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Abstract

A storage is a persistent memory whose contents are kept across
di�erent program executions. In the blockchain technology, storage
contents are replicated and incur the largest costs of a program’s
execution (a.k.a. gas fees). Storage costs are dynamically calculated
using a rather complex model which assigns a much larger cost to
the �rst access made in an execution to a storage key, and besides
assigns di�erent costs to write accesses depending on whether they
change the values wrt. the initial and previous contents. Safely
assuming the largest cost for all situations, as done in existing
gas analyzers, is an overly-pessimistic approach that might ren-
der useless bounds because of being too loose. The challenge is
to soundly, and yet accurately, synthesize storage bounds which
take into account the dynamicity implicit to the cost model. Our
solution consists in using an o�-the-shelf static resource analysis
—but do not always assuming a worst-case cost— and hence yielding
unsound bounds; and then, in a posterior stage, computing correc-
tions to recover soundness in the bounds by using a new Max-SMT
based approach. We have implemented our approach and used it to
improve the precision of two gas analyzers for Ethereum, gastap
and asparagus. Experimental results on more than 400,000 func-
tions show that we achieve great accuracy gains, up to 75%, on the
storage bounds, being the most frequent gains between 10-20%.

CCS Concepts

• Theory of computation→ Program analysis; • Software and

its engineering→ Automated static analysis.
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1 Introduction

The problem. The notion of storage is used to refer to a persistent
memory whose contents are maintained across di�erent execu-
tions of the program. This notion, which is inherent to (distributed)
databases, is also used today in the blockchain ecosystem, in which
storage accesses often incur the largest costs of a program’s execu-
tion (a.k.a. gas fee of the transaction). Naturally, a cost model that
determines the cost of the di�erent instructions in the program-
ming language will assign larger cost to persistent storage access
than to volatile memory access. In the context of the blockchain,
this (much) larger storage cost is clearly justi�ed by the replication
of contents of the storage required to implement the consensus pro-
tocols. Besides, as in distributed databases [39], not all accesses to
the storage cost the same: on one hand, the �rst access to a storage
location (denominated key in what follows) requires retrieving the
value from the global storage and costs notably more, regardless
of whether it is a read or write access; on the other hand, when
writing a value, the cost might depend also on whether it is a fresh
new allocation (costs a lot), if we are not modifying the initial value
(costs little), or if the initial value is modi�ed but it was already
allocated (a cost in-between). This intuition is the rationale behind
the storage cost model used in Ethereum-based blockchains [1–3].
Let E0 be the initial value, E the current value and E ′ the value to
be assigned to a key. The cost model for storage costs in Ethereum
[37] precisely distinguishes the following cases:

(i) c(cold)=2,100: cost of the �rst access (load or store);
(ii) c(warm-load)=100: cost of next (non-�rst) read accesses;
(iii) c(set-store)=20,000: if E ≠ E ′ ∧ E0 = E ∧ E0 = 0, i.e., a store in

which the key contained initially a zero when the execution
began (which means in Ethereum that it was not allocated), the
current value before the store is (again) a zero (as initially) and
it is set to a value di�erent from zero (intended to capture high
price for new allocations);

(iv) c(reset1-store)=2,900: if E ≠ E ′∧E0 = E∧E0 ≠ 0, i.e., when the key
contained initially a non-zero value (i.e. it is already allocated)
and the current value before the store is (again) the initial one
and we are changing this value.
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(v) c(reset2-store)=100: if E = E ′ ∨ E0 ≠ E , i.e., when the initial value
has already been changed or we are reassigning the same value
that is currently in the key (intended to capture that a set or
reset1 for the change has already been paid before);

As seen above, the di�erences in the costs of each type (i)-(v) are
enormous and safely assuming the largest cost (c(cold)+c(set-store) =
22, 100 for stores and c(cold) = 2, 100 for loads), as done in existing
gas analyzers [7, 12] and also in the gas estimator of the Solidity
compiler solc, is an overly-pessimistic approach that might render
useless bounds, as they are often too far from the actual cost. The
problem investigated in the paper is the synthesis of storage bounds
for the above dynamic cost model, statically obtained from the code,
using a sound and yet precise approach. In particular, we aim at
synthesizing a storage bound of the form:

*� = D18∗2,100+D188∗100+D1888∗20,000+D18E∗2,900+D1E∗100

which is larger or equal than the actual cost of any execution of the
program, whereD1G denotes an upper bound on the number of each
case G ∈ {8, .., E}. Each D1G can be constant (including zero) but in
the general case can be a symbolic expression (e.g., when storage in-
structions appear inside loops). The main di�culty of the problem is
to accurately associate and assign each storage access to (safe) costs
(8)−(E), in particular, because as storage opcodes can appear within
conditionals and loops, their type might not be the same across
execution. A simple case is a load to a single key within a loop that
makes = iterations that would cost c(cold)+(=−1)∗c(warm-load), i.e.,
D18 = 1, D188 = = − 1, D1888 = D18E = D1E = 0. A more contrived case
would be a store in the branch of a conditional statement of a loop, as
in for(i=0;i<n;i++){if (*) key=*;}, where we use * to ignore
the code and key is a storage location. In this case, as we will justify
through the paper, we aim at inferring that theworst case cost of this
loop is bound by c(cold)+⌈=/2⌉∗c(set-store)+⌊=/2⌋∗c(reset2-store),
i.e., D18 = 1, D188 = = − 1, D1888 = ⌈=/2⌉ and D1E = ⌊=/2⌋ (and
D18E = 0). This is a safe and accurate sound bound because –
statically, without prior knowledge on the initial value of the key
nor the previous value– the worst case occurs when key initially
contains zero and in the loop key alternates between a zero and
any non-zero value.

The solution. The veri�cation problem has two components: (a) a
storage analysis which is able to detect the keys that each store/load
instruction is accessing and (b) the resource analysis problem that
given the inferred keys computes a sound upper bound for the
storage costs. As regards (a), it is a type of memory analysis, a
problem that has been well-studied in the literature for di�erent
languages (e.g., pointer and shape analysis for C [9], object-oriented
languages [27, 33], or for Ethereum volatile memory [8, 18, 22, 26]).
The particularities of the Ethereum’s storage analysis are related to
inferring the keys when dynamic arrays and mappings are accessed,
as such keys are computed by applying hash functions. We present
the basis of a storage analysis to statically infer such more contrived
storage accesses. After this, as in any memory analysis, the output
of the storage analysis is a function that, for each storage instruction
in the code, associates to it either a unique key, or a disjunction of
keys that this instruction might access, or ⊤ denoting the lack of
information about the key being accessed.

The important challenge and our main contribution is related
to component (b). Our solution is to rely on an o�-the-shelf re-
source analyzer that works for static cost models but, rather than
assigning the largest cost as in gastap and asparagus, we assign
c(warm-load) for load and c(reset1-store) for store, when the keys
are not⊤. Using such a cost model, the analysis will obviously yield
an unsound bound, named*�D , which will be “corrected” in a pos-
terior stage. For a ⊤ key, it is unavoidable to assume a worst-case
cost c(cold) for load and c(cold)+c(set-store) for store since we have
lost track of the accessed key and we will not be able to correct
these cases. Essentially, the correction problem has two dimen-
sions: (1) inferring the worst-case number of (non ⊤) cold accesses
and obtaining a corresponding correction �2>;3 for the unsound
assumption on them, and (2) detecting the worst-case number of
(non ⊤) set stores and obtaining a corresponding correction �B4C
for the corresponding unsound gap. This is a challenging problem
as it requires �nding the trace that has the worst case in number
of cold accesses and extra cost in store operations. We solve it by
means of a new Max-SMT encoding that requires �nding the op-
timal solution. Once we have obtained �2>;3 and �B4C the sound
upper bound is obtained as*� = *�D +�2>;3 +�B4C .

Contributions. The main contributions of this paper are: (1) We
develop a storage analysis for the storage layout generated by the
most-used Solidity compiler, solc. Our analysis is able to infer
the keys accessed by the storage opcodes, even for nested data
structures which are accessed by means of hash functions. (2) We
introduce a new approach to accurately infer storage bounds based
on using an o�-the-shelf resource analyzer with a cost model that,
unless there is no information on the accessed key, does not assume
the worst-case cost –and hence yields unsound results– which are
then corrected in a posterior stage. (3) We present a novel Max-SMT
encoding to compute the soundness corrections to the bounds ob-
tained by using resource analysis in an unsound way. The problem
amounts to �nding the worst case cost trace in number of cold
accesses and also in worst cost of the store operations of all possi-
ble executions. (4) We undertake our experimental evaluation by
integrating our extensions within two existing resource analyzers:
gastap [7] and asparagus [12]. Our experiments on more than
400,000 functions obtained from more than 37,000 smart contracts
show that we greatly improve the storage bounds obtained by these
systems. The improvements range from 2.5% to 80% (achieving on
average between 13-17% of further precision).

