses could be applied to gain accuracy in modelling these
accesses. As this is not the goal of our analysis, we just assume the following:
(1) Vmem (Vsto) is a set of the form {l0, l1, ..., lk} ({g0, g1, ..., gh}, respectively)
containing all memory (storage) variables identified by the analysis; (2) given
a program point pp with instruction MLOAD or MSTORE, function getMemV (pp)
returns a variable of the form li when the address accessed at pp can be uniquely
identified by the analysis or ⊥ when it cannot be identified; and, (3) getStV (pp)
returns gi or ⊥ analogously.

By means of these functions, the GAS-RBR program can be refined to, in-
stead on including MEM, STO accesses as we have in the RBR, include the concrete
variables identified by the analysis, modifying the corresponding RBR instruc-
tions to use them. The following definition illustrates the refinement of the
RBR to deal with flattened memory and storage accesses. Besides, we use Vblc

to represent all blockchain variables that can be extracted.

Definition 6 (GAS-RBR rule refinement #1). Given an RBR rule of the form

rule(s, MEM,STO,BLC)⇒ g | bi, . . . bj , call(rule2(y, MEM,STO,BLC))

the refined GAS-RBR rule is computed as follows:

rule(s,Vmem,Vsto,Vblc)⇒ g | ν(bi), . . . ν(bj), call(rule2(y,Vmem,Vsto,Vblc))

18

where function ν(bpp) is defined as follows:

EVM bpp ν(bpp)

MLOAD sx = MEM[sx] sx = getMemV (pp) if getMemV (pp) 6= ⊥
sx = fresh() if getMemV (pp) = ⊥

MSTORE MEM[sx] = sy getMemV (pp) = sy if getMemV (pp) 6= ⊥
li = fresh() ∀li ∈ Vmem if getMemV (pp) = ⊥

SLOAD sx = STO[sx] sx = getStV (pp) if getStV (pp) 6= ⊥
sx = fresh() if getStV (pp) = ⊥

SSTORE STO[sx] = sy getStV (pp) = sy if getStV (pp) 6= ⊥
gi = fresh() ∀gi ∈ Vsto if getStV (pp) = ⊥

CALLDATASIZE sx = BLC(CALLDATASIZE) sx = CALLDATASIZE

ADDRESS sx = BLC(ADDRESS) sx = ADDRESS

CALLVALUE sx = BLC(CALLVALUE) sx = CALLVALUE
. . .

�

Observe that MLOAD and SLOAD RBR instructions are replaced by an assign-
ment of the concrete memory/storage variable to its destination stack variable
when the concrete variable can be tracked. However, when the address is not
known, we assign function fresh to model the lack of information about its
content. We use fresh() to denote a generator of fresh variables to safely rep-
resent the unknown value of the corresponding addresses. Analogously, MSTORE
and SSTORE are replaced by assignments to the particular memory or storage
variable. The treatment when the address accessed by an MSTORE or SSTORE is
unknown extends to all memory/storage variables, respectively. As the destina-
tion of the assignment is not known, we have to “forget” all memory contents
(or storage, respectively) from that point on, since the writing may affect any
memory location (or storage location, respectively) and it is not sound any more
to rely on the previously collected information. Our implementation though is
able to detect the positions in which the length of the arrays is stored and it does
not forget it (this is safe as this length cannot be modified when the bytecode
has been obtained by compilation from a Solidity code). Keeping this length is
crucial for the accuracy of the gas analysis.

Example 3. Function getStV (pp) applied to program points 948 and 94F in
block 941 in Figure 2 returns g10 as the EVM instructions SSTORE and SLOAD

located in these program points always operate over the same state variable.
In these cases, the storage address 10 (0x0a in hexadecimal) is located in the
stack with the EVM instructions PUSH1 0x0a. After that, it is used by SSTORE

and SLOAD to access to the 11th slot of storage (represented by g10). Something
similar happens when function getMemV () is applied to program point 673 in
block 66F , that returns l0. However if we apply getStV (pp) to the SLOAD located
at program point 67A, we obtain ⊥ as it is loading a different storage location
at each iteration of the loop (it accesses the storage address generated by the
previous SHA3 instruction as it is traversing the array slots of Figure 2).

If we consider only the blocks in Figure 2, function Vsto = {g2, g3, g10} and
Vmem = {l0}. These variables are added to the head of the rules. For instance,

19

the rule for block 653 in Example 2 now is:

block 653 1 (s0, . . . , s8, l0, g2, g3, g10)⇒
. . . ,
s10 = g10, nop(SLOAD),
. . . ,
call(jump 653 1 (s0, . . . , s10, l0, g2, g3, g10))

hence a resource analyzer that works on integer variables can reason on the con-
tents of memory/storage/blockchain data without requiring specific extensions.

�

4.2. External calls

External contracts are invoked by the EVM instructions CALL, CALLCODE,
DELEGATECALL, STATICCALL and handled by Rule (6) in the semantics. In these
cases, the address of the invoked contract is passed as an element on the stack,
and the actual code might only be known at run-time. There are three aspects
to be taken into account when analyzing a contract with external calls: the
gas consumed by the invoked contract, the existence of callbacks, and the return
value. We focus on the gas consumption of the execution of a single contract and
thus we do not add the gas consumed by external contracts which, on the other
hand, might only be known at run-time. Regarding the second aspect, since
an external call might make in turn a call to the invoking contract to execute
some of its functions (this is known as a callback), we do have to consider that
the external code, whose code is unknown at analysis time, might modify the
storage of the invoking contract. In order to be sound, the GAS-RBR program
must therefore “forget” any previous value of the storage, as we have done when
a SSTORE accesses an unknown storage address. Finally, the results returned by
external calls are stored in a sequence of positions of the local memory of vari-
able length known at run-time. Therefore, we also have to assign to fresh any
previous value of the local memory. The following refinement on the RBR is
done to soundly approximate possible modifications performed in the memory
and the storage due to an external call. Note that we apply this refinement on
an RBR already refined.

Definition 7 (GAS-RBR rule refinement #2). Given an RBR rule of the form

rule(s,Vmem,Vsto,Vblc)⇒ g | bi, . . . bj , call(rule2(y,Vmem,Vsto,Vblc))

the refined GAS-RBR rule is computed as follows:

rule(s,Vmem,Vsto,Vblc)⇒ g | η(bi), bi, . . . η(bj), bj , call(rule2(y,Vmem,Vsto,Vblc))

20

where function η(bpp) is defined as follows

bpp η(bpp)

nop(CALL)

nop(CALLCODE)

nop(DELEGATECALL)

nop(STATICCALL)


li = fresh() ∀li ∈
Vmem

gi = fresh() ∀gi ∈
Vsto

�

In this case, the refinement described in Definition 7 has to maintain the
original nop functors represented by the instructions bi and bj as they are needed
to compute the gas consumed.

4.3. String and Byte arrays

Solidity storage variables of types string and bytes are particular cases of
Solidity dynamic arrays that are challenging for resource analysis because the
way they are stored by the EVM depends on their actual sizes. In particular, if
they are shorter than 31 bytes, their data is stored packed in the word of the
storage slot corresponding to that variable together with its length. Otherwise,
the slot word just contains the length and the data contents are stored at the
address obtained like for standard arrays.

