
May-Happen-in-Parallel Analysis
with Condition Synchronization

Elvira Albert1, Antonio Flores-Montoya2, and Samir Genaim1

1 Complutense University of Madrid (UCM), Spain
2 Technische Universität Darmstadt (TUD), Germany

Abstract. Concurrent programs can synchronize by means of condi-
tions and/or message passing. In the former, processes communicate and
synchronize by means of shared variables that several processes can read
and write. In the latter, communication is by sending, receiving and
waiting for messages. Condition synchronization is often more efficient
but also more difficult to analyze and reason about. In this paper, we
leverage an existing may-happen-in-parallel (MHP) analysis, which was
designed for a particular form of message passing based on future vari-
ables, to handle condition synchronization effectively, thus enabling the
analysis of programs that use both mechanisms. The information inferred
by an MHP has been proven to be essential to infer both safety prop-
erties (e.g., deadlock freedom) and liveness properties (termination and
resource boundedness) of concurrent programs.

1 Introduction

With the trend of parallel systems and the emergence of multi-core computing,
the development of techniques and tools that help analyzing and verifying the
behaviour of concurrent programs has become fundamental. Concurrent pro-
grams contain several processes (or tasks) that work together to perform a task.
For that purpose, they communicate and synchronize with each other. Commu-
nication can be programmed using conditions or using future variables [7].

In order to develop our analysis, we consider a generic asynchronous language
in which tasks can execute across different task-buffers in parallel; and inside
each buffer, tasks can interleave their computations. The language allows both
synchronization using conditions and future variables. When future variables are
used for synchronization, one process notifies through the future variable that
its execution is completed and the notification is received by the process(es)
waiting for its completion. In particular, the instruction Fut f=b!m(); posts an
asynchronous task m on buffer b and allows the current task to synchronize with
the completion of m by means of the future variable f. The instruction await

f? is used to synchronize with the completion of m as follows. If the process
executing m has not finished when executing the await, the future f is not ready,
and the current process is suspended. In such case, the processor can be released
such that another pending process in the same buffer can take it and start
to execute (thus interleaving its computation with the suspended task). When
condition synchronization is used, one process writes into a variable that is read

by another. Thus, instead of using future variables, the instruction await takes
the form await b? where b is a Boolean condition involving shared variables. For
instance, we can write await x!=null that synchronizes on the condition that the
shared variable x is not null . The use of condition synchronization is known to
pose challenges in static analysis. This is because it is difficult to automatically
infer to which parts of the program the await instruction synchronizes. As a
consequence, condition synchronization is more difficult to debug and analyze,
while its main advantage is efficiency – it lacks the overhead of managing future
variables. In contrast, future variable based synchronization is less efficient but
it helps in producing concurrent applications in a less error-prone way as it is
clearer how processes synchronize.

May-happen-in-parallel (MHP) is an analysis which identifies pairs of state-
ments that can execute in parallel across several buffers and in an interleaved
way within a buffer (see [13, 3]). MHP directly allows ensuring absence of data
races in the access to the shared memory. Besides, it is a crucial analysis to later
prove more complex properties like termination, resource consumption and dead-
lock freedom. In [15, 9], MHP pairs are used to greatly improve the accuracy of
deadlock analysis. The language we consider uses the instruction f .get to block
the execution of the current task until the task associated with the future f has
finished. Consider method “void m (Buffer b) {Fut f=b!foo(); f.get;}”.
Given two buffers b1 and b2, if we execute the processes m(b2) on b1 and m(b1)
on b2 in parallel, we can have a deadlock situation as they block waiting for
each other to terminate. The MHP analysis allows discarding infeasible dead-
locks when the instructions involved in a possible deadlock cycle cannot happen
in parallel. For instance, if we are sure that the execution of m(b2) in b1 has fin-
ished before the execution of m(b1) in b2 starts (i.e., the tasks cannot happen in
parallel), we can prove deadlock freedom. Also, MHP improves the accuracy of
termination and cost analysis [4] since it allows discarding infeasible interleav-
ings. For instance, consider a loop like “while (l!=null) {x=b!p(l.data);
await x?; l=l.next;}”, where the instruction await x? synchronizes with the
completion of the asynchronous task to p. If the asynchronous task is not com-
pleted (x is not ready), the current task releases the processor and another task
can take it. This loop terminates and has a bounded resource consumption pro-
vided no instruction that increases the length of the list l interleaves or executes
in parallel with the body of this loop.

In this paper, we leverage an existing MHP analysis [13, 3] developed for
synchronization using future variables to handle condition synchronization ef-
fectively. Handling both future variables and shared memory synchronization
is difficult because the analysis has to infer soundly the program points which
the await instructions synchronize with and propagate them accordingly to both
kinds of synchronization. Our analysis is based on the must-have-finished (MHF)
property which allows us to determine that a given instruction will not be exe-
cuted afterwards after a certain point. In particular, we aim at inferring MHF-
sets which are the set of program points that MHF when the execution reaches
a program point of interest. Developing our extension for condition synchroniza-

2

tion amounts to developing an analysis that infers the required MHF-sets and
using them to refine the original MHP analysis.

