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2 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Efficiency is a fundamental property of any type of program,
but it is even more so in the context of the programs executing on the
blockchain (known as smart contracts). This is because optimizing smart
contracts has direct consequences on reducing the costs of deploying and
executing the contracts, as there are fees to pay related to their bytes-size
and to their resource consumption (called gas). Optimizing memory usage
is considered a challenging problem that, among other things, requires a
precise inference of the memory locations being accessed. This is also
the case for the Ethereum Virtual Machine (EVM) bytecode generated
by the most-widely used compiler, solc, whose rather unconventional
and low-level memory usage challenges automated reasoning. This paper
presents a static analysis, developed at the level of the EVM bytecode
generated by solc, that infers write memory accesses that are needless
and thus can be safely removed. The application of our implementation on
more than 19,000 real smart contracts has detected about 6,200 needless
write accesses in less than 4 hours. Interestingly, many of these writes were
involved in memory usage patterns generated by solc that can be greatly
optimized by removing entire blocks of bytecodes. To the best of our
knowledge, existing optimization tools cannot infer such needless write
accesses, and hence cannot detect these inefficiencies that affect both the
deployment and the execution costs of Ethereum smart contracts.

1 Introduction

EVM and memory model. Ethereum [27] is considered the world-leading
programmable blockchain today. It provides a virtual machine, named EVM
(Ethereum Virtual Machine) [21], to execute the programs that run on the
blockchain. Such programs, known as Ethereum “smart contracts”, can be writ-
ten in high-level programming languages such as Solidity [6], Vyper [4], Serpent [3]
or Bamboo [1] and they are then compiled to EVM bytecode. The EVM bytecode
is the code finally deployed in the blockchain, and has become a uniform format
to develop analysis and optimization tools. The memory model of EVM pro-
grams has been described in previous work [17,19,26,27]. Mainly, there are three
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regions in which data can be stored and accessed: (1) The EVM is a stack-based
virtual machine, meaning that most instructions perform computations using
the topmost elements in a machine stack. This memory region can only hold a
limited amount of values, up to 1024 256-bit words. (2) EVM programs store
data persistently using a memory region named storage that consists of a map-
ping of 256-bit addresses to 256-bit words and whose contents persist between
external function calls. (3) The third memory region is a local volatile memory
area that we will refer to as EVM memory, and which is the focus of our work.
This memory area behaves as a simple word-addressed array of bytes that can
be accessed by byte or as a one-word group. The EVM memory can be used
to allocate dynamic local data (such as arrays or structs) and also for specific
EVM bytecode instructions which have been designed to require some lengthy
operands to be stored in local memory. This is the case of the instructions for
computing cryptographic hashes, or for passing arguments to and returning data
from external function calls. Compilers use the stack and volatile memory regions
in different ways. The most-used Solidity compiler solc generates EVM code
that uses the stack for storing value-type local variables, as well as intermediate
values for complex computations and jump addresses, whereas reference-type
local variables such as array types and user-defined struct types are located in
memory. For instance, when a Solidity function returns a struct variable, the
required memory for the struct is allocated and initialized at the beginning of
the function execution. However, the allocated memory is not always accessed as
we illustrate in the following function (that belongs to the contract in Fig. 1):

1 function ownershipAt (uint256 i ) pr ivate returns (TokenOwnership memory) {
2 return c . unpackedOwnership ( packedOwnerships [ i ] ) ;
3 }

Although the execution of _ownershipAt allocates memory for the return value de-
clared in the function definition, the execution of the function is reserving a differ-
ent memory space for the actual returned struct obtained from unpackedOwnership

and, thus, the first reservation and its initialization are needless. The focus of our
work is on detecting such needless write memory accesses on the code generated
by solc. Nevertheless, as the analysis works at EVM level, it could be easily
adapted to EVM code generated by any other compiler.

Optimization. Optimization of Ethereum smart contracts is a hot research topic,
see e.g. [9, 10, 12–14,22, 24] and their references. This is because the reduction of
their costs is relevant for three reasons: (1) Deployment fees. When the contract
is deployed on the blockchain, the owner pays a fee related to the size in bytes
of the bytecode. Hence, a clear optimization criterion is the bytes-size of the
program. The Solidity compiler solc [6] has as optimization target such bytes-size
reduction. (2) Gas-metered execution. There is a fee to be paid by each client to
execute a transaction in the blockchain. This fee is a fixed amount per transaction
plus the cost of executing all bytecode instructions within the function being
invoked within the transaction. This cost is measured in “gas” (which is then
priced in the corresponding cryptocurrency) and this is why the execution is
said to be gas-metered. The EVM specification ([27] and more recent updates)
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provides a precise gas consumption for each bytecode instruction in the language.
The goal of most EVM bytecode optimization tools [9, 10, 12–14,22] is to reduce
such gas consumption, as this will revert on reducing the price of all transactions
on the smart contract. (3) Enlarging Ethereum’s capability. Due to the huge
volume of transactions that are being demanded, there is a huge interest in
enlarging the capability of the Ethereum network to increase the number of
transactions that can be handled. Optimization of EVM bytecode in general
–and of its memory usage in particular– is an important step contributing into
this direction.