Typically loops that traverse data structures have a cost that is proportional
to the size of the data structure being traversed. Hence, resource analyzers use a
size analysis to (over-)approximate the size of the data structures of the program
and then bound the number of iterations of loops and infer upper-bounds for
them. In our language, inferring the size of the arrays and strings is crucial
for obtaining precise results in the gas analysis. Unfortunately, the instructions
used to access the length of these packed arrays include bit-wise operations,
among others, that state-of-the-art size analysis cannot handle. Standard size
analysis works for the case of unpacked string and bytes. Developing a specific
size analysis for this purpose would be challenging and, besides, it is unnecessary
as the issue can be solved by means of a simple transformation as follows. We
match in the rules of the RBR the particular sequence of instructions generated
by the compiler (which are always the same) that start by pushing the contents
of the string or bytes variable at the top of the stack, and then obtaining its
length, leaving it stored at the top of the stack (at the same position). Every
time we find this pattern of instructions applied to a variable of type string

or bytes, we remove them from the RBR as we are only interested in their size
(keeping their nops to account for their gas). Leaving them would make a size
analyzer that is unable to deal with bit-wise operations assume an unknown
value and therefore also lose the information that is stored at the top of the
stack. Importantly, since the top of the stack indeed contains the size, by
removing the remaining instructions, the analyzer is able to handle that stack
variable and reason on the size of the string and bytes. In particular, assuming
that we have placed the contents of the string or bytes variable at the top of

21

the stack, which is si, the transformation applied is the following:

si+1 = 1, nop(PUSH1), si+2 = si, nop(DUP2), si+3 = 1, nop(PUSH1),
si+2 = and(si+3, si+2), nop(AND), si+2 = eq(si+2, 0), nop(ISZERO),
si+3 = 256, nop(PUSH2), si+2 = si+3 ∗ si+2, nop(MUL), si+1 = si+2 − si+1,
nop(SUB), si = and(si+1, si), nop(AND), si+1 = 2, nop(PUSH1),
si+2 = si, si = si+1, si+1 = si+2, nop(SWAP1),
si = si+1/si, nop(DIV)

⇓ (refinement #3)

nop(PUSH1), nop(DUP2), nop(PUSH1), nop(AND), nop(ISZERO), nop(PUSH2),
nop(MUL), nop(SUB), nop(AND), nop(PUSH1), nop(SWAP1), nop(DIV)

This transformation is applied whenever possible and, e.g., it is needed to infer
bounds for the functions getPlayers and getSlots, studied in the experiments
reported in Figure 4. Without this transformation, the tool fails to find gas
bounds.

5. Gas Analysis of EVM Transactions

As we have seen in Section 3.3, the computation of the gas fee can be split
into two different parts, one part related to the EVM opcodes executed, and
another part that depends on the memory addresses accessed. Likewise, our
analysis splits the computation of the gas upper bound Ûg of a transaction in
two different upper bounds:

Ûg = Ûop + Ûmem

where Ûop corresponds to the opcode gas upper-bound that can be computed

using a standard resource analyzer [23]; and Ûmem which is the memory gas
upper-bound whose computation is performed by means of a peak resource an-
alyzer [6].

5.1. Opcode Gas Upper-Bound

Resource analysis, a.k.a. cost analysis, is a rather complex type of analysis
that we handle in this article as a black-box since existing techniques can be
used. Resource analyzers, in order to quantify the cost associated to an instruc-
tion, use the generic notion of cost model. A cost model is a function θ that
assigns a measure of the cost of executing to each instruction in the program.
We represent the resource analysis as a function cost(P, θ) that receives an RBR

program P and a cost model θ and returns an upper-bound Û(f) on the resource
modeled by θ for each function f in P . In order to use this function cost for
our purpose, we need to provide now the definition of a static opcode gas model
θop. Note that the gas model in Section 3.3.1 is dynamic, i.e., it describes the
gas usage for concrete executions, while in order to define θop we need a static
gas model that provides a gas cost that is sound for any concrete execution.
As explained in Section 3.3.1, we can distinguish three kinds of instructions
depending on their gas consumption (see Definition 4 for details):

22

1. instructions that have a fixed gas consumption whose cost can be directly
applied in the cost model,

2. instructions that could have different constant gas consumption depending
on a concrete value stored in the stack,

3. instructions with a non-constant (parametric) gas cost whose concrete
consumption depends on a value stored in the stack.

We can see that the gas cost of instructions included in points (2) and (3) is
dynamic as it depends on concrete values stored in the stack, which in general
are unknown at static analysis time. One possible but imprecise solution for
defining the cost in the static cost model is to take always the worst case cost,
e.g. always consider cost 20000 for instruction SSTORE. We can improve the
precision of the static cost model by using a value analysis which finds out
whether a stack variable contains a constant value to be stored on storage and
hence we can determine the concrete cost.

Given an RBR instruction inst ≡ pp:b located at program point pp, we
assume that we have a function getV al(pp, si) that returns the inferred value
stored in si, if it is constant at program point pp or ⊥ if the value is not known
or not constant at pp. We do not detail the implementation of this function,
as it can be done with a simple syntactic analysis or a more precise semantic
constancy or value analysis. Additionally, we use function getSize(pp) (see
Section 2) to get the size of the stack at RBR program point pp.

Definition 8. Given an EVM instruction b at program point pp and n =
getSize(pp), we define the static EVM op cost model,

θop(pp:b) =

{
0 if b 6= nop()

op cost(pp:b) if b = nop(b)

where op cost(pp:b) is defined in the following table

23

b op cost(pp:b)

Fixed b ∈ FixedCost k[1]

Constant

SSTORE

{
5000 if getV al(pp, sn−2) = 0

20000 otherwise

CALL 700 + CXFER + CNEW + C(CALL)

DELEGATECALL CXFER ≡
{
9000 if getV al(pp, sn−3) 6= 0

0 otherwise

CALLCODE CNEW ≡ 25000

STATICCALL

SELFDESTRUCT 30000

Parametric

EXP

{
10 if getV al(pp, sn−2) = 0

10+50·(1+blog256(sn−2)c) if getV al(pp, sn−2) > 0

CALLDATACOPY

CODECOPY 3 + 3 · dsn−3 ÷ 32e
RETURNDATACOPY

EXTCODECOPY 700 + 3 · dsn−4 ÷ 32e
LOGX 375+8·sn−2+X · 375 where X ∈ {0, 1, 2, 3, 4}
SHA3 30 + 6 · dsn−2 ÷ 32e

�

Note that in the definition of θop we only consider the cost associated to the
nop instructions, that is, instructions that directly correspond to EVM instruc-
tions, the remaining RBR instructions do not add any cost. In the cost model
definition, we can see the following considerations: (1) the cost produced by
fixed cost instructions is like in the dynamic gas model; (2) instructions whose
cost is constant but it depends on a concrete value stored in the stack rely on
getV al to retrieve the value stored in the corresponding stack element or, if it
is unknown, we consider the worst case cost; (3) as we do not have informa-
tion about the state of the blockchain, for those expressions that depend on
the results returned by DEAD we directly consider the worst case cost, e.g. in
SELFDESTRUCT; (4) as we analyze single contracts, the execution cost of external
calls is added as a symbolic value represented by C(CALL); and (5) instructions
with parametric cost directly include the stack variables in the cost expression.

The GAS-RBR we are producing adheres to the rule based representations
of [23, 24], hence we can directly feed the resource analyzers with our GAS-
RBR. We have needed only to implement the cost model θop, and the analyzer
returns closed-form gas upper-bounds, i.e., a cost expression that is parametric
on the input arguments of the function. Note that the input arguments of
the function are, not only the function parameters, but also the list of storage
variables inferred and other blockchain values associated to the transaction,
e.g. CALLDATASIZE (see Section 4.1 for details). The resource analyzer is able,
without requiring any modification and in a fully automated way, to find a cost
expression, which over-approximates the amount of gas related to the operations
executed in EVM.

Example 4. The gas bound computed by Gastap for function findWinner (see
Figure 2) is 1555 + 779 · nat(g3), which is is parametric on the state variable
g3 that corresponds to the size of the array slots. Function nat is defined as

24

nat(x) = x if x > 0 and nat(x) = 0 otherwise. Other gas upper-bounds can be
found in Figure 4 in Section 6. Note that these upper-bounds are parametric on
different state variables, input and blockchain data.