2 Language

We consider asynchronous programs with multiple task buffers (see [8]) which
may concurrently interleave their computations. The concept of task buffer is
materialized by means of an object. Tasks from different objects (i.e., different
task buffers) execute in parallel. Tasks can be synchronized with the completion
of other tasks (from the same or a different buffer) using futures and conditions
on shared variables. The number of task buffers does not have to be known a pri-
ori and task buffers can be dynamically created. Our model captures the essence
of the concurrency and distribution models used in actor-languages (including
concurrent objects [12], Erlang [1] and Scala [11]) and in X10 [13], which rely on
futures and message passing synchronization. It also has many similarities with
the concurrency model in [8] which uses condition synchronization.

2.1 Syntax

A program consists of a set of classes, each of them can define a set of fields, and
a set of methods. One of the methods, named main, corresponds to the initial
method which is never posted or called and it is executing in an object with
identifier 0. The grammar below describes the syntax of our programs. Here,
T are types, m method names, e expressions, x can be field accesses or local
variables, b is a Boolean condition involving fields, and y are future variables.

CL ::= class C {T̄ f̄ ; M̄} M ::=T m(T̄ x̄){s; return e; }
s ::= s; s | x = e | if e then s else s | while e do s |

await y? | await b | x = new C(ē) | y = x!m(ē) | y.get

The notation T̄ f̄ is used as a shorthand for the sequence T1 f1; . . . ;Tn fn,
where Ti is a type and fi is a field name. We use the special identifier this to
denote the current object. For the sake of generality, the syntax of expressions
and conditions is left free and also the set of types is not specified. We assume
that every method ends with a return.

Each object represents a task-buffer and has a heap with the values assigned
to its fields. The concurrency model is as follows. Each object has a lock that is
shared by all tasks that belong to the object. Data synchronization is by means
of future variables and conditions as follows. An await y? instruction is used
to synchronize with the result of executing task y=b!m(z̄) such that await y?
is executed only when the future variable y is available (and hence the task
executing m on object b is finished). In the meantime, the object’s lock can be
released and some pending task on that object can take it. The synchronization
instruction await b blocks the execution until the Boolean condition b evaluates
to true, and allows other tasks to execute in the meantime. The instruction y.get
blocks the object (no other task of the same object can run) until y is available,
i.e., the execution of m(z̄) on b is finished. Note that the difference from await y?
is in that is blocks the object.

3

fresh(oid ′) , l′ = l[x→ oid ′], t = tsk(tid ,m, l, 〈x = new C(ē); s〉), f ′ = init atts(C, e)

obj (oid , f, tid , {t} ∪ Q) ‖ B ;

(newobject) obj (oid , f, tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ obj (oid ′, f ′,⊥, {}) ‖ B

t = tsk(tid , , , s) ∈ Q, s 6= ε(v)

(select) obj (oid , f,⊥,Q) ‖ B ; obj (oid , f, tid ,Q) ‖ B

(async)

l(x) = oid1, fresh(tid1), l′ = l[y → tid1], l1 = buildLocals(z̄,m1)

obj (oid , f, tid , {tsk(tid ,m, l, 〈y = x!m1(z); s〉} ∪ Q) ‖ obj (oid1, f1, ,Q′) ‖ B ;

obj (oid , f, tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖
obj (oid1, f1, , {tsk(tid1,m1, l1, body(m1))} ∪ Q′) ‖ B

c = y?, l(y) = tid1, tsk(tid1, , , s1) ∈ Q, s1 = ε(v) ∨ c = b, eval(b, f, l) = true

(await1) obj (oid , f, tid , {tsk(tid ,m, l, 〈await c; s〉)} ∪ Q) ‖ B ;

obj (oid , f, tid , {tsk(tid ,m, l, s)} ∪ Q) ‖ B
c = y?, l(y) = tid1, tsk(tid1, , , s1) ∈ Q, s1 6= ε(v) ∨ c = b, eval(b, f, l) = false

(await2) obj (oid , f, tid , {tsk(tid ,m, l, 〈await c; s〉)} ∪ Q) ‖ B ;

obj (oid , f,⊥, {tsk(tid ,m, l, 〈await c; s〉)} ∪ Q) ‖ B

(get)

l(y) = tid1, tsk(tid1, , , s1) ∈ Obj, s1 = ε(v), l′ = l[x→ v]

obj (oid , f, tid , {tsk(tid ,m, oid , l, 〈x=y.get; s〉)} ∪ Q) ‖ B ;

obj (oid , f, tid , {tsk(tid ,m, oid , l′, s)} ∪ Q) ‖ B

(return)

v = l(x)

obj (oid , f, tid , {tsk(tid ,m, l, 〈return x; 〉)} ∪ Q) ‖ B ;

obj (oid , f,⊥, {tsk(tid ,m, l, ε(v))} ∪ Q) ‖ B
Fig. 1. Summarized Semantics

Note that our concurrency model is cooperative as processor release points are
explicit in the code, in contrast to a preemptive model in which a higher priority
task can interrupt the execution of a lower priority task at any point. Without
loss of generality, we assume that all methods in a program have different names.