Challenges and contributions. Optimizing memory usage is considered a chal-
lenging problem that requires a precise inference of the memory locations being
accessed, and that usually varies according to the memory model of the language
being analyzed, and to the compiler that generates the code to be executed.
In the case of Ethereum smart contracts generated by the solc compiler, the
memory model is rather unconventional and its low-level memory usage patterns
challenge automated reasoning. On one hand, instead of having an instruction to
allocate memory, the allocation is performed by a sequence of instructions that
use the value stored at address 0x40 as the free memory pointer, i.e., a pointer to
the first memory address available for allocating new memory. In the general case,
the memory is structured as a sequence of slots: a slot is composed of several
consecutive memory locations that are accessed in the bytecode from the same
initial memory location plus a corresponding offset. A slot might just hold a data
structure created in the smart contract but also, when nested data structures
are used, from one slot we can find pointers to other memory slots for the nested
components. Finally, there are other type of transient slots that hold temporary
data and that need to be captured by a precise memory analysis as well. These
features pose the main challenges to infer needless write accesses and, to handle
them accurately, we make the following main contributions: (1) we present a
slot analysis to (over-)approximate the slots created along the execution and
the program points at which they are allocated; (2) we then introduce a slot
usage analysis which infers the accesses to the different slots from the bytecode
instructions; (3) we finally infer needless write accesses, i.e., program points
where the memory is written but is never read by any subsequent instruction
of the program; and (4) we implement the approach and perform a thorough
experimental evaluation on real smart contracts detecting needless write accesses
which belong to highly optimizable memory usage patterns generated by solc.
Finally, it is worth mentioning that the applications of the memory analysis
(points 1 and 2) go beyond the detection of needless write accesses: a precise
model of the EVM memory is crucial to enhance the accuracy of any posterior
analysis (see, e.g., [19] for other concrete applications of a memory analysis).

2 Memory Layout and Motivating Examples

Memory Opcodes. The EVM instruction set contains the usual instructions to
access memory: the most basic instructions that operate on memory are MLOAD
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4 struct TokenOwnership {
5 address addr ;
6 uint64 startTs ;
7 bool burned ;
8 }
9

10 contract Running1 {
11 // . . .
12 function unpackedOwnership
13 (uint256 packed) publ ic
14 s1s2 returns (TokenOwnership

memory ownership ) {
15 ownership . addr = . . . ;
16 ownership . startTs = . . . ;
17 ownership . burned = . . . ;
18 }
19 }

17 contract Running2 {
18 Running1 c ;
19 mapping(uint256=>uint256 ) pr ivate packedOwnerships ;
20 // . . .
21 function ownershipAt (uint256 i ) pr ivate
22 s6 returns (TokenOwnership memory) {
23 s7 return c . unpackedOwnership ( packedOwnerships [ i ] ) ;
24 }
25 function expl ic itOwnershipOf (uint256 tokenId )
26 s3 publ ic returns (TokenOwnership memory) {
27 s4 TokenOwnership memory ownership ;
28 s5 i f ( . . . ) { return ownership ; }
29 s8 ownership = ownershipAt ( tokenId ) ;
30 // . . .
31 s5 return ownership ;
32 }
33 }

Fig. 1: Excerpt of smart contract ERC721A.

and MSTORE, which load and store a 32-byte word from memory, respectively.3

The solc compiler generates code to handle memory with a cumulative model
in which memory is allocated along the execution of the program and is never
released. In contrast to other bytecode virtual machines, like the Java Virtual
Machine, the EVM does not have a particular instruction to allocate memory.
The allocation is performed by a sequence of instructions that use the value
stored at address 0x40 as the free memory pointer, i.e., a pointer to the first
memory address available for allocating new memory. In what follows, we use
mem〈x〉 to refer to the content stored in memory at location x.

Memory Slots. In the general case, memory is structured as a sequence of slots.
A slot is composed of consecutive memory locations that are accessed by using
its initial memory location, which we call the base reference (baseref for short) of
the slot, plus the corresponding offset needed to access a specific location within
the slot. Slots usually store (part of) some data structure created in the Solidity
program (e.g., an array or a struct) and whose length can be known.

Example 1 (slots). Fig. 1 shows an excerpt of smart contract ERC721A [2]
which contains two different contracts Running1 and Running2. We have omitted
non-relevant instructions such as those that appear at lines 15-17 (L15-L17 for
short). The contract Running1 to the left of Fig. 1 contains the public function
unpackedOwnership that returns a struct of type TokenOwnership defined at L4-
L7. The contract Running2, shown to the right, contains the public function
explicitOwnershipOf that returns, depending on a non-relevant condition, an
empty struct of type TokenOwnership (L29) or the TokenOwnership received from
a call to function unpackedOwnership of contract Running1 (L23), which is done in
the private function _ownershipAt. The execution of function unpackedOwnership

in Running1 allocates two different memory slots at L13: s1, for the returned
variable ownership, and s2, which is used for actually returning from the function
the contents of ownership:

3 Although the local memory is byte addressable with instruction MSTORE8, to keep the
description simpler, we only consider the general case of word-addressable MSTORE.
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0x00 0x20 0x40 0x60

ownership

bref=0x80

s1(L13)

return

bref=0x80+0x60

s2(L13)

The function explicitOwnershipOf in Running2 makes a more intensive use of the
memory which can be seen in this graphical representation:

0x00-0x60

returns

s3(L27)

ownership

s4(L28) returns

s6(L22)

return

s7(L23)

call res.

s8(L31)

return

s5(L33-L29)

The execution of this function might create up to six different slots. At L27 and
L28, it creates two slots, one for the struct declared in the returns part of the
function header (s3) and one for the local variable ownership (s4). Depending
on the evaluation of the condition in the if sentence, it might create the slots
needed to perform the call to _ownershipAt and, consequently, the external call
to Running1.unpackedOwnership. The invocation to the private function involves
three slots: one for the struct declared in the returns part of _ownershipAt in
L31 (s6), one slot to manage the external call data in L23 (s7), and one slot for
storing the results of the private function _ownershipAt in L31 (s8). Finally, a
new slot (s5) is created for returning the results of explicitOwnershipOf. This
new slot might contain the contents of s4 or s8, depending on the if evaluation.

When an amount of memory t is to be allocated, the slot reservation is made
by reading and incrementing the free memory pointer (mem〈0x40〉) t positions.
From this update on, the base reference to the slot just allocated is used, and
subsequent accesses to the slot are performed by means of this baseref, possibly
incremented by an offset.

