
The Journal of Systems and Software 221 (2025) 112284

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Harnessing heap analysis for the synthesis of superoptimized bytecode✩

Elvira Albert a, Jesús Correas a, Pablo Gordillo a, Guillermo Román-Díez b,∗, Albert Rubio a

a Complutense University of Madrid, Spain
b Universidad Politécnica de Madrid, Spain

A R T I C L E I N F O

Keywords:
Superoptimization
Synthesis
Heap-analysis
Smart-contracts
Ethereum

A B S T R A C T

Superoptimization is a type of program synthesis technique that, given an original loop-free sequence of
instructions, synthesizes an alternative semantically-equivalent sequence that is optimal wrt the considered
objective function. Working on loop-free sequences restricts the kind of achievable optimizations to the
local scope of the considered sequences. This article harnesses a global heap analysis for the synthesis of
superoptimized loop-free sequences of bytecode. The global heap analysis will allow us to infer useless
write heap accesses, aliasing and non-aliasing properties, and calling-contexts for the sequences. Exploiting
this information on an existing superoptimizer for Ethereum bytecode has required novel extensions: (1)
developing a finer-grained heap analysis able to infer heap properties that can boost superoptimization,
(2) adapting several components of the superoptimizer to leverage the heap properties, and (3) extending
the superoptimization algorithm to work in a context-sensitive way. Our experimental results on more than
200,000 sequences show that harnessing heap analysis for superoptimization not only improves the quality of
the optimization but it can even reduce the optimization time.
1. Introduction

Superoptimization (Massalin, 1987) is a class of program synthesis
techniques that, given an original loop-free sequence of instructions
(acting as specification), searches for an equivalent sequence that is
optimalwrt a given objective function. Optimality is achieved by search-
ing in the full space of alternative sequences using an automated
constraint-solver, e.g., an SMT solver. Superoptimization was conceived
to be applied in a second layer of optimization within a compiler,
i.e., traditional optimizations such as inlining, dead-code elimination,
etc. are typically applied by the compiler before. Within a second
pass, superoptimization can achieve additional types of optimizations
that are unachievable by means of pattern-based transformations. For
instance, in a bytecode sequence, reordering two consecutive heap
accesses to different locations can lead to more efficient code if the
address of the later access is found at the top position of the stack;
namely reordering would avoid swapping instructions to place the
needed arguments at the top. Due to these additional optimization
achievements, superoptimization is gaining much attention in contexts
in which efficiency is crucial (e.g., in the blockchain context as clients
pay a fee according to the executed opcodes). Superoptimization tools
have been developed for LLVM (Jangda and Yorsh, 2017; Sasnauskas
et al., 2017; Mukherjee et al., 2020), Ethereum VM (EVM) (Nagele and

✩ This work is partially funded by the Ethereum Foundation under grant 435-2023.
∗ Corresponding author.
E-mail addresses: elvira@sip.ucm.es (E. Albert), jcorreas@ucm.es (J. Correas), pabgordi@ucm.es (P. Gordillo), guillermo.roman@upm.es (G. Román-Díez),

alberu04@ucm.es (A. Rubio).

Schett, 2019; Albert et al., 2022b), and WebAssembly (Cabrera-Arteaga
et al., 2020). While our approach is defined and implemented in the
context of EVM, the ideas are applicable to other languages simply by
using a heap analysis for the corresponding heap model.

The main limitation of superoptimization is the intrinsic locality of
the method because (by definition) it is applied on a per-sequence
basis by ignoring global information that could be only learned by
a whole-program analysis. This limitation is particularly noticeable
for heap-related instructions as by reasoning on a local sequence is
very unlikely to find out, e.g., aliasing and/or non-aliasing properties.
Therefore, optimizations – such as the reordering of accesses mentioned
above – are missed by superoptimization. While recent work (Albert
et al., 2022a) on the GASOL system (a state-of-the-art superoptimiza-
tion tool for EVM smart contracts) has pointed out the relevance of
optimizing heap accesses, GASOL’s reasoning so far has been limited
to local sequences. This article harnesses a global heap analysis for the
local synthesis of superoptimized bytecode in GASOL as follows:

(i) we leverage information on useless write heap accesses, inferred
using a heap analysis, to the superoptimizer in such a way that
it not only eliminates the useless MSTORE opcode, but also other
opcodes that are only required by the MSTORE;
https://doi.org/10.1016/j.jss.2024.112284
Received 6 March 2024; Received in revised form 30 September 2024; Accepted 12
vailable online 26 November 2024
164-1212/© 2024 Elsevier Inc. All rights are reserved, including those for text and
 November 2024

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:elvira@sip.ucm.es
mailto:jcorreas@ucm.es
mailto:pabgordi@ucm.es
mailto:guillermo.roman@upm.es
mailto:alberu04@ucm.es
https://doi.org/10.1016/j.jss.2024.112284
https://doi.org/10.1016/j.jss.2024.112284
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112284&domain=pdf

E. Albert et al. The Journal of Systems & Software 221 (2025) 112284
(ii) we annotate heap-related opcodes with aliasing and non-aliasing
properties which enable a series of optimizations within the
superoptimizer such as instruction reordering, detection of re-
dundant MLOAD’s, etc.;

(iii) in order to infer the (global) heap properties, the heap analysis
propagates information on the calling contexts to each of the
sequences which can be exploited by the superoptimizer.

Contributions. To intertwine the heap analysis and superoptimization
as described in the three points above, this article makes the following
technical contributions:

(1) Heap analysis with offsets. We increase the accuracy of the heap
analysis for EVM bytecode of Albert et al. (2023), which only
inferred the heap slots1 created by the code, in order to infer also
the offsets for each of the accesses within the slots. Our finer-
grained extension of the heap analysis is required to infer the
aliasing properties in point (ii) above, it is able to detect more
useless accesses in point (i) and a more accurate context in (iii)
than Albert et al. (2023) would do.

(2) Superoptimization with heap properties. We identify different types
of global heap-related properties that a heap analysis can pro-
vide to a superoptimization tool (points 1–2 above) and enhance
an existing superoptimizer that was operating at a purely lo-
cal level on the sequences to exploit the inferred global heap
properties in the most advantageous way.

(3) Context-sensitive superoptimization. We leverage a context-
insensitive superoptimizer by providing a calling context that
provides global information on the input to the sequences.

(4) Implementation and evaluation. We integrate our approach within
the GASOL tool and perform a thorough experimental evaluation
on sequences taken from 14,034 real smart contracts. Our results
show that, when heap properties can be exploited, optimiza-
tion gains wrt the previous version of GASOL (Albert et al.,
2022a) improve from 10.7% length-reduction to 16.3% while
the median of the optimization time per sequence is reduced by
0.4 s

Our previous work in this area has focused either: (1) on defin-
ing the basic technique of superoptimization in the context of the
EVM (Albert et al., 2022b,a), and scalability improvements (Albert
et al., 2024), or (2) on developing a heap analysis (Albert et al., 2023)
for the EVM bytecode generated by the Solidity compiler, solc (Solc,
2024). Such heap analysis has been applied in the context of veri-
fication and code optimization. As regards the latter application to
optimization, its use consisted in finding write memory accesses that
can be removed because they are not read afterwards. This optimization
is captured by our combination of superoptimization and heap analysis,
but beyond it, we can achieve new kinds of optimizations that are novel
and original to this work as we will see throughout the paper.

2. Heap analysis of EVM bytecode with offsets

The EVM has several memory regions to store data: a stack of
256-bit words with a maximum size of 1024 words, a byte- and word-
addressable volatile local memory, and a persistent memory called
storage. The EVM bytecode is a stack-based virtual machine in which
most opcodes operate with the topmost elements of the stack to perform
computations. The stack is handled using standard stack-manipulating
opcodes (e.g., DUP, SWAP, POP, . . .), and the EVM bytecode language
includes the usual arithmetic and bit operations (e.g., ADD retrieves
the two topmost elements of the stack and leaves its addition at the
top) and control-flow bytecodes (e.g., JUMP to continue execution at the

1 A slot in EVM is a region of the heap accessed from the same base
reference.
2
opcode located at the top of the stack). The EVM opcode set contains
two basic opcodes to access memory: MLOAD and MSTORE, which load
and store a 32-byte word from memory, respectively.2 The Solidity
compiler solc uses the EVM local memory to allocate reference-type
data (e.g., arrays or structs). Also, some specific EVM bytecode opcodes
require lengthy operands to be stored in local memory, e.g. the opcodes
for computing cryptographic hashes, or for communicating data to
and from external function calls. The bytecode generated by the solc
compiler handles local memory using a cumulative model that never
releases allocated memory. As there is no specific opcode in the EVM
for allocating memory, bytecode generated by solc uses the value
stored at a particular address (0x40) as a free memory pointer, i.e., a
pointer to the first memory address available.

Memory slots. The bytecode generated by the solc compiler accesses
the memory by slots, which are sequences of consecutive memory
locations that are always accessed by using the address of the initial
location in the slot, that we call its base reference, plus an offset used to
access a specific location within the slot. When a Solidity program has
to allocate 𝑡 memory locations, the bytecode generated by solc reads
the free memory pointer at address 0x40. The value read from the free
memory pointer is the base reference to the slot, and any subsequent
access to the slot is performed using this base reference plus an optional
offset. Finally, the reference value stored in 0x40 is incremented by 𝑡
positions and will be used in the next memory allocation.

Example 1 (Memory Slot Reservation). The Solidity code shown in
Fig. 1 represents a usual programming pattern for struct creation (the
private function fn), found in many real contracts.3 The solc compiler,
with the most advanced optimizations enabled, produces the bytecode
showed below the Solidity code. The bytecode generated by solc
initializes the free memory pointer as follows:

. . .0x80

0x00 0x20 0x40 0x60 0x80 0xA0 0xC0 0xE0 0x100

Locations 0x00, 0x20 and 0x60 are reserved by the compiler, and
the free memory pointer at location 0x40 points to the first available
location. The left column of the EVM code in Fig. 1 corresponds to the
creation and (default) initialization of the struct o that is declared as
the result of function fn: a fresh heap slot is created, and both fields
are assigned an initial value of zero. The instructions for the creation
of the struct are at program points (𝑝𝑝 for short) 1–7, first reading the
free memory pointer (𝑝𝑝 2), then adding the size of the struct (𝑝𝑝 3–
4), and finally pushing the new free memory pointer (𝑝𝑝 7). The dots
(𝑝𝑝 5) omit opcodes that perform a maximum length check, which are
not relevant to this work. The struct contents are initialized to zero at
𝑝𝑝 13 and 15, and the assignments of its fields in o are performed at
𝑝𝑝𝑠 21 and 25. The execution of the EVM bytecode shown in the left
column leaves the memory as follows:

. . .0xC0 17 14

0x00 0x20 0x40 0x60 0x80 0xA0 0xC0 0xE0 0x100

The Solidity code also includes an external function extfn that
returns the struct just created by fn. Thus, the execution of extfn creates
two slots: the one created in fn (named 𝑚1 and shown in light blue) and
another slot needed to return the result of fn and assign it to variable
o2 of extfn (named 𝑚2 and shown in light red in next figure). The

2 The EVM also includes the opcode MSTORE8 to access the local memory
at a byte level, although we only consider the more general word-addressable
MSTORE to keep the description simpler.