2.2 Semantics

A program state St = Obj is of the form Obj ≡ obj 1 ‖ . . . ‖ objn denoting the par-
allel execution of the created objects. Each object is a term obj (oid , f, lktid ,Q)
where oid is the object identifier, f is a mapping from the object fields to their
values, lktid is the identifier of the active task that holds the object’s lock or
⊥ if the object’s lock is free, and Q is the set of tasks in the object. Only one
task can be active (running) in each object and has its lock. All other tasks are
pending to be executed, or finished if they terminated and released the lock.
A task is a term tsk(tid ,m, l, s) where tid is a unique task identifier, m is the
method name executing in the task, l is a mapping from local (possibly future)
variables to their values, and s is the sequence of instructions to be executed or
s = ε(v) if the task has terminated and the return value v is available. Created
objects and tasks never disappear from the state.

The execution of a program starts from an initial state where we have an
initial object with identifier 0 which has no fields and is executing task 0 of
the form S0 = obj (0, [], 0, {tsk(0,main, l, body(main))}). Here, l maps parameters
to their initial values and local reference and future variables to null (standard

4

initialization), and body(m) refers to the sequence of instructions in the method
m. The execution proceeds from S0 by selecting non-deterministically one of
the objects and applying the semantic rules depicted in Fig. 1. We omit the
treatment of the sequential instructions as it is standard.

Newobject: an active task tid in object oid creates an object oid ′ of type C,
its fields are initialized (init atts) and oid ′ is introduced to the state with a free
lock. Select: this rule selects non-deterministically one of the tasks that is in
queue and is not finished, and it obtains its object’s lock. Async: A method call
creates a new task (the initial state is created by buildLocals) with a fresh task
identifier tid1 which is associated to the corresponding future variable y in l′.
We have assumed that oid 6= oid1, but the case oid = oid1 is analogous, the new
task tid1 is simply added to Q of oid . Await1: It deals with synchronization both
on future variables and shared memory. If the future variable we are awaiting
for points to a finished task or the condition evaluates to true (we use function
eval to evaluate the condition), the await can be completed. When using future
variables, the finished task t1 is looked up in all objects in the current state
(denoted Obj). Similarly, the evaluation of the condition will require accessing
object fields and possibly local variables (thus f and l are looked up). Await2:
Otherwise, the task yields the lock so that any other task of the same object
can take it. Get: It waits for the future variable but without yielding the lock.
Then, it retrieves the value associated with the future variable. Return: When
return is executed, the return value is stored in v so that it can be obtained by
the future variable that points to that task. Besides, the lock is released and will
never be taken again by that task. Consequently, that task is finished (marked
by adding the instruction ε(v)) but it does not disappear from the state as its
return value may be needed later.

Example 1. Our motivating example is showed in Fig. 2. It consists of two classes
A and C and a main method from which the execution starts. The main method
receives two input parameters. For simplicity class C and return instructions
have been omitted. We will see later that a näıve analysis of the synchronization
instructions will report termination and resource boundness problems that are
spurious (i.e., false alarm). The trace S0 ; S1 ;∗ S2 ;∗ S3 ; S4 where

S0 ≡ obj (0, [], 0, {tsk(0,main, l0 ≡ [m 7→ m0, n 7→ n0], 2̃)})
S1 ≡ obj (0, [], 0, {tsk(0,main, l0, 3̃)}) ‖ obj (1, f1,⊥, {})
S2 ≡ obj (0, [], 0, {tsk(0,main, l0, 5̃)}

‖ obj (1, f1,⊥, {tsk(1, init , l1, 1̃1), {tsk(2, go, l2, 2̃5)})
S3 ≡ obj (0, [], 0, {tsk(0,main, l0, 5̃)}

‖ obj (1, f1, 2, {tsk(1, init , l1, 1̃1), {tsk(2, go, l2, 2̃5)})
S4 ≡ obj (0, [], 0, {tsk(0,main, l0, 5̃)}

‖ obj (1, f1,⊥, {tsk(1, init , l1, 1̃1), {tsk(2, go, l2, 2̃5)})
S5 ≡ obj (0, [], 0, {tsk(0,main, l0, 5̃)}

‖ obj (1, f1, 1, {tsk(1, init , l1, 1̃1), {tsk(2, go, l2, 2̃5)})

5

1main (i n t m, i n t n) {
2 A a = new A(m, n) ;
3 a ! i n i t () ;
4 a ! go () ;
5}
6