�

5.2. Memory Gas Upper-Bound

As we have already mentioned, the problem of inferring the memory gas
bound boils down to (over)-approximating the highest memory address accessed
by the transaction. Our approach to solve this problem is to view it as an
instance of the peak resource analysis problem [6, 7]. This analysis, rather than
accumulating all costs as in standard resource analysis, computes the peak (i.e.,
the supremum) of the resource consumption of the whole execution. The cost
model in this case is atypical as the resource we need to measure is the value
of the memory location. Thus, for each instruction that accesses a memory
location l we count as it allocates l resources. The work at [6] uses the notation
acquire(e) to allocate e amount of resources, where e is a cost expression (that
can include variables). The peak analysis allows inferring the maximal value of
all acquire(e) annotations. Analogously to the case of standard cost analysis,
we represent the peak analysis as a function peak(P) that returns the peak
(i.e., the supremum) of the resource consumption of the acquire(e) annotations
within the RBR program P . Thus, we just need to perform a transformation
into the GAS-RBR program (see Section 4) that converts the memory accesses
like MLOAD addr into allocations of addr resources. The slots of memory used
by each EVM instruction according to [1] is given in Definition 5. Note that
in some cases, it depends on a given condition that checks, by comparing the
corresponding stack variable with 0, if the memory address is accessed. We
include this information within acquire statements before the nop functors that
contain EVM instructions that access to memory as shown in the following table,
where div(x, y) stands for dx/ye and sn−1 for the top-most stack variable. Then,
the peak resource analysis computes the maximum of all the expressions within
acquire, what corresponds to the highest memory slot addressed in the whole
execution.

25

b Transformed code Condition

MLOAD

MSTORE

acquire(div((sn−1 + 32), 32))

MSTORE8 acquire(div((sn−1 + 1), 32))

CALLDATACOPY

CODECOPY

RETURNDATACOPY

acquire(div((sn−1 + sn−3), 32)) if getV al(pp, sn−3) 6= 0

EXTCODECOPY acquire(div((sn−2 + sn−4), 32)) if getV al(pp, sn−4) 6= 0

LOGX acquire(div((sn−1 + sn−2), 32)) if getV al(pp, sn−2) 6= 0

CALL

CALLCODE

acquire(div((sn−4 + sn−5), 32))
acquire(div((sn−6 + sn−7), 32))

if getV al(pp, sn−5) 6= 0
if getV al(pp, sn−7) 6= 0

DELEGATECALL

STATICCALL

acquire(div((sn−3 + sn−4), 32))
acquire(div((sn−5 + sn−6), 32))

if getV al(pp, sn−4) 6= 0
if getV al(pp, sn−6) 6= 0

RETURN

REVERT

SHA3

acquire(div((sn−1 + sn−2), 32)) if getV al(pp, sn−2) 6= 0

CREATE acquire(div((sn−2 + sn−3), 32)) if getV al(pp, sn−3) 6= 0

An alternative way to infer this information is by means of a size analysis
[25] that computes upper-bounds on sizes of all expressions used to access the
memory. After this, in a second step, a maximization of all these obtained upper-
bound sizes would be required. In contrast to this approach, we directly obtain
the maximum of all memory accesses. Finally, we apply the function Cmem

defined in Section 3.3.2 on the result of the analysis to obtain the memory gas
upper-bound Ûmem(f) for each public function f in the contract. Let us give
an example that illustrates the analysis:

Example 5. The function findWinner (see Figure 2) executes 8 EVM instruc-
tions that access to memory: two MLOAD, MSTORE and RETURN in the rule block 142;
and MSTORE and SHA3 in rules block 66F and block 691. If we analyze the EVM
instructions of block 142, we infer that MLOAD instructions load the value stored
in the memory address 64 (contained in top-most stack variable s2), MSTORE

stores a value in the memory address 128 (in the top-most stack variable s5)
and RETURN operates on the values 32 (stored in s1) and 128 (stored in the top-
most stack variable s2). Similarly, the MSTORE instructions of rules block 66F
and block 691, stored a value in the memory address 0 (stored in the top-most
stack variable s7) and the SHA3 instructions operates on the values 0 and 32
(stored in the top-most stack variables s7, and s6 respectively). If we compute
the expressions that appear in the table above, we obtain that 3, 5, 5, 1, and 1 re-
sources are acquired respectively. Hence the analysis returns 5 as the highest slot
of memory accessed during the execution of the function findWinner. Finally, if
we apply the function Cmem we obtain 15, the memory gas upper-bound for this
function. More examples can be found in Figure 4 of Section 6. Finally, as the
gas upper-bound for the function findWinner (Figure 2) is 1555 + 779 · nat(g3)
and the memory gas upper-bound is 15, we can conclude that its gas upper-bound
is 1570 + 779 · nat(g3). �

26

Theorem 1. Given a public function f of a GAS-RBR program P with blockchain
information blc, the following holds:

G(f, blc) ≤ Ûg(f)

where Ûg(f) = Ûop(f) + Ûmem(f).

Sketch of proof. Soundness follows from the following facts: Program transfor-
mations of GAS-RBR programs in Sections 4 and 5 preserve the nop instructions
of the original program. Regarding the opcode cost, it is straightforward to
check that θop is an over-approximation of op gas(b, st, sto) for every EVM in-
struction b, and soundness of the resource analysis cost(P, θop) [23] ensures that
we infer an upper bound of the opcode cost. Finally, the soundness of the peak
analysis peak(P) [6] guarantees as well that the memory gas cost component is
a sound upper bound of the memory cost.

6. Implementation and Evaluation

The analysis presented in this article has been implemented in a tool named
Gastap, Gas-Aware Smart contracT Analysis Platform, that takes as input a
smart contract and automatically infers sound gas upper-bounds for its pub-
lic functions. This section provides implementation details and the results of
our evaluation of Gastap. In Section 6.1, we provide some implementation
details of Gastap. In Section 6.2, we evaluate the accuracy of the gas bounds
inferred by Gastap on the EthereumPot by comparing them with the bounds
computed by the Solidity compiler. In Section 6.3, we evaluate the efficiency
and effectiveness of our tool by analyzing more than 34,000 Ethereum smart
contracts obtained from the Ethereum blockchain using the popular Etherscan
service [26]. The whole dataset used in Section 6.3 can be found at https://

github.com/costa-group/EthIR/tree/master/examples/gastap. Note that
the results presented in this section do not add the so called intrinsic gas cost
of the execution as Solidity compiler does. However, Gastap has a flag to in-
corporate the transaction fee of 2,300 gas. Finally, in Section 6.4, we assess
the accuracy of the upper-bounds inferred by Gastap. To do so, we compare
the upper-bounds obtained on the 300 top-valued accounts by Ether (the most
valuable ones) obtained using Etherscan service with the gas cost of more than
4000 real transactions.

Gastap tool can be used from an online web interface at https://costa.

fdi.ucm.es/gastap where we have also made available a subset of the smart
contracts used for our experimental evaluation. To run the tool, the user has to
either write her Solidity contract in the text area or to select an available one in
the file manager area on the left side. In both cases, then the Refresh Outline

allows selecting by means of a check button the function(s) whose gas cost is
going to be inferred. Finally, by clicking on Apply the analysis starts and the
gas bound is obtained. In the Settings menu it can be specified if the input is
a Solidity program or an EVM code.