Example 2 (memory slot reservation). The following excerpt of EVM code allo-
cates a slot of type TokenOwnership. The EVM bytecode performs three steps:
(i) load the current value of the free memory
pointer mem〈0x40〉 that will be used as the
baseref of the new slot; (ii) compute the new
free memory address by adding t to the baseref;
and (iii), store the new free memory pointer
in mem〈0x40〉. Additionally, in the same block
of the CFG, the slot reservation is followed
by the slot initialization at 0x19A, 0x1AB and
0x1B4.

0x175: JUMPDEST
0x176: PUSH1 0x40
0x178: MLOAD // (i) baseref

DUP1
PUSH1 0x60 // Sizeof "t"
ADD // (ii) baseref+0x60

0x17D: PUSH1 0x40
0x17F: MSTORE // (iii)

. . .
0x19A: MSTORE // baseref+0x00

. . .
0x1AB: MSTORE // baseref+0x20

. . .
0x1B4: MSTORE // baseref+0x40

Solidity reference type values such as arrays, struct typed variables and strings
are stored in memory using this general pattern, with some minor differences.
However, there are some cases in which the steps detailed above vary and the
size of the slot is not known in advance, and thus the free memory pointer cannot
be updated at this point. For instance, when data is returned by an external call,
its length is unknown beforehand and hence the free memory pointer is updated
only after the memory pointed to is written. In other cases, the free memory is
used as a temporary region with a short lifetime, as in the case of parameter
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passing to external calls, and the free memory pointer is not updated. These
variants of the general schema must be detected by a precise memory analysis.
To this end, we consider that a slot is in transient state when its baseref has been
read from mem〈0x40〉 but the free memory pointer has not been updated, and it
is in permanent state when the free memory pointer has been pushed forward.

Example 3 (transient slot). Now we focus on the external call in L23 of Running2,
which performs a STATICCALL, reading from the stack (see [27] for details) the
memory location of the input arguments and the location where the results of the
call will be saved. Interestingly, both locations reuse the same slot (it corresponds
to s7) as it can be seen in the following EVM bytecode from _ownerShipAt:

PUSH4 0xb04dd20b // func. selector
. . .
PUSH1 0x40

0x114: MLOAD // baseref transient slot
. . .
DUP2
MSTORE // stores func. selector
PUSH1 0x04
ADD // offset of funct. args.
· · · // copy func. args.
MSTORE // stores func. args.
. . .

PUSH 0x40
0x132: MLOAD // slot baseref

. . .
0x139: STATICCALL // external call

. . .
PUSH1 0x40

0x151: MLOAD // slot baseref
RETURNDATASIZE
. . .
ADD // baseref + data size
. . .

0x15E: PUSH1 0x40
0x160: MSTORE // permanent slot

The call starts by reading the free memory pointer (at 0x114) and storing at
that address the arguments’ data (which include the function selector as first
argument). Importantly, the pointer is not pushed forward when the input
arguments are written and thus the slot remains in transient state. Once the
call at 0x139 is executed, the result is written to memory from the baseref on
(overwriting the locations used for the input arguments) and the slot is finally
made permanent by reading the free memory pointer again (0x151) and updating
it (0x160) by adding the actual return data size (RETURNDATASIZE).

Transient slots are also used when returning data from a public function to
an external caller. In that case, the EVM code of the public function halts its
execution using a RETURN instruction. It reads from the stack the memory location
where the length and the data to be returned are located. However, it does not
change mem〈0x40〉 because the function code halts its execution at this point, as
we can see in the EVM code of explicitOwnershipOf (corresponds to slot s5):

PUSH1 0x40
0x4D:MLOAD //ret slot baseref

. . .
MSTORE // ret.addr (ret+0x00)
. . .
MSTORE // ret.startTs (ret+0x20)
. . .
MSTORE // ret.burned (ret+0x40)

. . .
PUSH1 0x40

0x5A:MLOAD //ret slot revisit
DUP1
SWAP2 // Baseref of ret plus size
SUB // Size of ret data

0x5E:SWAP1
0x5F:RETURN //ret returned

The baseref for the return slot is read (at 0x4D) and it is used as a transient slot
to write the struct contents to be returned by adding the corresponding offset for
each field contained in the struct (instructions on the left column). The code on
the left ends with the baseref plus the size of the stored data on top of the stack.
After that, the baseref is read again (top of the right column) and the length of
the returned data is computed (by subtracting the baseref to the baseref plus
the size of the stored data) before calling the RETURN instruction.
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3 Inference of Needless Write Accesses
This section presents our static inference of needless write accesses. We first
provide some background in Sec. 3.1 on the type of control-flow-graph (CFG) and
static analysis we rely upon. Then, the analysis is divided into three consecutive
steps: (1) the slot analysis, which is introduced in Sec. 3.2, to identify the slots
created along the execution and the program points at which they are allocated;
(2) the slot usage analysis, presented in Sec. 3.3, which computes the read and
write accesses to the different slots identified in the previous step; and (3) the
detection of needless write accesses, given in Sec. 3.4, which finds those program
points where there is a write access to a slot which has no read access later on.

3.1 Context-Sensitive CFG and Flow-Sensitive Static Analysis

The construction of the CFG of Ethereum smart contracts is a key part of any
decompiler and static analysis tool and has been subject of previous research [15,
16, 25]. The more precise the CFG is, the more accurate our analysis results will
be. In particular, context-sensitivity [16] on the CFG construction is vital to
achieve precise results. Our implementation of context-sensitivity is realized by
cloning the blocks which are reached from different contexts.