3 Indeed, our example is a simplification of code in a real smart
contract (ERC721A, 2024).

E. Albert et al. The Journal of Systems & Software 221 (2025) 112284
Fig. 1. Solidity code and an excerpt of its corresponding Bytecode.
right column of the EVM bytecode in Fig. 1 shows the bytecode that
allocates the slot of extfn for storing the struct o2 (𝑝𝑝 27), and copies
the contents of o to o2 (𝑝𝑝 31–36). The final layout of the memory after
executing extfn is as follows:

. . .0x100 17 14 17 14

0x00 0x20 0x40 0x60 0x80 0xA0 0xC0 0xE0 0x100

2.1. Basic heap analysis for EVM (Albert et al., 2023)

The final goal of the heap analysis is to infer, for all heap access
instructions (MLOAD and MSTORE) in the bytecode program, an (over-
)approximation of the heap location(s) that might be accessed by the
corresponding instructions. The definition of the analysis includes an
analysis domain which represents all possible accessed heap locations
‘‘abstractly’’ (as usual, an abstract value might represent multiple con-
crete values and ⊤ means any location). Note that the same instruction
might access more than one location depending on the actual execution
trace, and the analysis must compute a sound over-approximation that
includes all of them. There exists a wide variety of heap analyses
formalized using different underlying techniques, and with different
accuracy levels, for multiple programming languages (see, e.g., Itzhaky
et al. (2014), Smaragdakis et al. (2011), Berdine et al. (2007) and
Milanova et al. (2005) and their references). For the case of the EVM
bytecode, we rely on the heap analysis in Albert et al. (2023), briefly
overviewed in this section and, afterwards, we propose an accuracy
extension in Section 2.2.

The analysis of Albert et al. (2023) aims at inferring the set of slots
to which each heap access opcode refers. By analyzing the bytecode
3
and searching for the patterns used to create slots, it first defines the
set of abstract slots (named) which are accessed in the bytecode. This
set is defined as = {𝑙1,… , 𝑙𝑛} where each 𝑙𝑖 is a symbolic unique
identifier used to refer to a distinct abstract slot. The slots are abstract
as several runtime slots might be represented by a single abstract slot,
e.g., when multiple slots are created within a loop. When this happens
in the analysis, we annotate it by adding a ∗ to the slot name (e.g. 𝑙𝑖∗)
as it is needed by the aliasing definition below. We denote by ∗ the
subset of containing the annotated slots. As notation, we use to
refer to the set of all instructions in the program, which have the form
𝑝𝑝∶𝐼 ∈ where 𝐼 is the instruction at program point 𝑝𝑝. The following
definition summarizes the output of the heap analysis of Albert et al.
(2023) which is our starting point.

Definition 1 (𝚋𝚊𝚜𝚒𝚌𝙷𝚎𝚊𝚙𝙰𝚗𝚊𝚕𝚢𝚜𝚒𝚜). Function 𝚋𝚊𝚜𝚒𝚌𝙷𝚎𝚊𝚙𝙰𝚗𝚊𝚕𝚢𝚜𝚒𝚜 re-
turns a mapping 𝜋 ∶ × ↦ ℘() that, for each program point
𝑝𝑝∶𝐼 ∈ and stack position 𝑠 ∈ , returns a set of abstract slots 𝐿
that either is empty, or 𝑠 is a reference to one of the slots in 𝐿 at 𝑝𝑝 in
any execution trace.

Example 2. The basic heap analysis of Albert et al. (2023) identifies
two abstract slots: 𝑙1 and 𝑙2 that correspond to the concrete slots 𝑚1
and 𝑚2 in Example 1, and yields the following function 𝜋 that we
show at some relevant program points: 𝜋(13, 𝑠0)={𝑙1}, 𝜋(15, 𝑠0)={𝑙1},
𝜋(21, 𝑠0)={𝑙1}, 𝜋(25, 𝑠0)={𝑙1}, 𝜋(31, 𝑠0)={𝑙2}, 𝜋(32, 𝑠0)={𝑙1}, 𝜋(36, 𝑠0)=
{𝑙2}. We use 𝑠0 to refer to the top and 𝑠𝑛 to the 𝑡𝑜𝑝− 𝑛 of the stack. We
can observe that, though 𝑝𝑝𝑠 21 and 25 access different heap locations
(fields a and b respectively), the basic heap analysis cannot distinguish
them: using 𝜋 we only know that slot 𝑙1 is accessed at 𝑝𝑝𝑠 21 and 25.

E. Albert et al.

s
o
i

f

𝜙

(

u

s
f

s

f
s
S

i
t
h
f

i

The Journal of Systems & Software 221 (2025) 112284
2.2. Extension with offsets

Our contribution is the extension of the heap analysis described
above in order to consider not only the abstract slots referenced by
tack locations, but also the particular word being accessed (i.e., the
ffset). This extension is fundamental to infer the aliasing properties
n Section 3.3 and to have a more precise detection of useless write

accesses in Section 3.2 and calling contexts in Section 3.4. Developing
this extension amounts to keeping track during the analysis of the
offsets that are added to the slot base references as constants. Our
extension with offsets has two fundamental differences with the basic
heap analysis above: (1) It computes an additional analysis function,
named 𝜎, that takes care of the offset component only. This analysis is
quite standard as the offsets are in the set N0∪ {⊤} which constitute the
domain of the analysis and whose values are unsigned constants (see,
e.g., 𝑝𝑝 9) incremented using addition (see, e.g., 𝑝𝑝 14) and the special
symbol ⊤. Constant values and increments need to be propagated
within the stack elements at each program point during the analysis.
In order to guarantee termination of the fixed-point analysis in the
presence of loops, after a finite number of iterations, we return ⊤ as
offset for those accesses that are not converging to a finite set of values.
(2) The second difference is that function 𝜙 which takes care of the heap
locations now returns pairs ⟨𝑙 , 𝑜⟩ made up of the abstract slot 𝑙 ∈
and the offset 𝑜 ∈ N0 ∪ {⊤}. Note that a pair with ⊤ in the offset
component means that we only have information about the abstract
slot being referenced. We denote by + the set of all such pairs. While
function 𝜎 is auxiliary to compute 𝜙, the heap analysis with offsets now
returns, besides 𝜙, also function 𝜎 because it will be needed to compute
the calling contexts in Section 3.4.

Definition 2 (𝚑𝚎𝚊𝚙𝙰𝚗𝚊𝚕𝚢𝚜𝚒𝚜). The heap analysis with offsets, invoked
by means of function 𝚑𝚎𝚊𝚙𝙰𝚗𝚊𝚕𝚢𝚜𝚒𝚜, returns the following functions:

(1) 𝜎 ∶ × ↦ ℘(N0 ∪ {⊤}) is a mapping that, for each program
point 𝑝𝑝∶𝐼 ∈ and stack position 𝑠 ∈ , returns a finite set 𝐶
such that if 𝐶 ≠ ∅ and 𝐶 ⊂ N0 then 𝑣 ∈ 𝐶, where 𝑣 either is ⊤
or 𝑣 is one possible value stored in the stack at position 𝑠 at 𝑝𝑝
in any execution trace.

(2) 𝜙 ∶ × ↦ ℘(+) is a mapping that, for each program point
𝑝𝑝∶𝐼 ∈ and stack position 𝑠 ∈ , returns a set 𝐿 of pairs ⟨𝑚, 𝑜⟩
that is either empty or 𝑠 is a reference to one of the pairs in 𝐿
at 𝑝𝑝 in any execution trace.

We assume that 𝚑𝚎𝚊𝚙𝙰𝚗𝚊𝚕𝚢𝚜𝚒𝚜(𝖻𝗅𝗈𝖼𝗄𝗌) returns the results of (𝜙, 𝜎) only
or the program points in the set of sequences 𝖻𝗅𝗈𝖼𝗄𝗌.

Example 3. As an example, function 𝜎 at 𝑝𝑝 22 returns 𝜎(22, 𝑠1)={32},
which is used to compute the location ⟨𝑙1, 32⟩, accessed by the MSTORE
at 𝑝𝑝 25. Our heap analysis extended with offsets produces the fol-
lowing result for 𝜙 at some selected 𝑝𝑝𝑠: 𝜙(13, 𝑠0)={⟨𝑙1, 0⟩}, 𝜙(15, 𝑠0)=
{⟨𝑙1, 32⟩}, 𝜙(21, 𝑠0)={⟨𝑙1, 0⟩}, 𝜙(25, 𝑠0)={⟨𝑙1, 32⟩}, 𝜙(31, 𝑠0)={⟨𝑙2, 0⟩},
(32, 𝑠0)={⟨𝑙1, 32⟩}, 𝜙(36, 𝑠0)={⟨𝑙2, 32⟩}, where we can observe that the

heap locations accessed at 𝑝𝑝𝑠 13 and 15 are identified now as distinct
and similarly at other program points).

Ensuring aliasing at two heap access instructions can only be done
sing our analysis when the inferred result refers to a single concrete

slot. This can be guaranteed if there has been no abstraction due to
loops (i.e., the slot has not been annotated with ∗ and hence does
not belong to ∗, see Section 2.1) and there is only one possible
lot accessed (i.e., the size of the set 𝜙(𝑝𝑝1, 𝑠0) is equals to one). The
ollowing definition of ‘‘safe alias’’ ensures these conditions.

Definition 3 (safeAlias). Given two program points 𝑝𝑝𝑖 and 𝑝𝑝𝑗 and
stack positions 𝑠𝑘 and 𝑠𝑚, 𝚜𝚊𝚏𝚎𝙰𝚕𝚒𝚊𝚜(𝑝𝑝𝑖, 𝑠𝑘, 𝑝𝑝𝑗 , 𝑠𝑚) returns true iff
𝜙(𝑝𝑝𝑖, 𝑠𝑘) is of the form {⟨𝑥, 𝑜⟩} and the following holds: 𝑥∉∗ ∧ 𝑜 ≠
⊤ ∧ 𝜙(𝑝𝑝𝑖, 𝑠𝑘) = 𝜙(𝑝𝑝𝑗 , 𝑠𝑚).
4
Algorithm 1: Superoptimization Algorithm (black) with Heap
(blue)

1: procedure SuperoptimizationWithHeapProperties(p,f)
2: Input: bytecode program p, objective function f
3: Output: optimized bytecode o
4: Ensures: f(o) = 𝑚𝑖𝑛{f(o’) | o’ ≡ p}
5: blocks ← 𝚋𝚞𝚒𝚕𝚍𝙲𝙵𝙶(p)
6: (𝜙, 𝜎) ← 𝚑𝚎𝚊𝚙𝙰𝚗𝚊𝚕𝚢𝚜𝚒𝚜(blocks)
7: useless ← 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚄𝚜𝚎𝚕𝚎𝚜𝚜(blocks,𝜙)
8: result ←[]
9: for (𝖻, 𝗂𝗌𝗍𝖺𝖼𝗄) ∈ 𝖻𝗅𝗈𝖼𝗄𝗌 do

10: (ostack,mem) ← 𝚜𝚢𝚖𝚋𝚘𝚕𝚒𝚌𝙴𝚡𝚎𝚌𝚞𝚝𝚒𝚘𝚗(b,istack)
11: (alias,nonalias) ← 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐(b,𝜙)
12: context ← 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙲𝚘𝚗𝚝𝚎𝚡𝚝(b,𝜙, 𝜎)
13: mem ← 𝚊𝚙𝚙𝚕𝚢𝚄𝚜𝚎𝚕𝚎𝚜𝚜(mem,useless)
14: mem ← 𝚊𝚙𝚙𝚕𝚢𝙽𝚘𝚗𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐(mem,nonalias)
15: (istack,ostack,mem) ←

𝚊𝚙𝚙𝚕𝚢𝙲𝚘𝚗𝚝𝚎𝚡𝚝(istack,ostack,mem,context)
16: (ostack,mem) ←

𝚛𝚞𝚕𝚎𝙱𝚊𝚜𝚎𝚍𝚂𝚒𝚖𝚙𝚕𝚒𝚏𝚒𝚌𝚊𝚝𝚒𝚘𝚗(ostack,mem,alias)
17: opt ← 𝚜𝚢𝚗𝚝𝚑𝚎𝚜𝚒𝚣𝚎𝙾𝚙𝚝𝚒𝚖𝚊𝚕(f,istack,ostack,mem)
18: result ← result.𝑎𝑝𝑝𝑒𝑛𝑑(opt)
19: return o ← rebuild(result)

Intuitively, two instructions are guaranteed not to access the same
location if the sets inferred by the heap analysis are disjoint. It must be
checked explicitly that the offsets, within the possible slots accessed at
the instructions, have not been lost by the analysis in just one of the
ets (become ⊤), as definition below states.