7 c l a s s A < i n t g , i n t f>{
8 C x = nu l l ;
9

10 vo id i n i t () {
11 whi le (g>0) {
12 Fut y = i n c r f () ;
13 await y?
14 g−−;
15 }
16 x = new C() ;
17 }

18 vo id i n c r f () {
19 f=2∗ f ;
20 }
21 vo id i n c r g () {
22 g=2∗g ;
23 }
24 vo id go () {
25 await x!= nu l l ;
26 whi le (f>0) {
27 Fut z = i n c r g () ;
28 await z ?
29 f−−;
30 }
31 }
32}
33

Fig. 2. Synchronization using Boolean conditions.

corresponds to few execution steps starting from method main and two constant
values m0 and n0 as input parameters. (1) S0 is the initial state, it includes one
object with the main method whose next instruction to be executed is the one
at program point 2 (denoted as 2̃) and the local variable mapping l0 keeps the
bindings for the input arguments; (2) S1 is obtained from S0 by executing the
first instruction of method main, using rule newobject, that creates object 1
and initializes the two class fields f and g with the values that are passed as
arguments in the new instruction (the bindings for the fields are kept in f1);
(3) S2 is obtained from S1 by applying rule async twice, to execute program
points 3 and 4 of the main method to create the tasks 1 and 2 and add them
to the queue of object 1; (4) S3 is obtained from S2 by applying rule select
that selects task 2 from object 1 to start to execute (5) S4 is obtained from S3

by applying rule await2 that evaluates the boolean condition of the await at 25
to false and thus releases the processor. Note that this condition synchronizes
with the instruction at line 16 which creates the object x and thus allows task
2 to move forward; (6) at S5 task 1 is selected for execution at object 1 and its
execution can proceed till the loop finishes iterating and afterwards object x is
created. Up to that point, the task 2 is blocked in the await instruction.

3 MHP: Concrete Definition and Static Analysis

In this section, we define the property may-happen-in-parallel, and summarize
the main points of the analysis of [3] which over-approximates this property. Fi-
nally, we describe a straightforward extension of this analysis to handle condition
synchronization which is simple but imprecise.

6

3.1 Concrete Definition

We first define the concrete property “MHP” that we want to approximate using
static analysis. In what follows, we assume that instructions are labelled such
that it is possible to obtain the corresponding program point identifiers. Given a
sequence of instructions s, we use pp(s) to refer to the program point identifier
associated with its first instruction, and pp(ε(v)) refers to the exit program point.

Definition 1. A program point p is active in a state S = Obj within task tid,
iff there is obj (oid , , ,Q) ∈ Obj and tsk(tid , , , s) ∈ Q such that pp(s) = p.

We sometimes say that p is active in task S without referring to the corre-
sponding task identifier. Intuitively, this means that there is a task in S whose
next instruction to be executed is the one at program point p.

Definition 2. Given a program P , its MHP is defined as EP =∪ {ES |S0 ∗ S}
where ES = {(p1, p2) | p1 is active in S within tid1, p2 is active in S within tid2

and tid1 6= tid2}.

The above definition considers the union of the pairs obtained from all deriva-
tions from S0. This is because execution is non-deterministic in two dimensions:
(1) in the selection of the object that is chosen for execution, different behaviours
(and thus MHP pairs) can be obtained depending on the execution order, and
(2) when there is more than one task, the selection is non-deterministic.

The MHP pairs can originate from direct or indirect task creation relation-
ships. For instance, in the program of Fig. 2, the parallelism between the points
of the tasks executing init and go is indirect because they do not invoke one
to the other directly, but a third task main invokes both of them. However, the
parallelism between the points of the task go and those of incrg is direct because
the first one invokes directly the latter one. Def. 2 captures both forms of direct
and indirect parallelism and they are indistinguishable in the MHP pairs.

3.2 Static Analysis

In [3], an MHP static analysis is presented. Intuitively, the analysis is formalized
as a two-phase process: (1) First, methods are locally analyzed and the analysis
learns about the tasks invoked within each method, the instructions await, get

and return in the following way. A method call creates a task that may run in
parallel with the current task. For instance, the task created at 3 runs in parallel
with the current one. If the object in which the task is posted is this (e.g., when
we invoke incrf ()) then the task is pending in the object this since we know that
it cannot start to execute until a release point is reached in the current task.
From await and get used with futures, the analysis learns that the corresponding
tasks have finished after such instructions execute. For instance, at 28, we know
that the task created at 27 is finished. Also, at 13 we know that the task created
at 12 is finished. This is an essential piece of information for precision. Also,
tasks that were pending in this object may become active at the await point.
For instance, the call considered pending before incrf () would be considered as
potentially active at 13, since the processor might be released at this point (and

7

indeed it will necessarily as y cannot be ready until incrf terminates). Likewise,
from return, we learn that tasks that were pending might become active, as the
processor is released by the current task. (2) Second, the information gathered
at the local phase is composed by means of an MHP-graph, denoted G

P
, which

contains all MHP information for a program P . The graph allows us to obtain
the (abstract) set of MHP pairs ẼP , which are an over-approximation of EP .
Informally, the set ẼP is obtained by checking certain reachability conditions on
G

P
. Such conditions are not relevant to the contents of this paper (see [3]).