Example 4 (context-sensitive CFG). The EVM code of Running2 creates multiple
slots for handling structs of type TokenOwnership. Interestingly, all these slots
are created by means of the same EVM code shown in Ex. 2, which corresponds
to the CFG block that starts at program point 0x175. As this block is reached
from different contexts, the context-sensitive CFG contains three clones of this
block: 0x175, which creates s3 at L27; 0x175_0, which creates s4 used at L28; and
0x175_1, which reserves s6, created at L22. Block cloning means that program
points are cloned as well, and we adopt the same subindex notation to refer
to the program points included in the cloned block: e.g. program point 0x178

contains the MLOAD 0x40 that gets the baseref of the slot reserved at block 0x178,
and 0x178_0 to the same MLOAD but at 0x178_0, etc.

In what follows, we assume that cloning has been made and the memory
analysis using the resulting CFG (with clones) is thus context-sensitive as well,
without requiring additional extensions. As usual in standard analyses [23], one
has to define the notion of abstract state which defines the abstract information
gathered in the analysis and the transfer function which models the analysis
output for each possible input. Besides context-sensitivity, the two analyses that
we will present in the next two sections are flow-sensitive, i.e., they make a
flow-sensitive traversal of the CFG of the program using as input for analyzing
each block of the CFG the information inferred for its callers. When the analysis
reaches a CFG block with new information, we use the operation t to join the
two abstract states, and the operator v to detect that a fixpoint is reached and,
thus, that the analysis terminates. The operations t and v, the abstract state,
and transfer function, will be defined for each particular analysis.

3.2 Slot Analysis

The slot analysis aims at inferring the abstract slots, which are an abstraction
of all memory allocations that will be made along the program execution. The
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slots inferred are abstract because over-approximation is made at the level of the
program points at which slots are allocated. Therefore, an abstract slot might
represent multiple (not necessarily consecutive) real memory slots, e.g., when
memory is allocated within a loop. The slot analysis will look for those program
points at which the value stored in mem〈0x40〉 is read for reserving memory space.
These program points are relevant in the analysis for two reasons: firstly, to
obtain the baseref of the memory slot, and, secondly, because from this point on,
the memory reservation of the corresponding slot has started and it is pending
to become permanent at some subsequent program point. The output of the
slot analysis is a set which contains the allocated abstract slots, named Sall in
Def. 2 below. Each allocated abstract slot (i.e., each element in Sall) is in turn
a set of program points, as the same abstract slot might have several program
points where mem〈0x40〉 is read before its reservation becomes permanent. In
order to obtain Sall, the memory analysis makes a flow-sensitive traversal of
the (context-sensitive) CFG of the program that keeps at every program point
the set of transient slots (i.e. whose baseref has been read but it has not yet
made permanent) and applies the transfer function in Def. 1 to each bytecode
instruction within the blocks until a fixpoint is reached. An abstract state of
the analysis is a set S ⊆ ℘(PR), where PR is the set of all program points at
which mem〈0x40〉 is read. The analysis of the program starts with S = {∅} at
all program points and takes t and v as the set union and inclusion operations.
Termination is trivially guaranteed as the number of program points is finite
and so is ℘(PR). In what follows, Ins is the set of EVM instructions and, for
simplicity, we consider MLOAD 0x40 and MSTORE 0x40 as single instructions in Ins.

Definition 1 (slot analysis transfer function). Given a program point pp
with an instruction I ∈ Ins, an abstract
state S, and K = {MSTORE 0x40, RETURN, REVERT,
STOP, SELFDESTRUCT}, the slot analysis transfer func-
tion ν is defined as a mapping ν : Ins × ℘(S) 7→
℘(S) computed according to the following table:

I ν(I,S)

(1) MLOAD 0x40 {s ∪ {pp} | s ∈ S}

(2) I ∈ K {∅}

(3) otherwise S

Let us explain intuitively how the above transfer function works. As we have
seen in Sec. 2, in an EVM program all memory reservations start by reading
mem〈0x40〉 by means of a MLOAD instruction preceded by a PUSH 0x40 instruction
(case 1 in Def. 1). In this case, the transfer function adds to all sets in S the
current program point, since this is, in principle, an access to the same slots that
were already open at this program point and are not permanent yet. To properly
identify the slots, our analysis also searches for those program points at which
slots reservations are made permanent (case 2 in Def. 1), i.e., those program
points with instructions I ∈ K. The most frequently used instruction to make
a slot reservation permanent is a write access to mem〈0x40〉 using MSTORE, that
pushes forward the free memory pointer such that any subsequent read access to
mem〈0x40〉 will allocate a different slot. The rest of instructions in K finalize the
execution in different forms (a normal return, a forced stop, a revert execution,
etc.). In all such cases, the slot needs to be considered as a permanent slot so
that we can reason later on potential needless write accesses involved in it. The
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set S is empty after these instructions since all transient (abstract) slots are
made permanent after them. We use the notation Spp to refer to the abstract
state computed at program point pp.

Example 5 (slot analysis). The slot analysis of Running2 starts with Spp={∅}
at all program points. When it reaches the block that starts at 0x175 (see
Ex. 2) S0x175 is {∅} and it remains empty until 0x178, where the baseref of s3
is read and hence S0x178={{0x178}}. This slot is made permanent when the free
memory pointer is updated at 0x17F, thus having S0x17D={{0x178}} and S0x17F={∅}.
Following the same pattern, s4 and s6 are resp. reserved at instructions 0x178_0

and 0x178_1 and closed at 0x17F_0 and 0x17F_1 (at the cloned blocks). On the
other hand, the baseref of s5 is read at two consecutive program points (0x4D
and 0x5A) and updated at 0x5F, and thus, we have S0x4D={{0x4D}} and the same
until S0x5A={{0x4D, 0x5A}} and again the same until S0x5F={∅}. Finally, after the
execution of STATICCALL (see Ex. 3) we have three consecutive reads of mem〈0x40〉
at 0x114, 0x132 and 0x151 that refer to the same slot s7, which is made permanent
at 0x160. Therefore, we have S0x151={{0x114, 0x132, 0x151}} and S0x160 = {∅}.