2 Language and Storage Costs

Ethereum’s cost model [37] is given at the level of its bytecode
language, called EVM. Hence, gas analyzers for smart contracts are
de�ned on the bytecode language that we brie�y describe in Sec. 2.1
and which is also used to de�ne our analysis. While our work
focuses on inferring the storage costs, in Sec. 2.2, we overview the
main features of the full EVM gas model, as it is part of the gastap
and asparagus systems on which we perform our experimental
evaluation. Finally, Sec. 2.3 formalizes the storage costs that we aim
at statically approximating later in Sec. 3.

2.1 Bytecode Language

To formalize our approach, we use an EVM-like bytecode language
with two basic opcodes to access the storage: LOAD and STORE to, resp.,
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⟨(,� ⟩ →POP ⟨( [1:=],� ⟩

⟨(,� ⟩ →DUPx ⟨ [( [x−1] | ( ],� ⟩

⟨(,� ⟩ →SWAPx ⟨(′,� ⟩, (′ [0] = ( [x], (′ [x] = ( [0], (′ [8 ] = ( [8 ] ∀8 > 0, 8 ≠ x

⟨(,� ⟩ →ADD ⟨ [ (( [0]+( [1] ) | ( [2:=] ],� ⟩

⟨(,� ⟩ →LOAD ⟨ [� [( [0] ] | ( [1:=] ],� ) ⟩

⟨(,� ⟩ →STORE ⟨( [2:=],� ′ ⟩,� ′ [( [0] ] = ( [1]� ′ [8 ] = � [8 ] ∀8 ≥ 0, 8 ≠ ( [0]

⟨(,� ⟩ →KECCAK ⟨ [keccak(( [0] ) | ( [1:=] ],� ⟩

Figure 1: Semantics of Selected Opcodes

read and write from it; stack-manipulating opcodes (e.g., DUP, SWAP,
POP); arithmetic and bit operations (e.g., ADD); control-�ow opcodes
(e.g., JUMP); and KECCAK256 that computes a 256-bit cryptographic hash
of a given input data. Our implementation works with the full EVM
bytecode language [37] that additionally includes a volatile memory,
omitted because it does not in�uence the de�nition of our analysis,
and other blockchain-speci�c operations.

The rules in Fig. 1 de�ne the semantics of the bytecode language
for some selected opcodes. A program state S has the form ⟨(,�⟩

where the stack ( is represented as a list (standard list operations
are used to access and modify it) and ( [0] corresponds to the top
of the stack, and the storage � is a mapping from keys to values
such that, given a key : , � [:] contains the value stored at : . The
instruction POP removes the topmost element from the stack; DUPx
duplicates the element in position x and adds it as the new topmost
element; SWAPx swaps the topmost element with the one in position
x+1; ADD adds the two topmost values and leaves the result on top
of the stack; LOAD retrieves a storage key from the top of the stack,
reads the value contained at that key in the storage and leaves it
at the top of the stack; STORE retrieves both the storage key and the
value to be written from the stack and makes the write operation on
the storage; and KECCAK256 computes the keccak-256 cryptographic
hash of the data on top of the stack. Note that EVM KECCAK256 opcode
takes the input data from volatile memory. For simplicity of the
formalization, we have omitted the memory and consider in this
paper that the input data is taken from the stack.

Executions in Ethereum invoke one of the public functions in the
corresponding smart contract (i.e., a smart contract is a program that
can be executed on the blockchain) and this is how we de�ne the
notion of execution trace. Given a public function 5 and an initial
state S0, we denote by C ≡ S0 →∗ S= the trace C corresponding
to the execution of 5 from S0, where as usual →∗ denotes the
successive application of the rules in Fig. 1 to the opcodes in 5 .

Example 2.1 (running example). The source code of our run-
ning example, shown in Fig. 2, has been taken from a real contract
named SalaryDistribution [4]. The shown fragment includes the
code of function setSalary, line 5 (L5), which receives the address
of an employee and an amount and sets this amount as her salary,
saving the information in two data structures in storage: a map-
ping with the salaries for each employee and an array of actAddr,
which saves the addresses of the active employees. When the re-
ceived amount is zero (and there was a previous salary for the
employee), it removes the employee from the array (L9) using func-
tion removeAddressFromArray (L13) that includes a loop to search for
the address and remove it. The source code is shown only for read-
ability, because our technique is applied at the EVM bytecode level.
Below the Solidity, we show the EVM bytecode that is generated to
perform a storage access to actAddr[i] which illustrates the use of

keccak to compute the key for accessing array elements, and will
be explained in Sec. 2.3.

To the right of Fig. 2 we show the control �ow graph (CFG)
for setSalary and include in each block of the CFG the following
information: the line number of the Solidity code that the block
corresponds to, all storage accesses performed by such line anno-
tated with the key accessed. For instance, L15.2 LOAD keccak(1)+8
// actAddr[i] corresponds to the second storage access made at the
source code line 15 in the Solidity code (namely by actAddr[i]),
which is compiled to a LOAD that will access the key keccak(1)+8 .
Observe the loop formed by nodes L14 and L15 and note that L16
and L17 are outside the loop because of the break statement.

2.2 Gas Model and Goal

A cost model is a function which assigns a cost to each language
instruction. We distinguish two features of cost models: a static cost
model assigns a cost to an opcode that can be determined statically
as it does not depend on the execution context, and a dynamic

cost model assigns di�erent costs to an opcode depending on the
execution context. This context might involve the current state only
(e.g., the cost might depend on the current value of an operand) but
it might also involve previous states, as it happens in the storage
cost model of Ethereum. Regardless of being static or dynamic, a
cost model is symbolic when it assigns non-constant costs that are
de�ned in terms of state variables. Let us characterize the EVM
cost model, as de�ned in [37], which is static for some opcodes and
dynamic for others, and assigns constant and symbolic costs:

i Static and constant costs: Most stack opcodes have a static and
constant cost (2 or 3 units). The opcodes to operate on the volatile
memory (omitted here) also have a static constant cost (3 units).

ii Static and symbolic costs: Some arithmetic opcodes have a static
cost that is symbolic because it depends on the value they op-
erate on. As an example, the cost of the exponential opcode
EXP is de�ned as 10+50 ∗ (1+⌊;>6256 (E)⌋) where E is the value
corresponding to the exponent (if it is not 0).

iii Dynamic and constant costs: As described in Sec. 1, the cost model
for the load/store opcodes is dynamic and far more complex. It
will be precisely de�ned in Sec. 2.3.

Cases i and ii are accurately captured by gastap and asparagus: i
is straightforward and ii requires the resource analysis to work with
symbolic expressions. In the above EXP example, as E will be stored
in the second topmost stack position, the cost model assigns to it
the value 10+50 ∗ (1+⌊;>6256 (( [1])⌋), where ( [1] is a variable of
the program being analyzed and hence a symbolic resource analysis
will be able to handle it properly. Our challenge is to handle case
iii, as existing analyzers approximate it inaccurately by making a
worst-case static assumption, as already mentioned in Sec. 1.

2.3 Storage Layout and Gas Cost

Storage layout. We consider the storage layout produced by the
most-used Solidity compiler, solc [6]. In this layout, state variables
of value data types and �xed-length data structures (�xed-length
arrays and struct variables) are directly stored in the initial keys,
while the keys used for nested data structures such as dynamic
arrays and mappings are computed using the keccak-256 crypto-
graphic hash function. For instance, if an array is to be stored at key
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1 contract Sa laryDis t r ibut ion {
2 mapping( address => uint256 ) private s a l a r i e s ;
3 address [ ] private actAddr ;
4

5 function setSa lary ( address employee , uint256 amount ) {
6 i f ( amount > 0 && sa l a r i e s [ employee ] == 0) {
7 actAddr . push ( employee ) ;
8 } else i f ( amount == 0 && sa l a r i e s [ employee ] > 0) {
9 removeAddress ( employee ) ;

10 }
11 s a l a r i e s [ employee ] = amount ;
12 }
13 function removeAddress ( address employee ) in te rna l {
14 for (uint256 i = 0 ; i <actAddr . length ; i ++) {
15 i f ( actAddr [ i ] == employee ) {
16 actAddr [ i ] = actAddr [ actAddr . length − 1 ] ;
17 actAddr . pop ( ) ;
18 break ;
19 }
20 }
21 }
22 }