Theorem 1 (soundness [3]). EP ⊆ ẼP .

3.3 Näıve Extension

The analysis in [3] only handles synchronization instructions, “await y?” and
“y.get”, that allow synchronizing one task with the completion of other tasks.
Handling “await b”, where b is a Boolean condition, poses new challenges on
the MHP analysis since, unlike “await y?”, it is not immediate to know which
part of the program it synchronizes with, i.e., which instructions make this con-
dition satisfiable. The analysis in [3] can be näıvely extended to soundly, but
not precisely, handle this new instruction. This is simply done by treating it
as “await z?” where z is a fresh variable that does not appear anywhere in the
program. This allows pending tasks to become active after the await, and thus
guarantees soundness. However, it will not mark any task as finished as z is not
associated to any instruction or task, and thus it leads to imprecise results.

Example 2. Consider the program depicted in Fig. 2, and note that program
point 25 synchronizes with program point 16 using a Boolean condition. Apply-
ing the basic MHP analysis with the above näıve extension, we will conclude
that (14, 26) and (29, 11) are MHP pairs. These are spurious pairs since go will
not proceed to program point 26 until program point 16 has been executed, i.e.,
go waits for init to finish at program point 16. In practice, these spurious MHP
pairs lead to imprecision in analyses for more complex properties that rely on
this MHP information. This is the case of the termination and resource analyses
of [4] which reports a false alarm. Non-termination (and resource unbounded-
ness) is actually feasible if we omit the synchronization condition at line 16, and
is obtained as follows: (1) in main we invoke init and go; (2) go starts to execute
and calls incrg that executes and increases the counter g by one; (3) at the release
point in line 28, task init starts to execute and invokes incrf (which increases
the counter of the loop at go by multiplying it by two); (4) thus, the execution of
both loops interleaves and the tasks invoked within the loops modify the counter
of the other loop such that the interleaved execution will not terminate; In the
presence of the condition at line 25 this termination and resource boundness
problem becomes infeasible, since the loop of go cannot start until init has fin-
ished and all instances of the tasks incrf that modify the loop counter and thus
finished as well. It will be eliminated later when the MHP analysis is enhanced
to infer that program points (14 and 26), and also (29 and 11) cannot execute
in parallel.

8

4 MHP Analysis with Condition Synchronization

The goal of this section is to leverage the MHP analysis described in Sec. 3
to handle condition synchronization. For this, we assume that the basic MHP
analysis (with the näive extension of Sec. 3.3) has been applied, and the result is
given as a set of MHP pairs ẼP . Then, we present an extension that eliminates
infeasible MHP pairs, as the one of Ex. 2, from this set. This extension is based on
a property that we call must-have-finished that can be directly used to eliminate
infeasible MHP pairs.

The rest of this section is organized as follows: Sec. 4.1 defines the must-have-
finished property and discusses a specific way to under-approximate it; Secs. 4.2-
4.4 describe a practical way to carry out this under-approximation; and finally
Sec. 4.5 sketches some important improvements to the overall analysis.

4.1 Must-Have-Finished Property

The must-have-finished (MHF) property is defined by means of MHF-sets that
are assigned to each program point. Intuitively, the MHF-set for a given program
point p is a set of program points that will never execute after p has been reached.
Next we formally define the MHF property.

Definition 3. Given two program points p1 and p2, we say that p2 is in the
MHF-set of p1, denoted p2 ∈ mhfset(p1), iff for any trace t ≡ S0 ;∗ S ;∗ S′,
if p1 is active in S, then p2 is not active in S′.

Intuitively, this definition states that whenever p1 is reached (in state S), then
p2 is not active from that state on (note that S′ could be equal to S). Clearly,
if p2 ∈ mhfset(p1) then p1 and p2 cannot execute in parallel.

Corollary 1. If p2 ∈ mhfset(p1), then (p1, p2) 6∈ EP .

Example 3. For the program of Fig. 2, we have 16 ∈ mhfset(26). This is because
for method go to proceed to program point 26, the condition at program point 25
must be satisfied. The instruction at program point 16 is the only one that
makes this condition satisfiable and it is executed only once. Therefore, it will
not execute again after 26 has been executed. This will be used in Sec. 4.5 to
guarantee that the method init , together with all instances of method incrg are
finished at program point 26.