Using the transfer function, as mentioned in Sec. 3.1, our analysis makes a
flow-sensitive traversal of the (context-sensitive) CFG of the program that uses
as input for analyzing each block the information inferred for its callers. When a
fixpoint is reached, we have an abstract state for each program point that we use
to compute the set of abstract slots allocated in the program, named Sall.
Definition 2. The set of allocated abstract slots Sall is defined as
Sall =

⋃
pp∈PW

Spp−1, where PW is the set of all program points pp:I where I∈K.

Example 6 (Sall computation). With the values of S0x17F-1, S0x17F 0-1, S0x17F 1-1, S0x160-1

and S0x5F-1 from Ex. 5, at the end of the slot analysis of Running2, we have:
Sall={{0x178}︸ ︷︷ ︸

s3

, {0x178 0}︸ ︷︷ ︸
s4

, {0x178 1}︸ ︷︷ ︸
s6

, {0x114, 0x132, 0x151}︸ ︷︷ ︸
s7

, {0x5A, 0x4D}︸ ︷︷ ︸
s5

, . . . }.

Note that, the cloning of block 0x175 allows our analysis to detect three different
slots, s3, s4 and s6, for the same program point, 0x178, in the original EVM code.

The next example shows the behavior of the analysis when the program
contains loops, and an abstraction is needed for approximating the slots.

Example 7 (loops). Fig. 2 shows the contract Running3 that includes the func-
tion explicitOwnershipsOf from the smart contract at [2] (made through a
STATICCALL). This function receives an array of token identifiers as argument
and returns an array of TokenOwnership structs that is populated invoking the
function explicitOwnershipOf from Running2 inside a loop. The slots identified
by the analysis for contract Running3 shown in Fig. 2 are: s9, which is created
for making a copy of parameter tokenIds to memory; s10, which creates the
local array ownerships (L44) that contains the array length and pointers to the
structs identified initially by s11 (and later on by s13); s12 for STATICCALL input
arguments and return data (L46); s13 which abstracts the structs for storing the
STATICCALL output results (L46); and s14, which includes the length of ownership
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37 contract Running3 {
38 Running2 c ;
39 // . . .
40 s9 function expl ic itOwnershipsOf (uint256 [ ] memory tokenIds )
41 publ ic view returns (TokenOwnership [ ] memory) {
42 unchecked {
43 uint256 tokenIdsLength = tokenIds . length ;
44 s10s11 TokenOwnership [ ] memory ownerships = new TokenOwnership [ ] ( tokenIdsLength ) ;
45 for (uint256 i ; i != tokenIdsLength ; ++i ) {
46 s12s13 ownerships [ i ] = c . expl ic itOwnershipOf ( tokenIds [ i ] ) ;
47 }
48 s14 return ownerships ;
49 }
50 }
51 }

0x00-0x60

tokenIds

s9(L40)

ownerships

s10(L44)

o[0] ...

s11(L44)

o[n] c[0]

s12

o[0]

s13

...

s12

...

s13

c[0]

s12

o[n]

s13

r.l r[0] ...

s14(L48)

r[n]

Fig. 2: Solidity code of contract Caller.

and a copy of s13 for returning the results (L48). The important point is that,
the local array declaration at L44 produces a loop to allocate as many structs
as elements are contained in the array. For this reason, s11 is an abstract slot
that represents all TokenOwnership’s initially added to the array. Similarly, s12
and s13 are created inside the for loop, and each abstract slot represents as many
concrete slots as iterations are performed by the loop. Note that, each iteration
of the loop creates one instance of s12 for getting the results from the call, and it
is copied later to s13 and pointed by ownerships (s10).

As notation, we will use a unique numeric identifier (1, 2, . . .) to refer to each
abstract slot (represented in Sall as a set) and retrieve it by means of function
get id(a), a ∈ Sall. We use A to refer to the set of all such identifiers in the program.
Also, given a program point pp with an instruction MLOAD 0x40, we define the
function get slots(pp) to retrieve the identifiers of the elements of Sall that might
be referenced at pp as follows: get slots(pp) = {id | a ∈ Sall∧pp ∈ a∧ id = get id(a)}.

3.3 Slot Access Analysis

While Sec. 3.2 looked for allocations, the next step of the analysis is the inference
of the program points at which the inferred abstract slots might be accessed. To
do so, our slot access analysis needs to propagate the references to the abstract
slots that are saved at the different positions of the execution stack. Importantly,
we keep track, not only of the stack positions, but also, in order to abstract
complex data structures stored in memory (e.g., arrays of structs), we need to
keep track of the abstract slots that could be saved at memory locations. As seen
in Ex. 7, a memory location within a slot might contain a pointer to another
memory location of another slot, as it happens when nested data structures are
used. Thus, an abstract state is a mapping at which we store the potential slots
saved at stack positions or at memory locations within other slots.

Definition 3 (memory analysis abstract state). A memory analysis ab-
stract state is a mapping π of the form T ∪ A 7→ ℘(A).
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T is the set containing all stack positions, which we represent by natural
numbers from 0 (bottom of the stack) on, and A is the set of abstract slots
identifiers computed in Sec. 3.2. We refer to the set of all memory analysis
abstract states as AS. Note that, for each entry, we keep a set of potential slots
for each stack position because a block might be reached from several blocks
with different execution stacks, e.g., in loops or if-then-else structures. In what
follows, we assume that, given a value k, the map π returns the empty set when
k 6∈ dom(π). The inference is performed by a flow-sensitive analysis (as described
in Sec. 3.1) that keeps track of the information about the abstract slots used at
any program point by means of the following transfer function.