27

https://github.com/costa-group/EthIR/tree/master/examples/gastap
https://github.com/costa-group/EthIR/tree/master/examples/gastap
https://costa.fdi.ucm.es/gastap
https://costa.fdi.ucm.es/gastap

6.1. Implementation

Figure 1 shows in white boxes the components developed by us –that are all
open-source– and in gray those that we use out-of-the-box. The Saco analyzer
we are using is not open-source but it is available through an executable. We
classify the components implemented by us in two groups:

� Python implementation. The components related to the generation of the
stack sensitive control flow graph introduced in Section 2, the generation
of the rule-based representation presented in Section 3 and the abstrac-
tions described in Section 4 have been implemented in Python. These
components have been implemented in more than 18,000 lines of code
(LOC).

� Prolog implementation. As the SACO analyzer is implemented in Prolog,
we have implemented the components that are directly integrated in it in
Prolog as well. In particular, the “Value Analysis” and “Gas Cost Model”
components in Figure 1 are implemented in 613 LOC in Prolog. The first
component implements a classical data-flow analysis and corresponds to
the function getV al used in Section 5.1 to retrieve the value stored in a
given stack element. This analysis is used in the second component that
contains the models described in Section 5.1. The fixed cost instructions
are modeled with facts in Prolog specifying its concrete cost. The instruc-
tions whose cost is constant but it depends on a concrete value or those
instructions with parametric cost are modeled with rules in Prolog that
use the result of the value analysis to compute the cost.

The output of the different components is stored in text files, e.g., the S-CFG
and the RBR are written in separated files that are read by the next components.

6.2. Gas Bounds for EthereumPot Case Study

Figure 4 shows in column solc the gas bound provided by the Solidity com-
piler solc [2], and in the next two columns the bounds produced by Gastap
for opcode gas and memory gas, respectively, for all public functions in the con-
tract. If we add the gas and memory bounds, it can be observed that, for those
functions with constant gas consumption, we are as accurate as solc. Hence,
we do not lose precision due to the use of static analysis.

For those 6 functions that solc fails to infer constant gas consumption, it
returns ∞. For opcode gas, we are able to infer precise parametric bounds
for five of them, rewardWinner is linear on the size of the first and third state
variables (g1 and g3 represent resp. the sizes of the arrays addresses and slots

in Figure 2), getSlots and findWinner on the third, getPlayers on the first, and
__callback besides depends on the value of result (second function parameter)
and proof (last parameter). It is important to note that, although the Solidity
source code of some functions (e.g., of getSlots and getPlayers) does not contain
loops, they are generated by the compiler and are only visible at the
EVM level. This also happens, for example, when a function takes a string or

28

Function solc opcode bound Gastap memory bound Gastap

totalBet 790 775 15
locked 706 691 15
getEndTime 534 519 15
slots 837 822 15
rewardWinner ∞ 80422+

5057·nat(g3)+5057·nat(g1) 18
Kill 30883 30874 9
amountWon 438 423 15
getPlayers ∞ 1373+292·nat(g1-1/32) 6·nat(g1)+24+

+75·nat(g1+31/32)
⌊
(6·nat(g1)+24)2

512

⌋
getSlots ∞ 1507+250·nat(g3-1/32)

+75·nat(g3+31/32) 6·nat(g3)+24+
⌊
(6·nat(g3)+24)2

512

⌋
winnerAddress 750 735 15
__callback ∞ 229380+3·(nat(proof)/32)

+103·nat(result/32)
+50·nat((32-nat(result))) max error

+5836·nat(g3)+5057·nat(g1)
+c(CALL1)+c(CALL2)+c(CALL3)

owner 662 647 15
endTime 460 445 15
potTime 746 731 15
potSize 570 555 15
joinPot ∞ no rf 9
addresses 1116 1101 15
findWinner ∞ 1555+779·nat(g3) 15
random_number 548 533 15

Figure 4: Gas bounds for EthereumPot [18]. Function nat defined as nat(l)= max(0,l).

bytes variable as argument. This shows another reason for the need of developing
the gas analyzer at the
EVM level.

For joinPot we cannot ensure that the gas consumption is finite without
embedding information about the blockchain in the analyzer. This is because
joinPot has a loop:

for (uint i = msg.value; i >= minBetSize; i−= minBetSize) { tickets++; }

where minBetSize is a state variable that is initialized in the definition line as
uint minBetSize = 0.01ether, and ether is the value of the Ether at the time of
executing the instruction. This code has indeed several problems. The first one
is that the initialization of the state variable minBetSize to the value 0.01ether

does not appear in the
EVM code available in the blockchain. This is because this instruction is ex-
ecuted only once when the contract is created. So our analyzer cannot find
this instruction and the value of minBetSize is unknown (and hence no bound
can be found). Besides, the analyzer cannot infer that the loop terminates if
minBetSize is not guaranteed to be strictly greater than zero. If we add the

29

initialization instruction, then we are able to infer a bound for joinPot.
For __callback we guarantee that the memory gas is finite but we cannot ob-

tain an upper-bound for it, Gastap yields a maximization error. Maximization
errors may occur when the analyzer needs to compose the cost of the differ-
ent fragments of the code because it needs to find the maximal value of the
cost of inner components in their calling contexts (see [27] for details). If the
maximization process involves memory locations that are “unknown”, i.e., those
translated into a fresh variable in Definition 2 from Section 3, the upper-bound
cannot be inferred. Still, if there is no ranking function error, we know that all
loops terminate, thus the memory gas consumption is finite.

Finally, this transaction is called always with a constant gas limit of 400,000.
This contrasts with the non-constant gas bound obtained using Gastap. Note
that if the gas spent (without including the refunds) goes beyond the gas limit
the transaction ends with an out-of-gas exception. Since the size of g3 and g1
is the same as the number of players, from our bound, we can conclude that
from 16 players on the contract is in risk of running out-of-gas and get stuck as
the 400,000 gas limit cannot be changed. So using Gastap we can prevent an
out-of-gas vulnerability: the contract should not allow more than 15 players, or
the gas limit must be increased from that number on.

6.3. Statistics for Analyzed Contracts

Our experimental setup consists on 34,460 contracts taken from the blockchain
as follows. We pulled all Ethereum contracts from the blockchain of January
2018 whose Solidity source code was available. This fact reduces the number of
smart contracts to be analyzed significantly as it is estimated that less than 1%
of the smart contracts deployed on Ethereum blockchain have the source code
available. Then, we removed duplicates instances of the same contracts, and
after that, we removed those smart contracts that led to a compiler error due
to a lower version of the compiler (it introduces changes in the syntax of Solid-
ity that are not supported by the newer versions of the compiler). This ended
up in 9,760 files. Each Solidity file often contains several contracts. When the
Solidity compiler generates the EVM bytecode of one of these files, it produces
one different EVM bytecode file for each contract defined in the Solidity taken
as input and Gastap analyzes each of these EVM bytecode files separately.
However, we have excluded the files where the decompilation phase fails in any
of the contracts it includes, since in that case we do not get any information
on the whole file. This failure happens in 83 files, which represents a 0.85% of
the total. The failures of EthIR are mainly due to recursive and high-order
functions, which are not handled by the tool. This number is smaller than the
failure rate of other tools like Vandal [15] (5% of failure rate), Oyente [13] (10%
of failure rate) and Rattle [28] (30% of failure rate) or the previous prototype of
Gastap [12] (7% of failure rate). Finally, EthIR has a timeout set to 60s that
is reached by 33 files.