Definition 4 (nonAlias). Given two program points 𝑝𝑝𝑖 and 𝑝𝑝𝑗 and
stack positions 𝑠𝑘 and 𝑠𝑚, and function 𝜙. The function
𝚗𝚘𝚗𝙰𝚕𝚒𝚊𝚜(𝑝𝑝𝑖, 𝑠𝑘, 𝑝𝑝𝑗 , 𝑠𝑚) returns true iff ∀⟨𝑙1, 𝑜1⟩∈𝜙(𝑝𝑝𝑖, 𝑠𝑘), ⟨𝑙2, 𝑜2⟩∈
𝜙(𝑝𝑝𝑗 , 𝑠𝑚)∶ 𝑙1≠𝑙2∨(𝑜1≠⊤∧𝑜2≠⊤∧𝑜1≠𝑜2).

3. Harnessing heap analysis for superoptimization

This section presents the properties and relations that we compute
rom the heap analysis output and how they can be exploited by a
uperoptimization tool. The rest of the section is structured as follows:
ection 3.1 first overviews a basic superoptimization algorithm; Sec-

tion 3.2 presents our approximation of useless write accesses and its
ntegration within the superoptimization algorithm; Section 3.3 defines
he aliasing and non-aliasing properties that we compute from the
eap analysis and then incorporates them within the superoptimizer;
inally, Section 3.4 provides the notion of calling context and our

context-sensitive extension.

3.1. Synthesis of superoptimized bytecode

This section describes the basic components of the state-of-the-art
algorithm for superoptimization, which correspond to lines 2–5, 8–10
and 16–19 displayed in black text in Algorithm 1. The remaining lines
displayed in blue color are the novelties that will be explained in the
coming sections. The algorithm receives as input (line 2) a bytecode p
to be superoptimized and an objective function f among those avail-
able in the system. The only assumption for the objective function
s that the cost for each instruction in p is statically known. The

original objective function used in superoptimization is the program’s
length (Bansal and Aiken, 2006; Jangda and Yorsh, 2017; Sasnauskas
et al., 2017) measured by its number of operations. However, other
objectives have been introduced by new programming environments.
In particular, ebso (Nagele and Schett, 2019), SYRUP (Albert et al.,

E. Albert et al.

W

h
a

g
l
s
b
e
S

i

𝗂

𝑠

o
e

l

The Journal of Systems & Software 221 (2025) 112284
Fig. 2. Symbolic execution of selected opcodes (𝑝𝑝 current program point).
h
i
p
w
i

2020) and GASOL (Albert et al., 2022a) minimize the program’s gas
(a precise definition for the gas objective function appears in Gavin

ood (2019)). Gas is used to measure the price to pay for executing
the instructions, thus assigning larger gas cost to opcodes that require
more computation or storage (e.g., stack-manipulating opcodes like
DUP, SWAP and heap accesses cost 3 gas units, but accessing the global
storage can cost up to 22 100 units). Our examples in the article report
the gains for both objective functions: gas and length, and the experi-
mental evaluation uses the length. The algorithm returns as output (line
3) an optimized bytecode o that is ensured to be optimal (line 4), i.e., it
as minimal cost wrt f (for the considered partitioning into sequences)
nd is semantically equivalent (denoted ≡) to p.

The first step for all superoptimizers is to build a control flow
raph (CFG) from the bytecode program that allows detection of its
oops and branching. A common approach is to generate then one
equence per block of the CFG; hence, the sequence is not only loop-free
ut also jump-free. This is done, for example, by the superoptimizers
bso (Nagele and Schett, 2019), SYRUP (Albert et al., 2020), and
ouper (Sasnauskas et al., 2017), and assumed (without loss of gener-

ality) in what follows. In this first step, one can also statically compute
the number 𝑘 of elements the operand stack must have right before
reaching each sequence. This 𝑘 is used to create an initial stack, denoted
𝗂𝗌𝗍𝖺𝖼𝗄, with 𝑘 distinct variables 𝗂𝗌𝗍𝖺𝖼𝗄 = [𝑠0,… , 𝑠𝑘−1]. We assume that
function 𝚋𝚞𝚒𝚕𝚍𝙲𝙵𝙶 in line 5 returns a set 𝖻𝗅𝗈𝖼𝗄𝗌 containing all the blocks
n the CFG of the program 𝗉, where each element of 𝖻𝗅𝗈𝖼𝗄𝗌 is a pair
(𝖻, 𝗂𝗌𝗍𝖺𝖼𝗄) with 𝖻 being the sequence of opcodes within the block and
𝗌𝗍𝖺𝖼𝗄 its initial stack.

Example 4. The left column in Fig. 1 results in two blocks partitioned
by the JUMP* opcodes. The right column is a single block and the size
of its input stack is known to be three, i.e., 𝗂𝗌𝗍𝖺𝖼𝗄 = [𝑠0, 𝑠1, 𝑠2] where
0 is the top of the stack.

Each of the sequences is superoptimized within a loop iteration
f line 9. First, function 𝚜𝚢𝚖𝚋𝚘𝚕𝚒𝚌𝙴𝚡𝚎𝚌𝚞𝚝𝚒𝚘𝚗 in line 10 symbolically
xecutes the opcodes in 𝖻 from the initial stack 𝗂𝗌𝗍𝖺𝖼𝗄. Fig. 2 shows

the symbolic execution of some representative opcodes. Here, a stack
of 𝑛 elements is denoted as 𝗌𝗍𝖺𝖼𝗄[0 ∶ 𝑛 − 1] and 𝗌𝗍𝖺𝖼𝗄[𝑘] denotes
the 𝑘 + 1th stack element, with 𝗌𝗍𝖺𝖼𝗄[0] being the topmost. We use
UF (Uninterpreted Function) whenever the actual opcode cannot be
executed and ar(UF) denotes its arity. During symbolic execution, heap
access opcodes are annotated in the symbolic state with their program
points as subindex to uniquely identify them (e.g., MLOAD𝑝𝑝). We may
omit the subscript 𝑝𝑝 when it is not relevant. Symbolic execution of
a block 𝖻 starts from the state (𝗂𝗌𝗍𝖺𝖼𝗄,[]), where [] denotes the lack
of information on previous heap accesses, to obtain the final state
(𝗈𝗌𝗍𝖺𝖼𝗄,𝗆𝖾𝗆), where 𝗈𝗌𝗍𝖺𝖼𝗄 is the resulting stack (represented as a list
of elements) and mem the list of heap accesses within b.

Example 5. Let us show the symbolic execution of the right sequence
in Fig. 1 from (𝗂𝗌𝗍𝖺𝖼𝗄 = [𝑠0, 𝑠1, 𝑠2],[]). Underlined terms are used for
ater reference in Example 12.
5
([𝑠0, 𝑠1, 𝑠2], []) →PUSH 0x11 ([0x11, 𝑠0, 𝑠1, 𝑠2], [])
→DUP2 ([𝑠0,0x11, 𝑠0, 𝑠1, 𝑠2], [])
→MSTORE ([𝑠0, 𝑠1, 𝑠2], [MSTORE21(𝑠0,0x11)]
→ADD [ADD(𝑠0, 𝑠1), 𝑠2], [MSTORE21(𝑠0,0x11)]
→PUSH 0x0E ([0x0E,ADD(𝑠0, 𝑠1), 𝑠2], [MSTORE21(𝑠0,0x11)]
→DUP2 [ADD(𝑠0, 𝑠1),0x0E,ADD(𝑠0, 𝑠1), 𝑠2], [MSTORE21(𝑠0,0x11)]
→MSTORE ([ADD(𝑠0, 𝑠1), 𝑠2], [MSTORE21(𝑠0,0x11),MSTORE25
(ADD(𝑠0, 𝑠1),0x0E)])
→DUP2 ([𝑠2,ADD(𝑠0, 𝑠1), 𝑠2], [MSTORE21(𝑠0,0x11),MSTORE25
(ADD(𝑠0, 𝑠1),0x0E)])
→MLOAD ([MLOAD27(𝑠2),ADD(𝑠0, 𝑠1), 𝑠2],

[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2)])
→SWAP1 ([ADD(𝑠0, 𝑠1),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2)])

→PUSH 0x11 ([0x11,ADD(𝑠0, 𝑠1),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2)])

→DUP3 ([MLOAD27(𝑠2),0x11,ADD(𝑠0, 𝑠1),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2)])

→MSTORE ([ADD(𝑠0, 𝑠1),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
MSTORE31(MLOAD27(𝑠2),0x11)])

→MLOAD ([MLOAD32(ADD(𝑠0, 𝑠1)),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
MSTORE31(MLOAD27(𝑠2),0x11),MLOAD32(ADD(𝑠0, 𝑠1))])

→PUSH 0x20 ([0x20,MLOAD32(ADD(𝑠0, 𝑠1)),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
MSTORE31(MLOAD27(𝑠2),0x11),MLOAD32(ADD(𝑠0, 𝑠1))])

→𝖣𝖴𝖯𝟥 ([MLOAD27(𝑠2),0x20,MLOAD32(ADD(𝑠0, 𝑠1)),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
MSTORE31(MLOAD27(𝑠2),0x11),MLOAD32(ADD(𝑠0, 𝑠1))])

→𝖠𝖣𝖣 ([ADD(MLOAD27(𝑠2),0x20),MLOAD32(ADD(𝑠0, 𝑠1)),MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
MSTORE31(MLOAD27(𝑠2),0x11),MLOAD32(ADD(𝑠0, 𝑠1))])

→MSTORE ([MLOAD27(𝑠2), 𝑠2],
[MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
MSTORE31(MLOAD27(𝑠2),0x11),MLOAD32(ADD(𝑠0, 𝑠1)),
MSTORE36(ADD(MLOAD27(𝑠2),0x20),MLOAD32(ADD(𝑠0, 𝑠1)))])

Importantly, in the heap opcodes, procedure 𝑎𝑑 𝑑 not only adds the
eap accesses performed during the symbolic execution to 𝗆𝖾𝗆, but
t also creates a dependency list, referred to as 𝑑 𝑒𝑝-𝑙 𝑖𝑠𝑡(𝗆𝖾𝗆), which
rovides dependencies that are partial orders indicating the order in
hich accesses must happen. A dependency of the form 𝑝𝑝1 < 𝑝𝑝2

ndicates that heap access at position 𝑝𝑝1 must happen before that at
position 𝑝𝑝2. One must keep the order in which heap accesses appear
in the code unless it can be proven that they are independent. The
approach in Albert et al. (2022a) infers dependency information by
reasoning locally (at an intra-block level) in a purely syntactical way,
and it can only remove dependencies if the heap locations accessed by
the opcodes in 𝗆𝖾𝗆 are known to be distinct constant values. Instead,

E. Albert et al.

S

a
k
c

b
m
t
b
r

r

(
a

i
t

w
p
s

i

i

𝑡

o

o

i
w

r

i
t
s
s

The Journal of Systems & Software 221 (2025) 112284
we will be able to refine the information in 𝑑 𝑒𝑝-𝑙 𝑖𝑠𝑡(𝗆𝖾𝗆) with global
information inferred by the inter-block heap analysis with offsets in
ection 2.2.

Example 6. Using the syntactic dependency analysis presented
in Albert et al. (2022a) (and even the results of the heap analysis
described in Section 2.1 without offsets), 𝑑 𝑒𝑝-𝑙 𝑖𝑠𝑡 results in all heap
ccesses in the order of appearance in the bytecode as we do not
now if the heap accesses refer to the same or distinct heap lo-
ations: 𝑑 𝑒𝑝-𝑙 𝑖𝑠𝑡(𝗆𝖾𝗆)= [(21<25), (25<27), (27<31), (31<32), (32<36)].

These dependencies restrict the possibilities of the superoptimizer for
reordering the opcodes and, consequently, optimization opportunities
might be lost.

The symbolic state can be optimized by 𝚛𝚞𝚕𝚎𝙱𝚊𝚜𝚎𝚍𝚂𝚒𝚖𝚙𝚕𝚒𝚏𝚒𝚌𝚊𝚝𝚒𝚘𝚗

efore starting the search for an optimal solution. This enables opti-
izing the arithmetic and bit-wise opcodes and also optimizations on

he heap opcodes. All simplification rules used in EVM bytecode can
e seen in Albert et al. (2022b). In Section 3.3, the heap simplification
ules are revised and improved with heap properties.