Definition 4 (memory analysis transfer function). Given an instruction
I with n input operands at program point pp and an abstract state π, the memory
analysis transfer function τ is defined as a mapping τ :Ins×AS 7→ AS of the form:

I τ(I, π)

(1) MLOAD 0x40 π[t 7→ get slots(pp)]

(2) MLOAD π[t 7→ {m | s ∈ π(t) ∧m∈π(s)}]

(3) MSTORE π[s 7→ π(s) ∪ π(t−1)]\{t, t−1} ∀s∈π(t)

I τ(I, π)

(4) SWAPi π[t 7→ π(t− i), t− i 7→ π(t)]

(5) DUPi π[t+ 1 7→ π(t− i+ 1)]

(6) otherwise π\x t−n < x ≤ t

t=top(pp) is the numerical position of the top of the stack before executing I.

Let us explain the above definition. The transfer function distinguishes between
two different types of MLOAD: (1) accesses to location mem〈0x40〉, which return the
baseref of the slots that might be used, taking them from the previous analysis
through get slots(p); and (2) other MLOAD instructions, which could potentially
return slot baserefs from memory locations. Therefore, we have to consider two
possibilities: if we are reading a memory location which reads a generic value
(e.g. a number) then π(t) = ∅; if we are reading a memory location that might
store an abstract slot, then π(t) contains all abstract slots that might be stored
at that memory location. Regarding (3), MSTORE has two operands: the operand
at t is the memory address that will be modified by MSTORE, and the operand at
t− 1 is the value to be stored in that address. For each element s in π(t), the
analysis adds the abstract slots that are in π(t−1). Other instructions that are
also treated by the analysis are SWAP* and DUP* shown in (4-5), that exchange or
copy the elements of the stack that take part in the operation. Finally, all other
operations delete the elements of the stack that are no longer used based on the
number of elements taken and written to the stack (case 6).

Example 8 (transfer). Now we focus on the analysis of block 0x175, shown in
Fig. 3. As we have already explained, this block is responsible for creating the
memory needed to work with several structs of type TokenOwnership and it is thus
cloned in the CFG. In particular, we focus on the clone 0x175_1. The analysis
of the block starts with a stack of size 7 and includes at positions 3 and 4, the
abstract slots s3 and s4, which were created at L26 and L27 of Fig. 1. At 0x178_1,
mem〈0x40〉 is read, and, by means of get slots(0x178 1) and, considering that
top(0x178 1)=8, we add to π a new entry 8 7→ s6. At 0x179_1, 0x180_1, 0x1AA_1,
0x1B3_1 the transfer function duplicates a slot identifier stored in the stack. MSTORE
and POP instructions of the example remove a slot identifier from the stack.
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PP Instr π PP Instr π
0x175 1 JUMPDEST {3 7→s3, 4 7→s4} 0x19A 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x176 1 PUSH1 0x40 {3 7→s3, 4 7→s4} ...
0x178 1 MLOAD {3 7→s3, 4 7→s4, 8 7→s6} 0x1A9 1 AND {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x179 1 DUP1 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1AA 1 DUP2 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6, 11 7→s6}
0x17A 1 PUSH1 0x60 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1AB 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x17C 1 ADD {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} ...
0x17D 1 PUSH1 0x40 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1B2 1 ISZERO {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x17F 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6} 0x1B3 1 DUP2 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6, 11 7→s6}
0x180 1 DUP1 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1B4 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
... 0x1B5 1 POP {3 7→s3, 4 7→s4, 8 7→s6}
0x198 1 AND {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1B6 1 SWAP1 {3 7→s3, 4 7→s4, 7 7→s6}
0x199 1 DUP2 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6, 11 7→s6} 0x1B7 1 JUMP {3 7→s3, 4 7→s4, 7 7→s6}

Fig. 3: Block of the CFG that reserves memory slot for struct

As it is flow-sensitive, the analysis of each block of the CFG takes as input the
join t of the abstract states computed with the transfer function for the blocks
that jump to it, and keeps applying the memory analysis transfer function until
a fixpoint is reached. The operation A tB is the result of joining, by means of
operation ∪, all entries from maps A and B. Operation v is defined as expected,
A v B, when B includes entries that are not in dom(A) or when we have an
entry v ∈ dom(A) ∩ dom(B) such that A(v) ⊆ B(v). Again, termination of the
computation is guaranteed because the domain is finite.

Example 9 (joining abstract states). The EVM code of explicitOwnershipOf of
Fig. 1 uses s5 in both return sentences at L29 and L33 (see Ex. 1). This EVM
code has a single return block which is reachable from two different paths from
the if statement, and which come with different abstract states: (1) the path
that corresponds to L29 comes with π={3 7→ s8}, and the other path (L33) with
π={3 7→ s4}. Our analysis joins both abstract states resulting in π={3 7→ {s4, s8}}.
Because of this join, we get that the RETURN instruction that comes from lines
L29 and L33 might return the content of the slots s4 or s8.

When the fixpoint is reached, the analysis has computed an abstract state
for each program point pp, denoted by πpp in what follows.

Example 10 (complex data structures). The analysis of the code at Fig. 2 shows
how it deals with data structures that might contain pointers to other structures,
e.g. ownerships. The abstract slot that represents variable ownerships is s10, which
is written, by means of MSTORE at two program points, say pp1 and pp2 which, resp.,
come from L44 and L46 of the Solidity code. The input abstract state that reaches
pp1 is {2 7→ s9, 6 7→ s10, 8 7→ s10, 9 7→ s11, 10 7→ s10}, and the transfer function of
MSTORE leaves the abstract state as πpp1 = {2 7→ s9, 6 7→ s10, 8 7→ s10, s10 7→ s11}.
At this point, we can see that variable ownerships is initialized with empty
structs and, to represent it, our analysis includes in π the entry s10 7→ s11
as it is described in instruction MSTORE of the transfer function at Def. 4. The
second write to s10 is performed by another MSTORE instruction at pp2. The input
abstract state for pp2 is {2 7→ s9, 5 7→ s10, 7 7→ s13, 8 7→ s13, 9 7→ s10, s10 7→ s11},
and thus we get πpp2 = {2 7→ s9, 5 7→ s10, 7 7→ s13, s10 7→ {s11, s13}}. Interestingly,
at pp2, we detect that s11 might also store the structs returned by the call
to c.explicitOwnershipOf(tokenIds[i]), identified by s13, which is added to
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s10 7→ {s11, s13}. Finally, s10 is read at the end of the method, returning the set
{s11, s13}, to copy the content of ownerships to s14, the slot used in the return.