23 / / EVM bytecode of acces s to actAddr [ i ] at L15
24 / / s tack [ top ] conta ins employee
25 / / s tack [ top −1] conta ins i
26 PUSH 0x01 / / P laces key of actAddr . l ength on s tack
27 DUP3 / / Dupl i ca tes i on top of s tack
28 DUP2 / / Dupl i ca tes actAddr . l ength key on s tack
29 LOAD / / Loads actAddr . l ength
30 DUP2 / / Dupl i ca tes i on top of s tack
31 LT / / Out−of −bounds check ( i <actAddr . l ength )
32 ISZERO / / Negates cond i t ion for checking e r ro r
33 PUSH 0x01ce / / Address of e r ro r block
34 JUMPI / / Jumps to e r ro r block i f out of bounds
35 JUMPDEST / / S t a r t of block
36 SWAP1 / / Swaps i and actAddr . l ength key on s tack
37 KECCAK256 / / Computes keccak (1)
38 ADD / / Computes keccak (1)+ i
39 LOAD / / Loads actAddr [ i ] from key keccak (1)+ i

L6.1: LOAD keccak(4<?;>~44 ·0) // salaries[employee]

L7.1: LOAD 1 // actAddr.length

L7.2: STORE 1 // actAddr.length

L7.3: LOAD keccak(1)+;4=6Cℎ−1 // actAddr[actAddr.length-1]]

L7.4: STORE keccak(1)+;4=6Cℎ−1 // actAddr[actAddr.length-1]]

L8.1: LOAD keccak(4<?;>~44 ·0) // salaries[employee]

L14.1: LOAD 1 // actAddr.length

L15.1: LOAD 1 // actAddr.length

L15.2: LOAD keccak(1)+8 // actAddr[i]

L16.1: LOAD 1 // actAddr.length

L16.2: LOAD keccak(1)+;4=6Cℎ−1 // actAddr[actAddr.length-1]]

L16.3: LOAD 1 // actAddr.length

L16.4: LOAD keccak(1)+8 // actAddr[i]

L16.5: STORE keccak(1)+8 // actAddr[i]

L17.1: LOAD 1 // actAddr.length

L17.2: LOAD keccak(1)+;4=6Cℎ−1 // actAddr[actAddr.length-1]]

L17.3: STORE keccak(1)+;4=6Cℎ−1 // actAddr[actAddr.length-1]]

L17.4: STORE 1 // actAddr.length

L11.1: STORE keccak(4<?;>~44 ·0) // salaries[employee]

Figure 2: Excerpt of smart contract and a reduced CFG containing storage accesses (annotated with identifier and key)

8 , the content of 8 is just the array length, and the array elements
are stored in a sequence of consecutive keys starting at keccak(8). It
is assumed that the keccak function will never produce any con�ict
when used with di�erent arguments for computing storage keys,
nor the keys computed using this mechanism will overlap with
each other, regardless of data structures length. In case a mapping
is given a key 8 , the content of key 8 remains empty and the key for
any index : in that mapping is obtained by keccak(: ·8), where the
operation : ·8 is the concatenation of the values : and 8 .

Example 2.2. The EVM code shown at Fig. 2 (L26-L39) is gener-
ated to compute actAddr[i]. As actAddr is the second state variable,
it is given key 1 (salaries is given key 0). According to the storage
layout described above, the length of actAddr is actually stored at
key 1 and its contents are located in consecutive keys starting at
keccak(1). The EVM code leads to a partitioning into two blocks, a
�rst block (from L26 to L34) which loads the value of the length and
checks if the position accessed is within the bounds of the array. The
second block (from L35 to L39) that performs the hash operation
keccak(1) and adds 8 to it in order to compute the key of actAddr[i].
The comments to the opcodes in Fig. 2 explain the bytecode step-by-
step. In contrast, accesses to map elements, like salaries[employee]

are performed by applying keccak to the concatenation of the key
and the identi�er of the map, i.e., keccak(employee·0).

Gas cost. The next de�nitions precisely describe the dynamic
cost model for storage opcodes which requires to consider the

execution trace from the �rst step. The �rst de�nition de�nes what
is known as cold storage access, that applies to both load and store.

De�nition 2.3 (cold). Given the execution trace C ≡ S0 →∗

S= . We say that a trace step B ≡ ⟨(8 ,�8 ⟩ →1 ⟨(8+1,�8+1 ⟩∈C , with
1∈{LOAD, STORE}, is a cold access i�∀9<8 s.t. ⟨( 9 ,� 9 ⟩→1′ ⟨( 9+1,� 9+1 ⟩ ∈

C and 1′∈{LOAD, STORE}, (8 [0]≠( 9 [0]. The cost of B is cost(B )=c(cold).

The de�nition above checks that the same key has not been
accessed yet along the current execution. The concrete value of
c(cold) (and the other coming costs 2 (- )) was given in Sec. 1. After a
cold access to a key, the next load accesses to this key are accounted
as warm accesses (with a much smaller cost) as stated below.

De�nition 2.4 (warm-load). Given the execution trace C≡S0→
∗S= .

We say that a trace step B ≡ ⟨(8 ,�8 ⟩ →LOAD ⟨(8+1,�8+1 ⟩ ∈ C is a warm-

load i� exists a previous step ⟨( 9 ,� 9 ⟩ →1′ ⟨( 9+1,� 9+1 ⟩ ∈ C , 0≤ 9<8 s.t.
1′∈{LOAD, STORE} and (8 [0]=( 9 [0]. The cost is cost(B)=c(warm-load).

Example 2.5. Let us focus on map salaries �rst, which is accessed
at L6.1, L8.1 and L11.1. identi�ers. All these accesses are to the same
mapping (which is at key 0) and at the same index (employee), and
thus, they all access the same storage key (keccak(employee·0)). It
can be observed from the CFG that there exist paths (and hence
traces) making three accesses to this key but only the �rst one has
cost c(cold). Let us now observe actAddr.length, at key 1, that is the
key of many opcodes: L7.1, L7.2, L14.1, L15.1, L16.1, L16.3, L17.1 and
L17.4. Following the dashed path (that includes the loop), we can
see that the key 1 is accessed 4+2∗actAddr.length times, but only the
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�rst of such accesses made at the �rst iteration of the loop of L14,
has cost c(cold). The remaining LOAD accesses will have warm-load

cost. The cost of STORE instructions will be explained later. Finally,
array contents are read at L7.3, L15.2, L16.2, L16.4, and L17.2, and
modi�ed at L7.4, L16.5 and L17.3. Accesses at L15.2 will be always
cold because each access corresponds to a di�erent array element
(and hence key). If the last element of the array is not removed,
L16.2 is cold, and otherwise is warm-load.

The cost of store accesses is more complex. It distinguishes the
three types of accesses iii-v described in Sec. 1. The most expensive
store accesses are named set and de�ned as follows.

De�nition 2.6 (set-store). Given the execution trace C ≡ S0 →
∗ S=

with S0 ≡ ⟨(0,�0 ⟩. We say that a trace step B ≡ ⟨(8 ,�8 ⟩ →STORE

⟨(8+1,�8+1 ⟩ ∈ C is a set-store i� �0 [:4~ ] = 0, �8 [:4~ ]=�0 [:4~ ], and
�8+1 [:4~ ]≠�8 [:4~ ], where:4~=(8 [0]. The cost is cost(B )=c(set-store).

Basically, a set store is a way to easily capture assignments to
the storage for which a high price needs to be paid because they
are considered new allocations. Note that, besides the assignments
in which the key is �rst changed from zero to a di�erent value,
set-store also applies every time the key is reassigned to zero and
then changed back again to non-zero.

The next type of reset has a middle price. It is intended to capture
assignments of values to the storage which, as in the previous case,
are changing the contents of a key whose current value is the same
as the initial one, but this initial value is di�erent form zero.

De�nition 2.7 (reset1-store). Given the execution trace C ≡ S0 →
∗

S= with S0 ≡ ⟨(0,�0 ⟩. We say that a trace step B ≡ ⟨(8 ,�8 ⟩ →STORE

⟨(8+1,�8+1 ⟩ ∈ C is a reset1-store i��0 [:4~ ]≠0,�8 [:4~ ]=�0 [:4~ ], and
�8+1 [:4~ ]≠�8 [:4~ ], where:4~=(8 [0]. The cost cost(B )=c(reset1-store).

The cheapest form of stores corresponds to the case in which
the current value is already di�erent from the original. Hence, we
must have necessarily paid an expensive set or a middle cost reset1
before, and thus this next change to that key is cheaper.

De�nition 2.8 (reset2-store). Consider the execution trace C≡S0→
∗S=

with S0≡⟨(0,�0 ⟩. We say that a trace step B ≡ ⟨(8 ,�8 ⟩ →STORE

⟨(8+1,�8+1 ⟩ ∈ C is a reset2-store i� �8+1 [:4~ ]=�8 [:4~ ] or �0 [:4~ ] ≠

�8 [:4~ ], where :4~=(8 [0]. The cost is cost(B ) = c(reset2-store).