Example 7. No simplification can be applied to (𝗈𝗌𝗍𝖺𝖼𝗄,𝗆𝖾𝗆) in our
unning example. However, if we had got 𝗈𝗌𝗍𝖺𝖼𝗄 = [MLOAD(ADD(𝑠2,0x0)),
𝑠2], it would have been simplified to [MLOAD(𝑠2), 𝑠2] using the rule
ADD(𝑥, 0) → 𝑥.

Finally, function 𝚜𝚢𝚗𝚝𝚑𝚎𝚜𝚒𝚣𝚎𝙾𝚙𝚝𝚒𝚖𝚊𝚕 invokes a constraint solver
GASOL uses a Max-SMT solver and leaves out of the SMT encoding
rithmetic and bitwise opcodes as described in Albert et al. (2020)) to

search for an alternative sequence 𝑠𝑓 𝑜𝑝𝑡 of opcodes that when executed
from the same input stack 𝗂𝗌𝗍𝖺𝖼𝗄 results in the same symbolic state 𝗈𝗌𝗍𝖺𝖼𝗄
and 𝗆𝖾𝗆 and minimizes the objective function 𝖿 .

Example 8. The invocation of 𝚜𝚢𝚗𝚝𝚑𝚎𝚜𝚒𝚣𝚎𝙾𝚙𝚝𝚒𝚖𝚊𝚕 with 𝗂𝗌𝗍𝖺𝖼𝗄, 𝗈𝗌𝗍𝖺𝖼𝗄
and 𝗆𝖾𝗆, obtained through the previous examples, results in the origi-
nal sequence for both objective functions: gas and length, i.e., it is not
possible to further optimize it since, with the current information, it is
already optimal.

The returned sequence is added to the algorithm 𝗋𝖾𝗌𝗎𝗅𝗍 and there
s a final step that invokes 𝚛𝚎𝚋𝚞𝚒𝚕𝚍 (line 19), a standard procedure
o reconstruct executable code from optimized sequences (e.g., jump

addresses might need to be recomputed).

3.2. Superoptimization with useless write accesses

The sufficient condition of Albert et al. (2023) to detect a useless
rite access to a memory location made by an instruction at program
oint 𝑝𝑝 is to prove that there is no execution of the program in which
uch memory location is read after executing 𝑝𝑝. In Albert et al. (2023),

as the granularity of the heap analysis is the slot, this definition is
abstracted as: a write access to a memory location made at 𝑝𝑝 is useless
f there is no execution of the program in which the slot written at 𝑝𝑝

is read after executing 𝑝𝑝. Our definition of function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚄𝚜𝚎𝚕𝚎𝚜𝚜

below is an accuracy improvement of Definition 6 in Albert et al. (2023)
n two aspects: its condition (i) increases the accuracy thanks to the use

of offsets and condition (ii) detects also as needless write accesses those
that are overwritten before being read. The latter condition requires
having the certainty that the subsequent write accesses refer to the
same location (Definition 3). Given a program 𝗉, we denote by 𝑡 ≡ 𝑡0 ↦∗

𝑛 an execution trace of 𝗉 that starts from an empty memory and stack
in 𝑡0, and executing 𝑛 opcodes until reaching 𝑡𝑛. The opcode executed
at step 𝑡𝑖 of 𝑡 is referred to as 𝑜𝑝𝑖. We use 𝑝𝑝∶𝐼 ∈ 𝖻𝗅𝗈𝖼𝗄𝗌 to refer to an
pcode 𝐼 at 𝑝𝑝 in a sequence 𝖻, with 𝖻 ∈ 𝖻𝗅𝗈𝖼𝗄𝗌.

Definition 5 (𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚄𝚜𝚎𝚕𝚎𝚜𝚜). Function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚄𝚜𝚎𝚕𝚎𝚜𝚜 receives
the set 𝖻𝗅𝗈𝖼𝗄𝗌 for a program 𝗉 and the result 𝜙 of the heap analysis
(Definition 2), and returns a set of program points 𝑝𝑝∶MSTORE ∈ 𝖻𝗅𝗈𝖼𝗄𝗌
 a

6
that, in any execution trace 𝑡 of 𝗉 in which 𝑜𝑝𝑖 ≡ 𝑝𝑝∶MSTORE, satisfy
ne of these conditions:

(i) for all 𝑜𝑝𝑗≡𝑝𝑝1∶MLOAD with 𝑗 >𝑖 in 𝑡, 𝚗𝚘𝚗𝙰𝚕𝚒𝚊𝚜(𝑝𝑝, 𝑠0, 𝑝𝑝1, 𝑠0) holds;
(ii) there is a subsequent 𝑜𝑝𝑘≡𝑝𝑝2∶MSTORE in 𝑡 with 𝑘>𝑖 s.t. 𝚜𝚊𝚏𝚎𝙰𝚕𝚒𝚊𝚜
(𝑝𝑝, 𝑠0, 𝑝𝑝2, 𝑠0) holds, and for all 𝑜𝑝𝑗≡𝑝𝑝1∶MLOAD with 𝑖<𝑗 <𝑘, 𝚗𝚘𝚗𝙰𝚕𝚒𝚊𝚜
(𝑝𝑝, 𝑠0, 𝑝𝑝1, 𝑠0) holds.

To ensure that conditions (i) and (ii) hold in any execution of the
program, our implementation of function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚄𝚜𝚎𝚕𝚎𝚜𝚜 (invoked at
line 7 in Alg. 1) relies on a reachability analysis across the blocks of the
CFG of the program. Basically, given a write access, the reachability
analysis checks the conditions on the read and write memory accesses
of the subsequent reachable blocks in the CFG using the results of the
heap analysis to ensure the 𝚜𝚊𝚏𝚎𝙰𝚕𝚒𝚊𝚜 and 𝚗𝚘𝚗𝙰𝚕𝚒𝚊𝚜 properties.

Example 9. The application of function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚄𝚜𝚎𝚕𝚎𝚜𝚜 to the code
n Fig. 1 returns 𝗎𝗌𝖾𝗅𝖾𝗌𝗌 = {13, 15, 21}, as (i) the memory location ⟨𝑙1, 0⟩
ritten at the two MSTORE opcodes at 𝑝𝑝𝑠 13 and 21 is never read after

executing such opcodes, hence they are useless; and (ii) the memory
location ⟨𝑙1, 32⟩ written at the two MSTORE opcodes at 𝑝𝑝𝑠 15 and 25 is
ead at 𝑝𝑝 32 only, hence 𝑝𝑝 15 was useless.

The removal of useless write accesses at the bytecode level, by an
optimization tool, is far from being trivial. This is because just eliminat-
ing the MSTORE instruction may not be optimal, as the instructions used
to build the memory location being accessed and the value being stored
could be eliminated as well, and indeed their cost will be greater than
just the MSTORE. A rule-based transformation approach that searches
syntactically for patterns would not work well at the bytecode level
as too many patterns would have to be added (e.g., in the leftmost
column of Fig. 1, the removal of the MSTORE at 𝑝𝑝 15 makes 𝑝𝑝𝑠 14
and 9 unnecessary, and 𝑝𝑝𝑠 8–12 will be replaced by a sequence of
just two instructions, ‘‘PUSH 0x0 DUP3’’ that places the data on top
of the stack in the right order for the MSTORE instruction at 𝑝𝑝 13,
saving two additional instructions). In general, one would have to
nfer semantically the dependencies among the instructions involved
o make the MSTORE instruction. All this process comes for free using
uperoptimization, simply by removing the useless accesses from the
ymbolic memory description.

Definition 6 (Function 𝚊𝚙𝚙𝚕𝚢𝚄𝚜𝚎𝚕𝚎𝚜𝚜). Function 𝚊𝚙𝚙𝚕𝚢𝚄𝚜𝚎𝚕𝚎𝚜𝚜 re-
ceives a list of memory accesses 𝗆𝖾𝗆 and a set of program points 𝗎𝗌𝖾𝗅𝖾𝗌𝗌,
and deletes from 𝗆𝖾𝗆 the opcodes MSTORE𝑝𝑝 if 𝑝𝑝 ∈ 𝗎𝗌𝖾𝗅𝖾𝗌𝗌 and from
dep-list (𝗆𝖾𝗆) all relations 𝑝𝑝1 < 𝑝𝑝2 with 𝑝𝑝1 ≡ 𝑝𝑝 or 𝑝𝑝2 ≡ 𝑝𝑝.

Example 10. Using 𝗎𝗌𝖾𝗅𝖾𝗌𝗌 of Example 9, function 𝚊𝚙𝚙𝚕𝚢𝚄𝚜𝚎𝚕𝚎𝚜𝚜

removes the MSTORE21 from 𝗆𝖾𝗆 of Example 5 and the dependency
(21<25) from 𝑑 𝑒𝑝-𝑙 𝑖𝑠𝑡 of Example 6. Given such new symbolic state,
procedure 𝚜𝚢𝚗𝚝𝚑𝚎𝚜𝚒𝚣𝚎𝙾𝚙𝚝𝚒𝚖𝚊𝚕 obtains the superoptimized sequence:
‘‘ADD PUSH 0x0E DUP2 MSTORE DUP2 MLOAD SWAP1 PUSH 0x11 DUP3
MSTORE MLOAD PUSH 0x20 DUP3 ADD MSTORE’’ where we can see that
not only the MSTORE21 has been eliminated but also the instructions
needed to compute the data used by MSTORE, i.e., opcodes at 𝑝𝑝𝑠 19
and 20, have become unnecessary to obtain the final state. While the
original sequence had 20 opcodes and 50 units of gas, the new one has
respectively 17 and 46.

3.3. Superoptimization with aliasing and non-aliasing properties

Our heap analysis with offsets allows us to detect memory accesses
made at different 𝑝𝑝𝑠 that are not aliases or that are (safe) aliases.
When the heap analysis works at a slot granularity level, as in Albert
et al. (2023), the fact that two instructions access the same slot (even
if unique and ‘‘safe’’, see Definition 3) does not ensure that it is the
same location within the slot. Non-aliasing can be guaranteed when
the instructions access a different slot, however, the precision level is
inferior to ours. Function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐 (line 11 Alg. 1), returns the
liasing and non-aliasing pairs.

E. Albert et al.

a
(
a

𝗇
(

𝗇

c
a
(

l

t
e
a
a
o
n

r
a

𝗆
M

t
c
y
o
w
b
s
𝚌

a

f

The Journal of Systems & Software 221 (2025) 112284
Definition 7 (𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐). Function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐 receives
 block 𝖻 and the heap analysis results 𝜙, and returns a pair of sets
𝖺𝗅𝗂𝖺𝗌, 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌) that contain pairs (𝑝𝑝𝑖, 𝑝𝑝𝑗) of program points in 𝖻 defined
s follows:

(1) 𝖺𝗅𝗂𝖺𝗌={(𝑝𝑝𝑖, 𝑝𝑝𝑗) ∣ 𝑝𝑝𝑖∶𝐼𝑖, 𝑝𝑝𝑗∶𝐼𝑗 ∈ 𝖻 ∧ 𝐼𝑖, 𝐼𝑗 ∈ {MLOAD,MSTORE}∧
𝚜𝚊𝚏𝚎𝙰𝚕𝚒𝚊𝚜(𝑝𝑝𝑖, 𝑠0, 𝑝𝑝𝑗 , 𝑠0)}

(2) 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌={(𝑝𝑝𝑖, 𝑝𝑝𝑗) ∣ 𝑝𝑝𝑖∶𝐼𝑖, 𝑝𝑝𝑗∶𝐼𝑗 ∈ 𝖻 ∧ 𝐼𝑖, 𝐼𝑗 ∈ {MLOAD,MSTORE}
∧ 𝚗𝚘𝚗𝙰𝚕𝚒𝚊𝚜(𝑝𝑝𝑖, 𝑠0, 𝑝𝑝𝑗 , 𝑠0)}

Example 11. The information inferred by our heap analysis (see
Example 10) returns the following sets of pairs: 𝖺𝗅𝗂𝖺𝗌 ={(25,32)} and
𝗈𝗇𝖺𝗅𝗂𝖺𝗌 ={(21,25), (21,27), (21,31), (21,32), (21,36), (25,27), (25,31),
25,36), (31,27), (31,32), (31,36), (36,27), (36,32), (27,32)}. Set 𝖺𝗅𝗂𝖺𝗌

ensures that 𝑝𝑝𝑠 25 and 32 are accessing the same location (𝑙1.𝚋), while
𝗈𝗇𝖺𝗅𝗂𝖺𝗌 ensures that locations accessed at 𝑝𝑝𝑠 21 and 25 are different.