MHF is a non-trivial undecidable property, and thus we aim at computing
under-approximations of it, that can be soundly used in Cor. 1, as follows: in
order to include p2 in the MHF-set of p1 we require that (1) p2 must-have-
happened (MHH) before p1, i.e., whenever p1 is reached, then p2 must have
been executed in a previous transition at least once; and (2) p2 is unique, i.e.,
p2 executes at most once in any trace. These two properties together imply
p2 ∈ mhfset(p1). Next we formally define the notion of MHH-sets and the set
of unique program points, and then explain how they are combined to under-
approximate the MHF-sets.

9

Given a trace t ≡ S0 ;∗ Sn, we say that program point p is executed in step
i < n of t, iff p is active in Si within task tid and it is not active in Si+1 within
task tid (note that p could be active in Si+1 within tid′ 6= tid).

Definition 4. We say that p2 is in the MHH-set of p1, denoted p2 ∈ mhhset(p1),
iff for any trace t ≡ S0 ;∗ Sn, if p1 is active in Sn then p2 is executed at least
once in step i < n of t.

Given a trace t ≡ S0 ;∗ Sn, we say that a program point p is reached in
state Si, with 0 ≤ i ≤ n, iff p is active in Si within task tid, and, either i = 0
or p is not active in Si−1 within task tid. This means that task tid has reached
program point p due to the execution step Si−1 ; Si, or, when i = 0, p is active
in the initial state S0 within task tid.

Definition 5. A program point p is unique iff in any trace it is reached at most
once. The set of unique program points is denoted by U .

Lemma 1. mhhset(p) ∩ U ⊆ mhfset(p)

Unfortunately the MHH and uniqueness properties are still non-trivial. In Secs. 4.2
and 4.3 we describe an analysis for under-approximating the MHH-sets, and in
Sec. 4.4 we explain how we under-approximate the set U .

It is worth noting that Def. 3 and the corresponding under-approximation,
capture behaviours in which one part of the program synchronizes with some
initialization tasks (since we forbid p2 to execute again after p1). This might
seem restrictive since it is common to have several instances of the same initial-
ization method, for different objects, executing independently at different times.
However, in practice, our analysis uses object-sensitive information [14, 5] and
thus considers instances of the same method, when they run on different objects,
as if they were different methods. The above formalism can be trivially adapted
to an object-sensitive setting, but for the sake of simplifying the presentation,
we keep it object-insensitive while our implementation is object-sensitive.

Example 4. Consider the program of Fig. 2, and suppose that the code of main is
duplicated, e.g., add “A b = new A(); b!init () ; b!go();” immediately after line 4.
In such case, program point 16 must execute at least once before program
point 26. However, since there are two instances of init , one will have to ex-
ecute before program point 26, but the other might start executing after one of
the instances of method go has reached program point 26. Ignoring the object-
sensitive information we would conclude that 16 6∈ mhfset(26). This is indeed
correct if a and b were pointing to the same objects, which is not the case.

By taking object-sensitive information into account, our implementation con-
siders the two calls to init (resp. go) as calls to different methods, and thus it is
able to prove that 16 ∈ mhfset(26) for objects a and b.

10

4.2 Under-approximating MHH-sets

The analysis for inferring MHH-sets consists of the following two steps: in the
first one we extract what we call MHH-seeds, which are under-approximations
of the MHH-sets of some program points that are relatively easy to compute;
and then, in a second step, these seeds are propagated to other program points.
In this section we detail the second step, while for the first step we just define
the notion of MHH-seeds and leave the automatic inference details to Sec. 4.3.

Formally, an MHH-seed for a program point p, denoted mhhseed(p) is a
subset of mhhset(p). For now, we assume that every program point is assigned
an MHH-seed. In general, for most program points it is the empty set. These sets
can be provided by the user, or automatically inferred as discussed in Sec. 4.3.

Example 5. For the program in Fig. 2, we let: mhhseed(26) = {16}, due to the
synchronization of program points 16 and 25; mhhseed(14) = {19}, because
program point 13 waits for incrf to finish; and mhhseed(29) = {22} since pro-
gram point 28 waits for incrg to finish. For any other program points p we let
mhhseed(p) = ∅.

Next we describe how to propagate the MHH-seeds to other program points.
This is done using a must data-flow analysis [17] which merges MHH-sets us-
ing set intersection. Let pre(p) be the set of program points that immediately
precede program point p. When p is an entry program point of method m, then
pre(p) consists of the program points at which m is invoked.

Definition 6. Given a program P , its system of MHH equations EP includes
an equation Ep = E1

p ∪E2
p , for each program point p, where E1

p = ∩{Ep′ ∪{p′} |
p′ ∈ pre(p)} and E2

p = ∪{Ep′ ∪ {p′} | p′ ∈ mhhseed(p)}
Note that E1

p takes the intersection of the MHH-sets of all program points
that reach p in one step. This is because it is a must analysis and thus we should
take the information that holds on all paths that lead to p. On the other hand,
E2

p takes the union of the MHH-sets of those program points that are guaranteed
to have been executed before executing p (i.e., its MHH-seeds). Computing the
MHH-sets amounts to finding a solution for the equations. We use ẼP (and Ẽp

for a program point p) to denote such a solution. Note that these set of equations
is object-sensitive since our analysis uses object-sensitive information [14, 5].