Example 2.9. The cost of access L11.1 depends on the value of
amount and on the value stored at salaries[employee] and is dynami-
cally computed as follows: (1) if the initial value was 0 and amount

≠ 0, the cost is c(set-store); (2) if the initial value was ≠ 0 and amount

changes the initial value, it is c(reset1-store); and (3) when amount

does not change the initial value, it is c(reset2-store). Additionally,
all accesses to write the contents of actAddr (L7.4, L16.5 and L17.3)
might have cost c(set-store) or c(reset1-store) as they all write a value
di�erent from the originally stored at its storage key.

Finally, we can de�ne the storage cost of an execution trace by
assigning zero to all non-storage opcodes and applying the corre-
sponding case of the above de�nitions when executing load/store.

De�nition 2.10 (storage cost of a trace). Consider the execution
trace C ≡ S0 →

∗ S= . Let B8 ≡ S8 →1 S8+1 be the 8-th execution step
of C , the cost of the step cost(B8 ) is zero if 1 ∉ {LOAD, STORE} and
otherwise is the cost of the step according to Defs. 2.3-2.8. The
storage cost of the trace is de�ned as cost(C ) =

∑=
8=0 cost(B8 ) .

3 Precise Storage Costs Upper Bounds

This section presents our approach to the synthesis of storage cost
upper bounds. First, Sec. 3.1 presents how to infer the information
that the storage analysis must provide to the next steps. Second,
Sec. 3.2 introduces the cost model that we use in order to infer the
initial “unsafe” upper bounds using an o�-the-shelf resource ana-
lyzer. Sec. 3.3 presents ourMax-SMT encoding to �nd the correction
to soundly account for cold accesses and set stores.

3.1 Storage Analysis

As in any static analysis, the �rst step is the construction of CFG
of the program to be analyzed. For the EVM, the construction of a
precise CFG has some challenges and has been subject of previous
research [17, 18, 29]. In what follows, we simply assume that we
have the CFG of the code, obtained by any of these techniques,
given as a graph whose vertices are blocks containing jump-free
sequences of EVM opcodes as, for instance, in the CFG in Ex. 2.1.

Abstract domain. We now de�ne the abstract domain M to rep-
resent abstract keys in the analysis. An abstract key is a pair of
the form ⟨<,>⟩ which enables: (1) representing the keys which are
numbers by setting< to n and using only > for the key number,
and (2) having a symbolic representation for nested data structures
where< is a symbolic representation of the key position returned
by keccak and > is an o�set used to access the particular position
inside the data structure. The component< is represented in the
domain as h(:), being : the key of the element accessed in the data
structure (i.e., the parameter of keccak) and h a symbol. The analysis
also uses a �nite set of symbols P that include h and identi�ers
used in the program to compute the keys. As usual, the domain
uses ⊤ to represent a value unknown.

De�nition 3.1 (storage analysis abstract domain). The storage
analysis abstract domainM is de�ned asM = {⊥} ∪M′, where
M′

= {⟨0, =⟩ | 0 ∈ {n,⊤}∪{ℎ(<), ℎ(?⊙<) | ℎ ∈ P∧< ∈ M′∧? ∈

N} ∧ = ∈ N}, N = N ∪ {⊤} ∪ P.

? ⊙< represents in the abstract domain the concatenation oper-
ator · used for accessing maps, where< ∈ M is the key of the map
in storage and ? ∈ N is the map element being accessed.

Example 3.2. The abstract representation of the keys in our run-
ning example are: ⟨n, 1⟩ for the key storing the length of the array;
⟨h(4<?;>~44 ⊙ ⟨n, 0⟩), 0⟩ for the key of salaries[employee], all ac-
cesses to actAddr[i] at L15.2, are represented by ⟨h(⟨n, 1⟩),⊤⟩, which
abstracts away the o�set as variable i changes at each iteration of
the loop, i.e., we only know that the array actAddr is being accessed
but the concrete value of the index is lost.

Fixed-point computation. Given the abstract domain, the de�ni-
tion of the storage analysis is a standard �ow-sensitive analysis
that traverses the CFG of the program and analyzes each block by
applying the analysis transfer function to the sequence of opcodes
within the block. The transfer function de�nes how each instruction
modi�es the abstract state which contains the abstract information
gathered in the analysis (see e.g. [28]). In our case, as the analysis is
developed at the level of the EVM bytecode in Sec. 2.1 and the keys
are being computed and propagated by using the stack, the abstract
state is made up of the stack contents. The technical de�nition of
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the transfer function is standard and, rather than formalizing it,
we just illustrate how the most relevant opcodes for creating and
computing the storage keys operate. The �rst example is the opcode
ADD that, when used to compute keys, retrieves the (abstract) keys
from the two top-most stack positions of the abstract state (e.g.,
⟨<0, =0⟩ and ⟨<1, =1⟩) and pushes to the stack ⟨<0, =0⟩ ⊕ ⟨<1, =1⟩

where ⊕ is de�ned as follows, with 8 ∈ {0, 1}:

⟨<0, =0⟩⊕⟨<1, =1⟩ =




⟨<1−8 , =0+=1⟩ <8 = n ∧ =0, =1 ∈ N,

⟨<1−8 ,⊤⟩ <8 = n ∧ (=0 ∉ N ∨ =1 ∉ N),

⟨⊤,⊤⟩ otherwise

As another example, the analysis of KECCAK256 assigns to the stack
variable representing the top of the stack the abstract key ⟨h(<), 0⟩
where< is the input data used by the keccak. Depending on the
type of data structure accessed,< can be an abstract key if an array
is being accessed, or the result of concatenating an abstract key
with the symbol : in the case of an element with key : in a mapping.

Example 3.3. Let us give some intuition of the analysis of the
bytecode in Fig. 2 which corresponds to the access to element i

in array actAddr in the for loop at L15. At the beginning of the
block starting at L35, the stack contains ⟨n, 80 ⟩ (an initial value for
variable i) and ⟨n, 1⟩ (the key for the array) in the topmost elements
of the stack. This initial state for the stack was obtained from the
output state of the previous block. Now, the abstract key ⟨n, 1⟩ is
taken by the KECCAK256 opcode from the top of the stack and assigns
⟨h(⟨n, 1⟩), 0⟩ to the topmost element. The next opcode is ADD that
performs ⟨h(⟨n, 1⟩), 0⟩ ⊕ ⟨n, 80 ⟩=⟨h(⟨n, 1⟩), 80 ⟩. Accesses to mappings
behave di�erently. For example, accesses to salaries[employee], L6.1,
L8.1 and L11.1 apply keccak to the concatenation of the symbol
4<?;>~44 to the map index (0). The application of the transfer
function of our analysis reaches the KECCAK256 instruction with a
stack containing the abstract values ⟨n, employee⟩ for the mapping
key and ⟨n, 0⟩ for the mapping identi�er, and returns ⟨h(4<?;>~44 ⊙

⟨n, 0⟩), 0⟩ as abstract key for the map element.

Another standard feature of a static analysis is to be context-

sensitive, i.e., as a block in the CFG might be reached from sev-
eral blocks, rather than keeping a single abstract value (for each
represented variable in the state), we keep a set of possible keys
which represent such disjunction of paths. In order to guaran-
tee termination in the presence of loops, after a �xed number
of iterations, the analysis takes the join ⊔ of the reached (ab-
stract) states. As usual, 0 ⊔ ⊥ = ⊥ ⊔ 0 = 0, and other cases
boil down to the join of each component of the pairs separately:
given =1, =2 ∈ N , =1 ⊔ =2==1 if =1==2 and ⊤, otherwise. Given
<1,<2 ∈ {n,⊤} ∪ {ℎ(<), ℎ(? ⊙<) | ℎ ∈ P ∧< ∈ M′ ∧ ? ∈ N},
then

<1 ⊔<2 =





n <1=n ∧<2=n

ℎ (<′
1⊔<

′
2 ) <1=ℎ (<

′
1 ) ∧<2=ℎ (<

′
2 )

ℎ ( (?1⊔?2 )⊙(<′
1⊔<

′
2 ) ) <1=ℎ (?1⊙<

′
1 )∧<2=ℎ (?2⊙<

′
2 )

⊤ otherwise

Example 3.4. The abstract value in the �rst iteration of the anal-
ysis of block L15 for the access L15.2 is {⟨h(⟨n, 1⟩), 0⟩}. In the second
iteration it is joined to {⟨h(⟨n, 1⟩), 0⟩, ⟨h(⟨n, 1⟩), 1⟩}, and so on for
the next iterations. After reaching a �xed number of iterations, the
states are joined into {⟨h(⟨n, 1⟩),⊤⟩} and the analysis �nishes.

Analysis output. Once the analysis �nishes, it provides us with a
function q that, at each program point that contains a load or store
opcode, yields a sound over-approximation of the (abstract) storage
keys that might be accessed at this instruction:

De�nition 3.5 (storage analysis function q). Let %% be the set of
program points. The storage analysis function q : %% ↦→ ℘(M) is a
mapping that, for each programpoint?? that contains {LOAD, STORE},
q (??) returns the set of abstract keys that might be accessed at ?? .