The 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌 set is used to eliminate dependencies within dep-
list(𝗆𝖾𝗆), similarly to what we have done with the 𝗎𝗌𝖾𝗅𝖾𝗌𝗌 set as
follows.

Definition 8 (𝚊𝚙𝚙𝚕𝚢𝙽𝚘𝚗𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐). Function 𝚊𝚙𝚙𝚕𝚢𝙽𝚘𝚗𝙰𝚕𝚒𝚊𝚜𝚒𝚗𝚐 re-
eives a list of memory accesses 𝗆𝖾𝗆 and the non-aliasing list 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌
nd removes from dep-list(𝗆𝖾𝗆) all (𝑝𝑝1<𝑝𝑝2) s.t. (𝑝𝑝1, 𝑝𝑝2) ∈ 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌 or
𝑝𝑝2, 𝑝𝑝1) ∈ 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌.

Besides this, when triggering the simplification rules for memory
accesses, we can take advantage of the safe aliasing properties to
everage them at this stage.

Definition 9 (𝚛𝚞𝚕𝚎𝙱𝚊𝚜𝚎𝚍𝚂𝚒𝚖𝚙𝚕𝚒𝚏𝚒𝚌𝚊𝚝𝚒𝚘𝚗). The ruleBased
Simplification function now receives an additional parameter 𝖺𝗅𝗂𝖺𝗌
that is used by its memory simplification rules (which previously used
a syntactic equality check, see Albert et al. (2022a) for details):

(1) if MSTORE𝑝𝑝1 (𝑙1, 𝑣),MLOAD𝑝𝑝2 (𝑙2)∈ 𝗆𝖾𝗆 with 𝑝𝑝1<𝑝𝑝2,
(𝑝𝑝1, 𝑝𝑝2)∈𝖺𝗅𝗂𝖺𝗌 and ∄MSTORE𝑝𝑝3∈ 𝗆𝖾𝗆 s.t. 𝑝𝑝1<𝑝𝑝3<𝑝𝑝2 and
(𝑝𝑝1<𝑝𝑝3)∈dep-list(𝗆𝖾𝗆), then remove MLOAD𝑝𝑝2 from 𝗆𝖾𝗆 and
replace all its occurrences by 𝑣 in 𝗈𝗌𝗍𝖺𝖼𝗄 and 𝗆𝖾𝗆;

(2) if MLOAD𝑝𝑝1 ,MLOAD𝑝𝑝2∈ 𝗆𝖾𝗆 with 𝑝𝑝1<𝑝𝑝2, (𝑝𝑝1, 𝑝𝑝2)∈𝖺𝗅𝗂𝖺𝗌 and
∄MSTORE𝑝𝑝3∈ 𝗆𝖾𝗆 s.t. 𝑝𝑝1<𝑝𝑝3<𝑝𝑝2 and (𝑝𝑝3<𝑝𝑝2)∈dep-list(𝗆𝖾𝗆),
then remove MLOAD𝑝𝑝2 from 𝗆𝖾𝗆 and replace all its occurrences
by MLOAD𝑝𝑝1 in 𝗈𝗌𝗍𝖺𝖼𝗄 and 𝗆𝖾𝗆;

(3) if MLOAD𝑝𝑝1 (𝑙1),MSTORE𝑝𝑝2 (𝑙2,MLOAD𝑝𝑝1 (𝑙1))∈ 𝗆𝖾𝗆 with 𝑝𝑝1<𝑝𝑝2,
(𝑝𝑝1, 𝑝𝑝2)∈𝖺𝗅𝗂𝖺𝗌, and ∄MSTORE𝑝𝑝3∈ 𝗆𝖾𝗆 s.t. 𝑝𝑝1<𝑝𝑝3<𝑝𝑝2,
(𝑝𝑝1<𝑝𝑝3)∈ dep-list(𝗆𝖾𝗆), then remove MSTORE𝑝𝑝2 from 𝗆𝖾𝗆.

Case 1 and 2 correspond, respectively, to loading a location that
has been written or read before and has not changed since then, which
is ensured by the fact that there is no dependent MSTORE in between.
Hence the MLOAD can be replaced by the written value (case 1) or
he previous MLOAD (case 2) both at the stack and memory. Case 3
liminates a MSTORE that is going to write the same value that was
lready at this memory location. Importantly, applying such aliasing
nd non-aliasing properties enables new bytecode optimizations, not
nly of the involved heap accesses, but also of stack bytecodes that can
ow operate more efficiently.

Example 12. Using 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌 of Example 11, applyNonAliasing
emoves all dependencies from dep-list(𝗆𝖾𝗆) of Example 6 as all pairs
ppear in 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌. Then, when we apply the function ruleBasedSim-

plification on the state computed in Example 5 using the 𝖺𝗅𝗂𝖺𝗌 set from
Example 11, we obtain as resulting state the same 𝗈𝗌𝗍𝖺𝖼𝗄 and a new
𝖾𝗆 = [MSTORE21(𝑠0,0x11),MSTORE25(ADD(𝑠0, 𝑠1),0x0E),MLOAD27(𝑠2),
STORE31(MLOAD27(𝑠2),0x11),MSTORE36(ADD(MLOAD27(𝑠2),0x20),

0x0E)], in which the elements that were underlined in 𝗆𝖾𝗆 in Example 5
have triggered rule 1 from Definition 9, and we have replaced all
7
the occurrences of MLOAD32(ADD(𝑠0, 𝑠1)) by 0x0E, the value stored
previously by MSTORE25 (as there is no MSTORE that can write a
value on location 𝑠0+𝑠1). From this symbolic state, the superoptimizer
returns the sequence: ‘‘PUSH 0X0E PUSH 0x11 DUP3 MSTORE SWAP2
ADD MSTORE DUP1 MLOAD PUSH 0x0E DUP2 PUSH 0x20 ADD MSTORE
PUSH 0x11 DUP2 MSTORE’’ that removes the unnecessary MLOAD and
saves 3 gas units.

3.4. Context-sensitive superoptimization

The concept of context-sensitive superoptimization is used to refer
o superoptimizing a loop-free sequence from a given initial calling-
ontext. In our case, the calling-context will be given by a heap anal-
sis, but in general could be provided by any other type of analysis
r even by a user. Our context is made up of the aliasing context
hich includes equalities among stack variables before entering the
lock (available in 𝜙), and the constancy context, which includes con-
tant information corresponding to offsets (available in 𝜎). Function
𝚘𝚖𝚙𝚞𝚝𝚎𝙲𝚘𝚗𝚝𝚎𝚡𝚝(invoked at line 12 of Alg. 1) gives us such context

information on the initial state when reaching each block of the CFG
of the program.

Definition 10 (𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙲𝚘𝚗𝚝𝚎𝚡𝚝). Function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙲𝚘𝚗𝚝𝚎𝚡𝚝 receives
a block 𝖻 and the heap analysis results (𝜙, 𝜎), and returns as calling
context the sets: 𝖺𝗅𝗂𝖺𝗌𝗂𝗇𝗀_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = {(𝑠𝑖=𝑠𝑗) ∣ 𝑠𝑖, 𝑠𝑗 ∈ ∧ 𝑝𝑝0∶𝐼0 = 𝖻0 ∧
𝚜𝚊𝚏𝚎𝙰𝚕𝚒𝚊𝚜(𝑝𝑝0, 𝑠𝑖, 𝑝𝑝0, 𝑠𝑗)} 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝖼𝗒_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = {(𝑠𝑖=𝑐) ∣ 𝑠𝑖 ∈ ∧𝑝𝑝0∶𝐼0 =
𝖻0 ∧ 𝜎(𝑝𝑝0, 𝑠𝑖) = {𝑐}} where 𝖻0 is the first program point in block 𝖻.

The application of the calling context is performed in the call to
𝚊𝚙𝚙𝚕𝚢𝙲𝚘𝚗𝚝𝚎𝚡𝚝 in line 15 of Alg. 1. Function 𝚊𝚙𝚙𝚕𝚢𝙲𝚘𝚗𝚝𝚎𝚡𝚝 simply
pplies the unifications in the 𝖺𝗅𝗂𝖺𝗌𝗂𝗇𝗀_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 and 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝖼𝗒_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 to

the initial and final stacks 𝗂𝗌𝗍𝖺𝖼𝗄 and 𝗈𝗌𝗍𝖺𝖼𝗄, and the memory 𝗆𝖾𝗆. As
usual, this is done by using a representative for each group of equal
elements and replacing all of them by the representative.

Example 13. Let us show the effect of the context on sequences
ound in a real smart contract (FlipItBurgerIngredient, 2024). The first

sequence is ‘‘PUSH 0x20 SWAP1 DUP2 MUL SWAP2 SWAP1 SWAP2 ADD
ADD MSTORE SWAP3 SWAP2 POP POP’’ and 𝗂𝗌𝗍𝖺𝖼𝗄 with 7 elements. Sym-
bolic execution returns (𝗈𝗌𝗍𝖺𝖼𝗄 = [𝑠6, 𝑠3], 𝗆𝖾𝗆 = [MSTORE10(ADD(ADD
(MUL(0x20, 𝑠0), 𝑠1),0x20), 𝑠2)]). Function 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙲𝚘𝚗𝚝𝚎𝚡𝚝 gives
𝖺𝗅𝗂𝖺𝗌𝗂𝗇𝗀_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = ∅ and 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝖼𝗒_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = {(𝑠0 = 0)}, and 𝚊𝚙𝚙𝚕𝚢𝙲𝚘𝚗𝚝𝚎𝚡𝚝

results in 𝗂𝗌𝗍𝖺𝖼𝗄= [0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6], 𝗈𝗌𝗍𝖺𝖼𝗄 as before and 𝗆𝖾𝗆=
[MSTORE10(ADD(ADD(MUL(0x20,0), 𝑠1),0x20), 𝑠2)]. This is optimized to
‘‘POP PUSH 0x20 ADD MSTORE SWAP3 SWAP2 POP POP’’, that has 6
fewer instructions (and saves 21 gas units). The gain has been possible
because knowing that 𝑠0 is 0 allows applying 𝙼𝚄𝙻(𝑥, 0) → 0 and
𝙰𝙳𝙳(𝑥, 0) → 𝑥. As for the aliasing context, we found this sequence
from the same contract ‘‘SWAP1 PUSH 0x1F NOT DUP4 AND SWAP4
PUSH 0x03B6 PUSH 0x02 PUSH 0x0 MSTORE PUSH Z SWAP1’’ with 𝗂𝗌𝗍𝖺𝖼𝗄
= [𝑠0, 𝑠1, 𝑠2, 𝑠3], for which symbolic execution obtains the state
𝗈𝗌𝗍𝖺𝖼𝗄 = [0x03B6, Z, 𝑠3, 𝑠1, 𝑠0, 𝑠2, AND(𝑠2,NOT(0x1F))] and 𝗆𝖾𝗆 =
[𝚂𝚃𝙾𝚁𝙴10(0, 2)]. Then, 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝙲𝚘𝚗𝚝𝚎𝚡𝚝 gives 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝖼𝗒_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = ∅ and
𝖺𝗅𝗂𝖺𝗌𝗂𝗇𝗀_𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = {(𝑠0 = 𝑠1)}, and when it is applied to the previous
symbolic state, we have 𝗂𝗌𝗍𝖺𝖼𝗄 = [𝑠0, 𝑠0, 𝑠1, 𝑠2], 𝗈𝗌𝗍𝖺𝖼𝗄= [0x03b6, Z, 𝑠3,
𝑠0, 𝑠0, 𝑠2, AND(𝑠2,NOT(0x1F))] and 𝗆𝖾𝗆 = [MSTORE10(0, 2)]. The optimized
sequence can avoid the first SWAP and save 3 units of gas and 1
instruction.