After removing these files, our experimental evaluation has been carried
out on the remaining 9,644 files, containing the mentioned 34,460 contracts.
In total we have analyzed 318,093 public functions (and all auxiliary functions

30

Type of result #opc %opc #mem %mem

Constant gas bound 266,401 83.75% 274,969 86.44%
Parametric gas bound 20,648 6.49% 17,518 5.51%
Time out 19,935 6.27% 18,086 5.69%
Finite gas bound (maximization error) 9,189 2.89% 7,520 2.36%
Termination unknown (ranking function error) 1,685 0.53% 0 0%
Complex control flow (cover point error) 235 0.07% 0 0%

Total number of functions 318,093 100% 318,093 100%

Phase Topcode (s) Tmem (s) Ttotal (s) %opc %mem %total

CFG generation — — 20.92 — — 0.0014%
RBR generation — — 1.25 — — 0.0001%
Size analysis — — 132,701 — — 9.05%
Generation of gas eqs. 175,824 154,529 330,353 11.99% 10.53% 22.52%
Solving gas eqs. 478,506 525,445 1,003,951 32.61% 35.82% 68.43%

Total time Gastap 1,467,027.17 100%

Figure 5: (Top) Statistics of gas usage on the analyzed 34,460 smart contracts from Ethereum
blockchain. (Bottom) Timing breakdown for Gastap on the analyzed 34,460 smart contracts.

that are used from them). The Solidity compiler can generate two different EVM
bytecode versions: (i) the binary version used when the contract is deployed on
the blockchain that includes the code of the constructor of the contracts, and (ii)
the runtime version used when the contract has already been deployed, i.e., the
code that is actually placed on the blockchain that only includes the bytecode
of the functions of the contract excluding the constructor. Gastap analyzes
the runtime version by default so it does not include the code related to the
constructors of the contracts.

Experiments have been performed on an Intel Core i7-7700T at 2.9GHz x 8
and 7.7GB of Memory, running Ubuntu 16.04. Gastap accepts smart contracts
written in versions of Solidity up to 0.7.1 or bytecode for the Ethereum Virtual
Machine v1.9.202. The statistics that we have obtained in number of functions,
and the time taken by the analyzer are summarized in Figure 5. The results for
the opcode and memory gas consumption are presented separately.

Let us first discuss the results in Figure 5 which aim at showing the ef-
fectiveness of Gastap. Columns #opc and #mem contain the number of
analyzed functions for opcode and memory gas, resp., and columns preceded by
% the percentage they represent. For the analyzed contracts, we can see that
a large number of functions, 83.75% (resp. 86.44%), have a constant opcode
(resp. memory) gas consumption. This is as expected because of the nature
of smart contracts, as well as because of the Ethereum safety recommendations

2Latest versions released up to September 2020

31

mentioned in Section 1. Still, there is a relevant number of functions 6.49%
(resp. 5.51%) for which we obtain an opcode (resp. memory) gas bound that is
not constant (and hence are potentially vulnerable). Additionally, 6.27% of the
analyzed functions for opcodes and 5.69% for memory reach the timeout (set to
30 seconds) due to the further complexity of solving the equations. Thanks to
the information provided by the Saco analyzer used by Gastap, we are able
to classify the types of errors that have led to a “don’t-know” answer and which
in turn explain the sources of incompleteness by our analysis:

� Maximization error : In many cases, a maximization error is a consequence
of loss of information by the size analysis or by the decompilation when
the values of memory locations are lost. As mentioned, even if we do
not produce the gas formula, we know that the gas consumption is finite
(otherwise the system flags a ranking function error described below).

� Ranking function error: The solver needs to find ranking functions to
bound the maximum number of iterations of all loops the analyzed code
might perform. If Gastap fails at this step, it outputs a ranking function
error. Section 6 has described a scenario where we have stumbled across
this kind of error. We note that number of these failures for mem is lower
than for opcode because when the cost accumulated in a loop is 0, Saco
does not look for a ranking function.

� Cover point error: The equations are transformed into direct recursive
form to be solved [27]. If the transformation is not feasible, a cover point
error is thrown. This might happen when we have mutually recursive func-
tions, but it also happens for nested loops as in non-structured languages.
This is because they contain jump instructions from the inner loop to the
outer, and vice versa, and become mutually recursive. A loop extraction
transformation would solve this problem, and we leave its implementation
for the future work.

Let us discuss in further detail the type of parametric bounds we have ob-
tained. 99% of the parametric opcode gas bounds shown in Figure 5 are linear
bounds. In case of the memory gas bounds, the linear bounds are the 97%.
Importantly, a state-of-the-art cost solver is needed to automatically infer such
linear costs, as this is a very complex problem to automate that, among other
things, requires the inference of linear ranking functions [29] that bound the
number of loop iterations. In general, such linear ranking functions may involve
multiple program variables and some of them can increase through the loop
execution, others decrease, or both, etc. Finding out automatically the loop
bounds requires the use of static analysis techniques.

Note that Gastap considers all EVM bytecode instructions within the public
function being analyzed when computing the upper bounds, there might be
bytecode instructions related to failures (e.g., REVERT or INVALID) but they are
not the reason for having parametricity, since we just accumulate their gas
consumption. There are cases in which the EVM bytecode of a contract has

32

a loop, though it is not visible in its Solidity source code. For instance, these
“hidden” loops might come from functions that return arrays or strings, receive
them as parameters, the size of the message data, or the length of data structures
in storage. As Gastap analyzes EVM bytecode, it is able to detect these loops
and it infers a parametric upper-bound for these functions.

As regards the sources of the parametric bounds, a good percentage cor-
respond to getters of public state variables which are strings (such as symbol,
name or version). Their getters are almost the 17% of the parametric functions
and the 2,32% of the 318,093 public functions analyzed. The getter functions
are introduced automatically by the Solidity compiler when the state variables
are public. They are standard functions that can be called by any user and their
content may be changed by any transaction. In the case of constant variables in
Solidity (state variables with modifier constant), the value has to be a constant
at compile time and it has to be assigned when the variable is declared. Then,
the value is translated directly when the EVM bytecode is generated, and the
upper-bounds inferred are constant. However, Gastap is not able to detect the
cases in which the results inferred rely on state variables that are immutable
(those that are not modified by any method of the contract). This kind of
constancy is not detected by our analysis, as it would require another (orthog-
onal) analysis that detects that the state variable is set to a constant in the
constructor and ensures that it is never changed again by any other function.
This requires an inter-procedural constancy analysis that is complementary to
our work. If such constant value is found out, its value can be replaced within
the formulas inferred by our tool.

As regards the efficiency of Gastap, the total analysis time for all functions
is 1,467,027.17 sec (407.5 hours). Columns T and % show, resp., the time in
seconds for each phase and the percentage of the total for each type of gas
bound. The first three rows are common for the inference of the opcode and
memory bounds, while equation generation and solving is separated for opcode
and memory. Most of the time is spent in solving the GE (68.43%), which in-
cludes some timeouts. The time taken by EthIR is negligible, as it is a syntactic
transformation process, while all other parts require semantic reasoning. All in
all, we argue that the statistics from our experimental evaluation show the accu-
racy, effectiveness and efficiency of our tool. Also, the sources of incompleteness
point out directions for further improvements of the tool.

Finally, note that Gastap works at EVM bytecode level. Thus, the analysis
is independent of the version of the compiler used. The same Solidity code
compiled with different versions of the compiler might produce different upper-
bounds and the optimizations performed by the compiler are orthogonal to our
analyzer. In the case of the contracts published in the Ethereum platform,
this point is specially interesting because the contracts are published with a
particular version of the compiler and cannot be changed.

6.4. Accuracy of Gastap when compared to real transactions

In this section, we assess the accuracy of our tool by comparing the upper-
bounds inferred by Gastap with the gas that real transactions consume on a

33

Type of result #opc %opc #mem %mem

Constant gas bound 220 63.22% 255 73.28%
Parametric gas bound 61 17.53% 31 8.91%
Time out 33 9.49% 39 11.21%
Finite gas bound (maximization error) 21 6.03% 23 6.61%
Termination unknown (ranking function error) 1 0.28% 0 0%
Complex control flow (cover point error) 12 3.45% 0 0%

Total number of functions 348 100% 348 100%

Figure 6: Statistics of gas usage on the analyzed 300 most valuable smart contracts whose
source code is available from Ethereum blockchain.