Example 3.6. The storage analysis output for selected points:
Accesses q Source
L14.1, L15.1, L16.[1,3], L17.[1,4] ⟨n, 1⟩ actAddr.length

L15.2, L16.4, L16.5 ⟨h(⟨n, 1⟩),⊤⟩ actAddr[i]

L6.1, L8.1, L11.1 ⟨h(employee ⊙ ⟨n, 0⟩), 0⟩ salaries[employee]

Theorem 3.7 (Soundness of Storage analysis). Given an exe-

cution trace C , the keys used in storage access instructions LOAD and

STORE are soundly represented by the analysis output function q .

proof sketch. The analysis produces, for each program point
?? , a �nite set q (??) ∈ ℘5 (M) where ℘5 (M) is the set of all �nite
subsets ofM, and we have to prove that, for each step that executes
a storage access instruction, there exists some element ( ∈ q (??)

of the abstract domainM that represents the concrete key accessed
in that step. We de�ne for ℘5 (M) an abstract state that maps
stack positions to elements in ℘5 (M), and a transfer function that
computes the changes to the abstract state when executing stack
and storage handling opcodes, and keccak computations. The proof
is then by induction on the length of the traces considering those
opcodes, proving that the theorem holds for each case of the transfer
function. Since M is an in�nite set and ℘5 (M) can contain non-
�nite ascending chains, we need to de�ne a widening operator that
satis�es the ascending chain condition to guarantee termination [14].
We use the operator ∇� = {⊔�}, where � ∈ ℘5 (M). □

3.2 Using an O�-the-Shelf Resource Analysis

Overview. Let us �rst give an overview of the reasoning in our
approach. There are two unsound assumptions: As regards loads,
the idea is that all load accesses not being ⊤ will be accounted as
warm accesses within the cost model. Hence, we might be missing
the amount of c(cold)−c(warm-load) if this access is in fact a cold
access. Therefore, if there are �! loads with a cold access to a
position, then we have to add as load-correction�2>;3=�!∗(c(cold)−
c(warm-load)).

For the store opcodes, following the EVM gas model for the store
in Sec. 2.2, we have the following result.

Lemma 3.8. Let BC>A4 (?, E1 ), BC>A4 (?, E2 ), . . . , BC>A4 (?, E= ) be a se-

quence of store operations to the same key ? where all accesses are

warm. Then, the worst-case gas cost is
{
(c(set-store)+c(reset2-store))∗=/2 if = is even

(c(set-store)+c(reset2-store))∗(= − 1)/2 + c(set-store) otherwise.

Proof. First, we note that the worst-case gas cost for two consec-
utive stores in the same position (assuming the �rst one is warm)
is c(set-store)+c(reset2-store), since only one of both can change
the current value from the initial one (E0) to a value di�erent
from the initial one (which is required to pay the cost c(set-store)
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when E0 = 0). Now, we prove the result by induction on the
size of the sequence. If = = 0 it holds trivially. Otherwise, if =
is even, by the induction hypothesis, we have that the worst-case
cost for the sequence BC>A4 (?, E1 ) , BC>A4 (?, E2 ) , . . ., BC>A4 (?, E=−2 ) is
(c(set-store)+c(reset2-store))∗(=−2)/2 and theworst-case for the last
two stores is c(set-store)+c(reset2-store), and hence it holds. Finally,
if = is odd (and hence = − 1 is even), by the induction hypothesis,
the worst-case cost for BC>A4 (?, E1 ) , BC>A4 (?, E2 ) , . . ., BC>A4 (?, E=−1 )
is (c(set-store)+c(reset2-store))∗(= − 1)/2, which implies the result,
since the worst-case cost for the last store is c(set-store). □

Moreover, assuming that we do not have information about the
values that are stored, this upper bound is tied since there exists
a sequence with the given cost: the one where E0 = 0 and, then,
we alternate an store operation with a value di�erent from E0 with
a store operation with E0 again. Note also that if the initial value
is not 0 then the result of Lemma 3.8 is the same but replacing
the c(set-store) cost by c(reset1-store), which means we could easily
produce a cost that is parametric on the initial values of the storage.

Using Lemma 3.8, the idea is to assign to every store operation

a cost of c(set-store)+c(reset2-store)
2 and, since this is unsound if we

have an odd number of stores to the same key (since we only

add c(set-store)+c(reset2-store)
2 instead of c(set-store) for the last store

to that key), we have to correct this approximation by computing
separately the worst case $( in number of odd stores at di�erent
keys and add�B4C1 = $( ∗ (

c(set-store)+c(reset2-store)
2 − c(reset2-store)) to the

�nal cost. Additionally, if there are �( stores with a cold access to
a key (i.e., when this is the �rst access to such position key) then
we have to add �B4C2 = �( ∗ c(cold) to the cost since we have not
added any cost in this respect. Therefore, �B4C=�B4C1+�B4C2 will be
needed as store-correction. Altogether we have to obtain values for
�!,�( and$( , for a trace that maximize the value of�! ∗ (c(cold) −

c(warm-load)) +�( ∗ c(cold) +$( ∗ (
c(set-store)+c(reset2-store)

2 − c(reset2-store))

and add it to the result obtained from the o�-the-shell resource
analyser in order to �nally obtain a sound storage cost bound.

Using an o�-the-shelf resource analyzer. According to the overview
given above, we can use an o�-the-shelf resource analyze with the
following cost model that assigns described unsound costs to load
and stores (with no ⊤) and later correct them.

De�nition 3.9 (storage cost model, *�D , and *�E). Let q be the
storage analysis function in Def. 3.5, � be a storage access opcode
at program point ?? . The cost model CB assigns the cost:

CB (� ) =





c(warm-load) ¬hasTop(q (?? ) ) ∧ � ≡ LOAD,

c(cold) hasTop(q (?? ) ) ∧ � ≡ LOAD,
c(set-store)+c(reset2-store)

2 ¬hasTop(q (?? ) ) ∧ � ≡ STORE,

c(set-store) + c(cold) hasTop(q (?? ) ) ∧ � ≡ STORE,

0 otherwise

where hasTop(�) returns true if at least one element in � contains
⊤. Given a function 5 , the (unsound) storage cost upper bound of 5 ,
denoted *�D (5 ) is the result of applying a sound resource analyzer
using the cost model CB . The analyzer also computes for each block
in the CFG of 5 an upper bound on the number of visits,*�E , to it.

Multiple resource analyzers, that can be provided with any cu-

mulative cost model (i.e., any cost model that does not accumulate
negative costs), have been de�ned for imperative programming

languages by relying on di�erent formalisms (e.g., [7, 11, 19, 19,
21, 25, 31, 34, 34]). Both gastap and asparagus integrate resource
analyzers that can be used out of the box –by setting their cost
model CB– and produce *�D , and bound the visits *�E for each
block. Hence, more technical details for this stage are not needed.

Example 3.10. The application of the cost model to the storage
accesses of the running example we get:
Accesses Opcode CB

L6.1, L8.1, L14.1, L15.1, L16.[1,3], L17.1 LOAD c(warm-load)

L15.2, L16.[2,4], L17.2 LOAD c(cold)

L11.1, L17.4 STORE
c(set-store)+c(reset2-store)

2
L16.5, L17.3 STORE c(set-store) + c(cold)

Finally, the*�D cost obtained by a sound resource analyzer, such
as gastap and asparagus, using the storage cost model would be:

*�D = (5+2∗; )∗2 (F0A<−;>03 ) + (;+3)∗c(cold)+

2∗ c(set-store)+c(reset2-store)
2 + 2∗(2 (B4C−BC>A4 ) + c(cold))

The computation of the*�D also allows us to extract that the visits
for the blocks within the loop at L14 are*�E = actAddr.length.

3.3 Max-SMT Encoding for Corrections

This section presents our Max-SMT encoding to the problem of
�nding �!, �( and $( for the load and store corrections �2>;3 and
�B4C introduced in Sec. 3.2. In particular, we express the problem as
aMax-SMT problem using hard and weighted soft clauses, such that
the optimal solution to the problem will give us the needed values.
The di�culty of the encoding relies on how to handle loops since we
have to characterize all possible sequences (running the loops) that
can maximize the sum of the costs of having cold access for loads
and stores and keys with an odd number of store operations. Finally,
note that the problem can be encoded using weight because all costs
are given by three di�erent constants (see below for details).