4. Experimental evaluation

Our implementation, on one hand, extends the basic heap analysis
in Albert et al. (2023) to compute the 𝗎𝗌𝖾𝗅𝖾𝗌𝗌, 𝖺𝗅𝗂𝖺𝗌, 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌 and context
sets and, on the other hand, it also extends the GASOL superopti-
mizer in Albert et al. (2022a) in order to apply them, as described
along the article. The implementation is in Python, open-source, and

E. Albert et al.

d
t
a
h
6
e

c
s
s
s

t
m
o
s

w

a
c
c
a

d
s
i
t
(
o

(

The Journal of Systems & Software 221 (2025) 112284
Table 1
Experimental evaluation.

data.tex solc+opt gasol gasol+heap gains

#𝑠𝑒𝑞 #𝑜𝑝∕𝑠 ∞ %𝑙 𝑒𝑛 𝑡𝑖𝑚𝑒 ∞ %𝑙 𝑒𝑛 𝑡𝑖𝑚𝑒 𝛥∞ 𝛥%𝑙 𝑒𝑛 𝛥𝑡𝑖𝑚𝑒

set1: all sequences

useless 3.2 5636 22.7 537 8.2% 0.1 s 426 23.3% 0.1 s −111 15.1% 0.0 s
aliasing 3.3 201 354 26.5 25 232 10.4% 8.2 s 14 446 15.4% 7.3 s −10 786 5.0% −0.9 s
context 3.4 27 715 32.9 11 644 8.4% 30.5 s 7148 12.0% 61.6 s −4496 3.6% 31.1 s
all 3 216 030 26.4 29 258 10.7% 7.0 s 17 342 16.3% 6.6 s −11 916 5.6% −0.4 s

set2: improve of gasol+heap over gasol

useless 3.2 3632 15.8 97 13.3% 0.1 s 0 47.0% 0.1 s −97 33.7% 0.0 s
aliasing 3.3 33 477 34.7 10 006 12.8% 50.5 s 0 37.2% 35.8 s −10 006 24.4% −14.6 s
context 3.4 8661 28.3 4137 8.6% 20.4 s 0 22.9% 70.3 s −4137 14.3% 50.0 s
all 3 43 681 32.0 13 444 12.2% 40.6 s 0 36.3% 28.1 s −13 444 24.1% −12.5 s
𝑡
s
o
%
s
s
o
o
a
a

g
i

t

#
t
u
2
,
b
h

can be downloaded from https://github.com/costa-group/green where
etailed instructions for its installation and usage are available. The sys-
em accepts smart contracts written in versions of Solidity up to 0.8.20
nd bytecode for the Ethereum Virtual Machine v1.10.25. Experiments
ave been performed on an AMD Ryzen Threadripper PRO 3995WX
4-cores processor and 512 GB of memory, running Debian 5.10.70. To
xperimentally evaluate our approach and compare it to Albert et al.

(2022a), we pulled from etherscan.io (Etherscan, 2018) the Ethereum
ontracts bound to the last 5000 open-source verified addresses whose
ource code was available on May 31, 2023. They lead to 2,013,181
equences from 14,034 smart contracts, as each address may corre-
pond to several Solidity files that in turn may contain several contracts

in them. All contracts have been compiled enabling the optimize
flag of solc. The whole dataset used is at the above github link. As
he objective function, rather than measuring the gas reduction, we
easure the length reduction of the code. This is because the EVM

pcodes accessing the persistent memory (that we are not optimizing,
ee Section 5) have much larger gas cost than the others. While relying

on the standard objective function, the length reduction, we give the
same cost to all instructions and the results are not distorted by the
particular features of the blockchain environment. Since searching
for the optimal solution can be expensive for large sequences, the
synthesizeOptimal procedure of GASOL can be given a timeout. The
SMT solver can reach the timeout either by finding a solution (but
failing to prove optimality) or without finding any solution. In the latter
case, the original sequence is returned by the superoptimizer. In our
experiments, as in Albert et al. (2022a), we have used a parametric
timeout. There, the timeout was 10*(#store+1) sec, and here since we
increase the search space with every new independence we have added,

e consider a timeout of 10*(#store+#new_indeps+1) seconds.
Table 1 summarizes the experimental results in which we aim

t comparing: columns under solc+opt (correspond to the out-
ome after compilation with solc and optimize flag enabled),
olumns gasol (the outcome of GASOL before our extension as
ppears in Albert et al. (2022a)) and gasol+heap (our approach).

Each row corresponds to the isolated optimization presented in the
corresponding section, and row all applies all optimizations together.
Column #𝑠𝑒𝑞 shows the number of sequences optimized in each case.
For each type of optimization, we only analyze the sequences for which
we have (new) information of the corresponding type (e.g., if the 𝗎𝗌𝖾𝗅𝖾𝗌𝗌
set does not contain any 𝑝𝑝 of the considered sequence, this sequence is
iscarded in row useless , while if it has non-empty 𝖺𝗅𝗂𝖺𝗌 or 𝗇𝗈𝗇𝖺𝗅𝗂𝖺𝗌
ets and they change the final symbolic state, it will be considered
n row aliasing . Thus, the column #𝑠𝑒𝑞 is different for the three
ypes of optimizations and row all includes all previous sequences
without repetitions). Column #𝑜𝑝∕𝑠 shows the average number of
pcodes per sequence. We show in columns ∞ the sequences for which

each corresponding system reached out the time without solution.
Columns %𝑙 𝑒𝑛 display the percentage of improvement of each system
gasol or gasol+heap) wrt the original sequences (computed as

#𝑜𝑝/#𝑜𝑝𝑥 *100, where #𝑜𝑝 is the total number of opcodes for the solc

8
sequence, and #𝑜𝑝𝑥 for gasol or gasol+heap, in each case). Columns
𝑖𝑚𝑒 contain the statistical median of the time needed to optimize one
equence. The set of columns gain provides the gains of gasol+heap
ver gasol: columns 𝛥∞, 𝛥%𝑙 𝑒𝑛 and 𝛥𝑡𝑖𝑚𝑒 show the differences in ∞,
𝑙 𝑒𝑛 and 𝑡𝑖𝑚𝑒, resp., of gasol+heap minus gasol. The results are

hown for two selected subsets: set1 includes all evaluated sequences;
et2 shows only the subset of set1 for which our solution improves
ver gasol. Note that row all in set1 includes the %seqsinsetu
f the total number of sequences in the benchmark set (as mentioned
bove, the total are 2,013,181), which means that we are analyzing
nd optimizing a relevant number of them.

Fig. 3 gives more details about the distribution of the improvements
ained by gasol and gasol+heap wrt solc+opt for the blocks
ncluded in set2. It shows one plot for each row in Table 1, namely,

plot (i) shows the distribution of the improvements gained by adding
useless information; plot (ii) shows the gains of aliasing; plot (iii)
the gains of context; and plot (iv) the gains of all the information
ogether. The plots depicted in Fig. 3 show the number of blocks (axis

y) that gain the corresponding percentage wrt the initial size of the
block (axis x).

Let us draw the main conclusions from the figures. Comparing
𝑠𝑒𝑞 for set1 and set2, we can see that the number of sequences
hat reduce their length with gasol+heap is very significant in row
seless (3632 of 5636), while it is smaller in aliasing (33,477 of
01,354) and moderate in context (8661 of 27,715). In aliasing
 we have observed that often the order of accesses to the heap made
y the compiler is already optimal, and non-aliasing properties cannot
ence improve the results. As regards the gains in length reduction,

in set1, we can see in column %𝑙 𝑒𝑛 that the overall improvement of
gasol+heap is important, being the lowest 12.0% and the highest
23.3%. Such gains are very significant for those sequences in set2,
and the gains of gasol+heap wrt gasol (column 𝛥%𝑙 𝑒𝑛) are between
14.3% and 33.7%. As expected, because we are removing MSTORE
opcodes and their dependencies, setting useless improves the most
but can be applied many less times. As regards the optimization times,
comparing columns 𝑡𝑖𝑚𝑒 for gasol and gasol+heap for both set1
and set2, we can see that, the time needed to superoptimize each
sequence is not increased by gasol+heap in row useless and is
even reduced in row aliasing . This reduction is low in set1 since,
as mentioned, in many cases there is no real room for improvement, but
it shows to be relevant in set2, where gasol+heap has improved
the results. This is due to the fact that the superoptimizer can take
advantage of the rule-based simplification and hence achieve better
results in less time. On the contrary, the time needed to treat the
context information in both sets is significantly higher. There are two
reasons to explain that: (1) adding context information increases the
search space since new options to generate constants or duplicate stack
values appear, (2) the constant information, unlike what happens with
aliasing , cannot be often used for the heap rules simplification and
just increases the search space. We have checked that 13,194 of the
27,715 sequences that cause the great difference in time in context

https://github.com/costa-group/green

E. Albert et al. The Journal of Systems & Software 221 (2025) 112284
Fig. 3. Distribution of improvements using gasol and gasol+heap wrt solc.
are also in aliasing . Importantly, when context and aliasing are
applied together, thanks to the additional aliasing information, they do
not cause extra time.

In addition, observing Fig. 3, we can see that most of the improve-
ments gained by gasol range between 10%–35% in all plots and in
any of gasol’s plots there are improvements over 40%. The plots
show that the behavior is better in all optimizations performed by
gasol+heap, showing a significant number of blocks with improve-
ments over 40%. In plot (i), which uses the useless information,
most of the blocks show the same improvements, in the case of gasol
in range (15,20] and for gasol+heap in (45,50]. The reason is that
most blocks that contain useless memory instructions contain the same
sequence of instructions, namely they correspond to the block created
by the compiler for allocating memory and are the same in most of the
programs.

Finally, it is worth mentioning that, although there are sequences
in ∞ of set1 using gasol+heap that are not in ∞ of gasol, the
number of sequences in ∞ is reduced in all cases (in this column the
only relevant information is given for set1 since, as described, set2
does not contain any sequence in ∞ with gasol+heap). To sum up,
the overall figures in rows all experimentally prove that harnessing
heap analysis for superoptimization can reach gains in a significant
number of sequences (43,681 of 216,030), and for those sequences
(set2) produce important savings (36.3% wrt the original number
of opcodes and 24.1% wrt the basic gasol) while the optimization
time is reduced (−12.5 s). Moreover, considering that globally set1
contains the %seqsinsetu of the sequences of code of all contracts in
the benchmark set, it is specially relevant that have we reach gains of
16.3% (all) on sequences already optimized by compiler.

Gas optimization. The experimental evaluation is performed using the
length of the blocks as objective function, in order to avoid having to
explain the details of the EVM gas model, which is a non-classical cost
model. However, the gas-improvement of GASOL+heap wrt GASOL is
proportional to the improvement obtained for the length of the blocks.
This can be explained theoretically: the instructions we are optimizing
(stack and memory opcodes) have almost the same cost (2–3 gas units)
9
as it happens when minimizing length (cost 1). The only relevant
consideration is the fact that there are some instructions whose gas
cost is significantly larger than common instructions (e.g., SLOAD might
consume up to 2100 gas units, and SSTORE might consume up to 22 100
gas units). The presence of storage accesses in blocks leads to lower
percentages of improvement even when GASOL+Heap is able to remove
a significant number of instructions. Nevertheless, even considering
that the percentage of gas improvement is lower than the one obtained
for length, using the benchmarks results for all of set1 from Table 1,
the gains of GASOL+Heap over solc and its optimizations are 0.61%
in gas-reduction. Hence, using the next data taken from Etherscan
(2018) on February 29th, 20244:

1. Eth price: 3342.24 USD/ETH
2. Avg. Gas Price: 0.000000074113151775 ETH/gas
3. Gas used: 108,601,400,000 gas units
4. Number of transactions: 1,236,458

We obtain that the 0.61% of gas optimized by GASOL+Heap wrt
solc would have saved 124,862.1738 USD on that day. Assuming the
same data for all days in a year, it would amount to >45M USD/year.
Note that we have removed the gas intrinsic cost, which does not
depend on the instructions (25,965,618,000). It corresponds to 21,000
gas units that are paid for each transaction. Hence, the gas considered
in the code operations is 82,635,782,000.