Example 6. The following is the set of MHH equations for the program of Fig. 2:

E2 = ∅
E3 = E2 ∪ {2}
E4 = E3 ∪ {3}
E11= (E3 ∪ {3})
∩(E14 ∪ {14})

E12= E11 ∪ {11}

E13 = E12 ∪ {12}
E14 = E13 ∪ {12}
∪E19 ∪ {19}

E16 = E11 ∪ {11}
E19 = E12 ∪ {12}
E22 = E27 ∪ {27}

E25= E4 ∪ {4}
E26= ((E25 ∪ {25}) ∩ (E29 ∪ {29}))
∪E16 ∪ {16}

E27= E26 ∪ {26}
E28= E27 ∪ {27}
E29= E28 ∪ {28} ∪ E22 ∪ {22}

Note that equations E14, E26 and E29 merge all information from the program
points in their MHH-seeds. Solving the above equations we get, among others,
16 ∈ Ẽ28. Thus, program point 16 must execute at least once before 28.

Lemma 2. For a program point p, we have Ẽp ⊆ mhhset(p).

11

4.3 Automatic Inference of MHH-Seeds

In this section we explain how we automatically infer the MHH-seeds that are
required in Sec. 4.2. In particular we explain how our implementation extracts
MHH-seeds from “await y?” (or equivalently “y.get”) and “await b” instructions.
For the sake of simplifying the presentation, we assume that await instructions do
not appear at the end of a conditional branch or a loop body; otherwise, we can
add a special skip instruction to avoid such cases. Moreover, we assume that each
method has a single return instruction. Recall that to include p2 in mhhseed(p1)
we should guarantee that p2 always executes before p1 at least once.

Extracting MHH-seeds from “await y?” instructions. Given an “await y?”
instruction at program point p, if it is guaranteed that y refers to only one method
m, then we add the program point of the return instruction of m, to the MHH-set
of the program point p′ that immediately follows p. In practice, we identify the
method to which y refers using points-to analysis as in [9].

Example 7. Consider the program of Fig. 2. Applying this technique to the await

instruction at program point 28, we add program point 22 to mhhseed(29) since
the future variable z refers to method incrg .

Extracting MHH-seeds from “await b” instructions. Given an “await b”
instruction at program point p, we first syntactically look for instructions that
make b satisfiable. This search is based on some heuristics depending on the
shape of the condition b. For example, for the condition at program point 25 (in
Fig. 2), we look for instructions that assign a non-null value to x. In addition, we
require that there is only one such instruction, and that no other instruction in
the program can make b unsatisfiable – the only allowed way to be unsatisfiable is
by the default values assigned to the variables when creating the corresponding
objects. This condition can be refined further, such that when adding p′ to
mhhseed(p), we also add any program point that follows p′ until we reach an
await instruction. This is because after p′ is executed, the processor will not be
released until the next await instruction.

4.4 Under-Approximating the Set U of Unique Program Points

A sufficient condition for a program point p to be unique is that it belongs to a
method m that is unique (i.e., m is executed only once) and that it is not part
of a loop. The challenge is how to prove that a given method m is unique.

Recall that in the semantics of Sec. 2.2 tasks never disappear once finished,
but they rather remain at their exit point during the remaining execution. This
behavior is correctly handled by the basic MHP analysis. Consequently, if a
method m executes more than once, eventually some of its program points will
“run” in parallel. This is true even if these instances of m execute one after the
completion of the other. Therefore, if there are no program points p1 and p2 in
m such that (p1, p2) ∈ ẼP (the result of the basic MHP analysis that we have
assumed to be available), we can safely conclude that m is unique.

12

Example 8. We have seen in Ex. 6 that 16 ∈ Ẽ28, i.e., program point 16 is in the
MHH-set of program point 28. Since 16 does not appear in a loop and method
init is unique, we can conclude that 16 is in the MHF-set of 28.

4.5 Further Improvements

Eliminating MHP pairs using the unique methods structure. We can
extend the computed MHF sets by analyzing the structure of unique methods.
In the example of Fig.2 , we cannot conclude that 14 ∈ mhfset(28) since 14 is
not unique. Moreover, 14 6∈ mhhset(28) because the body of the loop might not
be executed at all. Fortunately, 16 still belongs to mhfset(28) and a syntactic
analysis of method init allows us to conclude that 14 ∈ mhfset(16). Given that
16 is guaranteed to execute before 28, we can conclude that 14 ∈ mhfset(28).