3.4 Inference of Needless Write Memory Accesses

With the results of the previous analysis, we can compute the maps R and W,
which are of the form pp 7→ ℘(A) and capture the slots that might be read
or written, resp., at the different program points. To do so, as multiple EVM
instructions, e.g. RETURN, CALL, LOG, CREATE, ..., might read, or write, memory
locations taking the concrete location from the stack, we define functions mr(I)
and mw(I) that, given an EVM instruction I, return the position in the stack of
the address to be read and written by I, resp. If the instruction does not read/write
any memory position, function mr(I) = ⊥/mw(I) = ⊥. For example, mr(MLOAD) = 0

as it reads the top of the stack and mw(MLOAD) = ⊥, or mr(STATICCALL) = 2 and
mw(STATICCALL) = 4. Now, we define the read/write maps R/W:

Definition 5 (memory read/write accesses map). Given an EVM program
P, such that pp ≡ I ∈ P and being t=top(pp), we define maps R and W as follows:

R(pp)=

{
∅ mr(I) = ⊥
πpp−1(t−mr(I)) otherwise

W(pp)=

{
∅ mw(I) = ⊥
πpp−1(t−mw(I)) otherwise

Example 11 (R/W maps). Let us illustrate the computation of R(0x139) and
W(0x139), which contains the STATICCALL of Running2. With the analysis infor-
mation obtained from the analysis we have that top(0x139) = 16 and π0x138 =

{3 7→ s3, 4 7→ s4, 7 7→ s6, 10 7→ s7, 12 7→ s7, 14 7→ s7}, thus we get R(0x139) = {s7}
and W(0x139) = {s7}, i.e., the slot used for managing the input and the output
of the external call. Analogously, we get that R(0x178) = {s3} and W(0x178) = ∅.

The last step of our analysis consists in searching for write accesses to slots
which will never be read later. To do so, we use the information computed in R
and W. Given the CFG of the program and two program points p and p2, we
define function reachable(p, p2), which returns true when there exists a path in
the CFG from p to p2. We define the set write leaks N as follows:

Definition 6. Given an EVM program and its W and R, we define N as
N = {pw:s | pw ∈ P ∧ s ∈ W(pw) ∧ ¬exists read(pw, s)}
where exists read(pw, s) ≡ ∃ pr ∈ dom(R) | s ∈ R(pr) ∧ reachable(pw, pr).

Intuitively, the set N contains those write accesses, taken from W, that are
never read by subsequent blocks in the CFG. As both function reachable and the
sets W and R are over-approximations, the computation of N provides us those
write accesses that can be safely removed, as the next example shows.

Example 12. Our analysis detects that at program points 0x19A, 0x1AB and 0x1B4

there are MSTORE operations that are never read in the subsequent blocks of
the CFG. Such operations correspond to the memory initialization of s3, which
is performed at L27 of the code of Fig. 1 (see Ex. 2). Given that these write
accesses are the only use of the slot, the whole reservation can be safely removed.
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Moreover, the analysis detects that program points 0x19A_1, 0x1AB_1 and 0x1B4_1,
which correspond to the reservation of s6 performed at L22, are detected as
needless. In essence, it means that s3 and s6 are allocated and initialized but
are never used in the program. Note that, all these program points belong to
two blocks cloned: (0x175 and 0x175_1). However, the three MSTORE operations of
the other clone of the same block (0x175_0), which correspond to the allocation
at L28 are not identified as non-read, as they might be used in the return of
the function. For this, the precision of the context-sensitive CFG is necessary
to identify these MSTORE operations as needless. As a result we cannot eliminate
the block because it is needed in one of the clones, but still we can achieve an
important optimization on the EVM code by removing the unconditional jumps
to this block in the other two cases that would avoid completely the execution of
all these instructions (and their corresponding gas consumption [27]).

The soundness of slots and slots access analyses states that, for each concrete
slot, there exists an abstract slot in Sall that represents it and, that any access
to memory is approximated by an inferred abstract slot. Technical details can be
found in an extended report [8].

4 Experimental Evaluation

This section reports on the results of the experimental evaluation of our approach,
as described in Sec. 3. All components of the analysis are implemented in Python,
are open-source, and can be downloaded from github where detailed instructions
for its installation and usage are provided4. We use external components to build
the CFGs (as this is not a contribution of our work). Our analysis tool accepts
smart contracts written in versions of Solidity up to 0.8.17 and bytecode for the
Ethereum Virtual Machine v1.10.255. The experiments have been performed on
an AMD Ryzen Threadripper PRO 3995WX 64-cores and 512 GB of memory,
running Debian 5.10.70. In order to experimentally evaluate the analysis, we
pulled from etherscan.io [5] the Ethereum contracts bound to the last 5,000
open-source verified addresses whose source code was available on July 14, 2022.
From those addresses, the code of 2.18% of them raises a compilation error from
solc . For the code bound to the 4,891 remaining addresses, the generation of
the CFG (which is not a contribution of this work) timeouts after 120s on 626
of them. Removing such failing cases, we have finally analyzed 19,199 smart
contracts, as each address and each Solidity file may contain several contracts
in it. Note that 84.86% of the contracts are compiled with the solc version 0.8,
presumably with the most advanced compilation techniques. The whole dataset
used will be found at the above github link.