5. Related work

The first static modeling of the EVM memory is Grech et al. (2022),
which is formalized as a Datalog analysis. The accuracy of Grech et al.
(2022) is later increased in Albert et al. (2023), which presents a
flow-sensitive analysis able to accurately model the memory allocated
by nested data structures when memory locations contain pointers to
other slots, while Grech et al. (2022) does not capture such type of

4 Date of writing.

E. Albert et al.

p
t
p
c
p
i
o

i

c

r

w
l
p
w
c
I
o
o
s

a

a
f

t
S
m
a
c
w
o
t

t

o
i
i

i
t
t

v

h
t
N

l

The Journal of Systems & Software 221 (2025) 112284
structures. Our heap analysis with offsets makes a further increase of
recision, as it reasons at the level of locations within the slot, rather
han at the level of slots only as in Albert et al. (2023). This further
recision is required to infer aliasing and non-aliasing properties that
an be exploited by an optimization tool, and also provides further
recision for the detection of useless write accesses and for the context
nformation. While we have applied our heap analysis for program
ptimization, a precise model of the EVM memory is crucial to enhance

the accuracy of any posterior analysis (see, e.g., Lagouvardos et al.
(2020)).

The relevance of optimizing smart contracts has been pointed out
n Brandstätter et al. (2020), Nagele and Schett (2019), Nelaturu et al.

(2021) and Zhao et al. (2023) and guidelines for writing more efficient
ode have been also provided for smart contract developers (Chen

et al., 2017, 2020; Kong et al., 2022). It is hence not surprising that
optimization of EVM smart contracts is an active research topic: we can
also find approaches to optimization that are applied on the (Solidity)
source-code level (e.g., Chen et al. (2022)). EVM bytecode optimization
is also performed by the standard Solidity compiler solc (Optimizer,
2023) which is able to perform certain types of inlining, of dead-
code elimination, etc. Superoptimization is complementary to these
approaches and it is usually applied after having enabled them as a final
code optimization stage. Hence, we do not compare our experimental
results to them but rather apply our technique after having applied
the available optimizer (note that Chen et al. (2022) is not publicly
available).

Comparing our work to existing superoptimizers, we found that
most of the existing tools do not include heap optimizations, the only
exceptions being Albert et al. (2022a) and Bansal and Aiken (2006). As
egards (Albert et al., 2022a), it is only able to perform some memory

optimizations at the level of each block of the CFG, while the fact that
e use a global heap analysis within the superoptimizer breaks such

ocal limitation, as we have explained in detail through the article. In
articular, the detection of useless write accesses would not be possible
ithout a whole-program analysis, and also the heap properties that

an be inferred by reasoning at an intra-block level are very scarce.
nstead, combining a global heap analysis with an intra-block super-
ptimizer overcomes this limitation and achieves very powerful heap
ptimizations as proven in our experimental results. The approach to
uperoptimize memory operations that we are aware of is that of Bansal

and Aiken (2006), which is based on a testing equivalence check
and thus differs substantially from SMT-based approaches (following
Algorithm 1) like ours. Finally, in addition to dynamic memory, smart
contracts also use a persistent memory called storage. For storage,
there is no need to develop a static analysis to detect the slots, as
they are statically known. However, the inference of the offsets within
the slots requires our extension in Section 2.2, which can be done
analogously. Condition i) of function 𝚊𝚙𝚙𝚕𝚢𝚄𝚜𝚎𝚕𝚎𝚜𝚜 in Section 3.2 is
not applicable because, as storage is persistent memory, a write storage
ccess is not removable even if there is no further read access. Aliasing

properties and the inference of the context can be done as we have
done in Sections 3.3 and 3.4 for the heap. Experienced smart contract
developers are aware though of the high cost of using storage and make
 very efficient use of it and finding optimizations will be much less
requent than for the heap.

6. Discussion and limitations

Superoptimization (Massalin, 1987; Jangda and Yorsh, 2017) has
some limitations that are inherent to the definition of the superopti-
mization technique itself. First, the technique is applied on loop-free
sequences of code. Therefore, it is not able to achieve some of the
classical optimizations in loops, such as loop unfolding. Second, the
technique searches for the optimal code, what requires exploring the

whole space of alternative sequences that result in an equivalent code. S

10
This exhaustive search may threaten scalability, and sometimes time-
outs are used and rather than returning the optimal code, one obtains
the best code found within the timeout.

When compared to the use of design patterns (Chen et al., 2020;
Mariano et al., 2022; Marchesi et al., 2020; Nguyen et al., 2022), as well
as other forms of source-code optimization techniques (Brandstätter
et al., 2020; Chen et al., 2017, 2018; Liu and Song, 2024), we note that
heir effectiveness should not be compared to that of superoptimization:
uperoptimization is intended to be applied as a final layer of opti-
ization on code that has been already optimized at the source level

nd even optimized by the compiler. Given such (already optimized)
ode and applied at the level on loop-free sequences, superoptimization
ill be able to find optimal translations of the code. Therefore, super-
ptimization is compatible and complementary to other optimization
echniques.

As regards the heap analysis, its main limitation is that is tailored
specifically for EVM bytecode generated by the Solidity compiler, solc,
and its application to code generated by other compilers would require
some adaptations. For example, the EVM bytecode compiled from
Vyper (2024) has a completely different memory layout compared with
he one generated by solc. While the EVM generated by solc uses a

specific memory address (0x40) to store the free memory pointer (as
explained in Section 2), the one generated by Vyper does not implement
this free memory pointer. Vyper has a more restrictive approach, where
all the local variables are stored in memory (in Solidity are stored in
the stack) and the size of the data structures stored in memory has
to be known at compilation time. Hence, the notion of slot should be
redefined in this context. The Fe language (Fe, 2024) is also compiled
into EVM bytecode. In this case, the memory layout is similar to the
ne generated by solc with the exception that the free memory pointer
s stored at position 0x00 instead of 0x40 and, hence, the adaptation
s straightforward. The Yul language (Yul, 2024) is an intermediate

language that can be compiled to bytecodes for different backends,
ncluding EVM bytecode. In this case, Yul compiler is part of solc and,
herefore, can generate the same memory layout. It should be noted
hat solc is by far the most used Solidity compiler. According to Ether-

scan, 99.61%5 of the smart contracts have been compiled with some
ersion of solc. Therefore, our heap analysis has wide applicability.

Besides the Ethereum context, our overall approach of combining
eap analysis and superoptimization is general and could be applied
o other blockchains (Hyperledger, 2024; Solana, 2024; Neo, 2024).
evertheless, there are two aspects that should be considered when

implementing this approach in other contexts. On the one hand, the
heap analysis should be adapted to the particular details of the memory
model of the smart contract language, as already mentioned even
within the context of the EVM language. For instance, Hyperledger
Fabric smart contracts can be programmed using Java as well as other
languages. In those cases, the particularities of the language used and
the bytecode generated should be studied for developing the heap
analysis accordingly. On the other hand, the nature of the blockchain
determines the cost model to be used for the superoptimizer. In the case
of permissioned blockchains such as Hyperledger Fabric, there is no
notion of gas consumption or the gas price is set to zero and therefore
other metrics should be used instead.

7. Conclusions

This article has proposed a seamless integration of a whole-program
heap analysis into a superoptimizer for local sequences of opcodes. Su-
peroptimization tools first extract from the original sequence a higher-
evel specification which is used to carry out the search for the optimal

solution. In our case, such specification includes a symbolic description

5 Data gathered from https://etherscan.io/dashboards/contract-statistics on
ep 25,2024.

https://etherscan.io/dashboards/contract-statistics

E. Albert et al.

a
d
a
f
c
c
d
f
c
s
o
i

o
i

S
F

S
F

The Journal of Systems & Software 221 (2025) 112284
of the operand stack and of the heap contents. The integration of heap
nalysis into superoptimization is made at the level of the symbolic
escription and does not affect the search engine: (1) needless write
ccesses identified using the heap analysis outcome are eliminated
rom the memory description; (2) aliasing and non-aliasing properties
an enable the simplification of the memory description; (3) calling
ontext information can simplify both the operand stack and memory
escriptions. Our thorough experimental evaluation on sequences taken
rom 14,034 real smart contracts shows that, when heap properties
an be exploited, optimization gains wrt the previous version of the
uperoptimization tool improve from 10.7% length-reduction to 16.3%
ptimization while the median of the optimization time per sequence
s reduced by 0.4 s

CRediT authorship contribution statement

Elvira Albert: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Resources, Methodol-
gy, Investigation, Funding acquisition, Formal analysis, Conceptual-
zation. Jesús Correas: Writing – review & editing, Writing – origi-

nal draft, Visualization, Validation, Supervision, Software, Resources,
Methodology, Investigation, Funding acquisition, Formal analysis, Con-
ceptualization. Pablo Gordillo: Writing – review & editing, Writing
– original draft, Visualization, Validation, Supervision, Software, Re-
sources, Methodology, Investigation, Funding acquisition, Formal anal-
ysis, Conceptualization. Guillermo Román-Díez: Writing – review &
editing, Writing – original draft, Visualization, Validation, Supervision,
oftware, Resources, Methodology, Investigation, Funding acquisition,
ormal analysis, Conceptualization. Albert Rubio: Writing – review &

editing, Writing – original draft, Visualization, Validation, Supervision,
oftware, Resources, Methodology, Investigation, Funding acquisition,
ormal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Guillermo Roman-Diez reports financial support was provided by Spain
Ministry of Science and Innovation. Elvira Albert, Jesus Correas, Pablo
Gordillo, Albert Rubio reports financial support was provided by Spain
Ministry of Science and Innovation. If there are other authors, they
declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This work was partially funded by the Spanish MCI, AEI and FEDER
(EU) projects PID2021-122830OB-C41 and PID2021-122830OA-C44,
and by the Ethereum Foundation project GREEN.

Data availability

No data was used for the research described in the article.

References

Albert, Elvira, Correas, Jesús, Gordillo, Pablo, Román-Díez, Guillermo, Rubio, Albert,
2023. Inferring needless write memory accesses on ethereum smart contracts. In:
29th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2023. Proceedings. In: Lecture Notes in Computer
Science, vol. 13993, Springer, pp. 448–466.

Albert, Elvira, de la Banda, Maria Garcia, Hernández-Cerezo, Alejandro, Ig-
natiev, Alexey, Rubio, Albert, Stuckey, Peter J., 2024. SuperStack: Superoptimiza-
tion of stack-bytecode via greedy, constraint-based, and SAT techniques. Proc. ACM
Program. Lang. 8 (PLDI), 1437–1462.
11
Albert, Elvira, Gordillo, Pablo, Hernández-Cerezo, Alejandro, Rubio, Albert, 2022a. A
max-SMT superoptimizer for EVM handling memory and storage. In: Fisman, Dana,
Rosu, Grigore (Eds.), 28th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2022. Proceedings. In: Lecture
Notes in Computer Science, vol. 13243, Springer, pp. 201–219.

Albert, Elvira, Gordillo, Pablo, Hernández-Cerezo, Alejandro, Rubio, Albert,
Schett, Maria A., 2022b. Super-optimization of smart contracts. ACM Trans.
Softw. Eng. Methodol. 31 (4), 70:1–29.

Albert, Elvira, Gordillo, Pablo, Rubio, Albert, Schett, Maria A., 2020. Synthesis of
super-optimized smart contracts using max-SMT. In: 32nd International Conference
on Computer Aided Verification, CAV 2020. Proceedings. In: Lecture Notes in
Computer Science, vol. 12224, pp. 177–200.

Bansal, Sorav, Aiken, Alex, 2006. Automatic generation of peephole superoptimizers. In:
Shen, John Paul, Martonosi, Margaret (Eds.), Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006. ACM, pp.
394–403.