DAG representation. In order to encode the problem, we take the
CFG of the program and generate from it, and from the bounds on
the visits *�E computed by the o�-the-shelf resource analyser in
Def. 3.9, a DAG representation with loop annotations. In this DAG,
we only keep the storage accesses � (both loads and stores) such
that ¬hasTop(�) (i.e., we use the outcome of the storage analysis as
well). The DAG soundly approximates the non-top storage accesses
in any trace of the execution. In order to ease the encoding, the DAG
is represented as a (tree) expression containing visits (r), branching
(b) and access (a) operations following this grammar:

⟨306⟩ ::= ⟨B4@_8=BCAD2C8>=⟩
⟨B4@_8=BCAD2C8>=⟩ ::= (⟨A4?4C8C8>=⟩ | ⟨1A0=2ℎ⟩ | ⟨0224BB ⟩)∗

⟨A4?4C8C8>=⟩ ::= r(⟨E8B8CB ⟩, ⟨B4@_8=BCAD2C8>=⟩)
⟨1A0=2ℎ⟩ ::= b(⟨B4@_8=BCAD2C8>=⟩, ⟨B4@_8=BCAD2C8>=⟩)
⟨0224BB ⟩ ::= a(“;” |“B”, (⟨:4~⟩)+ )

where E8B8CB is an arithmetic expression (*�E ), :4~ is any of the
non-top keys detected in the analysis, and ”l” and ”s” indicate resp.
whether the access is a load or a store. Note that access instructions
with several keys are expressing that we can choose one of the keys
every time we execute the instruction. Therefore, this behaviour
can be also expressed using access instructions with a unique key
(and branching). For this reason, to ease the presentation we will
assume that there is a single key in all access instructions.
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Example 3.11. The following expression captures the DAG of the
code in Fig. 2 (to the right we show the corresponding accesses):

(1) a(;, ⟨h(4<?;>~44 ⊙ ⟨n, 0⟩), 0⟩) L6.1
(2) b( a(;, ⟨h(4<?;>~44 ⊙ ⟨n, 0⟩), 0⟩) L8.1
(3) r(addr.length, a(;, ⟨n, 1⟩) a(;, ⟨n, 1⟩)) L14.1, L15.1
(4) a(;, ⟨n, 1⟩) a(;, ⟨n, 1⟩) a(;, ⟨n, 1⟩) a(;, ⟨n, 1⟩) L16.[1,3], L17.[1,4]

,
(5) a(;, ⟨n, 1⟩) a(B, ⟨n, 1⟩) L7.1, L7.2),
(6) a(B, ⟨h(4<?;>~44 ⊙ ⟨n, 0⟩), 0⟩) L11.1

The DAG includes the following information: row (1) includes the
accesses performed before the loop; row (2) shows the if-else with
both branches, the �rst branch including rows (2), (3) and (4), and
the second branch including row (5). Note that the loop, row (3),
includes its number of iterations and its accesses. In addition, at
row (6) we have the last access to write the map.

Max-SMT encoding. Let  be the set containing all di�erent keys,
let � be the set of all instructions (r,b or a) in the DAG. Let !: and
(: be resp. the set of load (with “l”) and store (with “s”) access
instructions at key : and �: = !: ∪ (: . In order to �nd the worst
case for �!, �( and $( , we need to �nd the number of storage
keys with an odd number of store operations and the keys that
have been accessed and whether they were �rst accessed with a
load operation or a store operation (which is more expensive) in
feasible traces in the DAG. To this end we will need: (i) Boolean
variables stating whether an instruction has been executed or not
in the trace; (ii) for some instructions, integer variables stating the
number of times the instruction has been executed in the trace and
(iii) for some instructions, integer variables indicating the �rst time
they were executed in the trace. The aim is to �nd an assignment
compatible with the given DAG that maximizes �! ∗ (c(cold) −

c(warm-load)) +�( ∗ c(cold) +$( ∗ (
c(set-store)−c(reset2-store)

2 ), which
will be achieved by adding soft constraints with weights in {c(cold)−

c(warm-load), c(cold),
c(set-store)+c(reset2-store)

2 } to force the Max-SMT
solver to �nd a solution that maximizes the sum of the weights of
the satis�ed soft constraints.

If there are no loops, we do not need to express the �rst time
an instruction is executed since the DAG syntactically expresses
which instruction goes �rst. But, in the presence of loops, this is
not the case anymore. For this reason, we de�ne the level of an
instruction as the number of A4?4C8C8>= instructions we need to
traverse to reach it. In any trace, all instructions at level 0 can occur
at most once and, if so, they are executed in a single step : (that
is consistent with the sequence of instructions of the DAG). For
instructions from level 1 on, this is not the case anymore. Since we
are interested in expressing the �rst time an instruction is executed,
and we want to express it in a way that we can constraint to only
feasible cases in the given DAG, we use a quite sophisticated de-
scription of the moment an instruction is executed. This description
is based on the levels. Assume the level of an instruction 8 is 9 , say
2. This means that our instruction is below 2 repetition instruc-
tions. Then, the �rst execution of our instruction will happen as
follows: (i) we execute the �rst repetition instruction at the step 580
(at level 0); (ii) in the A81 iteration of the �rst repetition instruction,
we execute the second repetition instruction at the step 581 (of the
round A81 of the �rst iteration at level 1) and (iii) in the A82 iteration
of the second repetition, we execute the instruction 8 at the step

582 (of the round A82 of the �rst iteration at level 2); and so on if we
have more nested repetitions. In general, in order to describe the
�rst execution of an instruction 8 that occurs at level 9 , we need
9 values 580, . . . 58 9 and 9 − 1 values A81, . . . A8 9 . Moreover, the �rst
occurrence of 8 at level 9 happens before the �rst occurrence of 8′ at
level 9 ′ if ⟨580, A81, 581, . . . A8 9 , 58 9 ⟩ <;4G ⟨58′0, A8′1, 58′1, . . . A8′ 9 ′ , 58′ 9 ′ ⟩,
where <;4G is the lexicographic comparison on sequences of (non-
negative) integers. With this representation of the �rst execution
of instructions, we can capture all possible traces (and hence en-
sure soundness) but also restrict many unfeasible situations adding
constraints (and hence keep precision), even when considering any
level of nested iterations. For every instruction 8 at (known) level 9
we denote by �8ABC (8) the sequence ⟨580, A81, 581, . . . A8 9 , 58 9 ⟩ and by
�8ABC? (8) its pre�x of size ? ≤ 2 · 9 + 1.

The encoding adds variables representing properties on the in-
structions and on the keys. In particular, for each instruction 8 in the
DAG (which can be a A4?4C8C8>=, a 1A0=2ℎ or an 0224BB) we create:

(1) An integer variable C8 , which indicates the number of times the
instruction 8 has been executed. Note that for instructions at
level 0, the value of C8 can only be 0 or 1. Moreover if 8 is a
1A0=2ℎ instruction then we introduce C08 and C08 to indicate resp.
the number of times we execute the �rst and the second branch.

(2) If level of 8 is 9 , then we have 9 integer variables 580 . . . 58 9 and 9−
1 integer variables A81 . . . A8 9 , which indicate the �rst execution
of the instruction 8 (if the instruction was executed, i.e. C8 > 0).

(3) We also add integer variables for the variables occurring in the
E8B8CB expressions of the repetition instruction, so we assume
the expression can be used in the encoding.

We add hard constraints on these variables to capture only feasible
traces in the given DAG. The following constraint states the condi-
tions on the �rst execution of all instructions in a sequence at level

9 : (4@ 9 (80, . . . , 8<) =
∧9

?=1
∧<−1

@=0 A8@? = A8@+1?∧
∧9−1

?=0
∧<−1

@=0 58@? =

58@+1? ∧
∧<−1

@=0
∧

8′∈D=34A (8@ ) (�8ABC2· 9 (8
′) ≠ �8ABC2· 9 (8@+1) ∨ 58′ 9 <

58@+1 9 ), where D=34A (8) includes all instructions that occur below
(including itself) the instruction 8 .
We add the following constraint for the instructions:

(1) for all instructions 80 . . . 8< in the initial sequence of DAG we
add

∧<
@=0 C8@ = 1, 5800 = 1 (if< > 0) and (4@0 (80, . . . , 8<).

(2) for every repetition instruction 8 at level 9 with E8B8CB expres-
sion 4 and sequence of instructions 80 . . . 8< we add: (4 > 0 ∧ C8 >

0)∨< = 0∨ ( (
∧<

?=0 C8? = 4∗C8 )∧(4@ 9+1 (80, . . . , 8<)∧ (
∧9

?=1 A80? =

A8? ) ∧ (
∧9−1

?=0 580? = 58? )∧ (
∧<

@=0 A8@ 9+1 = 1) ∧ 580 9+1 = 1 ).