Figure 7: Accuracy of upper bounds inferred by Gastap compared to real transactions

smaller, but more prominent, set of benchmarks. To do so, we have downloaded
the 300 top-valued accounts (those that are most valuable in Ether) whose
source code was available using the Etherscan service [26] by 21 September of
2020. This has resulted in 16 Solidity files that contain 24 smart contracts.
We have analyzed the 348 public functions contained in these contracts and
obtained the results in Figure 6 (the rows have the same meaning explained in
Section 6.3). Note that the number of parametric gas upper-bounds obtained
for this subset is even higher (17.53%) than for the benchmarks in Section 6.3.
For the 125 called, 76 correspond to constant bounds, 27 to parametric bounds,
11 of the functions called return a maximization error, the termination of 1
function could not be proved as the analyzer did not find a ranking function, 3
functions raise a cover point error and 7 functions reach the time out (set to 60s).
The number of cover point errors is also higher as one of the contracts analyzed
has various public functions that have three nested loops with a conditional
statement inside that requires the loop extraction transformation mentioned in
Section 6.3 that is not yet implemented in the Saco analyzer.

Now, in order to assess the accuracy, we have to restrict ourselves to those
functions that have been invoked by existing transactions. This information
can be retrieved using the Etherscan service [26] and Bloxy service [30]. From

34

the 348 public functions analyzed, 125 (almost a 37%) were called in 4054 real
executions. In order to compare the bounds inferred by Gastap and the gas
consumed by real executions, we have to add the transaction fee (21,000) to
the Gastap bounds as it is not added by default. We compute the average of
the gas consumed by each transaction to each function and compare our upper
bound to such average. Figure 7 summarizes our results. We have grouped the
analyzed functions in five groups: those whose upper bound has an overhead
<10% (leftmost group), those whose upper bound has an overhead between 10-
20%,.., until the rightmost group with an overhead between 200-600%. Within
each group, we separate the results of those functions that have a constant upper
bounds from those that have a parametric one. We use also two cost models:
the cost model described in the paper that is sound in all possible scenarios, and
one (denoted as “improved cost model” in the figure) that captures better the
state of the blockchain when these transactions were executed by accounting a
less pessimistic gas consumption for certain bytecodes, namely these ones:

b op cost(pp:b)

SSTORE 5000

CALL 700 + CXFER

DELEGATECALL

CALLCODE CXFER ≡
{
9000 if getV al(pp, sn−3) 6= 0

0 otherwise

STATICCALL

SELFDESTRUCT 5000

In this improved cost model, instead of assuming that the account involved in
SELFDESTRUCT operation does not exist or is “dead”(worst case, see [1]), considers
that it is active. Thus, it would only consume 5,000 units of gas instead of
30,000. In the case of SSTORE bytecode, we assume that the storage location
involved in the operation has been previously used and it does not contain a 0.
Thus, it would consume 5,000 units of gas instead of 20,000. Finally, for the
opcodes related to external calls (CALL, DELEGATECALL, CALLCODE and STATICCALL),
we assume that the contract called has been previously created. Thus, it saves
25,000 units of gas compared with the sound model.

As an example, the leftmost orange bar in Figure 7 is displaying the number
of functions (namely 19) that have a constant cost using the improved cost
model above such that the overhead of the upper bound obtained for them is
less than 10% w.r.t. the average of the gas consumed by the actual transactions
invoking this functions.

We can observe in Figure 7 that using the sound cost model, the upper-
bounds inferred for more than half of the functions is are at least 50% higher than
the real amount of gas consumed by the transactions. However, the results are
improved notably when we assume the improved cost model, indeed, all constant
gas bounds disappear from the last two groups in which the overhead is larger.
We have still 16 functions in the rightmost group, that have a parametric bound,
for which the overhead of the upper bound is large. This is not surprising as the
actual transactions run on concrete data while our upper bounds are covering all

35

possible input data values. An important result of these experiments is that 132
out of the 4054 analyzed (3.64%) raise an out-of-gas exception. In these cases,
Gastap infers upper-bounds that are higher than the gas limit specified in the
corresponding transactions. Thus, our bounds would have helped to prevent
such exceptions. In addition, there are 7 functions that raise an out-of-gas
exception in the transactions in which they are involved.

Finally, we have made a manual inspection of the functions in order to
explain the sources of the parametricity of the functions shown in Figure 6. We
can classify them as follows:

� 11.48% of the parametric bounds depend on input data, i.e., on a value
that is passed to the function as a parameter.

� 16.39% of the parametric bounds depend on the length of the message
data. In this case, the bound is expressed in terms of CALLDATASIZE.

� 67.21% come from traversing state variables that are arrays. In this case,
the loop is explicit in the code in a 79% of the times. However, for the rest
21% it appears when the source code is translated into EVM code (e.g.
when using the primitive delete).

� 4.91% correspond to getters of public state variables that are strings. The
bounds are expressed in terms of the length of the string returned.

7. Related Work

Analysis of Ethereum smart contracts for possible safety and security viola-
tions and vulnerabilities is a popular topic that has received a lot of attention re-
cently, with numerous tools developed, leveraging techniques based on symbolic
execution [31, 32, 33, 34, 35, 36], SMT solving [37, 38, 39], and certified program-
ming [40, 41, 42]. Those approaches target vulnerabilities induced by contract-
specific phenomena such as reentrancy [32], mishandled control flow [36], as well
as trace-based properties [33, 38]. However, most of the state-of-the art contract
analysis tools ignore resource usage, focusing on non-gas-related safety, security,
and temporal properties. As Gastap is not meant to be an all-in-one smart
contract analyzer and focuses exclusively on gas consumption, in this survey we
only relate to the tools and approaches that are concerned with gas usage and
the corresponding out-of-gas vulnerabilities.

The GASPER tool identifies gas-costly programming patterns [43], which
can be optimized to consume less. For doing so, it relies on matching specific
control-flow patterns, SMT solvers and symbolic computation, which makes
their analysis neither sound, nor complete for determining gas usage bounds.
They classify the patterns in two groups: useless-code related patterns and loop-
related patterns. These techniques focus on detecting code patterns to improve
the development of the contract rather than inferring gas consumption bounds.

The previous work is extended in [44] and [45]. In [44] they present GasRe-
ducer, a tool that also works at EVM bytecode level. GasReducer takes the

36

bytecode of a smart contract and outputs an optimized version of the original
one that consumes less gas. In this case the patterns are defined as a sequence
of EVM instructions that can be replaced by another one that consumes less
gas but has the same semantics as the original sequence rather than using high-
level structures such as dead code or opaque code. To identify the patterns,
they inspect several instances from the execution traces of deployed smart con-
tracts. In [45] the tool GasChecker is presented. It follows a new approach
to identify gas-inefficient code based on symbolic execution parallelized using a
MapReduce model and cloud computing. They increase the patterns described
in [43]. They also improve the performance of the tool making it fully scalable
as it is shown in the experiments.

In a similar vein, the work by Grech et al. [4] identifies a number of classes
of gas-focused vulnerabilities, and provides MadMax, a static analysis, also
working on a decompiled EVM bytecode, by combining techniques from flow
analysis together with control-flow analysis (CFA), context-sensitive analysis
and modeling of memory layout. In a first step, MadMax infers loop and
data-flow information. From loops, it infers information related to the exit
condition of the loop or induction variables, i.e., those that are incremented by
a concrete value inside the loop. The data-flow analysis provides information
such as aliasing or dependencies between variables. Using the basic loop and
data-flow analysis, MadMax is able to infer high-level concepts such as array
iterators or if the storage is increased on public functions. In its techniques,
MadMax differs from Gastap, as it focuses on identifying control- and data-
flow patterns inherent for the gas-related vulnerabilities, thus, working as a
bug-finder, rather than complexity analyzer.