In order to be in a worst-case scenario for us, we run the memory analysis
after executing the solc optimizer, i.e, we analyze bytecode whose memory
usage may have been optimized already by the optimizer available in solc.
This will allow us also to see if we can achieve further optimization with our

4 https://github.com/costa-group/EthIR/tree/memory optimizer/ethir
5 The latest versions released up to Oct 2022.

https://github.com/costa-group/EthIR/tree/memory_optimizer/ethir
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approach. Unfortunately, we have not been able to apply our tool after running
the super-optimizer GASOL [9], because it does not generate the optimized
bytecode but rather it only reports on the gas and/or size gains for each of
the blocks. Nevertheless, a detailed comparison of the techniques that GASOL
applies and ours is given in Sec. 5, where we justify that GASOL will not find
any of our needless accesses. From the 19,199 analyzed contracts, the analysis
infers 679,517 abstract memory slots and detects 6,242 needless write memory
accesses in 12,803s. These needless accesses occur within the code bound to 780
different addresses, i.e., 15.95% of the analyzed ones.

We have computed the number of needless accesses identified by our analysis
grouped by function and the number of different contracts that contain these
functions. Some of them such as transferFrom(1736 accesses in 439 contracts),
transfer (1745 aacesses in 441 contracts), reflectionFromToken(105 accesses in 6
contracts) or withdraw(54 accesses in 32 contracts) are functions widely used in
the implementation of contracts based on ERC tokens. A manual inspection of
the 10 most common public functions with the needless accesses inferred has
revealed two different sources for them: some of the needles accesses are due to
inefficient programming practices, while others are generated by the compiler
and could be improved. As regards compiler inefficiencies, we detected bytecode
that allocates memory slots that are inaccessible and cannot be used because the
baseref to access them is not maintained in the stack. For example, when a struct
is returned by a function, it always allocates memory for this data. However,
if the return variable is not named in the header of the function, the compiler
allocates memory for this data although it will never be accessed. If programmers
are aware of this behavior they can avoid such generation of useless memory
but, even better, this memory usage patterns can be changed in the compiler.
For instance, it is reflected in L22 and L27 in Fig. 1, where the functions do
not name the return variable. Hence, the compiler allocates memory for these
anonymous data structures which are never used. Similarly, there are various
situations involving external calls in which the compiler creates memory that is
never used. When there is an external call that does not retrieve any result, the
compiler creates two memory slots, one for retrieving the result from the call,
and another one for copying a potential result to a memory variable that is never
used. Finally, the compiler also creates memory that is never used for low-level
plain calls for currency transfer. Even though the contract code does not use
the second result returned by the low-level call, the compiler generates code for
retrieving it. All these potential optimizations have been detected by means of
our inference of needless write accesses and will be communicated to the solc

developers.

5 Conclusions and Related Work

We have proposed a novel memory analysis for Ethereum smart contracts and
have applied it to infer needless write memory accesses. The application of our
implementation over more than 19,000 real smart contracts has detected some
compilation patterns that introduce needless write accesses and that can be easily
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changed in the compiler to generate more efficient code. Let us discuss related
work along two directions: (1) memory analysis and (2) memory optimization.
Regarding (1), we can find advanced points-to analysis developed for Java-like
languages [7, 11, 18, 20]. Focusing on EVM, the static modeling of the EVM
memory in [16] has some similarities with the memory analysis presented in
Secs. 3.2 and 3.3, since in both cases we are seeking to model the memory
although with different applications in mind. There are differences on one hand
on the type of static analysis used in both cases: [16] is based on a Datalog
analysis while we have defined a standard transfer function which is used within
a flow-sensitive analysis. More importantly, there are differences on the precision
of both analyses. We can accurately model the memory allocated by nested
data structures in which the memory contains pointers to other memory slots,
while [16] does not capture such type of accesses. This is fundamental to perform
memory optimization since, as shown in the running examples of the paper, it
allows detecting needless write accesses that otherwise would be missed. Finally,
the application of the memory analysis to optimization is not studied in [16],
while it is the main focus of our work.

As regards (2), optimizing memory usage is a challenging research problem
that requires to precisely infer the memory positions that are being accessed.
Such positions sometimes are statically known (e.g., when accessing the EVM
free memory pointer) but, as we have seen, often a precise and complex inference
is required to figure out the slot being accessed at each memory access bytecode.
Recent work within the super-optimizer GASOL [9] is able to perform some
memory optimizations at the level of each block of the CFG (i.e., intra-block). of
There are three fundamental differences between our work and GASOL: First,
GASOL can only apply the optimizations when the memory locations being
addressed refer to the same constant direction. In other words, there is no real
memory analysis (namely Secs. 3.2 and 3.3). Second, the optimizations are
applied only at an intra-block level and hence many optimization opportunities
are missed. These two points make a fundamental difference with our approach,
since detected optimizable patterns (see Sec. 4) require inter-block analysis and
a precise slot access analysis, and hence cannot be detected by GASOL.

Finally, as mentioned in Sec. 1, in addition to dynamic memory, smart
contracts also use a persistent memory called storage. Regarding the application
of our approach to infer needless accesses in storage, there are two main points.
First, there is no need to develop a static analysis to detect the slots in storage, as
they are statically known (hence our inference in Sec. 3.2 and 3.3 is not needed),
i.e., one can easily know the read and write sets of Def. 6. Thus, the read and
write sets of our analysis can be easily defined for storage. The second point is
that, as storage is persistent memory, a write storage access is not removable
even if there is no further read access within the smart contract, as it needs
to be stored for a future transaction. The removable write storage accesses are
only those that are rewritten and not read in-between the two write accesses.
Including this in our implementation is straightforward. However, this situation
is rather unusual, and we believe that very few cases would be found and hence
little optimization can be achieved.
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and Germán Puebla an d Guillermo Román-Dı́ez. Object-Sensitive Cost Analysis for
Concurrent Objects. Software Testing, Verification and Reliability, 25(3):218–271,
2015.
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