In general 4∗C8 can be non-linear.When this happens we use context
information (for instance the values that C8 can take) to remove the
non-linearity, and when this is not possible we introduce new fresh
variables to abstract non-linear monomials, but in this case we just
lose precision (not soundness) as all feasible traces are still solutions
to the encoding. We also add the constraint

∧
8′∈D=34A (8 ) A8′ 9+1 ≤ 4 ,

since the round at level 9 + 1 below repetition instruction 8 cannot
be greater than the total times we execute 8 (given by 4).

(3) for every branch instruction 8 at level 9 with instructions
800 . . . 8

0
<0

and 810 . . . 8
1
<1

in the �rst and second branch resp., we

add constraints C8 = C08 + C18 , C
0
8 = C80 , C

1
8 = C81 , (4@ 9 (8

0
0, . . . , 8

0
<0

),

(4@ 9 (8
1
0, . . . , 8

1
<1

),(C8 = 0 ∨ (�8ABC (8) = �8ABC (800) ∧ �8ABC (80<0
) ≤
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�8ABC (810)) ∨ (�8ABC (8) = �8ABC (810) ∧ �8ABC (81<1
) ≤ �8ABC (800)). Ad-

ditionally, we add variables for each key : in  and constraints
describing its behaviour.

(1) A Boolean variable B: (if there (:≠∅) meaning that the �rst
access to : is a store and add a constraint
B: =

∨
8∈(:

∧
8′∈!:

5 8ABC (8 )<;4G 5 8ABC (8
′ ) .

(2) A Boolean variable 0: meaning that : has been accessed and
add a constraint 0: =

∨
8∈�:

C8 > 0.

(3) A Boolean variable >: (if there (:≠∅) meaning that there is an
odd number of stores to : and add a constraint
>:=(C8=2∗3:+1) , where 3: is an auxiliary integer variable that
we also add for each such : .

Finally, for every : in  we add soft weighted clauses to get a
solution that maximizes the cost of the execution trace:

(1) B: ,F486ℎC (c(warm-load))

(2) 0: ,F486ℎC (c(cold) − c(warm-load))

(3) >: ,F486ℎC (
c(set-store)−c(reset2-store)

2 )

Then, we have the following result.

Lemma 3.12. Letf be the optimal solution to theMax-SMT problem

described above. Taking �( as the number of variables B: that are set

to true in f ,�! the number of variables 0: that are set to true f minus

�( and$( the number of variables>: that are set to true inf , provides

the worst-case for the correction�! ∗ (c(cold)− c(warm-load)) +�( ∗

c(cold) +$( ∗ (
c(set-store)−c(reset2-store)

2 ).

Proof. (Sketch) We �rst show that any feasible execution trace
in the given DAG has a solution that satis�es the constraints, which
means to �rst assign values to all integer variables we have in the
encoding for every instruction 8 at level 9 : (1) C8 (for the times it has
been executed) and (2) 580 . . . 58 9 and A81 . . . A8 9 (which indicate the
�rst execution of the instruction 8 , if executed). It is not di�cult
(but tedious) to show that such solution can be extracted from the
given trace and that it ful�lls the introduced constraints exist. Then,
from this assigned values to the integer variables we can propagate
the values for all the Boolean variables: (1) B: (that means that the
�rst access to : is a store), (2) 0: (meaning that : has been accessed)
and (3) >: (meaning that there is an odd number of stores to :).
Therefore every feasible trace has a solution with a corresponding
cost for the soft constraints that exactly coincides with the gas cost
for the correction of the sequence. Note that since we assign a cost
c(warm-load) to B: , we have that the correction for cold loads is
c(cold)− c(warm-load), while for cold stores is c(cold). Finally, since
a Max-SMT solver looks for the solution that maximizes the cost of
the satis�ed soft constraints, the optimal solution will provide us
with the worst-case for the correction formula. □

Note that this lemma requires the optimality of the solution to
the Max-SMT problem, since otherwise we cannot guarantee that
we have obtained a sound worst-case cost.

Example 3.13. Considering the DAG de�ned in Ex.3.11, the op-
timal solution returned by our encoding corresponds to the fol-
lowing values: �! = 2, �( = 0 and $( = 2. Note that it de-
tects that we have, at most, two cold load accesses (actAddr.length
and salaries[employee]) and two keys (the same as before) with
an odd number of store accesses. As a result, the load-correction
�2>;3 = 2 · (c(cold) − c(warm-load)) and the set-correction �B4C =

2 · ( c(set-store)−c(reset2-store)2 ) (as �B4C1 = 0, since the keys are always
accessed �rst with a load). Adding this correction to the *�D of
Ex. 3.10, we have the following sound result:
*�( = (3+2∗;)∗2 (F0A<−;>03) + (;+7)∗c(cold) + 4∗c(set-store)

The cost model of previous approaches, gastap and asparagus [7,
12], considers the worst case cost for all storage operations, that
is: c(cold) for LOAD operations and c(set-store) +c(cold) for LOAD op-
erations and yields the following storage UB0 = (12 + 3∗;) ∗
c(cold) + 4∗c(set-store). It can be seen that our storage UB( replaces
(5 + 2∗;)∗c(cold) gas units by (3 + 2∗;)∗(c(warm-load)), which is
a very signi�cant gain for a single and relatively simple method
(since currently c(cold) = 2100 and c(warm-load) = 100). However,
in this example there is no gain due to the STORE accesses as there is
only one non-top access. As a simple example consider the code
for(i=0;i<n;i++){if (*) key=*;} in Sec. 1 and assume that key
is 0. In this case, the DAG is simply r(n, a(B, ⟨n, 0⟩)). Our unsound

UB is *�D = =∗
c(set-store)+c(reset2-store)

2 and the Max-SMT solver re-
turns CL = 0, CS=1 and OS=1, and hence the �nal cost bound is
=∗

c(set-store)+c(reset2-store)
2 +

c(set-store)−c(reset2-store)
2 + c(cold). But, sup-

pose that we have instead r(100, a(B, ⟨n, 0⟩)) or
r(n, a(B, ⟨n, 0⟩) a(B, ⟨n, 0⟩)) then the Max-SMT solver returns CL =
0, CS=1 and OS=0, since the number of stores in key 0 is always

even, and the resulting*� is = ·
c(set-store)+c(reset2-store)

2 + c(cold).

Theorem 3.14 (soundness). Consider a function 5 , the synthe-

sized storage bound *� = *�D +�2>;3 +�B4C for 5 , where *�D is

de�ned in Def. 3.9 and �2>;3 and �B4C in Sec. 3.2 is a sound upper

bound, i.e., cost(C) ≤ *� for any possible execution trace C of 5 .

The proof is based on the reasoning about the worst case se-
quences given in the overview in Sec. 3.2.

4 Experimental Evaluation

The techniques proposed in the paper have been implemented
in Python, are open-source (available at https://github.com/costa-
group/EthIR), and have been integrated into the gastap [7] and
asparagus [12] systems. Such gas-analyzers take as input a smart
contract (either in Solidity or in EVM form) and automatically infer
gas upper-bounds for its public functions. While they rely on the
same tools for the CFG generation and use the same intermediate
representation of the EVM bytecode, they di�er in the techniques
used to obtain the gas cost bounds: gastap generates and solves cost
recurrence relations, while asparagus relies on OptiMathSAT [30]
compute via polyhedral and algebraic geometry. The integration
of our approach into these systems has required: the implemen-
tation of the storage analysis in Sec. 3.1, the modi�cation of the
original cost model to use Sec. 2.3 for the storage opcodes while
the remaining opcodes use the existing gas model, and the imple-
mentation of the Max-SMT problem described in Sec. 3.3, using Z3
SMT-solver [16]. We call gastap+ (asparagus+) to the version of
gastap (asparagus) that includes our extensions.

Experimental setup. Our experimental results aim at evaluat-
ing the accuracy gains of gastap+ and asparagus+ over the basic
systems and over the gas estimator of an up-to-date version of
solc (0.8.24), simply named solc in what follows. We will com-
pare gastap+ vs. solc, gastap+ vs. gastap and asparagus+ vs.
asparagus. The reason why we do not compare asparagus+ vs.
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solc is that asparagus (and hence its improvement asparagus+)
only accepts smart contracts written in versions of Solidity up to
0.4.26. Therefore, the comparison with solc would not be sound,
as the gas model implemented by versions 0.4 of solc is outdated
and has a di�erent storage gas cost (namely 200 for SLOAD and 5,000
or 20,000 for SSTORE). The comparison of gastap+ vs. asparagus+

is also not carried out because it would evaluate two di�erent ap-
proaches to compute gas cost upper-bounds rather than the preci-
sion of our extension. For the evaluation, we have used two di�erent
benchmark sets: (1) For gastap, we pulled from Etherscan [5] the
Ethereum contracts bound to the last 5,000 open-source veri�ed
addresses whose source code was available on Feb 26, 2024. These
addresses lead to 134,074 public functions from 8,130 smart con-
tracts, as each address may correspond to several Solidity �les that
in turn may contain several contracts in them. Finally, we have
selected only the 113,575 (84.71%) public functions that contain
storage operations. (2) For asparagus, as the previous set cannot
be used because of its limitation to use Solidity up to 0.4.26, we
have used the original set used to evaluate asparagus [23] which
contains 9,644 Solidity �les with 29,258 contracts. These contracts
have 325,381 public functions of which 287,387 (88.33%) have stor-
age operations and are used for our evaluation. Experiments have
been performed on an AMD Ryzen Threadripper PRO 3995WX
64-cores and 512 GB of memory, running Debian 5.10.70. We have
set a global timeout of 120s per function.