Eliminating MHP pairs using the MHP graph G
P
. In the previous ex-

tension, we were able to discard all the program points of init (with respect to
28) but we cannot discard 19 because incrf is not unique. However, all instances
of incrf are called from init and executed while init is in the loop, before 16.
This fact is reflected in the MHP graph G

P
(see Sec. 3). All the paths that allow

us to reach 19 from 28 traverse one of the program points of init which are
guaranteed to have finished by the time 28 is reached. In fact, 19 and 28 cannot
happen in parallel. This can be detected by incorporating the MHF-sets in the
corresponding MHP-graphs G

P
. Given a program point p its corresponding set

of refined MHP pairs, denoted ẼpP , is constructed as follows: (1) first remove all
nodes that correspond to program points in mhfset(p) from the MHP graph G

P
;

and (2) construct a set of MHP pairs from the modified graph using the same
reachability conditions as in [3]. Then, given two program points p1 and p2, if
(p1, p2) 6∈ Ẽp1

P ∩ Ẽ
p2

P , the pair (p1, p2) can be safely eliminated from ẼP . With
this improvement, we can guarantee that the method incrf will not be executed
during the await 28. Therefore, we will be able to prove termination of the while
loop in method go.

5 Conclusions and Related Work

Static analysis of concurrent programs is considered complex and computation-
ally expensive. The analysis is expensive because one needs to consider all possi-
ble interleavings of processes. Cooperative scheduling, as used in our concurrency
model, greatly alleviates this problem because interleavings can only occur at
explicit points (in contrast to preemptive scheduling in which interleavings must
be considered at every point). As regards complexity of the analysis, one of the
main challenges is on understanding the synchronization of processes. In the
context of cooperative scheduling, the problem was partially solved in [3], where
synchronization based on future variables was accurately treated. This work
extends such previous analysis to handle synchronization on shared variables
effectively, thus enabling the analysis of programs that use both mechanisms.

The MHP analyses of [13, 2] for X10 focus on synchronization idioms that do
not allow conditional synchronizations. In Java, condition synchronization can

13

be simulated using wait-notify. The analysis of [16] supports wait-notify.
However, in this context the relation between the waiting and notifying threads
is easier to identify (in our case this is done by the seeds). The analysis of [6]
does not support wait-notify. The analysis of [15] does not support any syn-
chronization idiom of Java, it just analyzes the thread structure of the program.

References

1. Ericsson AB. Erlang Efficiency Guide, 5.8.5 edition, October 2011. From
http://www.erlang.org/doc/efficiency guide/users guide.html.

2. S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel
analysis of x10 programs. In K. A. Yelick and J. M. Mellor-Crummey, editors, Proc.
of PPOPP’07, pages 183–193. ACM, 2007.

3. E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of May-Happen-in-Parallel
in Concurrent Objects. In Proc. of FORTE’12, volume 7273 of LNCS, pages 35–51.

4. E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. Termination and
Cost Analysis of Loops with Concurrent Interleavings. In ATVA 2013, Lecture
Notes in Computer Science. Springer, October 2013. To appear.

5. E. Albert, P.Arenas, J. Correas, M. Gómez-Zamalloa, S. Genaim, G. Puebla,
and G. Román-Dı́ez. Object-sensitive cost analysis for concurrect objects.
http://costa.ls.fi.upm.es/papers/costa/AlbertACGGPRtr.pdf, 2012.

6. R. Barik. Efficient computation of may-happen-in-parallel information for concur-
rent java programs. In E. Ayguadé, G. Baumgartner, J. Ramanujam, and P. Sa-
dayappan, editors, LCPC’05, volume 4339 of LNCS, pages 152–169. Springer, 2005.

7. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316–330. Springer, 2007.

8. M. Emmi, A. Lal, and S. Qadeer. Asynchronous programs with prioritized task-
buffers. In SIGSOFT FSE, page 48. ACM, 2012.

9. A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-in-Parallel based
Deadlock Analysis for Concurrent Objects. In FORTE’13, Lecture Notes in Com-
puter Science, pages 273–288. Springer, 2013.

10. E. Giachino, C.A. Grazia, C. Laneve, M. Lienhardt, and P. Wong. Deadlock Anal-
ysis of Concurrent Objects – Theory and Practice, 2013.

11. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

12. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised
Papers), volume 6957 of LNCS, pages 142–164. Springer, 2012.

13. J. K. Lee and J. Palsberg. Featherweight X10: A Core Calculus for Async-Finish
Parallelism. In Proc. of PPoPP’10, pages 25–36. ACM, 2010.

14. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14:1–41, 2005.

15. M. Naik, C. Park, K. Sen, and D. Gay. Effective static deadlock detection. In
Proc. of ICSE, pages 386–396. IEEE, 2009.

16. G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient algorithm for com-
puting MHP information for concurrent java programs. SIGSOFT Softw. Eng.
Notes, 24(6):338–354, 1999. 319252.

17. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
2005. Second Ed.

14