Since deriving accurate worst-case complexity boundaries is not a goal of any
of GASPER, GasReducer, GasChecker and MadMax, they are unsuitable
for tackling Challenge (1) posed in the introduction. Other tools based on proof
assistants [46, 47, 48, 41] may be used to detect out-of-gas exceptions. They
can model how gas is updated along the execution of the trace and encode it as
constraint formulas. However these tools are not able to infer loop invariants.
They have to be specified manually. Thus, they are not able no automatically
infer gas bounds for programs that involve loops as we do.

A preliminary prototype of Gastap has been used in [49] to develop Gasol,
a gas optimizer of smart contracts. Gasol uses the gas analysis Gastap to de-
tect under-optimized storage patterns and generate an automatic optimization
that avoids storage accesses if they can be replaced by memory accesses. For
this purpose, it includes a simplified version of our gas cost model that only
accounts for the gas cost of storage operations.

Marescotti et al. [37] propose a methodology, based on the notion of the
so-called gas consumption paths (GCPs) to estimate the worst-case gas con-
sumption using techniques from symbolic bounded model checking [50]. Their
approach is based on symbolically enumerating all execution paths and un-
winding loops to a limit. In contrast, Gastap infers the maximal number of
iterations for loops and generates accurate gas bounds which are sound for any
possible execution of the function and not only for the unwound paths. While

37

their approach unwinds loops to a given limit, using a resource analysis ap-
proach, we are able to infer the maximal number of iterations that loops may
execute. As we have seen, using a resource analysis approach, in addition to
inferring precise cost expressions for constant gas consumption as in [37], we can
go beyond that, and generate parametric gas bounds. Besides, to the best of
our knowledge, the approach by Marescotti et al. has not been implemented in
the context of EVM and has not been evaluated on real-world smart contracts
as ours. Therefore, we have not been able to compare the results generated by
our tool with the approach proposed in [37]

In [51], Visualgas is presented, a tool to visualize gas costs. Visualgas records
the deployment and initialization transactions of a given contract and uses them
to generate transactions to run all its public functions applying the techniques
described in [52, 53]. This approach differs from our analysis in that it is dy-
namic and hence it is focused on computing the gas cost of concrete transactions
that have been generated previously. On the other hand, our technique is static
and infers the gas cost consumed in the worst case for any arbitrary input of
the public function under analysis.

8. Conclusions and Future Work

Automated sound static reasoning about resource consumption is critical for
developing safe and secure blockchain-based replicated computations, managing
billions of dollars worth of virtual currency. In this work, we have adapted and
extended state-of-the art techniques in resource analysis, showing that such
reasoning is feasible for Ethereum, where it can be used at scale not only for
preventing vulnerabilities, but also for verification/certification of existing smart
contracts. Note that improvements in all the auxiliary analyses used in Gastap
will have an impact in the precision and the performance of the tool. As future
work, we want to improve the accuracy of the tool in several directions. First,
we are studying a more precise abstraction for the memory-allocated data (i.e.,
for the abstraction explained in Section 3). Also, we aim at handling bit-wise
operations by including in our tool an abstraction for them.

Acknowledgements

This work was funded partially by the Spanish the Spanish MCIU, AEI
and FEDER (EU) project RTI2018-094403-B-C31 and RTI2018-094403-B-C33,
by the CM projects P2018/TCS-4314 and S2018/TCS-4339 co-funded by EIE
Funds of the European Union and by the UCM CT27/16-CT28/16 grant.

References

[1] G. Wood, Ethereum: A secure decentralised generalised transaction ledger
(2014).

[2] Ethereum, Solidity, https://solidity.readthedocs.io (2018).

38

https://solidity.readthedocs.io

[3] Ethereum, Vyper, https://vyper.readthedocs.io (2018).

[4] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, Y. Smaragdakis,
Madmax: surviving out-of-gas conditions in ethereum smart contracts,
PACMPL 2 (OOPSLA) (2018) 116:1–116:27.

[5] E. Foundation, Safety - Ethereum Wiki, https://github.com/ethereum/
wiki/wiki/Safety, last accessed on 14 November 14 2018 (2018).

[6] E. Albert, J. Correas, G. Román-Dı́ez, Non-Cumulative Resource Analysis,
in: Proceedings of 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2015, Vol. 9035 of
Lecture Notes in Computer Science, Springer, 2015, pp. 85–100.

[7] J. Hoffmann, K. Aehlig, M. Hofmann, Multivariate amortized resource
analysis, in: Proceedings of the 38th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January, 2011, 2011, pp. 357–370.

[8] B. Wegbreit, Mechanical program analysis, Commun. ACM 18 (9) (1975)
528–539.

[9] M. Suiche, Porosity: A Decompiler For Blockchain-Based Smart Contracts
Bytecode (2017).

[10] T. Bernani, Oraclize, http://www.oraclize.it (2016).

[11] E. Albert, P. Gordillo, B. Livshits, A. Rubio, I. Sergey, EthIR: A Frame-
work for High-Level Analysis of Ethereum Bytecode, in: S. Lahiri, C. Wang
(Eds.), 16th International Symposium on Automated Technology for Verifi-
cation and Analysis, ATVA 2018. Proceedings, Vol. 11138 of Lecture Notes
in Computer Science, Springer, 2018, pp. 513–520.

[12] E. Albert, P. Gordillo, A. Rubio, I. Sergey, Running on Fumes: Prevent-
ing Out-Of-Gas Vulnerabilities in Ethereum Smart Contracts using Static
Resource Analysis, in: P. Ganty, M. Kaâniche (Eds.), 13th International
Conference on Verification and Evaluation of Computer and Communica-
tion Systems, VECoS 2019. Proceedings, Vol. 11847 of Lecture Notes in
Computer Science, 2019, pp. 63–78.

[13] Oyente: An Analysis Tool for Smart Contracts, https://github.com/

melonproject/oyente (2018).

[14] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[15] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
B. Scholz, Vandal: A Scalable Security Analysis Framework for Smart Con-
tracts, arXiv:1809.03981 (2018).

39

https://vyper.readthedocs.io
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/wiki/wiki/Safety
http://www.oraclize.it
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente

[16] N. Grech, L. Brent, B. Scholz, Y. Smaragdakis, Gigahorse: thorough,
declarative decompilation of smart contracts, in: J. M. Atlee, T. Bul-
tan, J. Whittle (Eds.), Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, IEEE / ACM, 2019, pp. 1176–1186.

[17] E. Albert, J. Correas, P. Gordillo, A. Hernández-Cerezo, G. Román-Dı́ez,
A. Rubio, Analyzing Smart Contracts: From EVM to a Sound Control-
Flow Graph, Tech. rep. (2020).

[18] The EthereumPot contract, https://etherscan.io/address/

0x5a13caa82851342e14cd2ad0257707cddb8a31b7 (2017).

[19] E. Albert, P. Arenas, S. Genaim, G. Puebla, G. Román-Dı́ez, Conditional
Termination of Loops over Heap-allocated Data, Science of Computer Pro-
gramming 92 (2014) 2 – 24.

[20] L. O. Andersen, Program analysis and specialization for the c programming
language, Ph.D. thesis, University of Cophenhagen (1994).

[21] B. Steensgaard, Points-to analysis in almost linear time, in: H. Boehm,
G. L. S. Jr. (Eds.), Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, Florida, USA, January, 1996, ACM
Press, 1996, pp. 32–41.

[22] S. H. Yong, S. Horwitz, Pointer-range analysis, in: R. Giacobazzi (Ed.),
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy,
August 26-28, 2004, Proceedings, Vol. 3148 of Lecture Notes in Computer
Science, Springer, 2004, pp. 133–148.