Evaluation. Out of 113,575 (resp. 287,387) functions, gastap+

(resp. asparagus+) has found an upper bound gas cost for 75,956
(resp. 108,715). Failures are mostly related to reaching the timeout or
failures of the original systems (unrelated to our extensions). Focus-
ing on the solved cases in gastap+ (resp. asparagus+), 88.65% (resp.
97.87% ) are constant bounds and 11.35% (resp. 2.13%) are parametric
functions. Fig. 3 shows the gains obtained thanks to our extension
for the constant bounds. Parametric bounds are not displayed be-
cause: solc cannot handle them and a graphical comparison would
require drawing the functions one by one. For plots in the �rst row,
the y-axis shows the number of functions and the x-axis the per-
centage of gas gains obtained when comparing gastap+ vs. solc (i),
gastap+ vs. gastap (ii) and, asparagus+ vs. asparagus (iii). The
scatter plots (second row) show for each analyzed function (x-axis),
the amount of gas gained (y-axis) by gastap+ wrt. solc (iv), by
gastap+ wrt. gastap (v) and by asparagus+ wrt. asparagus (vi).

Let us compare our gains wrt. solc. Plot (i) includes only the
10,010 functions for which gastap+ improves the constant result
of solc, with a global average improvement of 16.97%, while (iv)
shows the 42,981 functions that solc solves. We can observe in plot
(i) that gains in the range 5-10% are achieved for more than 2,700
functions. Importantly, the largest group corresponds to functions
with a gas improvement between 20-25%. By inspecting many of
them, we have noticed that often correspond to implementations
of an ERC20 token, which is widely used, and that make multi-
ple storage accessed to the same key. While the original system
makes a worst case cost assumption of c(cold) for the load and
c(set-store)+ c(cold) for store, we accurately treat them as explained
in the paper. In plot (iv), we include also the functions (>30,000)
for which gastap+ and solc infer the same constant bound. An
inspection of the code of such functions has revealed that >90%

of the cases are functions that make a unique load in the storage,
hence, there is no room for improvement. The most frequent im-
provements are under 10,000 gas units, in total 9,613 functions,
which can be classi�ed in three groups: savings of 2,000 units of
gas (1,361 functions), 4,000 units of gas (1,362 functions), and 6,000
units of gas (5,058 functions). These improvements correspond,
resp., to cases for which gastap+ identi�es 1, 2 or 3 warm accesses,
while solc classi�es them as cold. Importantly, we can also observe
many functions with dense groups that correspond to gains of 8,000
units of gas, 26,000 units of gas, 28,000 units of gas or 32,000 units
of gas. All these gains are multiple of combinations among the
gains obtained when considering c(warm-load) instead of c(cold) or
c(set-store)+c(reset2-store)

2 instead of c(set-store) + c(cold), e.g., gains of
8,000 units correspond to 4 warm accesses classi�ed as cold by solc,
and improvements around 26,000 units to two store accesses for

which gastap+ assigns c(set-store)+c(reset2-store)
2 , while solc assigns

c(set-store) + c(cold) and one load access that costs c(warm-load).
Finally, let us compare jointly gastap+ and gastap (plots (ii)

and (v)) and asparagus+ and asparagus (plots (iii) and (vi)) as they
feature a very similar behaviour. In these cases, we have 22,056
functions in (ii), 68,514 in (v), 62,820 in (iii) and 98,810 in (vi), which
are considerably higher than when comparing to solc. gastap and
gastap+ (resp. asparagus+ and asparagus) infer the same con-
stant upper-bound for 46,765 (resp. 36,065) functions, for the same
reasons as explained above for solc. For the remaining functions,
gastap+ (resp. asparagus+) reduces the inferred gas upper-bound
in 13.84% (resp. 13.82%) on average. As shown in (ii) and (iii), the
most common gains are between 5-10% of the total gas consumed.
As expected, (v) and (vi) contain the groups that were described for
(iv) because the original systems implement the same cost model
as solc. In (v) and (vi), groups are denser (as there are more func-
tions) and the plots contain further groups than (iv) (groups around
16,000 or 34,000 units). Notice that the main gains are concentrated
on the same values, those that correspond to multiple of combina-
tions between the gains obtained from considering load accesses as
c(warm-load) and the new cost for the store operations. All in all,
we argue that the plots of Fig. 3 con�rm that the proposed approach
to storage bounds synthesis greatly improves the accuracy of the
inferred bounds by the di�erent systems used in the evaluation. Let
us mention that the time overhead of our extensions is negligible,
namely we add an additional 2%-3% time for both gastap+ and
asparagus+ wrt. the original version of the tools.

Comparing the UB’s with real transactions. Finally, we evaluate
the precision of the UB’S inferred by comparing them with the
actual cost of real transactions of the analyzed addresses (as they
are stored in the blockchain). We have downloaded (June 15, 2024)
from Etherscan [5] the real transactions of the 5,000 open-source
veri�ed addresses used before. As some addresses may have a huge
number of transactions, to avoid bias in our evaluation, we have
limited the number of transactions to 50 per address. Note that,
as actual costs might depend on parameters or on storage values,
we have only compared the actual cost of transactions that have
constant UB’s. We have also taken into consideration the cost of
the transaction input: 4 gas units for zero bytes and 16 for non-zero
bytes. This comparison con�rms that the precision of our upper-
bounds is very high: around 80% of our upper-bounds only exceed
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Figure 3: Accuracy gains obtained by using the synthesized storage bounds

between 0-5% the actual gas consumed, and around 15% between
20-50%. This is very precise also considering that we are compiling
using solc v8.24 without any kind of optimization while deployed
contracts could be compiled with other versions and settings.

5 Related Work and Conclusions

The blockchain technology has brought in new forms of veri�cation
problems, such as proving the absence of reentrancy vulnerabilities
[10, 20, 20, 29, 35] or of out-of-gas exceptions [7, 13, 38]. This pa-
per achieves more accurate solutions to the out-of-gas veri�cation
problem by synthesizing tighter gas upper bounds that provide
guarantees of the amount of gas required to safely execute a code.
While part of our solution for the synthesis of gas bounds relies on
using standard resource analysis (here any of the resource analysis
approaches could be used, e.g., [11, 19, 21, 25, 31, 34]), the storage
opcodes introduce new challenges that to the best of our knowledge
have been not studied yet. The challenges are related to the dynam-
icity of the cost model for storage: the cost of a storage opcode may
depend on whether it is the �rst access to that key, and also for
store opcodes, on how the value being stored modi�es the initial
and previous contents. Existing tools have been developed for a
static cost model in which each instruction is mapped to a �xed
known cost (both gastap and asparagus assume a worst case cost
for storage instructions). The novelty of our approach relies on
achieving accuracy by using such standard analysis in an unsound
way and then �xing the soundness issues in a posterior stage.

The solution we have provided to the synthesis of storage bounds
could be useful beyond the blockchain context. For instance, the
fact that the �rst storage access has a larger cost is also inherent to
databases, and the same reasoning could be applied to estimate data-
base access costs. Besides, the cost of the last store opcode is higher

because it writes persistently on the database/blockchain. We have
not distinguished this case in our analysis because this higher cost
is not part of the veri�cation problem, i.e., does not account for
out-of-gas exceptions, but rather counted at the end to provide
some refunds (see [37]). Importantly, the problem of estimating the
number of persistent stores can be handled exactly in the same way
as for the cold accesses. Finally, our solution based on a worst-case
scenario in which the cost of the store opcode commutes between
two possible values has some relation to having a probabilistic cost
model. However, we are not aware of any resource analysis with
a probabilistic cost model. The probabilities are rather associated
to the instructions executed in existing frameworks [15, 36]. Fi-
nally, there is some tangential relation to the idea of amortized cost
analysis [24, 32] in the sense that we are paying high cost in one
execution of a store opcode and compensating it with a low cost in
the next one. However, we do not see that the existing solutions
to amortized cost analysis would be able to solve our problem. ,As
future work, we plan to implement a value analysis to infer the
contents of the storage keys and be able to infer when the value
of a key has changed wrt. the previous update and/or if it takes
the zero value. This can be integrated in our framework both in
the resource analysis and in the Max-SMT corrections to be more
precise.
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