Berdine, Josh, Calcagno, Cristiano, Cook, Byron, Distefano, Dino, O’Hearn, Peter W.,
Wies, Thomas, Yang, Hongseok, 2007. Shape analysis for composite data structures.
In: Damm, Werner, Hermanns, Holger (Eds.), Computer Aided Verification. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 178–192.

Brandstätter, Tamara, Schulte, Stefan, Cito, Jürgen, Borkowski, Michael, 2020. Charac-
terizing efficiency optimizations in solidity smart contracts. In: IEEE International
Conference on Blockchain, Blockchain 2020, Rhodes, Greece, November 2-6, 2020.
IEEE, pp. 281–290.

Cabrera-Arteaga, Javier, Donde, Shrinish, Gu, Jian, Floros, Orestis, Satabin, Lucas,
Baudry, Benoit, Monperrus, Martin, 2020. Superoptimization of WebAssembly
bytecode. In: Aguiar, Ademar, Chiba, Shigeru, Boix, Elisa Gonzalez (Eds.), Pro-
gramming’20: 4th International Conference on the Art, Science, and Engineering
of Programming, Porto, Portugal, March 23-26, 2020. ACM, pp. 36–40.

Chen, Ting, Feng, Youzheng, Li, Zihao, Zhou, Hao, Luo, Xiapu, Li, Xiaoqi, Xiao, Xiuzhuo,
Chen, Jiachi, Zhang, Xiaosong, 2020. GasChecker: Scalable analysis for discovering
gas-inefficient smart contracts. IEEE Trans. Emerg. Top. Comput. PP(99), 1–14.

Chen, Ting, Li, Xiaoqi, Luo, Xiapu, Zhang, Xiaosong, 2017. Under-optimized smart
contracts devour your money. In: SANER. IEEE Computer Society, pp. 442–446.

Chen, Ting, Li, Zihao, Zhou, Hao, Chen, Jiachi, Luo, Xiapu, Li, Xiaoqi, Zhang, Xiaosong,
2018. Towards saving money in using smart contracts. In: Zisman, Andrea,
Apel, Sven (Eds.), Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE (NIER) 2018, Gothenburg,
Sweden, May 27 - June 03, 2018. ACM, pp. 81–84.

Chen, Yanju, Wang, Yuepeng, Goyal, Maruth, Dong, James, Feng, Yu, Dillig, Isil, 2022.
Synthesis-powered optimization of smart contracts via data type refactoring. Proc.
ACM Program. Lang. 6 (OOPSLA2), 560–588.

ERC721A. https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f6
0#code.

2018. Etherscan. https://etherscan.io.
2024. Fe documentation. https://fe-lang.org/docs/index.html.
FlipItBurgerIngredient. https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE

4dB4f78C4C11777#code.
Gavin Wood, 2019. Ethereum: A secure decentralised generalised transaction ledger.
Grech, Neville, Lagouvardos, Sifis, Tsatiris, Ilias, Smaragdakis, Yannis, 2022. Elipmoc:

Advanced decompilation of ethereum smart contracts. Proc. ACM Program. Lang.
6 (OOPSLA), 77:1–77:27.

Hyperledger Fabric Documentation. https://hyperledger-fabric.readthedocs.io/en/
latest/.

Itzhaky, Shachar, Bjørner, Nikolaj, Reps, Thomas, Sagiv, Mooly, Thakur, Aditya,
2014. Property-directed shape analysis. In: Biere, Armin, Bloem, Roderick (Eds.),
Computer Aided Verification. Springer International Publishing, Cham, pp. 35–51.

Jangda, Abhinav, Yorsh, Greta, 2017. Unbounded superoptimization. In: Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2017, Vancouver, BC,
Canada, October 23 - 27, 2017. pp. 78–88.

Kong, Queping, Wang, Zi-Yan, Huang, Yuan, Chen, Xiangping, Zhou, Xiao-Cong,
Zheng, Zibin, Huang, Gang, 2022. Characterizing and detecting gas-inefficient
patterns in smart contracts. J. Comput. Sci. Tech. 37 (1), 67–82.

Lagouvardos, Sifis, Grech, Neville, Tsatiris, Ilias, Smaragdakis, Yannis, 2020. Precise
static modeling of Ethereum ‘‘Memory’’. Proc. ACM Program. Lang. 4 (OOPSLA),
190:1–190:26.

Liu, Yunqi, Song, Wei, 2024. FunRedisp: A function redispatch tool to reduce invocation
gas fees in solidity smart contracts. In: Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis. In: ISSTA 2024,
Association for Computing Machinery, New York, NY, USA, pp. 1876–1880.

Marchesi, Lodovica, Marchesi, Michele, Destefanis, Giuseppe, Barabino, Giulio,
Tigano, Danilo, 2020. Design patterns for gas optimization in ethereum. In:
2020 IEEE International Workshop on Blockchain Oriented Software Engineering.
IWBOSE, pp. 9–15.

http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb13
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io/address/0xfcd5c0ef90715dc052dad6de08efda758aa09f60#code
https://etherscan.io
https://fe-lang.org/docs/index.html
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
https://etherscan.io/address/0x014BDf5237C49fA2B1283AaDE4dB4f78C4C11777#code
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb19
https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb26

E. Albert et al.

U
c
i

G
d
d
s

w
p

R

The Journal of Systems & Software 221 (2025) 112284
Mariano, Benjamin, Chen, Yanju, Feng, Yu, Durrett, Greg, Dillig, Isil, 2022. Auto-
mated transpilation of imperative to functional code using neural-guided program
synthesis. Proc. ACM Program. Lang. 6 (OOPSLA1), 1–27.

Massalin, Henry, 1987. Superoptimizer - a look at the smallest program. In: Proceedings
of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS II, pp. 122–126.

Milanova, Ana, Rountev, Atanas, Ryder, Barbara G., 2005. Parameterized object
sensitivity for points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14,
1–41.

Mukherjee, Manasij, Kant, Pranav, Liu, Zhengyang, Regehr, John, 2020. Dataflow-based
pruning for speeding up superoptimization. Proc. ACM Program. Lang. 4 (OOPSLA),
177:1–177:24.

Nagele, Julian, Schett, Maria A., 2019. Blockchain superoptimizer. In: Preproceed-
ings of 29th International Symposium on Logic-Based Program Synthesis and
Transformation. LOPSTR 2019.

Nelaturu, Keerthi, Beillahi, Sidi Mohamed, Long, Fan, Veneris, Andreas G., 2021.
Smart contracts refinement for gas optimization. In: 3rd Conference on Blockchain
Research & Applications for Innovative Networks and Services, BRAINS 2021, Paris,
France, September 27-30, 2021. IEEE, pp. 229–236.

Neo Blockchain Documentation. https://docs.neo.org/docs/index.html.
Nguyen, Quang-Thang, Son, Do Bao, Nguyen, Thi Tam, Do, Ba-Lam, 2022. GasSaver: A

tool for solidity smart contract optimization. In: Gai, Keke, Choo, Kim-Kwang Ray-
mond (Eds.), BSCI 2022: Proceedings of the 4th ACM International Symposium
on Blockchain and Secure Critical Infrastructure, Nagasaki, Japan, May 30, 2022.
ACM, pp. 125–134.

2023. Optimizer of solidity compiler. https://docs.soliditylang.org/en/latest/internals/
optimizer.html#optimizer.

Sasnauskas, Raimondas, Chen, Yang, Collingbourne, Peter, Ketema, Jeroen,
Taneja, Jubi, Regehr, John, 2017. Souper: A synthesizing superoptimizer.
CoRR, abs/1711.04422.

Smaragdakis, Yannis, Bravenboer, Martin, Lhoták, Ondrej, 2011. Pick your contexts
well: Understanding object-sensitivity. In: Ball, Thomas, Sagiv, Mooly (Eds.),
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. pp.
17–30.

Solana Blockchain Documentation. https://solana.com/es/docs.
2024. Solc compiler. https://docs.soliditylang.org/en/latest/using-the-compiler.html.
Vyper. https://github.com/ethereum/vyper.
2024. Yul documentation. https://docs.soliditylang.org/en/latest/yul.html.
Zhao, Ziyi, Li, Jiliang, Su, Zhou, Wang, Yuyi, 2023. GaSaver: A static analysis tool for

saving gas. IEEE Trans. Sustain. Comput. 8 (2), 257–267.
12
Elvira Albert (http://costa.fdi.ucm.es/~elvira) is a professor with the Complutense
niversity of Madrid, Spain, where she leads a research group, the COSTA team,
urrently made up of seven senior researchers and four postdoctoral researchers. She
s author of around 150 publications in international journals and volumes related to

the topics of validation and verification of sequential and concurrent programs. She
has been invited speaker with major conferences such as the ICST, ICLP, LPAR, and
FM.

Jesús Correas (http://costa.fdi.ucm.es/~jcorreas) is an Associate Professor at Com-
plutense University of Madrid since 2009. He was previously employed as an Assistant
Professor at the same university and at Universidad Politécnica de Madrid, and he has
also worked in private software development companies. His main research interests
are static program analysis, constraint declarative programming and object-oriented
concurrent and distributed systems. He has been involved in several national and
European research projects.

Pablo Gordillo (http://costa.fdi.ucm.es/~pabgordi) is an Assistant Professor at the
Complutense University of Madrid (UCM) since 2021. He was previously employed as
Postdoc Researcher at the same university. He is a research member of the COSTA

roup (http://costa.fdi.ucm.es since 2014. His research interests include static and
ynamic analyses, formal methods, testing and verification of concurrent programs and
istributed systems. He is currently working on analysis and verification of Ethereum
mart contracts. He has been involved in several national and European research

projects.

Guillermo Román-Díez (http://costa.ls.fi.upm.es/groman) is Associate Professor at
Universidad Politécnica de Madrid since 2020. He was previously employed as Assistant
Professor and Postdoc Researcher at the same university and have also worked in
private companies developing software projects. His main research interests are pro-
gram analysis, namely, static resource analysis, object-oriented, concurrent/distributed
programs, and blockchain systems. He has been involved in several national and
European research projects.

Albert Rubio (http://costa.fdi.ucm.es/~albert) received the Ph.D. degree in com-
puter science from the Technical University of Catalonia, in 1994. He is professor with
the Complutense University of Madrid since 2019. He was previously full professor

ith the Technical University of Catalonia since 2008. He is a author of around 70
apers published in the most prestigious conferences and journals, including LICS, CAV

or the Journal of ACM. He is a coauthor of a chapter of the Handbook of Automated
easoning.

http://refhub.elsevier.com/S0164-1212(24)00328-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb32
https://docs.neo.org/docs/index.html
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb34
https://docs.soliditylang.org/en/latest/internals/optimizer.html#optimizer
https://docs.soliditylang.org/en/latest/internals/optimizer.html#optimizer
https://docs.soliditylang.org/en/latest/internals/optimizer.html#optimizer
http://arxiv.org/abs/1711.04422
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb37
https://solana.com/es/docs
https://docs.soliditylang.org/en/latest/using-the-compiler.html
https://github.com/ethereum/vyper
https://docs.soliditylang.org/en/latest/yul.html
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb42
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb42
http://refhub.elsevier.com/S0164-1212(24)00328-5/sb42
http://costa.fdi.ucm.es/~elvira
http://costa.fdi.ucm.es/~jcorreas
http://costa.fdi.ucm.es/~pabgordi
http://costa.ls.fi.upm.es/groman
http://costa.fdi.ucm.es/~albert

	Harnessing heap analysis for the synthesis of superoptimized bytecode
	Introduction
	Heap Analysis of EVM bytecode with Offsets
	Basic Heap Analysis for EVM Albert et al. (2023)
	Extension with Offsets

	Harnessing Heap Analysis for Superoptimization
	Synthesis of Superoptimized Bytecode
	Superoptimization with Useless Write Accesses
	Superoptimization with Aliasing and Non-Aliasing Properties
	Context-Sensitive Superoptimization

	Experimental Evaluation
	Related Work
	Discussion and Limitations
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