[23] E. Albert, P. Arenas, J. Correas, S. Genaim, M. Gómez-Zamalloa,
G. Puebla, G. Román-Dı́ez, Object-Sensitive Cost Analysis for Concurrent
Objects, STVR 25 (3) (2015) 218–271.

[24] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Cost Analy-
sis of Object-Oriented Bytecode Programs, Theoretical Computer Science
(Special Issue on Quantitative Aspects of Programming Languages) 413 (1)
(2012) 142–159.

[25] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl, Analyzing runtime
and size complexity of integer programs, ACM Trans. Program. Lang. Syst.
38 (4) (2016) 13:1–13:50.

[26] Etherscan, https://etherscan.io (2018).

[27] E. Albert, P. Arenas, S. Genaim, G. Puebla, Automatic inference of upper
bounds for recurrence relations in cost analysis, in: M. Alpuente, G. Vidal
(Eds.), Static Analysis, 15th International Symposium, SAS 2008, Valen-
cia, Spain, July 16-18, 2008. Proceedings, Vol. 5079 of Lecture Notes in
Computer Science, Springer, 2008, pp. 221–237.

40

https://etherscan.io/address/0x5a13caa82851342e14cd2ad0257707cddb8a31b7
https://etherscan.io/address/0x5a13caa82851342e14cd2ad0257707cddb8a31b7
https://etherscan.io

[28] Rattle - an evm binary static analysis framework, https://github.com/
crytic/rattle (2018).

[29] E. Albert, P. Arenas, S. Genaim, G. Puebla, Closed-Form Upper Bounds
in Static Cost Analysis, Journal of Automated Reasoning 46 (2) (2011)
161–203.

[30] Bloxy, https://bloxy.info/ (2018).

[31] L. Luu, D. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart con-
tracts smarter, in: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October, 2016,
ACM, 2016, pp. 254–269.

[32] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, Y. Zohar, Online detection of effectively callback free objects with
applications to smart contracts, PACMPL 2 (POPL) (2018) 48:1–48:28.

[33] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, A. Hobor, Finding the greedy,
prodigal, and suicidal contracts at scale, in: Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, December, 2018, ACM, 2018, pp. 653–663.

[34] J. Krupp, C. Rossow, teether: Gnawing at ethereum to automatically ex-
ploit smart contracts, in: USENIX Security Symposium, USENIX Associ-
ation, 2018, pp. 1317–1333.

[35] S. Kalra, S. Goel, M. Dhawan, S. Sharma, ZEUS: analyzing safety of smart
contracts, in: 25th Annual Network and Distributed System Security Sym-
posium, NDSS 2018, San Diego, California, USA, February, 2018, The
Internet Society, 2018.

[36] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, M. T.
Vechev, Securify: Practical security analysis of smart contracts, in: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, Toronto, ON, Canada, October, 2018, ACM,
2018, pp. 67–82.

[37] M. Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, N. Sharygina,
Computing Exact Worst-Case Gas Consumption for Smart Contracts, in:
Leveraging Applications of Formal Methods, Verification and Validation.
Industrial Practice - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November, 2018, Proceedings, Part IV, Vol. 11247 of Lecture Notes
in Computer Science, Springer, 2018, pp. 450–465.

[38] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, P. Saxena, Exploiting The Laws
of Order in Smart Contracts, CoRR abs/1810.11605. arXiv:1810.11605.

41

https://github.com/crytic/rattle
https://github.com/crytic/rattle
https://bloxy.info/
http://arxiv.org/abs/1810.11605

[39] Á. Hajdu, D. Jovanovic, Smt-friendly formalization of the solidity memory
model, in: P. Müller (Ed.), Programming Languages and Systems - 29th
European Symposium on Programming, ESOP 2020, Dublin, Ireland, Pro-
ceedings, Vol. 12075 of Lecture Notes in Computer Science, Springer, 2020,
pp. 224–250.

[40] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy,
S. Zanella-Béguelin, Formal verification of smart contracts: Short paper, in:
Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October 2016,
ACM, 2016, pp. 91–96.

[41] I. Grishchenko, M. Maffei, C. Schneidewind, A Semantic Framework for
the Security Analysis of Ethereum Smart Contracts, in: Principles of Se-
curity and Trust - 7th International Conference, POST 2018, Thessaloniki,
Greece. Proceedings, Vol. 10804 of Lecture Notes in Computer Science,
Springer, 2018, pp. 243–269.

[42] S. Amani, M. Bégel, M. Bortin, M. Staples, Towards Verifying Ethereum
Smart Contract Bytecode in Isabelle/HOL, in: Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, Los Angeles, CA, USA, 2018, ACM, 2018, pp. 66–77.

[43] T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour
your money, in: IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER, IEEE Computer Society, 2017, pp.
442–446.

[44] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, X. Zhang, Towards saving
money in using smart contracts, in: A. Zisman, S. Apel (Eds.), Proceedings
of the 40th International Conference on Software Engineering: New Ideas
and Emerging Results, ICSE (NIER) 2018, Gothenburg, Sweden, 2018,
ACM, 2018, pp. 81–84.

[45] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen, X. Zhang,
Gaschecker: Scalable analysis for discovering gas-inefficient smart con-
tracts, IEEE Transactions on Emerging Topics in Computing PP(99) (2020)
1–14.

[46] Y. Hirai, Defining the Ethereum Virtual Machine for Interactive Theorem
Provers, 2017.

[47] A. Mavridou, A. Laszka, Designing secure ethereum smart contracts: A
finite state machine based approach, CoRR abs/1711.09327.

[48] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
D. Park, Y. Zhang, B. Moore, G. Rosu, KEVM: A Complete Semantics of

42

the Ethereum Virtual Machine, in: 31st IEEE Computer Security Founda-
tions Symposium, CSF 2018, Oxford, United Kingdom, 2018, IEEE Com-
puter Society, 2018, pp. 204–217.

[49] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, A. Rubio, GASOL: Gas
Analysis and Optimization for Ethereum Smart Contracts, in: A. Biere,
D. Parker (Eds.), Proceedings of 26th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS
2020, Vol. 12079 of Lecture Notes in Computer Science, 2020, pp. 118–125.

[50] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking
without bdds, in: Proceedings of 5th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS
1999, Vol. 1579 of Lecture Notes in Computer Science, Springer, 1999, pp.
193–207.

[51] C. Signer, Gas Cost Analysis for Ethereum Smart Contracts, Master’s the-
sis, Swiss Federal Institute of Technology Zurich, Switzerland (2018).

[52] N. Ambroladze, Fast and scalable analysis of smart contracts, Master’s
thesis, Swiss Federal Institute of Technology Zurich, Switzerland (2018).

[53] J. He, M. Balunovic, N. Ambroladze, P. Tsankov, M. T. Vechev, Learn-
ing to fuzz from symbolic execution with application to smart contracts,
in: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, 2019, ACM, 2019, pp.
531–548. doi:10.1145/3319535.3363230.

43

http://dx.doi.org/10.1145/3319535.3363230

	Introduction
	Summary of Contributions

	Preliminaries: Stack-Sensitive Control Flow Graphs
	From the S-CFG to a High-Level Rule-Based Representation
	RBR generation
	A Gas-Aware Semantics
	The Gas Cost Model
	Opcode gas model
	Memory gas model

	GAS-RBR: RBR Transformations for Gas Analysis
	Flattening the Storage and Memory Locations
	External calls
	String and Byte arrays

	Gas Analysis of EVM Transactions
	Opcode Gas Upper-Bound
	Memory Gas Upper-Bound

	Implementation and Evaluation
	Implementation
	Gas Bounds for EthereumPot Case Study
	Statistics for Analyzed Contracts
	Accuracy of Gastap when compared to real transactions

	Related Work
	Conclusions and Future Work

